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A Modified Two-Steps LMI Method to Design Observer-based controller for
Linear Discrete-Time Systems with Parameter Uncertainties

C. BENNANI1, F. BEDOUHENE1, A. ZEMOUCHE2,3, H. BIBI1 and A. AITOUCHE4

Abstract— This note deals with the problem of observer-
based stabilization for discrete-time linear systems with norm-
bounded parameter uncertainties. Thanks to slack variable
technique and the two-step method, an LMI-based approach is
provided to compute simultaneously all the main decision vari-
able of the observer-based controller problem. Our approach
is inspired from the classical two-steps method introduced by
Stankovic et al. and the modified two-steps method introduced
by Zemouche et al.. Some comments are reserved to emphasize
and clarify the difference between the different variants of the
two-steps method. A numerical example is provided in order
to illustrate how the new algorithm is less conservative than
previous results in literature.

Index Terms— Observer-based control; Linear matrix in-
equalities (LMIs); uncertain systems; two steps method.

I. INTRODUCTION

Over the last decades, given its importance, the Observer-
Based Stabilization problem for systems with parameter
uncertainties is constantly arousing the interest of the au-
tomation community, both in continuous and discrete-time
cases. Several studies have been devoted to the issue, in
the LMI framework, to offer partial solutions. To date, the
problem is not completely solved because of its difficulty.
In the discrete-time systems, one can mention, for example,
the paper by Lien [1], concerned with the equality constraint
method. Ibrir et al. have considered the same problem where,
in order to linearize some bilinear term, the technique of
constraint equality [2], the decoupling technique [3], and
the technique of the stack variables [4], [5] are used. An
other method which deals with the same issue is proposed
by Kheloufi et al. [6], [7], and Zemouche et al. [8]. Their
idea is to exploit judiciously the Young inequality. Contrarily
to the contraint equality approach, the so-called Young’s
inequality-based approach, has the avantage that it works
successfully independently of the dimension of the input,
in addition, the necessary condition for the feasibility of
proposed LMI is equivalent to the stabilizability and de-
tectability of the system (without uncertainties) [6]. But it
has the disadvantage that, for the solvability of the LMI
condition, it requires an a priori choice of some scalar
variable coming from the use of the Young inequality.
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Several papers in the literature have addressed the robust
stabilization issue via constant gain Luenberger observers for
linear systems with parametric uncertainties, but the results
remain conservative. We refer the readers to [9], [10], for
some interesting works in this area. In this paper, we address
the problem of observer-based control design via LMIs. We
propose new and enhanced LMI conditions to solve the
problem of stabilization of linear systems with uncertain
parameters. The proposed design methodology is related to
the approach presented in [11]. Indeed, we propose a new
variant of two-steps procedure, which contains, as particular
case, that introduced by Zemouche et al. [11]. We show
that this new variant encompasses the Young’s relation based
approach [7] and the two-steps methods [12], [11]. The rest
of this paper is organized as follows: Section II is devoted
to the problem statement and a brief state of the art review
related to different LMI design methods available in the
literature to examine what already exists in the academic
literature. The main contribution is presented and proved in
Section III. A numerical example is added in Section IV to
demonstrate the validity and the effectiveness of the proposed
methodology. Finally, we end the paper by a conclusion.

II. PROBLEM STATEMENT AND BACKGROUND RESULTS

A. Problem statement

Consider the same class of systems investigated in [7]:

xt+1 = (A+ ∆A(t))xt +But (1a)
yt = (C + ∆C(t))xt (1b)

where t = 0, 1, . . ., xt ∈ Rn is the state vector, yt ∈ Rp is
the output measurement, and ut ∈ Rm is the control input
vector. The nominal matrices A ∈ Rn×n, B ∈ Rn×m, and
C ∈ Rp×n are known. The pairs (A,B) and (A,C) are
assumed to be stabilizable and detectable, respectively. The
uncertain terms ∆A(t) ∈ Rn×n and ∆C(t) ∈ Rp×n are
unknown matrices that account for time-varying parameter
uncertainties and are assumed to be of the form

∆A(t) = MAFA(t)NA, ∆C(t) = MCFC(t)NC (2)

where MA, NA, MC , and NC are known real constant
matrices; FA(t) and FC(t) are unknown real time-varying
matrices satisfying the inequalities

FT
A (t)FA(t) ≤ α2I, FT

C (t)FC(t) ≤ β2I, ∀t ∈ N . (3)

For the sake of simplicity, from now on we will denote
∆A(t) and ∆C(t) by ∆A and ∆C, respectively. Such a
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notation will be adopted also for all the matrices that depend
on ∆A(t) and ∆C(t).

