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Abstract: This paper is devoted to the design of an H∞ discrete-time nonlinear state observer
for an anaerobic digestion model. Indeed, the designed observer can be used for different
class of systems, mainly linear systems, LPV systems with known and bounded parameters,
and nonlinear Lipschitz systems. We use an LMI approach to guarantee the H∞ asymptotic
stability of the estimation error despite the disturbances affecting the system dynamics and
measurements. The synthesised LMI is relaxed due to the inclusion of additional decision
variables which enhance its feasibility. This was possible due to the use of a suitable reformulation
of the Young’s inequality. Simulation results are given to show the robustness of the designed
observer.
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1. INTRODUCTION AND PRELIMINARIES

1.1 Introduction

Anaerobic digestion (AD) is a promising process for green
energy production. It occurs in an anaerobic digester
where the organic matter, recovered from different types of
waste, is converted to biogas. Inside the digester, several
species of bacteria cohabit with each other and usually
each species has different living conditions then the others
and even sometimes compete for food. Thus, to ensure a
healthy functioning of the process, continuous supervision
and monitoring are needed.

However, unfortunately both the monitoring and supervi-
sion of the process are hampered by several hurdles. One
of them is the poverty of knowledge about the bacteria
behaviour and the microbial metabolic pathways, this
problem has been widely investigated in the literature
and as a result several models has been proposed (Bastin
and Dochain, 1990), (K. Chaib Draa and M.Alma, 2015).
Another hurdle, lies in the lack of reliable and cheap
measurement devices. An alternative solution for such a
problem is the design of software sensors (observers) to
estimate the unmeasurable state variables. However, this
does not seem to be an easy task due to the complexity of
the biological models, the absence of key measurements
and the sensitivity of estimations to the measurement

noise (L. Yu and Chen, 2013). Therefore, many researchers
have investigated the observation problem for the AD
models. Among the designed observers, we can cite the
asymptotic observer (Bastin and Dochain, 1990) which is
quite simple and does not require the knowledge of some
specific nonlinear functions. However, such an observer is
very sensitive to model uncertainties and its convergence
rate depends on the operational conditions. Therefore,
it has been extended to interval observers (Bernard and
Gouzé, 2004) which have the advantage of using reliable
measurements, which are nonlinear functions of the state
vector. The interval observers estimate the interval where
the state is lying when the system has large uncertainties.
However, generally the rate of convergence is partially
tunable and it is not easy to exploit the intervals for
control. In order to enhance the convergence rate of the
observers the Kalman filter has been designed repeatedly
in the literature (F. Haugen and Lie, 2014), (E. Rocha-
Cozatl and Wouwer, 2015), which shows suitable results
in different chemical applications, but unfortunately the
convergence of estimation errors to zero is not guaranteed.
The high gain observer (Gauthier et al., 1992), (M. Farza
and Busawon, 1997) converges rapidely to the model state
variables, however its synthesis is complex and it is very
sensitive to noise (M. Lombardi and Laurent, 1999). Thus,
it is relevant to design an observer which can overcome
model disturbances and measurements corruption.



An other issue related to the design of observers for the
AD models is that most of the observer designers assume
that measurements are available on line and continuously.
Whereas, this is not true in real applications. Therefore, in
reality the observer operates in discrete time and is driven
by discrete time measurements (sampled data) (Kravaris
et al., 2013). Consequently, we design in the current paper
a suitable H∞ discrete time nonlinear observer for the AD
process. The designed observer is simple to implement,
robust as it can be seen further in the paper and its rate
of convergence is tunable. Moreover, we provide a novel
algorithm to ensure the stability of the observation error.
Literally, we give a new and less conservative LMI to find
the observer gains. Indeed, this was possible due to the
use of a suitable reformulation of the Young’s inequality
(Zemouche et al., 2016). Actually, we include additional
decision variables in the LMI to allow its feasibility.

