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H∞ Observer-Based Stabilization of Switched Discrete-Time Linear Systems

H. BIBI1, F. BEDOUHENE1, A. ZEMOUCHE2,3, and A. AITOUCHE4

Abstract— This paper deals with observer-based H∞ con-
troller design method via LMIs for a class of switched discrete-
time linear systems with l2-bounded disturbances. The main
contribution of this note consists in a new and judicious use
of the slack variables coming from Finsler’s lemma. We clarify
analytically how the proposed slack variables allows to eliminate
some bilinear matrix coupling. The validity and effectiveness
of the proposed design methodology are shown through a
numerical example.

Index Terms— Observer-based control; Linear matrix in-
equalities (LMIs); Switching Lyapunov Function (SLF);
Finsler’s lemma.

I. INTRODUCTION

Many physical processes exhibit switched and hybrid
behavior [1], [2], [3] and switching frequently occurs in
many engineering applications such as motor engine con-
trol [4], networked control systems [5], etc. Stability of
switching systems is widely investigated in the literature and
becomes more and more a subject of constant evolution. An
overview of some basic problems has been emphasized in
[1]. Considerable and particular attention has been paid to
the state estimation of linear switched systems [6], nonlinear
switched systems [7] and Markov jump systems [8]. Theoret-
ical explorations on stabilization and intelligent control for
both switched linear systems and switched nonlinear systems
have been addressed in the monograph [9].

On the other hand, most of the switched systems con-
sidered in the literature consist of linear subsystems or first-
order nonlinear subsystems, and various types of complicated
dynamics such as stochastic noises, unknown uncertainties
are not taken into account. However, many industrial systems
or physical systems cannot be described by simple switched
system models, and thus the traditional control synthesis
methods are not applicable for such systems. In this context,
we aim to study a class of switching linear discrete-time
systems affected by unknown disturbances. More precisely,
we are interesting to H∞ observer-based control design
problem in the synchronous switching case, using LMI
approach.

Control techniques by switching among different con-
trollers have been applied extensively in recent years ([10],
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[11], [12], [2]). However, in this case, a fundamental pre-
requisite for the design of feedback control systems is full
knowledge of the state that may be impossible or costly. This
drawback is the main motivation to investigate the problem
of estimating the state of switching systems by different
observer structures [13], [11], [14], [15].

On the other hand, it is always required to design a control
system which is not only stable, but also guarantees an
adequate level of performance. This is way control systems
design that can handle model uncertainties has been one
of the most challenging problems, and has received consid-
erable attention from control engineers and scientists [16],
[17], [18]. Indeed, such a problem remains far from being
solved especially when switched systems are concerned.
Among the works dealing with the output feedback control
for a class of switching discrete-time linear systems with
parameters uncertainties, we can quote [19], [20], and [21],
which constitute the main motivation of the proposed work.

The problem is first considered in [20], but without dis-
turbances, using Finsler’s lemma combined with switching
Lyapunov function [10]. Unfortunately, an error has occurred
when applying the Finsler lemma. A corrected version of
the application is given in [21]. Our objective is to extend
the study in [21], by taking into account the presence
of disturbances in the state equations and in the output
measurements, by introducing a more general structure of the
slack variable coming from Finsler’s lemma. The obtained
result can be applied to robust observer-based H∞ control
design problem for polytopic uncertain linear time-varying
systems. Indeed, asymptotic stability problem for switched
linear systems with arbitrary switching is equivalent to the
robust asymptotic stability problem for polytopic uncertain
linear time-varying systems, for which several strong stability
conditions are available in the literature [22]. In the goal to
simplify the presentation of the new ideas in the paper and to
focus on the new Finsler’s inequality use, we will consider
in this paper systems without parameter uncertainties in the
presence of norm-bounded disturbances.

The rest of the paper is organized as follows. Section II
is devoted to the problem statement. The main contribution
is presented and proved in Section III. A numerical example
is added in Section IV to demonstrate the validity and the
effectiveness of the proposed methodology. Finally, we end
the paper by a conclusion.