The asymptotic stabilization of the discrete-time linear
system (1) is addressed using the Luenberger observer

x̂t+1 = Ax̂t +But + L(yt − Cx̂t) (4)

where L ∈ Rn×p is the observer gain to be determined and
x̂t ∈ Rn is the estimate of xt at time t. Let et := xt − x̂t
be the estimation error. Then, under the feedback

ut = −Kx̂t (5)

where K ∈ Rm×n is the controller gain, the closed-loop
dynamics is described by

zt+1 =

[
A−BK + ∆A BK

∆A− L∆C A− LC

]
zt = Πzt (6)

where zTt = (xTt , e
T
t ) ∈ R2n is the augmented state vector.

The goal is to find suitable controller and observer gains
K and L that guarantee the asymptotic stability of (6).
Toward this end, let Vt := V (zt) = zTt Pzt with P > 0
be a Lyapunov function. The closed-loop system (6) is
asymptotically stable if there exists a matrix P > 0 such
that the difference between the Lyapunov functions at two
consecutive time instants ∆Vt := Vt+1 − Vt is negative
definite, that is,

∆Vt = zTt (ΠTPΠ− P )zt < 0, ∀zt 6= 0, ∀t ∈ N. (7)

Using Schur Lemma, (7) turns out to be equivalent to:[
−P Π
(?) −P−1

]
< 0 . (8)

B. Background results

Here, we will recall some LMI methods concerned with
this note. First, we recall the so-called Young’s inequality-
based approach established in [7] for asymptotic stability of
the system (6). After this, we summarize the LMI design
established in [3]. The end of this section will be devoted
to a useful linearization Lemma [3] and [4], which gives a
sufficiency condition for linearizing some BMI. We announce
it and give the necessary condition part.

Theorem 1 ([7]): If there exist ε2 > 0, two symmetric

positive definite matrices P =

[
P11 P12

PT
12 P22

]
∈ R2n×2n and

G1 ∈ Rn×n, G2 ∈ Rn×n invertible, K̂ ∈ Rm×n, and L̂ ∈
Rn×p such that the LMI
W11 W12

(?) −P

 [
W2 W3 W4 W5

]
(?) diag

[
D11, −ε2I, D22, D33

]
 < 0 (9)

with

W11 =

[
P11 − 2G1 + ε2MAM

T
A P12

PT12 P22 − (G2 +GT2 )

]
W12 = diag

[
AG1 −BK̂, GT2 A− L̂C

]
W2 =

[
K̂TBT 0 0 0

0 0 0 I

]T
, D11 = diag

[
−ε1 −ε−1

1

]
G1

W3 =
[
0 0 NAG1 0

]T
, D22 = diag

[
−ε3 −ε−1

3

]
I

W4 =

[
0 MT

AG2 0 0
0 0 NAG1 0

]T
, D33 = diag

[
−ε4, −1

ε4

]
I

W5 =

[
0 MT

C L̂
T 0 0

0 0 NCG1 0

]T
is feasible for some positive constants ε1, ε3, and ε4, then
(6) is asymptotically stable with K = K̂G−11 and L =
(GT

2 )−1L̂.
The proof of Theorem 1 is based on the slack variables tech-
nique combined with the judicious handling of the famous
Young’s inequality.