The paper is organized as follows, in Section 2 we present
the process modelling, then in Section 3 we state the
problem of H∞ observer design. Later, in Section 4 we
give the new LMI synthesis conditions, then in Section 5
we simulate and apply the findings to the considered AD
model and finally we conclude the paper in Section 6.

1.2 Notation and Preliminaries

Notation: The following notations will be used through-
out this paper:

• (?) is used for the blocks induced by symmetry;
• AT represents the transposed matrix of A;
• Ir represents the identity matrix of dimension r;
• for a square matrix S, S > 0 (S < 0) means that this

matrix is positive definite (negative definite);
• the set Co(x, y) = {λx + (1 − λ)y, 0 ≤ λ ≤ 1} is the

convex hull of {x, y};

• es(i) =
(

0, ..., 0,

i th︷︸︸︷
1 , 0, ..., 0︸ ︷︷ ︸

s components

)T ∈ Rs, s ≥ 1 is a vector

of the canonical basis of Rs.

Preliminaries: The preliminaries provided herein are
very useful in the design of the synthesis conditions to
ensure the asymptotic convergence of the state observer
that we will propose later.

Lemma 1. (a variant of Lipschitz reformulation). Let ϕ :
Rn → Rq a differentiable function on Rn. Then, the
following items are equivalent (Zemouche et al., 2016):

• ϕ is a globally γϕ-Lipschitz function;
• there exist finite and positive scalar constants aij , bij

so that for all x, y ∈ Rn there exist zi ∈ Co(x, y), zi 6=
x, zi 6= y and functions ψij : Rn → R satisfying the
following:

ϕ(x)− ϕ(y) =

q,n∑
i,j=1

ψij(zi)Hij
(
x− y

)
(1)

aij ≤ ψij
(
zi

)
≤ bij , (2)

where

ψij(zi) =
∂ϕi
∂xj

(zi), Hij = eq(i)e
T
n (j).

Notice that this lemma has been introduced in order to
simplify the presentation of the proposed observer design
method. Indeed, for our technique, we will exploit (1)-(2)
instead of a direct use of Lipschitz property.

Lemma 2. ((Zemouche et al., 2016)). Let X and Y be
two given matrices of appropriate dimensions. Then, for
any symmetric positive definite matrix S of appropriate
dimension, the following inequality holds:

XTY + Y TX ≤ 1

2

[
X + SY

]T
S−1

[
X + SY

]
. (3)

This lemma will be very useful for the main contributions
of this paper. It allows providing less restrictive LMI
conditions compared to the classical LMI techniques for
the considered class of systems.

2. ANAEROBIC DIGESTION MODELING

The AD model proposed in O. Bernard and Steyer (2001)
has been slightly modified by introducing two control in-
puts reflecting the addition of stimulating substrates (acids
(S2ad) and alkalinity (Zad). The mass balance model of the
process is given by equations (4), where x1 (g/l) represents
the concentration of the organic matter to be digested
and x2 (g/l) the concentration of acidogenic bacteria,
which degrades the organic matter. The volatile fatty acids
concentration x3 (mmol/l) is supposed to be pure acetate,
x4 (g/l) is the concentration of methanogenic bacteria, x5

(mmol/l) represents the inorganic carbon concentration
and x6 (mmol/l) the alkalinity concentration. The other
control inputs are u1 = F1in

v (1/day) and u2 = F2in

v
(1/day), where F1in is the input flow rate of waste to the
digester and F2in the input flow rate of the added alkalinity
(Zad). Since the digester volume (v) is constant, the output
flow rate uout = u1 + u2, the rest of the used parameters
in the model are defined in Table 1.