II. FORMULATION OF THE PROBLEM

Let us consider the class of switching discrete-time linear
systems described by:

xt+1 = Aσtxt +Bσtut + Eσtwt (1a)
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yt = Cσtxt + Sσtwt (1b)
zt = Hσtxt +Dσtut + Jσtwt (1c)

where t ∈ N, xt ∈ Rn is the state vector, yt ∈ Rp is the
output measurement, and ut ∈ Rm is the control signal, wt ∈
Rv is an unknown exogenous disturbance, zt ∈ Rq is the
controlled output, and σ : N→ Λ = {1, 2, . . . , N}, t 7→ σt,
is a switching rule. If there is no ambiguity about σt and σ,
we may juste write σ instead σt. Aσ , Bσ , Eσ , Cσ , Sσ , Hσ ,
Dσ , and Jσ, σ ∈ Λ, are n×n , n×m , n×v , p×n , p×v,
q×n, q×m and q× v real matrices, respectively. The pairs
(Aσ, Bσ) and (Aσ, Cσ) are assumed to be stabilizable and
detectable, respectively. Throughout the paper, the coming
assumptions are to build (see e.g. [20], [21]):

Assumption 1: The switching function, σ, is unknown a
priori but its instantaneous values are available in real time.

Assumption 2: The switching of the observer for systems
should coincide exactly with the switching of the system.
Assuming an arbitrary switching can be very useful in many
practical applications such as the case when σt is computed
via complex algorithms by a higher level supervisor or when
it is generated by a human operator (for example the switch
of gears in a car).

The observer-based controller we consider in this paper is
under the form [23]:

x̂t+1 = Aσx̂t +Bσut + Lσ

(
yt − Cσx̂t

)
(2a)

ut = Kσx̂t (2b)

where x̂t ∈ Rn is the estimate of xt, and for each σ ∈ Λ,
Lσ ∈ Rn×p is the observer gain and Kσ ∈ Rm×n is the
control gain. Hence, we can write

xt+1 =

[
Ω11(σ) Ω12(σ)
Ω21(σ) Ω22(σ)

]
︸ ︷︷ ︸

Ωσ

x̄t +

[
LσSσ

LσSσ − Eσ

]
︸ ︷︷ ︸

Πσ

wt (3)

:= Ωσx̄t + Πσwt (4)

where x̄t = [x̂Tt eTt ]T , et = x̂t − xt represents the
estimation error, and

Ω11(σ) = Aσ +BσKσ (5a)
Ω12(σ) = −LσCσ (5b)

Ω21(σ) = 0 (5c)
Ω22(σ) = Aσ − LσCσ. (5d)

The aim is to design the gains Kσ and Lσ , σ ∈ Λ, such
that the closed-loop system (3) is asymptotically stable, and
meets performance requirement, under an arbitrary switching
rule σ ∈ Λ. Our objective is to extend the study in [21],
by taking into account the presence of disturbances in state
equations, and by introducing a more general structure of the
slack variable coming from Finsler’s lemma. Let us denote
ξ(t) = [ξ1(t), ξ2(t), ..., ξN (t)]T , the indicator function which
satisfies for each i ∈ Λ,

ξi(t) =

{
1, σt = i;
0, otherwise.

Hence, system (3) with (1c) can be reformulated as:[
x̄t+1

zt

]
=

N∑
i=1

ξi(t)

[
Ωi Πi

Hi +DiKi −Hi

] [
x̄t
wt

]
, (6)

where the elements of Ωi are defined by (5), when σ = i.
For the closed-loop system (6), we consider the switching
Lyapunov function defined as

V (x̄t, ξ(t)) = x̄Tt P̂ (ξ(t))x̄t =

N∑
i=1

ξi(t)x
T
t

[
P̂ 11
i P̂ 12

i

(?) P̂ 22
i

]
x̄t. (7)

Notice that the Lyapunov function (7) is well known in
the literature, see e.g. [15], [24], [21], [23]. If we consider
the switching Lyapunov function (7), we have, by assuming
σt = i and σt+1 = j:

∆Vij(t) :=V (xt+1, ξ(t+ 1))− V (xt, ξ(t))

=[xTt xTt+1]

[
−P̂i 0

0 P̂j

]
[xTt xTt+1]T (8)

for all i, j ∈ Λ, and hence the H∞ performance criterion is
achieved if the following requirement

Wij(t) := ∆Vij(t) + zTt zt − µ2wTt wt < 0, (9)

holds for all i, j ∈ Λ and t ∈ N. Note that the criterion (9)
can be deduced from [25] applied to switching systems case,
see also [26]. Now, in order to linearize (9), we use Finsler’s
Lemma that we recall here for the sake of completness:

Lemma 1 (Finsler’s Lemma): Let x ∈ Rn, P ∈ Sn×n,
and H ∈ Rm×n such that rank (H) = r < n. The following
statements are equivalent :

1) xTPx < 0, ∀Ux = 0, x 6= 0,
2) ∃X ∈ Rn×m such that P +XU + UTXT < 0.