Theorem 2 ([3]): Consider system (1) and observer (4).
If there exist two symmetric and positive definite ma-
trices P1 ∈ Rn×n, P2 ∈ Rn×n, two real matrices
Y1 ∈ Rm×n, Y2 ∈ Rn×p, and five positive constants
α, β, ε1, ε2, ε3 such that the following holds:[

P1 I
? (2β − α)I

]
> 0, (10)

σ11 AP1 +BY1 BY1 0 0 0
? −P1 0 P1N

T
A P1N

T
C P1N

T
A

? ? −αI 0 0 0
? ? ? −ε1I 0 0
? ? ? ? −ε2I 0
? ? ? ? ? −ε3I

 < 0,

(11)
−P2 Γ12 βI 0 0
? −P2 0 P2MA Y2MC

? ? −P1 0 0
? ? ? −(2− ε2)I 0
? ? ? ? −(2− ε3)I

 < 0, (12)

where σ11 = −P1 + ε3MAM
T
A and Γ12 = ATP2 +CTY T

2 ,
then there exist two gains L = P−12 Y et K = Y1P

−1
1 such

that systems (1) and (4) are globally asymptotically stable
under the feedback (5).
Beside some congruence transformation, one of the main
ideas adopted in the proof of Theorem 2 is the following
so-called Ibrir’s Linearization Lemma, which proposes an
interesting solution to the problem of coexistence of depen-
dent variables in LMI framework, such as a variable and its
inverse.

Lemma 1 ([4]): Given the matrices X,Y , and Z of
appropriate dimensions where X = X> > 0 and Z = Z> >
0. Then, the following linear matrix inequality holds:[

−X Y >

Y −Z−1

]
< 0 (13)

if there exists a positive constant α > 0 such that−X αY > 0
αY −2αI Z
0 Z −Z

 < 0. (14)

This lemma proposed and proved by Ibrir [4] has also
exploited in the nonlinear context.



Remark 1: Let us mention that (13) and (14) are not
equivalent. Indeed, we propose here an example of matrix
X , Y and Z satisfying (13), and for which there is no α > 0
such that (14) holds. Take

X =

[
4 1
1 6

]
, Y T =

[
1 0
2 0

]
, Z =

[
1 1
1 2

]
. (15)

With this choice of X = X> > 0, Z = Z> > 0 and Y ,
inequality (13) is satisfied. Now, if we assume that there
exists α > 0 such that (14) holds, then we get, using
Sylvester’s criterion, that all of its principal minors of odd
order are negative. In particular, we have

∆5(α) = 2α(18α2 − 55α+ 46) < 0,

which is impossible since ∆5(α) > 0 for all α > 0.

III. NEW LMI DESIGN PROCEDURE

In this section, we shall present a numerically efficient
technique to find the observer and controller gains in such
a way to stabilize system in closed loop, i.e., to ensure that
(6) is asymptotically stable. In order to derive sufficiency
conditions that guarantee the stability asymptotic of (6), we
begin by the step of linearization of the BMI (8). Here,
instead of using Lemma 1, we use the following well-known
Theorem of De Oliveira et al. [13].

Theorem 3 ([13]): The following conditions are equiva-
lent:

1) There exists a symmetric matrix P > 0 such that

ATPA− P < 0. (16)

2) There exist a symmetric matrix P and a matrix G such
that [

P ATGT

GA G+GT − P

]
> 0. (17)

Using Theorem 3, the BMI problem (8) is equivalent to
find an invertible matrix G and a symmetric positive definite
matrix P such that[

P −He(G) GΠ
(?) −P

]
< 0, (18)

where He(G) = G+GT . Hence, after developing the product
GΠ in (18), we obtain by choosing G = diag (G1, G2)P −He(G)

[
G1(A−BK + ∆A) G1BK
G2(∆A− L∆C) G2(A− LC)

]
(?) −P

 < 0.

(19)
Let at first deal with the linearization of the uncertainties in

(19). We decompose the matrix defining (19) as follows:

Ω :=

P −He(G)

[
G1(A−BK + ∆A) G1BK
G2(∆A− L∆C) G2(A− LC)

]
(?) −P



=

Ω1︷ ︸︸ ︷P −He(G)

[
G1A− G1BK G1BK

0 G2(A− LC)

]
(?) −P

 (20)

+

 0

[
G1∆A 0

G2(∆A− L∆C) 0

]
(?) 0



= Ω1 + He


G1MA

G2MA

0
0

FA(t)

 0
0
NT
A

0


T


+ He


 0
G2LMC

0
0

FC(t)

 0
0
−NT

C

0


T
 .

