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Introduction

The main function of the coagulation system is terminating bleeding, caused by the vessel wall damage by covering the injury site with a fibrin clot. The reaction of fibrin polymerization appears at the final stage of the proteolytic enzymatic cascade where the activated clotting factors act as catalysts for activation of the others [START_REF] Butenas | Blood coagulation[END_REF][START_REF] Orfeo | The tissue factor requirement in blood coagulation[END_REF]. Mature form of fibrin molecules can aggregate into long branching fibers and form a complex network which serves as a thrombus scaffold. The key enzyme of the coagulation cascade is thrombin as it catalyzes fibrinogen conversion to fibrin and distribution of the thrombin concentration has a crucial influence on the kinetics of the clot formation [START_REF] Hemker | Thrombin generation, an essential step in haemostasis and thrombosis[END_REF][START_REF] Hemker | Thrombin generation in plasma: its assessment via the endogenous thrombin potential[END_REF][START_REF] Butenas | Blood coagulation[END_REF]. To prevent the spontaneous formation of thrombi the activation reactions are regulated by the action of plasma inhibitors [START_REF] Pieters | Inhibition of Factor Xa and Factor X , by Antithrombin III / Heparin during Factor X Activation[END_REF][START_REF] Koppelman | Inhibition of the Intrinsic Factor X Activating Complex by Protein S: Evidence for a Specific Binding of Protein S to Factor VIII[END_REF][START_REF] Monkovic | Functional characterization of human platelet-released factor V and its activation by factor Xa and thrombin[END_REF][START_REF] Panteleev | Tissue factor pathway inhibitor: a possible mechanism of action[END_REF].

The balance between coagulation and anti-coagulation systems is important for the normal organism functioning and any alternations can lead to the severe pathological states: thrombosis or, on the contrary, disseminative bleeding [START_REF] Colman | Hemostasis and thrombosis: basic principles and clinical practice[END_REF][START_REF] Askari | [END_REF].

The key enzyme of the coagulation cascade is thrombin since it catalyzes fibrinogen cleavage to fibrin which in turn forms hemostatic clot. Formation of thrombin appears due to the prothrombin activation in the coagulation cascade. The process can be launched by the tissue factor expressed to the blood flow in case of the endothelium rupture (extrinsic pathway), or through the activation of factor XII which triggers activation of factor XI in case of the contact with the foreign surface (contact activation) [START_REF] Orfeo | The tissue factor requirement in blood coagulation[END_REF][START_REF] Orfeo | The nature of the stable blood clot procoagulant activities[END_REF][START_REF] Gailani | Factor XI Activation in a Revised Model of Blood Coagulation[END_REF].

Both pathways lead to the activation of factor X that contributes to the prothrombin conversion to thrombin [START_REF] Orfeo | The tissue factor requirement in blood coagulation[END_REF]. Once the thrombin concentration reaches the threshold value, further prothrombin activation takes place due to the positive feedback loops of the coagulation cascade (intrinsic pathway) [START_REF] Orfeo | The nature of the stable blood clot procoagulant activities[END_REF][START_REF] Orfeo | The tissue factor requirement in blood coagulation[END_REF][START_REF] Panteleev | Spatial Propagation and Localization of Blood Coagulation Are Regulated by Intrinsic and Protein C Pathways, Respectively[END_REF]. Thrombin controls activation of factor XI [START_REF] Gailani | Factor XI Activation in a Revised Model of Blood Coagulation[END_REF] and also of factors V [START_REF] Monkovic | Functional characterization of human platelet-released factor V and its activation by factor Xa and thrombin[END_REF] and VIII whose activated forms (Va, VIIIa) increase catalytic activity of factors Xa and IXa by formation of the prothrombinase and intrinsic kinase complexes respectively [START_REF] Butenas | The significance of circulating factor IXa in blood[END_REF][START_REF] Orfeo | The tissue factor requirement in blood coagulation[END_REF][START_REF] Baugh | Role of the Activation Peptide Domain in Human Factor X Activation by the Extrinsic Xase Complex[END_REF][START_REF] Scandura | Factor X bound to the surface of activated human platelets is preferentially activated by platelet-bound factor IXa[END_REF] (Fig. 1).