ẋ1 = −k1µ1(x1)x2 + u1S1in − uoutx1

ẋ2 = (µ1(x1)− α)uoutx2

ẋ3 = k2µ1(x1)x2 − k3µ2(x3)x4 + u1(S2in + S2ad)−
uoutx3

ẋ4 = (µ2(x3)− α)uoutx4

ẋ5 = k4µ1(x1)x2 + k5µ2(x3)x4 + u1Cin
−uoutx5 − qc(x)

ẋ6 = u1Zin + u2Zad − uoutx6

(4)

with

µ1(x1) = µ1

x1

x1 + ks1
, µ2(x3) = µ2

x3

x3 + ks2 +
x2
3

ki2

co2 = x5 + x3 − x6, φ = co2 +KHPT +
k6

kLaµ2(x3)x4

qc(x) = kLa[co2 −KHPC(x)], qm(x) = k6µ2(x3)x4

PC(x) =
φ−

√
φ2 − 4KHPT co2

2KH

where qm(x) and qc(x) represent the methane and co2 gas
flow rates, respectively.
We divide the system outputs into nonlinear (y1) and
linear (y2) outputs{

y1 = qc(x)
y2 = [x1, x3, x6]T

(5)



Table 1. Model Parameters (O. Bernard and Steyer, 2001)

Acronyms Definition Units Value

k1 Yield for substrate (x1) degradation g/(g of x2) 42.1
k2 Yield for VFA (x3) production mmol/(g of x2) 116.5
k3 Yield for VFA consumption mmol/(g of x4) 268
k4 Yield for co2 production mmol/g 50.6
k5 Yield for co2 production mmol/g 343.6
k6 Yield for ch4 production mmol/g 453
µ1 Maximum acidogenic bacteria (x2) growth rate 1/day 1.25
µ2 Maximum methanogenic bacteria (x4) growth rate 1/day 0.74
ks1 Half saturation constant associated with x1 g/l 7.1
ks2 Half saturation constant associated with x3 mmol/l 9.28
ki2 Inhibition constant associated with x3 mmol/l 256
kb Acidity constant of bicarbonate mol/l 6.5 10−7

KH Henry’s constant mmol/(l.atm) 27
PT Total preasure atm 1.013
kLa Liquid/gas transfer constant 1/day 19.8

3. PROBLEM FORMULATION OF THE H∞
OBSERVER DESIGN

To render the findings general and suitable for other
nonlinear models, we will present the results in a general
way for a certain class of nonlinear models.

Motivated by the model of anaerobic digestion (4), we
will investigate the general class of discrete-time models
described by the following equations:{
xk+1 = A(ρk)xk +Bγ(xk) + g(y1k, uk) + Ewk
y2k = Cxk +Dwk

(6)

where xk ∈ Rn is the state vector, y1k ∈ Rp′ is the
nonlinear output measurement and y2k ∈ Rp is the linear
output measurement, uk ∈ Rq is an input vector, wk ∈ Rz
in the disturbance L2 bounded vector and ρk ∈ Rs is
an L∞ bounded and known parameter. The affine matrix
A(ρk) is expressed under the form

A(ρk) = A0 +

s∑
j=1

ρjkAj

with
ρjmin ≤ ρ

j
k ≤ ρ

j
max,

which means that the parameter ρk belongs to a bounded
convex set for which the set of 2s vertices can be defined
by:

Vρ =
{
% ∈ Rs : %j ∈ {ρjmin, ρ

j
max}

}
. (7)

The matrices Ai ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, E ∈
Rn×z and D ∈ Rp×z are constant. The nonlinear function
γ : Rn −→ Rm is assumed to be globally Lipschitz. It is
obvious that γ(.) can always be written under the detailed
form:

Bγ(xk) =

m∑
i=1

Biγi(

ϑi︷ ︸︸ ︷
Hixk)

where Hi ∈ Rni×n and Bi refers to the ith column of the
matrix B.
Remark 1. Notice that the fact we use the same distur-
bances vector w in the dynamics and the output mea-
surements is not a restriction because the matrices E,
D and the dimension of w are arbitrary. Indeed, if we
assume that in the dynamics we have E1w1, and in the

measurement equation, we have E2w2, then we can always

write E = [E1 0], D = [0 E2] and w =

[
w1

w2

]
, which lead

to the form (6).
It is easy to show that the model of anaerobic digestion (4)
can be written under the form (6) with particular param-
eters that will be provided in a detailed description in
Section 4. It is also obvious to see that the assumptions on
the LPV parameter ρk and the global Lipschitz property
of γ(.) corresponding to (4) are preserved.