Thus with the following parametrers,

ζt =

 xt
xt+1

wt

 , Pij =


−P̂i 0 0 Υi

(?) P̂j 0 0
(?) (?) −µ2I JTi
(?) (?) (?) −I

 ,

Ui =
[
Ωi −I Πi

]
, Xi,j =

Fi,jGi,j
Ti,j

 ,
where Υi :=

[
KT
i D

T
i +HT

i

−HT
i

]
, and P̂i, P̂j ∈ R2n×2n, i, j ∈

Λ, are symmetric positive definite matrices, it is then easy to
find that Wij(t) < 0 is equivalent to what we call Finsler’s
inequality:

Pij +Xi,jUi + UTi X
T
i,j < 0, ∀i, j ∈ Λ. (10)

We replaced the choice of Xij , Ui and Pij in inequality (10),
one obtains, after developing, the following detailed version
of (10):
=ij −Fij + ΩTi G

T
ij FijΠi + ΩTi T

T
ij Υi

(?) P̂j −He(Gij) GijΠi − TTij 0
(?) (?) −µ2I + He(TijΠi) JTi
(?) (?) (?) −I

 < 0,

(11)
for all i, j ∈ Λ, where =ij = He(FijΩi)− P̂i, and He(Y ) =
Y + Y T , for any matrix Y .



III. MAIN CONTRIBUTION: NEW LMI DESIGN

Let us put

Fij =

[
F 11
ij F 12

ij

F 21
ij F 22

ij

]
, Gij =

[
G11
ij G12

ij

G21
ij G22

ij

]
,

Tij =
[
T 1
ij T 2

ij

]
, P̂i =

[
P̂ 11
i P̂ 12

i

(?) P̂ 22
i

]
. (12)

Our problem consists in linearizing inequality (11) by choos-
ing judiciously the matrices (12). By replacing (12) in (11),
and after developing, we get the following detailed version:Ψij


Υi

0
0
JTi


(?) −I

 < 0, (13)

for all i, j ∈ Λ, where

Ψij =


Ωij11 Ωij12 Ωij13 Ωij14 Ωij15

(?) Ωij22 Ωij23 Ωij24 Ωij25

(?) (?) Ωij33 P̂ 12
j −G12

ij − (G21
ij )T Ωij35

(?) (?) (?) P̂ 22
j −He

(
G22
ij

)
Ωij45

(?) (?) (?) (?) Ωij55

 ,

Ωij11 =− P̂ 11
i + He

(
F 11
ij Ai + F 11

ij BiKi

)
Ωij12 =− P̂ 12

i + F 12
ij Ai − (F 11

ij + F 12
ij )LiCi

+KT
i B

T
i (F 21

ij )T +ATi (F 21
ij )T

Ωij13 =− F 11
ij +ATi (G11

ij )T +KT
i B

T
i (G11

ij )T ,

Ωij14 =− F 12
ij +ATi (G21

ij )T +KT
i B

T
i (G21

ij )T

Ωij15 =ATi (T 1
ij)

T +KT
i B

T
i (T 1

ij)
T + (F 11

ij + F 12
ij )LiSi

− F 12
ij Ei,

Ωij22 =− P̂ 22
i + He

(
F 22
ij Ai − (F 22

ij + F 21
ij )LiCi

)
,

Ωij23 =− F 21
ij − CTi LTi (G11

ij +G12
ij )T +ATi (G12

ij )T

Ωij24 =− F 22
ij +ATi (G22

ij )T − CTi LTi (G22
ij +G21

ij )T ,

Ωij25 =− CTi LTi (T 1
ij + T 2

ij)
T +ATi (T 2

ij)
T

+ (F 21
ij + F 22

ij )LiSi − F 22
ij Ei,

Ωij33 =P̂ 11
j − (G11

ij )T −G11
ij ,

Ωij35 =(G11
ij +G12

ij )LiSi −G12
ij Ei − (T 1

ij)
T ,

Ωij45 =(G21
ij +G22

ij )LiSi −G22
ij Ei − (T 2

ij)
T ,

Ωij55 =− µ2I + He
(

(T 1
ij + T 2

ij)LiSi − T 2
ijEi

)
.