Now, by applying the classical Young’s relation on the right-
hand side of inequality (20), we get for any ε1 > 0 and
ε2 > 0:

Ω ≤ Ω1 +
1

ε1

G1MA

G2MA

0
0


G1MA

G2MA

0
0


T

+ α2ε1

 0
0
NT
A

0


 0

0
NT
A

0


T

+
1

ε2

 0
G2LMC

0
0


 0
G2LMC

0
0


T

+ β2ε2

 0
0
NT
C

0


 0

0
NT
C

0


T

. (21)

Therefore, from the estimate (21) and the changes of
variables L̂ = G2L, α̂−1 = ε1α

2, and β̂−1 = ε2β
2, we

deduce that the inequality (8) holds ifΩ1

Ω2︷ ︸︸ ︷
G1MA 0 0

G2MA L̂MC 0 0
0 0 NT

A NT
C

0 0 0 0


? diag

[
−ε1I, −ε2I, −α̂I, −β̂I

]

 < 0. (22)

Now, it remains to linearize the bilinear term G1BK
involved in (22). Since B is full column rank, there always

exists a non singular matrix T so that TB =

[
Im
0

]
. Hence,

using the similarity transformation T , system (1) can be
transformed under the following equivalent form:

A := TAT−1, C := CT−1, B := TB =

[
Im
0

]
,

∆A(t) := T∆A(t)T−1, ∆C(t) := ∆C(t)T−1,

MA := TMA, NA := NAT
−1, MC := MC , NC := NCT

−1.

Consequently, in the rest of this note, we assume without
loss of generality that

B =

[
Im
0

]
. (23)

Now, we need to write the matrix G1 in the detailed forms:

G1 =

[
G1

11 G1
12

G1
21 G1

22

]
.

Taking into account the structure (23) of B, we have:

G1B =

[
G1

11 G1
12

G1
21 G1

22

] [
Im
0

]
=

[
G1

11

G1
21

]
(24)

and therefore
G1BK =

[
G1

11K
G1

21K

]
. (25)

By choosing the matrix G1
11 invertible (and symmetric), there

always exists a matrix S ∈ R(n−m)×m so that

G1
21 = S G1

11. (26)



By the change of variables K̂ = G1
11K, the matrix Ω1 can

be rewritten under the following form:

Ω1 =

P −G−GT
G1A−

[
K̂

SK̂

] [
K̂

SK̂

]
0 G2A− L̂C


(?) −P

 . (27)

The matrix inequality (22), when taking into account the
new expression of Ω1 in (27), is not linear because of
the presence of the coupling term SK̂. To linearize it, we
proceed as follows:
• Step 1 Solve the optimization problem resulting from

the stabilization of (1a) by a static state feedback u =
−Kx with respect the decision variables P , K and

a certain slack variable Ĝ =

[
Ĝ11 Ĝ12

ĜT
12 Ĝ22.

]
comming

from Theorem 3, and compute the matrix S̄ := Ĝ11Ĝ12

• Step 2 Solve the optimisation problem

minimize
(
α̂+ β̂ + ε1 + ε2

)
subject to (22)− (27).

(28)
with S = αS̄ by using the gridding method on α with
the decision variables P , K̂, L̂.

We consider the stabilization problem of (1) by a static
state feedback u = −Kx. System (1a) can be written in the
closed-loop form:

xt+1 =
(
A−BK +M1F1(t)N1

)
xt. (29)

System (29) is globally asymptotically stable by the Lya-
punov function V (x) = xTPx if the following inequality
holds:

−P +
(
A−BK + ∆A

)T
P
(
A−BK + ∆A

)
< 0.(30)

Inequality (30) is equivalent, thanks to Theorem 3, to the
existence of an invertible matrix G such that[

P − G − GT G
(
A−BK + ∆A

)
? −P

]
< 0. (31)

By choosing G = GT , and using the congruence principal,
we obtain that (30) holds if the following one is fulfilled:

diag(G−1,G−1)Fdiag(G−1,G−1) < 0, (32)

where

F =

[
P − G − GT G

(
A−BK + ∆A

)
? −P

]
.