Influence of different factors on the coagulation process was studied both experimentally and using theoretical approaches. As compared to the experiment, parameters in theoretical studies can be varied much easier allowing to detect not only experimentally observed regimes of blood coagulation [START_REF] Stortelder | Mathematical modelling in blood coagulation ; Simulation and parameter estimation[END_REF][START_REF] Leiderman | Grow with the flow: A spatialtemporal model of platelet deposition and blood coagulation under flow[END_REF][START_REF] Krasotkina | Spatiotemporal dynamics of fibrin formation and spreading of active thrombin entering non-recalcified plasma by diffusion[END_REF][START_REF] Ataullakhanov | Spatiotemporal dynamics of clotting and pattern formation in human blood[END_REF][START_REF] Bouchnita | On the regimes of blood coagulation[END_REF] but also to suppose their possible variations for the conditions that are hard to reproduce in the experiment [START_REF] Zarnitsina | Dynamics of spatially nonuniform patterning in the model of blood coagulation[END_REF]. Model results also provide data about the possible spatiotemporal distribution of all the blood factors participating in the coagulation cascade, while the main parameter used to measure the dynamics of the clot growth experimentally is fibrin clot density [START_REF] Ataullakhanov | Spatiotemporal dynamics of clotting and pattern formation in human blood[END_REF][START_REF] Krasotkina | Spatiotemporal dynamics of fibrin formation and spreading of active thrombin entering non-recalcified plasma by diffusion[END_REF][START_REF] Ataullakhanov | Spatio-Temporal Dynamics of Blood Coagulation and Pattern Formation: a Theoretical Approach[END_REF][START_REF] Panteleev | Spatial Propagation and Localization of Blood Coagulation Are Regulated by Intrinsic and Protein C Pathways, Respectively[END_REF][START_REF] Ovasenov | Initiation and propagation of coagulation from tissue factor-benfin cell monolayers to plasma: initiator cells do not regulate spatial growth rate[END_REF].

XI

One of the main criteria used for the validation of the computational models of coagulation system is the spatio-temporal distribution of the thrombin concentration. During the amplification phase of the blood coagulation process, thrombin concentration propagates in the direction from the injury site to the vascular lumen. According to the experimental data, after thrombin concentration exceeds some threshold value, the speed of the clot growth does not anymore depend on the way of the initial activation of the coagulation system [START_REF] Orfeo | The nature of the stable blood clot procoagulant activities[END_REF][START_REF] Ovasenov | Initiation and propagation of coagulation from tissue factor-benfin cell monolayers to plasma: initiator cells do not regulate spatial growth rate[END_REF] and thrombin wave profile stays constant in time [START_REF] Butenas | The significance of circulating factor IXa in blood[END_REF][START_REF] Ataullakhanov | Spatiotemporal dynamics of clotting and pattern formation in human blood[END_REF][START_REF] Tokarev | Spatial Dynamics of Contact-Activated Fibrin Clot Formation in vitro and in silico in Haemophilia B : Effects of Severity and Ahemphil B Treatment[END_REF][START_REF] Dashkevich | Thrombin activity propagates in space during blood coagulation as an excitation wave[END_REF]. In terms of mathematical models, such behavior corresponds to the traveling wave solutions of the system of partial differential equations on the reactions of the coagulation cascade [START_REF] Krasotkina | Spatiotemporal dynamics of fibrin formation and spreading of active thrombin entering non-recalcified plasma by diffusion[END_REF][START_REF] Tokarev | Spatial Dynamics of Contact-Activated Fibrin Clot Formation in vitro and in silico in Haemophilia B : Effects of Severity and Ahemphil B Treatment[END_REF][START_REF] Dashkevich | Thrombin activity propagates in space during blood coagulation as an excitation wave[END_REF][START_REF] Pogorelova | Influence of enzymatic reactions on blood coagulation autowave[END_REF][START_REF] Zarnitsina | Dynamics of spatially nonuniform patterning in the model of blood coagulation[END_REF][START_REF] Zarnitsina | A mathematical model for the spatio-temporal dynamics of intrinsic pathway of blood coagulation. II. Results[END_REF].