In order to estimate the unmeasurable variables of the
model (4), we use the following observer structure:

x̂k+1 = A(ρk)x̂k +

m∑
i=1

Biγi(ϑ̂i) + g(y1k, uk)

+ L(ρk)
(
y2k − Cx̂k

)
(8)

ϑ̂i = Hix̂k +Ki(ρk)
(
yk − Cx̂k

)
(9)

L(ρk) = L0 +

s∑
j=1

ρjkLj , Ki(ρk) = K0
i +

s∑
j=1

ρjkK
j
i (10)

where x̂k is the estimate of xk. The matrices Li ∈ Rn×p
and Kj

i ∈ Rni×p are the observer parameters to be
determined so that the estimation error ek = xk − x̂k,
be H∞ asymptotically stable.

Since γ(.) is globally Lipschitz, then from Lemma 1 there

exist zi ∈ Co(ϑi, ϑ̂i), functions

φij : Rni −→ R
and constants aij , bij , such that

γ(x)− γ(x̂) =

m,ni∑
i,j=1

φij(zi)Hij
(
ϑi − ϑ̂i

)
(11)

and

aij ≤ φij
(
zi

)
≤ bij , (12)

where

φij(zi) =
∂γi

∂ϑji
(zi), Hij = Bieni

(j).



For shortness, we set φij , φij

(
zi

)
. Without loss of

generality, we assume that aij = 0 for all i = 1, . . . ,m
and j = 1, . . . , ni. For more details about this, we refer
the reader to (Arcak and Kokotovic, 2001).

Since ϑi− ϑ̂i =
(
Hi−Ki(ρk)C

)
ek −Ki(ρk)Dwk, then we

have

γ(xk)− γ(x̂k) =

m,ni∑
i,j=1

φijHij
(
Hi −Ki(ρk)C

) ek
−

m,ni∑
i,j=1

φijHijKi(ρk)D

wk (13)

Therefore, the dynamic equation of the estimation error
can be obtained as

ek+1 =

AL(ρk) +

m,ni∑
i,j=1

[
φijHijHKi

] ek

+

EL(ρk) +

m,ni∑
i,j=1

[
φijHijDKi

]wk (14)

with

AL = A(ρk)− L(ρk)C, HKi
= Hi −Ki(ρk)C. (15)

EL = E − L(ρk)D, DKi = Ki(ρk)D.

As already mentioned, our target is to make the estimation
error dynamics (14) H∞ asymptotically stable. In other
words, we want to find the observer gains such that the
following H∞ criterion is satisfied:

‖e‖Ln
2
≤
√
µ‖w‖2Lz

2
+ ν‖e0‖2 (16)

Usually, a quadratic Lyapunov function is used to analyse
the H∞ stability of the estimation error

V (ek) = eTk Pek, P = PT > 0.

Consequently the H∞ criterion is satisfied if the following
holds

W , ∆V + ‖e‖2 − µ‖w‖2 ≤ 0. (17)

where ∆V = V (ek+1)− V (ek).

4. NEW LMI SYNTHESIS CONDITIONS

The main results related to the convergence analysis of the
estimation error is summarized in the following theorem,
which provides new LMI conditions.