In what follows, we will discuss a manner of choosing the
matrix Fij , Gij , Tij and P̂i in order to linearize Finsler’s
inequality (11) (or equivalently (13)). This problem is very
complex, since the gain matrices Li, i ∈ Λ, are attached to
ten different matrices G11

ij , G12
ij , G22

ij , G21
ij , F 11

ij , F 12
ij , F 22

ij ,
F 21
ij , T 1

ij and T 2
ij . We begin by dealing with the gain matrices

Ki. In order to linearize the bilinear terms attached to Ki,
we use the congruence principle. For this purpose, let us
assume that F 11

ij is invertible, and independent of j, that is
F 11
ij = F 11

i .

A. Linearization of (13) with respect to the gain Ki

In view of (13), the matrices G11
ij , and G22

ij , i, j ∈ Λ
are necessarily invertible. Applying the congruence principle
to (13) with diag

(
(F 11
i )−1, I, (G11

ij )−1, I
)

, and using the
following changes of variables

(G11
ij )−1 = G̃11

ij , (F 11
i )−1 = F̃ 11

i , K̃i = Ki(F̃
11
i )T

one obtains the following inequality:

Ω̃ij11 Ω̃ij12 Ω̃ij13 Ω̃ij14 Ω̃ij15 K̃T
i D

T
i + F̃ 11

i HT
i

(?) Ωij22 Ω̃ij23 Ωij24 Ωij25 −HT
i

(?) (?) Ω̃ij33 Ω̃ij34 Ω̃ij35 0

(?) (?) (?) Ωij44 Ωij45 0

(?) (?) (?) (?) Ωij55 JTi
(?) (?) (?) (?) (?) −I


< 0,

(14)
where

Ω̃ij11 =− F̃ 11
i P̂ 11

i (F̃ 11
i )T + He

(
Ai(F̃

11
i )T +BiK̃i

)
Ω̃ij12 =F̃ 11

i F 12
ij Ai − (I + F̃ 11

i F 12
ij )LiCi

+ K̃T
i B

T
i (F 21

ij )T + F̃ 11
i ATi (F 21

ij )T − F̃ 11
i P̂ 12

i

Ω̃ij13 =− (G̃11
ij )T + F̃ 11

i Ai
T + K̃T

i B
T
i

Ω̃ij14 =− F̃ 11
i F 12

ij + F̃ 11
i ATi (G21

ij )T + K̃T
i B

T
i (G21

ij )T

Ω̃ij15 =F̃ 11
i ATi (T 1

ij)
T + K̃T

i B
T
i (T 1

ij)
T

+ (I + F̃ 11
i F 12

ij )LiSi − F̃ 11
i F 12

ij Ei,

Ω̃ij23 =− F 21
ij (G̃11

ij )T − CTi LTi (I + G̃11
ijG

12
ij )T

+ATi (G̃11
ijG

12
ij )T ,

Ω̃ij33 =G̃11
ij P̂

11
j (G̃11

ij )T − G̃11
ij − (G̃11

ij )T ,

Ω̃ij34 =G̃11
ij P̂

12
j − G̃11

ijG
12
ij − G̃11

ij (G21
ij )T ,

Ω̃ij35 =(I + G̃11
ijG

12
ij )LiSi − G̃11

ijG
12
ij Ei − G̃11

ij (T 1
ij)

T ,

Ωij44 =P̂ 22
j −G22

ij − (G22
ij )T .

Inequality (14) is still a BMI with respect to K̃i, since it’s
coupled with F 21

ij , G
21
ij , T

1
ij . So, we focus on the particular

case where G21
ij = F 21

ij = 0 and T 1
ij = T 2

ij = 0. Hence,
applying a result of de Oliveira et al. [27] or [10], and using
the notation P̃ 11

i = (P̂ 11
i )−1, we obtain the equivalent form

of (14):