Despite numerous evidence of the wave behavior of the thrombin concentration profile, theoretical analysis of the observed phenomena is lacking in previous model studies of blood coagulation. That is why in our work we focus on the detailed theoretical investigation of the mathematical model of the intrinsic pathway of the coagulation system (Section 2). We derive conditions on the existence and stability of the traveling wave solutions corresponding to the amplification phase of coagulation cascade (Section 3) and demonstrate an important property of their speed of propagation (Section 4).

We also pay particular attention to the calculation of the speed of thrombin propagation. Serving as an important indicator of blood coagulation disorders [START_REF] Colman | Hemostasis and thrombosis: basic principles and clinical practice[END_REF][START_REF] Askari | [END_REF], the speed of thrombin propagation in mathematical models is usually measured according to the results of the computational simulations [START_REF] Tokarev | Spatial Dynamics of Contact-Activated Fibrin Clot Formation in vitro and in silico in Haemophilia B : Effects of Severity and Ahemphil B Treatment[END_REF][START_REF] Zarnitsina | A mathematical model for the spatio-temporal dynamics of intrinsic pathway of blood coagulation. II. Results[END_REF][START_REF] Lobanov | The effect of convective flows on blood coagulation processes[END_REF] or using the combination of analytical and numerical approaches as it was done by [START_REF] Pogorelova | Influence of enzymatic reactions on blood coagulation autowave[END_REF]. In Section 5 of the current work we propose an alternative approach and derive theoretical estimates for the speed of the thrombin wave propagation by the reduction of the initial system to one equation on thrombin concentration. We compare the estimates given by analytical formulas with computational values of the speed as well as with the experimental data.

Mathematical model

We consider the following model of the intrinsic pathway of blood coagulation:

∂T ∂t = D∆T + k 2 U 10 + k 2 k 510 h 510 U 10 U 5 1 - T T 0 -h 2 T, ∂U 5 ∂t = D∆U 5 + k 5 T -h 5 U 5 , ∂U 8 ∂t = D∆U 8 + k 8 T -h 8 U 8 , ∂U 9 ∂t = D∆U 9 + k 9 U 11 -h 9 U 9 , ∂U 10 ∂t = D∆U 10 + k 10 U 9 + k 10 k 89 h 89 U 9 U 8 -h 10 U 10 , ∂U 11 ∂t = D∆U 11 + k 11 T -h 11 U 11 . (1) 
Here, T , U i denote the concentrations of thrombin and activated forms of the i-th factor respectively, T 0 denotes the initial prothrombin concentration. First term of each equation corresponds to the diffusion of the factors in blood plasma while other terms describe chemical reactions of the coagulation cascade. k i , k i denote the rates of activation reactions and h i denote inhibition of the activated factors. k ij and h ij denote the rates of formation and inhibition respectively for the intrinsic kinase and prothrombinase complexes. Corresponding equation terms have the given form due to the assumption of the fast reactions of the complex formation.

In the current study we focus on the propagation stage of the coagulation cascade and thus suppose the initial amount of activated factors to be formed in the proximity of the vessel wall. Therefore we use step functions of thrombin and activated factor concentrations as initial conditions for the simulation. In order to take into account the activation of factor XI by factor XIIa we take constant influx boundary condition on the left side of the domain and zero-flux boundary conditions on the right side.

The similar model has previously demonstrated a good agreement with experimental data [START_REF] Zarnitsina | A mathematical model for the spatio-temporal dynamics of intrinsic pathway of blood coagulation. I. The model description[END_REF][START_REF] Zarnitsina | A mathematical model for the spatio-temporal dynamics of intrinsic pathway of blood coagulation. II. Results[END_REF]. The main assumption of the model concerns taking inactivated factor concentrations to be constant. Numerical computations showed that concentrations of the precursors of active factors do not significantly change during the simulation [START_REF] Zarnitsina | A mathematical model for the spatio-temporal dynamics of intrinsic pathway of blood coagulation. II. Results[END_REF]. Therefore, depletion of the precursors can be ignored. The only precursor whose concentration was considered as variable in the model of [START_REF] Zarnitsina | A mathematical model for the spatio-temporal dynamics of intrinsic pathway of blood coagulation. I. The model description[END_REF] is prothrombin. Thus, the first equation of our model replaces two following equations considered in [START_REF] Zarnitsina | A mathematical model for the spatio-temporal dynamics of intrinsic pathway of blood coagulation. I. The model description[END_REF][START_REF] Zarnitsina | A mathematical model for the spatio-temporal dynamics of intrinsic pathway of blood coagulation. II. Results[END_REF]:

∂T ∂t = D∆T + k 2 U 10 T T + K 2m + k 2 k 510 h 510 U 10 U 5 T T + K 2m -h 2 T, (2) 
∂ T ∂t = D∆ T -k 2 U 10 T T + K 2m -k 2 k 510 h 510 U 10 U 5 T T + K 2m , (3) 
with T denoting prothrombin concentration. For h 2 = 0 both models coincide, and for low values of h 2 they would be very close. For the physiological values of thrombin inhibition, in the model of [START_REF] Zarnitsina | A mathematical model for the spatio-temporal dynamics of intrinsic pathway of blood coagulation. II. Results[END_REF] we observe propagation of non-monotone thrombin wave while system (1) gives monotone traveling waves with higher value of maximal concentration (Fig. 2). Despite this difference, the speed of thrombin wave propagation appears to be very close for both models (Fig. 2) and thus further we use system (1) as an approximation of the thrombin propagation process.

Existence and stability of the traveling wave solutions

Let us set u = (T, U 5 , U 8 , U 9 , U 10 , U 11 ). Then system (1) can be written in the vector form: 

∂u ∂t = D∆u + F (u), (4) 
where F = (F 1 , ..., F 6 ) is the vector of reaction rates in equations ( 1). It satisfies the following property:

∂F i ∂u j ≥ 0, ∀i = j.
This class of systems is called monotone systems and has a number of properties similar to those for one scalar equation including the maximum principle.

It allows the proof of existence and stability of the wave solutions for monotone systems as well as the estimation of the wave propagation speed [31].

In order to apply these results to the considered system describing intrinsic pathway functioning we start with the analysis of the existence and stability of the stationary points of system (1).

Stationary points of the kinetic system

Consider the system of ordinary differential equations:

du dt = F (u). ( 5 
)
Its equilibrium points satisfy the following relations:

U 5 = k 5 h 5 T, U 8 = k 8 h 8 T, U 11 = k 11 h 11 T, U 9 = k 9 k 11 h 9 h 11 T, (6) 
U 10 = k 9 k 11 h 10 h 9 h 11 k 10 T + k 10 k 89 h 89 T 2 , ( 7 
)
where T is a solution of the equation P (T ) = 0. Here P (T ) = aT 4 + bT 3 +

cT 2 + dT , a = k 10 k 89 k 8 k 2 k 5 k 510 k 9 k 11 h 89 h 8 h 5 h 10 h 510 h 9 h 11 , d = - k 2 k 10 k 9 k 11 h 9 h 11 h 10 + h 2 T 0 , b = - k 10 k 89 k 8 k 2 k 5 k 510 k 9 k 11 h 89 h 8 h 5 h 10 h 510 h 9 h 11 T 0 + k 10 k 2 k 5 k 510 k 9 k 11 h 5 h 10 h 510 h 9 h 11 + k 2 k 10 k 89 k 8 k 9 k 11 h 89 h 8 h 9 h 11 , c = - k 10 k 2 k 5 k 510 k 9 k 11 h 5 h 10 h 510 h 9 h 11 T 0 + k 2 k 10 k 9 k 11 h 9 h 11 - k 2 k 89 k 8 k 9 k 11 h 89 h 8 h 9 h 11 h 10 T 0 .
Hence, the stationary points of system (5) can be found through the stationary points T * of the equation

dT dt = -P (T ), (8) 
and equalities ( 6), [START_REF] Monkovic | Functional characterization of human platelet-released factor V and its activation by factor Xa and thrombin[END_REF].

Let us determine the number of positive roots of the polynomial P (T ).