Thus, after developing and by making the changes of vari-
ables Z = G−1PG−1, G−1 = Ĝ and K̄ = KĜ, we get (31)
is [
Z − Ĝ− ĜT AĜ−BK̄

? −Z

]
+ He

([
MA

0

]
FA(t)

[
0

(NAĜ)T

]T)
< 0. (33)

Inequalities (33) can be easily linearized thanks to Young’s
inequality. Now, using the change of variable: α̂S = α−2η−1,
where η is a positive number that results from the use of
Young’s inequality. We deduce that (29) is globally asymp-
totically stable if the following LMI condition is fulfilled:

Z − Ĝ− ĜT AĜ−BK̄ MA 0

(?) −Z 0 ĜNT
A

(?) (?) −ηI 0
(?) (?) (?) −α̂SI

 < 0, (34)

Since our objective consists in optimizing the bounds of the
uncertainties, so under this consideration we must solve the
following convex optimization problem:

min
(
α̂S + η

)
subject to (34). (35)

Our approach is reported and summarized in the following
modified two-steps algorithm, that we call ”MTSM”:

Algorithm MTSM:

1) Solve the optimization problem: minimize
(
α̂S + η

)
subject to LMI (34) with the decision variables Z, K̄,
Ĝ, η > 0, and α̂S and go to 2);

2) Compute S̄ by S̄ := Ĝ21(Ĝ11)−1, put S = S̄Θ, with
Θ = diag(α1, α2, . . . , αm) and go to 3);

3) Solve the optimization problem:

minimize
(
α̂+ β̂ + ε1 + ε2

)
subject to (22)− (27)

with S = S̄Θ by using the gridding method on αi, i =
1, . . . ,m, with the decision variables P , G2, G1, K̂,
L̂, ε1, ε2, α̂, and β̂ and go to 4);

4) Compute the observer-based controller gains as K =
(Ĝ11)−1K̂, L = G−12 L̂.

Remark 2: In item 2), one could also compute the matrix
S̄ by S̄ := G21G−111 , since G and Ĝ are congruent matrices.

Before proceeding with the next section, we briefly com-
ment what has been presented so far to clarify the novel
contribution given by Algorithm 1 as compared with the
results available in the current literature. In particular, a
comparison is deserved with the approach proposed by
Zemouche et al. [11] and that proposed by Stankovic et
al. [12].

The existing two-steps method are different from our new
design technique. Indeed, the standard method proceeds as
in the following algorithm:

Algorithm 1: (classical two-steps method (CTSM))

1) Solve LMI (34) (with P = G), with the decision
variables Z, K̄ and η > 0;

2) compute K by K = K̄Z−1;
3) solve (22) for K = K with the decision variables

P1, P2, L̂ and εi, i = 1, 2;
4) compute the observer gain as L = P−12 L̂.

As can be seen, the CTSM algorithm calculates the gains K
and L separately.



Algorithm 2 (NTSM)

1) Solve LMI (34) with the decision variables Z, K̄ and
η > 0;

2) compute S̄ by S̄ = (P12)TP−111 , and put S = αS̄;
3) solve (22)-(27) with S = S̄Θ, with Θ =

diag(α1, α2, . . . , αm), by using the gridding method
on αi with the decision variables P1, P2, K̂, L̂ and
εi, i = 1, 2;

4) compute the observer-based controller gains as K =
P−111 K̂ and L = P−12 L̂.

As said before, the introduction of the slack variable G (in
both step one and step two) in our algorithm renders it more
general than NTSM algorithm. Indeed, if we take G = Z
in item 1) and G = P in item 4) in our algorithm, we get
exctely Algorithm 2 (NTSM). The advatage of our method
lies in the semoultanious search for the decision variable
K, L, and P in the feasibility domain of the main LMI.
Contrarely to Algorithm 2, where the research of Lyapunov
matrix P (which is a main decision variable) is done by
”collage”.

Remark 3: Other variants of the two-steps method can be
derived. Indeed:

1) In the classical two step method, instead of solving
(22) for K = K, we can also consider K = K̄,
or a more general structure by weighting K̄ by a
slack variable Θ = diag(α1, α2, . . . , αm), namely,
K = ΘK̄, and then solve (22) by the gredding method
with respect to αi, i = 1, . . . ,m.

2) In the stability analysis, instead of considering the
closed loop system provided by zt = (xTt , e

T
t )T , we

can also consider that provided by zt = (x̂Tt , e
T
t )T . In

this case, the first step is dedicated to the search of the
gain matrice L, instead of K.