Theorem 3. If there exist symmetric positive definite ma-
trices P ∈ Rn×n, Si ∈ Rni×ni , matrices X0,Xl ∈ Rp×n,
and Y0,Y li ∈ Rp×ni , i = 1, . . . ,m; l = 1, . . . , s, of appropri-
ate dimensions so that the convex optimization problem
min(µ) subject to the constraint (18) is solvable:M(%)

[
ΠT

1 . . . ΠT
m

]
(?) −ΛS

 < 0, ∀% ∈ Vρ (18)

with

M(%) =


−P 0 M13(%)

0 −µIz M23(%)

M>13(%) M>23(%) −P

 (19)

M13(%) =
(
AT0 P− CTX0

)
+

s∑
l=1

%l
(
ATl P− CTXl

)
(20)

M23(%) = E>P−D>
(
X0 +

s∑
l=1

%lXl

)
(21)

Πi =
[
ΠT
i1 . . .Π

T
ini

]T
, ΠT

ij =

H
(
Si,Y li

)
D
(
Si,Y li

)
PHij

 (22)

H
(
Si,Yi,l

)
= HT

i Si − CT
(
Y0
i +

s∑
l=1

%lY li

)
(23)

D
(
Si,Yi,l

)
= DT

(
Y0
i +

s∑
l=1

%lY li

)
(24)

Λ = block-diag
(

Λ1, ...,Λm

)
(25)

Λi = block-diag

(
2

bi1
Ini , . . . ,

2

bini

Ini

)
(26)

S = block-diag
(
S1, . . . ,Sm

)
(27)

Si = block-diag
( ni times︷ ︸︸ ︷
Si, . . . ,Si

)
(28)

then, the estimation error satisfies the H∞ criterion (16)
with ν = λmax(P). Consequently, the observer parameters
Ll and Kl

i are to be computed as follows:

Ll = P−1X Tl , Kl
i = S−1

i (Y li)T .

Proof.

By calculating W (17) along the trajectories of (14), we
obtain:



W = eTk


AL(ρk) +

m,ni∑
i,j=1

[
φijHijHKi

]T

P

×

AL(ρk) +

m,ni∑
i,j=1

[
φijHijHKi

]− P + In

 ek
+ wTk


EL(ρk) +

m,ni∑
i,j=1

[
φijHijDKi

]T

P

×

EL(ρk) +

m,ni∑
i,j=1

[
φijHijDKi

]− µIz
wk

+ eTk


AL(ρk) +

m,ni∑
i,j=1

[
φijHijHKi

]T

P

×

EL(ρk) +

m,ni∑
i,j=1

[
φijHijDKi

]wk
+ wTk


EL(ρk) +

m,ni∑
i,j=1

[
φijHijDKi

]T

P

×

AL(ρk) +

m,ni∑
i,j=1

[
φijHijHKi

] ek (29)

Using the Schur lemma we deduce that W < 0 if the
subsequent matrix inequality holds:

[
−P + In 0

0 −µIz

]


(
AL(ρk) +

m,ni∑
i,j=1

[
φijHijHKi

])T

P

(
EL(ρk) +

m,ni∑
i,j=1

[
φijHijDKi

])T

P


(?) −P


< 0

(30)

which can be rewritten under the following form:
M(%)︷ ︸︸ ︷

[−P + In 0

0 −µIz

] A>L (ρk)P

E>L (ρk)P


(?) −P

+

m,ni∑
i,j=1

φij



XT
ij︷ ︸︸ ︷
0

0

PHij


Yi︷ ︸︸ ︷

[HKi
DKi

0] +YTi Xij


< 0. (31)

Now, by applying Lemma 2 we have

XTijYi + YTi Xij ≤
1

2

(
Xij + SijYi

)T
S−1
ij

Πij︷ ︸︸ ︷(
Xij + SijYi

)

for any symmetric positive definite matrices Sij . Since the
matrix block Yi does not depend on the index j and
depends on the same Ki(ρk), then to obtain an LMI,
we need to put Sij = Si, ∀(i, j) as in (27)-(28), with
Si ∈ Rni×ni . Consequently, from (12) and the fact that
aij = 0, inequality (31) holds if

M(%)−
m,ni∑
i,j=1

(
ΠT
ij

(
− 2

bij
Si
)−1

Πij

)
< 0. (32)

consequently, by Schur lemma, inequality (32) is equiva-
lent to (18), and to solve the LMI we use the change of
variable Xi = LTi P and Y li = (Kl

i)
TSi. This ends the proof.