We set

P (T ) = T Q(T ), where Q(T ) = aT 3 + bT 2 + cT + d.
The number of positive roots of Q(T ) can be found as follows. First, we consider a function

Q (T ) = 3aT 2 + 2bT + c.
If it has no zeros, then Q(T ) is increasing and has one positive root if and only if Q(0) < 0. Otherwise, we denote by T 1 , T 2 the nonzero solutions of the equation

Q (T ) = 0: T 1,2 = (-b ± √ b 2 -3ac)/(3a).
Then, the polynomial Q(u) has one positive root in one of the cases:

• T 1 ≤ 0, Q(0) < 0, • 0 ≤ T 1 < T 2 , Q(0) < 0 and Q(T 1 ) > 0, Q(T 2 ) > 0 or Q(T 1 ) < 0 and it has two positive roots if 0 < T 2 , Q(0) > 0, Q(T 2 ) < 0.
Stability of the stationary points of system (5) can be determined from the stability of stationary points of equation [START_REF] Panteleev | Tissue factor pathway inhibitor: a possible mechanism of action[END_REF]. The following theorem holds (see Appendix A for the proof).

Theorem 1. There is one to one correspondence between stationary solutions

u * = (T * , U * 5 , U * 8 , U * 9 , U * 10 , U * 11 ) of system (1)
and the stationary points T * of equation [START_REF] Panteleev | Tissue factor pathway inhibitor: a possible mechanism of action[END_REF] given by ( 6), [START_REF] Monkovic | Functional characterization of human platelet-released factor V and its activation by factor Xa and thrombin[END_REF]. The principal eigenvalue of the matrix F (u * ) is positive (negative) if and only if P (T * ) < 0 (P (T * ) > 0).

Thus, we can make the following conclusions about the existence and stability of stationary points of the kinetic system of equation [START_REF] Pieters | Inhibition of Factor Xa and Factor X , by Antithrombin III / Heparin during Factor X Activation[END_REF]. is stable if and only if P (T * ) > 0.

Wave existence and stability

We can now formulate a theorem on the existence of wave solutions in system (1).

Theorem 2. Suppose that P (T * ) = 0 for some T * > 0 and P (0

) = 0, P (T * ) = 0. Let u * = (T * , U * 5 , U * 8 , U * 9 , U * 10 , U * 11 )
be the corresponding stationary solutions of system (5) determined by relations (6), [START_REF] Monkovic | Functional characterization of human platelet-released factor V and its activation by factor Xa and thrombin[END_REF].

• Monostable case. If there are no other positive roots of the polynomial P (T ), then system (1) has monotonically decreasing traveling wave solutions u(x, t) = w(x -ct) with the limits u(+∞) = 0, u(-∞) = u * for all values of the speed c greater than or equal to the minimal speed c 0 ,

• Bistable case. If there is one more positive root of the polynomial P (T )

in the interval 0 < T < T * , then system (1) has a monotonically decreasing traveling wave solutions u(x, t) = w(x -ct) with the limits

u(+∞) = 0, u(-∞) = u * for a unique value of c.
The proof of Theorem 2 follows from the general results on the existence of waves for monotone systems of equation [31,32]. Let us note that the conditions on the stability of stationary points follow from the assumption of Theorem 2 and Theorem 1. We have P (T * ) > 0 in both cases since it is the largest root of the polynomial increasing at infinity. The sign of P (0) is negative if there is no other root of P (T ) in between of 0 and T * and the sign is positive if P (T ) has one more root.

Monotone traveling wave solutions of monotone systems are asymptotically stable [31,32] that gives global stability in the bistable case. In the monostable case the wave is globally stable for the minimal speed c 0 and stable with respect to small perturbations in a weighted norm for c > c 0 [32].

The unique wave speed in the bistable case and the minimal wave speed in the monostable case admit minimax representations. Below we use such representations for the bistable system since this case is more appropriate for the applications considered in the current work. Indeed, traveling wave solution of system (1) describes propagation of the thrombin concentration in blood plasma due to the reactions of the coagulation cascade. In this system the convergence to the traveling wave solution takes place only if the initial concentrations of blood factors exceed some critical level, otherwise the clot formation does not start because of the action of plasma inhibitors. This dependency on the initial conditions and stability of zero solution correspond to the bistable case. In the monostable case, on the contrary, any small perturbation would result in the solution converging to the propagating wave.