3) In Algorithm 2, we can propose two other possibilities.
The first one requires no condition on the matrix B. It
consists in evaluating (entirely) the Lyapunov matrix
P from the first step, by remplacing P by Z (or by
ΘZ), and then compute simultaniously the gains K
and L from the second steps. The second one consists
in remplacing P by P , or by ΘP .

All these senarios have the a common point, whose principle
is to linearize the couplet term PBK or G1BK with respect
to: either P , or K, or G1 from the first step. The idea of
calculating a part of P or G is specific to the form of the
matrix B, that must be a full rank matrix. In this case, we
do not need to calculate a part of P or G1 of the first step.
Mathematically, we do not yet know how to justify exactely
these different choices. For example, choosing G1 from the
first step could be due to the fact that the variable G1 (or part
of G1) must be in the stability domain of the closed loop
system by static feedback, which implies that the system is
stable when L = 0 (this is the case, since the pair (A,B) is
assumed to be stabilizable.

IV. NUMERICAL EXAMPLE

In this section, a numerical example is presented to
illustrate the effectiveness of the proposed approach. We

reconsider the example of [3] and [7], described by the
following parameters:

A =

 1 0.1 0.4
1 1 0.5
−0.3 0 1

 , B =

 0.1 0.3
−0.4 0.5
0.6 0.4

 , C =

[
1 1 1
1 1 1

]
,

MA = γ1

 0 0 0
0.1 0.3 0.1
0 0.2 0

 , NA =

 0 0 0
0.2 0 0.4
0 0.1 0

 ,
MC = γ2

[
0 0 0.3
0 0 0.8

]
, NC =

0 0 0
0 0 0
0 0 0.2

 .
By applying the transformation T =

 50
17 − 30

17 0
40
17

10
17 0

230
119 − 10

17 − 10
14

,

on the previous system, the following new parameters A, B,
C, MA, NA, MC , NC are reached:

A :=

0.8824 −0.2647 −0.4118
0.7059 1.7882 −1.7294
0.1727 0.1761 0.3294

 , B :=

1 0
0 1
0 0

 ,
C :=

[
0.3 1.2 −1.4
0.3 1.2 −1.4

]
, MC := γ2

[
0 0 0.3
0 0 0.8

]
,

MA := γ1

−0.1765 −0.5294 −0.1765
−0.0588 0.1765 0.0588
−0.0588 −0.3193 −0.0588

 ,
NA =

 0 0 0
0.2600 0.2200 −0.5600
−0.0400 0.0500 0

 ,
NC :=

 0 0 0
0 0 0

0.1200 0.0800 −0.2800

 .
By choosing γ1 = γ2 = 1, we solved the LMI (22)-(27) of

Algorithm, we obtain the matrices gains

KT =

 1.0311 0.7324
0.0544 1.5474
−0.5672 −1.8033

 , L =

−1.7623 0.6609
1.5539 −0.5827
−0.9256 0.3471

 .
Now, we searched for the maximum values of γ1 and γ2 that

satisfy the above described LMI. After solving the optimiza-
tion problem (22)-(27), we get γ1max = 5.78, γ2max =
1015. The results are summarized in Table I.

LMIs LMIs (10)-(12) LMI (9) MTSM NTSM CTSM
[3] [7] [11] [12]

γ1max 2.89 4.64 5.78 5.5 5.08

γ2max 1012 1013 1015 1015 1015

TABLE I
COMPARISON BETWEEN DIFFERENT LMI DESIGN METHODS

The obtained matrices gains are:

KT =

 0.1491 0.8117
−0.5840 1.6815
−0.1615 −2.3640

 , L =

−1.7788 0.66671
1.9689 −0.7383
−0.9227 0.3460

 .
The simulation results corresponding to the observer-based

controller gains are given in Figure (1) and (2) with x0 =[
−1 2 5

]T
and x̂0 =

[
1 5 −7

]T
.
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Fig. 1. Behavior of x and x̂

V. CONCLUSION

In this paper, a new variant of two-steps algorithm to con-
struct observer-based controllers for uncertain linear discrete-
time is proposed via the satisfaction of a two LMIs. The
connection with respect to existing two-steps algorithms in
the literature are analyzed also via numerical tests, which
show an increased feasibility as compared with alternative
design methods. Future work will concern possible exten-
sions of the proposed approach to the design of observer-
based controllers for nonlinear delay systems.
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