5. SIMULATION RESULTS

In this section, we apply the designed observer in Section
3 to the AD model (4) in order to estimate the main
state variables of the model in presence of disturbance
in the model dynamics and measurements. Therefore, we
first write the model (4) in the form (6). This is done
by using the first order Euler discretization method with
sampling time Ts. After discretization, the model (4) is
written under the form (6) with the following parameters:

A(ρk) = I6−Tsuout(k)A1, A1 = block-diag(1, α, 1, α, 1, 1)

B = Ts

[
−k1 1 k2 0 k4 0

0 0 −k3 1 k5 0

]T

g(y1k, uk) = Ts


u1(k)S1in

0
u1(k)(S2in + S2ad(k))

0
u1(k)Cin − qc(k)

u1(k)Zin + u2(k)Zad(k)



γ(xk) =

[
µ1(x1k)x2k

µ2(x3k)x4k

]
, C =

[
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

]
For a demonstrative simulation, we suppose that the

dynamics and measurements are disturbed by different
signals w1 and w2, respectively. They hold over a finite
interval of time as depicted in Figure 1. Thus, we choose
the matrices E1 and E2 , defined in Remark 1, as the
following:

E1 = [ 0.1, 0.2, 1, 0.1, 0.3, 0.2 ]
T
, E2 = [ 0.1, 0.5, 1 ]

T

For the considered model we have ρk = uout(k) and for
the observer design we have, m = 2, s = 1, ni = 2,
γ1(xk) = µ1(x1k)x2k , γ2(xk) = µ2(x3k)x4k,

H1 =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
, H2 =

[
0 0 1 0 0 0
0 0 0 1 0 0

]
The simulation have been run for Ts = 0.001 day, ρmin =
0.1 day−1, ρmax = 0.9 day−1, S1in = 16 g/l, S2in =
170 mmol/l, Cin = 76.15 mmol/l, Zin = 200 mmol/l,
Zad = 700 mmol/l, S2ad = 0 mmol/l, u1 = 0.6 day−1,
u2 = 0.02 day−1 and the parameter values given in Table
1. Moreover, the system and the observer were initial-
ized, respectively, by x(0) = [2, 0.5, 12, 0.7, 53.48, 55]T and
x̂(0) = [2, 1, 12, 0.4, 28.5, 55]T .



Figures 2, 3, 4 represent the system states and their es-
timates, obtained by using the proposed observer in this
paper and another observer of the same structure (8)-(10)
but without including the H∞ criterion (16). It is clear
that the proposed H∞ observer gives the better results in
presence of disturbances.

Indeed, as it can be seen from the same Figures 2, 3, 4,
despite the initial estimation error, the corrupted mea-
surements and the disturbed dynamics, the designed H∞
observer shows satisfactory results and good performances.
Actually the figures give a clear idea on the level of the
attenuation obtained with the H∞ criterion. This demon-
strates the efficiency of the proposed approach.
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Fig. 3. Mathenogenic bacteria x4 and its estimate x̂4(g/l).
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Fig. 4. Inorganic carbon x5 and its estimate x̂5(mmol/l).

6. CONCLUSION

In this paper we have designed an H∞ discrete time
nonlinear observer for a disturbed AD model, and in
presence of corrupted measurements data. The advantage

of the findings is the robustness and the fastness of the
designed observer against the model and measurement
disturbances. This opens up new prospects to synthesize
an optimal control for the biogas plants based on the
designed observer.
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