In terms of the coagulation system functioning, monostable case corresponds to the spontaneous disseminated coagulation blocking blood circulation.

Finally, let us note that in Theorem 2 we consider only the case of a single positive root of the polynomial and the case of two positive roots. If P (T ) has three positive roots the system would be monostable with a stable intermediate stationary point. While this case is interesting from the point of view of wave existence and stability, it is less relevant for the modeling of blood coagulation, and we will not discuss it here.

Speed of wave propagation

One of the main objectives of this work is to obtain an analytical approximation of the wave speed for the blood coagulation model [START_REF] Butenas | Blood coagulation[END_REF]. We proceed in two steps. First, we reduce system (1) to a single equation and justify this reduction. Then, we obtain some estimates of the wave speed for one reaction-diffusion equation.

System reduction

In order to simplify the presentation, we describe the method of reduction for the system of two equations:

u + cu + f (u, v) = 0, (9) 
v + cv + 1 ε (au -bv) = 0, ( 10 
)
where ε is a small parameter, ∂f ∂v > 0 and system ( 9)-( 10) is bistable. If we multiply the second equation by ε and take a formal limit as ε → 0, then we have v = a b u, and the first equation can be rewritten as follows:

u + cu + f u, a b u = 0. ( 11 
)
Let us recall that the value of the speed c = c ε in system ( 9)-( 10) and c = c 0 for the scalar equation ( 11) are unknown, and in general they are different from each other. We will demonstrate that c ε → c 0 as ε → 0:

Theorem 3. The speed of wave propagation for system (9)-( 10) converges to the speed of the wave propagation for equation [START_REF] Orfeo | The nature of the stable blood clot procoagulant activities[END_REF] as ε → 0.

Singular perturbations of traveling waves are extensively studied by [31].

Here we present another method of proof based on the estimates of the wave speed. This method is simpler and gives not only the limiting value of the speed for ε = 0 but also the estimates of the speed value for any positive ε.

In the following sections we describe the approach in details and construct the wave speed estimates for system ( 9)-(10).

Wave speed estimate

We get the following estimates from the minimax representation of the wave speed in the bistable case [32] :

min inf x S 1 (ρ), inf x S 2 (ρ) ≤ c ≤ max sup x S 1 (ρ), sup x S 2 (ρ) , (12) 
where

S 1 (ρ) = ρ 1 + f (ρ 1 , ρ 2 ) -ρ 1 , S 2 (ρ) = ρ 2 + (aρ 1 -bρ 2 )/ε -ρ 2 , ρ = (ρ 1 , ρ 2
) is an arbitrary test function continuous together with its second derivatives, monotonically decreasing (component-wise) and having the same limits at infinity as the wave solution, ρ(+∞) = 0, ρ(-∞) = u * .

Let us choose the following test functions:

ρ 1 = u 0 , ρ 2 = a b u 0 -εf u 0 , a b u 0 a b 2 , ( 13 
)
where u 0 is the solution of [START_REF] Orfeo | The nature of the stable blood clot procoagulant activities[END_REF]. Neglecting the second-order terms with respect to ε, we get:

S 1 (ρ) = u 0 + f u 0 , a b u 0 -ε a b 2 f u 0 , a b u 0 /(-u 0 ) = u 0 + f u 0 , a b u 0 -ε a b 2 f v u 0 , a b u 0 f u 0 , a b u 0 /(-u 0 ) = c 0 + εϕ(x), (14) 
where

ϕ(x) = a b 2 u 0 f v u 0 , a b u 0 f u 0 , a b u 0 ,
and c 0 is the value of the speed in [START_REF] Orfeo | The nature of the stable blood clot procoagulant activities[END_REF]. Next,

S 2 (ρ) = u 0 + f u 0 , a b u 0 - ε b f u 0 , a b u 0 -u 0 + ε b f u 0 , a b u 0 = c 0 + εψ(x), (15) 
where