Ω̂ij11 Ω̂ij12 Ω̂ij13 Ω̂ij14 Ω̂ij15 K̃T
i D

T
i + F̃ 11

i HT
i

(?) Ω̂ij22 Ω̂ij23 Ω̂ij24 Ω̂ij25 −HT
i

(?) (?) Ω̃ij33 Ω̂ij34 Ω̂ij35 0

(?) (?) (?) Ωij44 Ω̂ij45 0
(?) (?) (?) (?) −µ2I JTi
(?) (?) (?) (?) (?) −I

 < 0,

(15)
where

Ω̂ij11 =P̃ 11
i + He

(
− F̃ 11

i +Ai(F̃
11
i )T +BiK̃i

)
,

Ω̂ij12 =F̃ 11
i F 12

ij Ai − (I + F̃ 11
i F 12

ij )LiCi − F̃ 11
i P̂ 12

i ,

Ω̂ij13 =− (G̃11
ij )T + F̃ 11

i Ai
T + K̃T

i B
T
i

Ω̂ij14 =− F̃ 11
i F 12

ij



Ω̂ij15 =(I + F̃ 11
i F 12

ij )LiSi − F̃ 11
i F 12

ij Ei,

Ω̂ij22 =− P̂ 22
i + He

(
F 22
ij Ai − F 22

ij LiCi

)
,

Ω̂ij23 =− CTi LTi (I + G̃11
ijG

12
ij )T +ATi (G̃11

ijG
12
ij )T ,

Ω̂ij24 =− F 22
ij +ATi (G22

ij )T − CTi LTi (G22
ij )T ,

Ω̂ij25 =F 22
ij LiSi − F 22

ij Ei,

Ω̃ij33 =G̃11
ij P̂

11
j (G̃11

ij )T − G̃11
ij − (G̃11

ij )T ,

Ω̂ij34 =G̃11
ij P̂

12
j − G̃11

ijG
12
ij ,

Ω̂ij35 =(I + G̃11
ijG

12
ij )LiSi − G̃11

ijG
12
ij Ei,

Ω̂ij45 =G22
ij LiSi −G22

ij Ei.

B. Linearization of (15) with respect to the gain Li
Note that (15) is still a BMI because of presence of

the coupling term G̃11
ij P̂

11
j (G̃11

ij )T . On the other hand, the
gain matrix Li is attached to different variables, (I +
F̃ 11
i F 12

ij )LiCi, (I+G̃11
ijG

12
ij )LiCi, F 22

ij LiCi and G22
ij LiCi,

and since G22
ij is invertible and Li dependent of i, then we

choose G22
ij = G22

i independent of j. Instead of identified
the two terms (I+ F̃ 11

i F 12
i ) = G22

i , I+G̃11
i G

12
i = G22

i , as
already done in our paper [21], in this paper we identify the
two terms I + F̃ 11

i F 12
ij = I + G̃11

ijG
12
ij = F 22

ij = 0, which
amounts to put:

F 12
ij = −F 11

i , G12
ij = −G11

ij and F 22
i = 0,

and due to the co-existence of F̃ 11
i P̂ 12

i and G̃11
ij P̂

12
j , we

cannot use a change of variables. We can then assume that
P̂ 12
i = 0. Finally, in view of the previous arguments, the

structures of Fi and Gij become

Fi =

[
F 11
i −F 11

i

0 0

]
, Gij =

[
G11
ij −G11

ij

0 G22
i

]
, P̂ 12

i = 0. (16)

The alternative choice (16) is more general than that in [21],
since it involves both indices i and j. At this stage, we can
introduce the change of variables L̂i = G22

i Li. Now, in order
to deal with the bilinear term G̃11

ij P̂
11
j (G̃11

ij )T , we use Schur’s
complement. Thus, (15) becomes

Θi
11 Θi

12 Θij
13 Θi

14 Ei Θi
16 0

(?) −P̂ 22
i Θi

23 Θi
24 0 −HT

i 0

(?) (?) Θij
33 I Ei 0 G̃11

ij

(?) (?) (?) Θij
44 Θi

45 0 0
(?) (?) (?) (?) −µ2I JTi 0
(?) (?) (?) (?) (?) −I 0

(?) (?) (?) (?) (?) (?) −P̃ 11
j


︸ ︷︷ ︸

Ξij

< 0,

(17)

Θi
11 =P̃ 11

i + He
(
− F̃ 11

i +Ai(F̃
11
i )T +BiK̃i

)
Θi

12 =−Ai,
Θij

13 =− (G̃11
ij )T + F̃ 11

i Ai
T + K̃T

i B
T
i +

Θi
14 =I,

Θi
16 =K̃T

i D
T
i + F̃ 11

i HT
i ,

Θi
23 =−ATi

Θi
24 =ATi (G22

i )T − CTi L̂Ti ,
Θij

33 =− G̃11
ij − (G̃11

ij )T ,

Θij
44 =P̂ 22

j −G22
i − (G22

i )T ,

Θi
45 =L̂iSi −G22

i Ei.

Hence, the following theorem is inferred.
Theorem 1: For the closed-loop switched system (3), if

there exist positive definite matrices P̃ 11
i , P̂ 22

i ∈ Rn×n,
invertible matrices G22

i , G̃
11
ij , F̃

11
i ∈ Rn×n , matrices K̃i ∈

Rm×n, L̂i ∈ Rn×p, for i, j ∈ Λ, so that the following convex
optimization problem holds

min(µ) subject to
Ξij < 0, for all i, j ∈ Λ, (18)

where Ξij is given by (17), then the closed-loop switched
system (3) is globally H∞ asymptotically stable with a
minimum attenuation level µ, under an arbitrary switching
rule σ. The observer-based controller gains are given by

Ki = K̃i(F̃
11
i )−T , and Li = (G22

i )−1L̂i, i ∈ Λ. (19)
Remark 1: In the previous analysis, we chose P̂i as a

diagonal matrix because F 11
i 6= G11

ij . If one imposes the
condition F 11

i = G11
i , we can then choose P̂i as a non-

diagonal matrix (i.e. P̂ 12
i 6= 0).

IV. ILLUSTRATIVE EXAMPLE

In this section, we present a numerical example to show
the validity and effectiveness of the proposed design method-
ology. The example is described by the matrices in Table I
below [28]:

i Ai Bi CiT

1

0.7786 0.9908 0.1270
0.1616 0.8443 0.8144
0.9214 0.9747 0.7825

 0.2458 0.7409
0.2501 0.5257

0 0

 0.3815
0.6916
0.7183



2

0.3894 0.3263 0.7746
0.7806 0.9886 0.1297
0.8814 0.4718 0.3110

 0.2722 0.6055
0.1576 0.1580

0 0

 0.0591
0.8258
0.4354



3

0.3049 0.4247 0.8979
0.8448 0.2485 0.6921
0.7558 0.9160 0.3636

 0.4945 0.3020
0.9237 0.9118

0 0

 0.5204
0.8010
0.9708



4

0.1194 0.3964 0.2454
0.1034 0.2515 0.4983
0.6981 0.8655 0.2403

 0.9894 0.7205
0.1709 0.1519

0 0

 0.6995
0.3081
0.8767


TABLE I

SYSTEM PARAMETERS

All the matrices A1, A2, A3 and A4 are clearly unstable.
Assume that the system is disturbed by a noise wt = χ(t)ωt,
where ωt is an uniformly distributed random variable on the
interval [0 1], and χ(.) is defined by

χ(t) =

 2 if t ∈ [0, 20[;
−2 if t ∈ [40, 70[;
0 elsewhere,

with adequate weighted matrices given in Table II:



Mode i 1 2 3 4

Ei

0.1
0.2
0

 0.2
0.1
0

  0
0.1
0.1


 0.1
−0.2
0.1


HT
i

 0
0.1
0

  0
0.2
0

 0.2
0

0.1

 0.1
0.1
0


Ji 0.2 0.2 0.3 0.5
Si 0.1 0.5 0.2 0.6
Di 0 0 0 0

TABLE II
THE MATRICES RELATED TO DISTURBANCES IN THE SYSTEM.

After solving the LMI (18), we get the optimal disturbance
attenuation level µmin = 0.6144, and the observer-based
controller gains:

K1 =

[
10.1862 0.7576 −5.3030
−4.9168 −1.9387 1.1747

]
, L1 =

[
0.4639
0.8315
0.9666

]
,

K2 =

[
−5.5306 −11.4018 1.6525
1.2740 4.3284 −2.2230

]
, L2 =

[
0.6820
0.9787
0.6032

]
,

K3 =

[
−4.9708 −4.9824 −5.9156
4.3113 5.0517 5.3305

]
, L3 =

[
0.6070
0.6126
0.6508

]
,

K4 =

[
−4.1119 −4.3603 10.2364
4.8140 4.4365 −14.5480

]
, L4 =

[
0.4675
−0.1066
0.6191

]
.

The simulation results corresponding to these observer-based
controller gains are given in Figures 1-4. These simula-
tions are performed for an horizon T = 110, with x0 =[
1 2 5

]T
, x̂0 =

[
−1 3 6

]T
.

V. CONCLUSION

In this paper, new LMI conditions have been developed
for the problem of the stabilization of a class of switching
discrete-time linear systems with l2-bounded disturbances.
We have shown that a judicious choice of slack variables
coming from Finsler’s lemma leads to less conservative
LMIs. Analytical proofs have been provided to clarify how
the proposed choice allows to eliminate some bilinear matrix
coupling. The validity of the proposed design method is
shown through a numerical example. In future work, we hope
to extend our technique to switching systems with unknown
switching modes and to linear parameter varying systems
with inexact parameters.
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