ψ = c 0 bu 0 f u 0 , a b u 0 + 1 bu 0 f u 0 , a b u 0 .
Hence, from ( 14), [START_REF] Baugh | Role of the Activation Peptide Domain in Human Factor X Activation by the Extrinsic Xase Complex[END_REF] we obtain the estimate

c 0 + ε max min x ϕ, min x ψ ≤ c ≤ c 0 + ε min max x ϕ, max x ψ , (16) 
where c 0 is the wave propagation speed for [START_REF] Orfeo | The nature of the stable blood clot procoagulant activities[END_REF], the functions ϕ(x), ψ(x) are bounded. The proof of Theorem 3 follows from this estimate.

One equation model

Reduction to the equation on thrombin concentration

If the reaction rate constants in the equations of system (1) for the variables U 9 , U 10 , U 5 and U 8 are sufficiently large, then we can replace these equations by the following algebraic relations (Section 4.1):

U 5 = k 5 h 5 T, U 8 = k 8 h 8 T, U 9 = k 9 h 9 U 11 , U 10 = U 11 k 9 h 9 h 10 k 10 + k 10 k 89 h 89 k 8 h 8 T .
Then, instead of system (1) we obtain the following system of two equations:

∂T ∂t = D∆T + U 11 k 9 h 9 h 10 k 10 + k 10 k 89 h 89 k 8 h 8 T k 2 + k 2 k 510 h 510 k 5 h 5 T 1 - T T 0 -h 2 T, ∂U 11 ∂t = D∆U 11 + k 11 T -h 11 U 11 .
(17) Similarly, we can reduce this system to the single equation:

∂T ∂t = D∆T + k 9 k 11 h 9 h 10 h 11 T k 10 + k 10 k 89 h 89 k 8 h 8 T k 2 + k 2 k 510 h 510 k 5 h 5 T 1 - T T 0 -h 2 T. (18) 
We realize this reduction in two steps in order to compare the one-equation model to system (1) as well as to the intermediate model of two equations [START_REF] Stortelder | Mathematical modelling in blood coagulation ; Simulation and parameter estimation[END_REF]. Numerical simulations show that for the values of parameters in the physiological range [START_REF] Hockin | A model for the stoichiometric regulation of blood coagulation[END_REF][START_REF] Tokarev | Spatial Dynamics of Contact-Activated Fibrin Clot Formation in vitro and in silico in Haemophilia B : Effects of Severity and Ahemphil B Treatment[END_REF], all three models give the wave speed of the same order of magnitude (Fig. 3). The two equation model [START_REF] Stortelder | Mathematical modelling in blood coagulation ; Simulation and parameter estimation[END_REF] gives a better approximation of model (1) than the single equation [START_REF] Leiderman | Grow with the flow: A spatialtemporal model of platelet deposition and blood coagulation under flow[END_REF]. However, the latter demonstrates the same parameter dependence of the wave speed as other models. Taking into account the complexity of the initial model (1), the approximation provided by one equation is acceptable. Below we obtain the analytical formulas for the wave speed for the one equation model.

Dimensionless model

In dimensionless variables

T = T 0 u, t = t h 2 , D = Dh 2 , (19) 
we rewrite equation [START_REF] Leiderman | Grow with the flow: A spatialtemporal model of platelet deposition and blood coagulation under flow[END_REF] in the following form: where:

∂u ∂ t = D∆u + M 1 u (1 + M 2 u) (1 + M 3 u) (1 -u) -u, (20) 
M 1 = k 2 k 9 k 10 k 11 h 2 h 9 h 10 , M 2 = k 8 k 89 k 10 k 10 h 8 h 89 T 0 , M 3 = k 2 k 5 k 510 k 2 h 5 h 510 T 0 .
Analysis of the rate constant values allows us to further simplify the equation.

As M 3 1 we can approximate equation ( 20) by the following equation:

∂u ∂ t = D∆u + M 1 M 3 u 2 (1 + M 2 u) (1 -u) -u. ( 21 
)
Let us note that the first component of the term u 2 1 (1 + M 2 u 1 ) corresponds to the prothrombin activation by the factor Xa and the second one corresponds to the prothrombin activation by the [Va, Xa] complex. Since during the propagation phase the rate of activation by prothrombinase complex is several orders of magnitude higher than the activation by Xa itself [START_REF] Hockin | A model for the stoichiometric regulation of blood coagulation[END_REF], we can neglect the first component. Thus, applying the assumption of the detailed equilibrium for the second equation, we finally obtain the following equation for the thrombin concentration:

∂u 1 ∂ t = D∆u 1 + bu 3 1 (1 -u 1 ) -u 1 , (22) 
where:

b = M 1 M 2 M 3 . ( 23 
)

Wave speed estimate

Equation ( 22) can be rewritten in the more general form:

∂u ∂t = D∆u + bu n (1 -u) -σu. ( 24 
)
Traveling wave solution of ( 24) satisfies the equation:

Dw + cw + bw n (1 -w) -σw = 0. ( 25 
)
Here we will present two analytical methods to approximate the wave speed.

Narrow reaction zone method

One of the methods to estimate the wave speed for the reaction-diffusion equation is the narrow reaction zone method developed in combustion theory [START_REF] Zeldovich | A theory of thermal propagation of flame[END_REF]. Let us rewrite equation ( 25) in the form:

Dw + cw + F (w) -σw = 0, F (w) = w n (1 -w). (26) 
We assume that the reaction takes place at one point x = 0 in the coordinates of the moving front. Then, outside of the reaction zone we consider the linear equations:

Dw + c 1 w -σw = 0, x > 0, Dw + c 1 w = 0, x < 0. ( 27 
)
These equations should be completed with the jump conditions at the reaction zone. In order to derive them, we omit the first derivative w at the reaction zone since it is small in comparison with two other terms:

Dw + F (w) = 0. ( 28 
)
Multiplying ( 28) by w and integrating through the reaction zone we obtain the following jump conditions:

(w (+0)) 2 -(w (-0)) 2 = 2 D w * 0 F (w)dw, ( 29 
)
considered together with the condition of the continuity of solution w(+0) = w(-0).

Solving [START_REF] Pogorelova | Influence of enzymatic reactions on blood coagulation autowave[END_REF] we have:

w =      w * , x < 0, w * exp -c - √ c 2 + 4Dσ 2D , x > 0. (30) 
Then, from ( 29) and ( 30) we obtain the following equation for the wave speed:

c 1 2 + c 1 c 1 2 + 4Dσ + 2Dσ = A, A = 4D w 2 * w * 0 F (w)dw. (31) 
Hence,

c 1 = A -2Dσ √ 2A , A = 4bD w n-1 * n + 1 - w n * n + 2 . ( 32 
)
This formula gives a good approximation of the wave speed found numerically for n ≥ 3 (Fig. 4). The approximation improves with increasing values of n.

The obtained formula provides an estimation of the speed from below (see Appendix B for the justification of the method). 

Piecewise linear approximation

Consider equation [START_REF] Dashkevich | Thrombin activity propagates in space during blood coagulation as an excitation wave[END_REF] written in the form

Dw + cw + f (w) = 0,
where f (w) = w n (1 -w) -σw and f (0) = f (w * ) = 0. Let us introduce the following approximation of this equation:

Dw + c 2 w + f 0 (w) = 0, (33) 
with

f 0 (w) = αw, 0 < w < w 0 , β(w -w * ), w 0 < w < w * , (34) 
where

α = f (0), β = f (w * ). (35) 
In case of equation ( 24) we have:

α = -σ, β = bnw n-1 * -b(n + 1)w n * -σ. (36) 
We find the value of w 0 from the additional condition:

w * 0 f (w)dw = w * 0 f 0 (w)dw. ( 37 
)
Hence we obtain the following equation with respect to w 0 :

α -β 2 w 2 0 + βw * w 0 + r = 0, (38) 
where

r = -βw 2 * - w * 0 f (w)dw. (39) 
Taking into account the explicit form of function f (w), we obtain:

r = bw n+1 * - n 2 - b n + 1 + bw n+2 * n + 1 2 + 1 n + 2 + σw 2 * . (40) 
From [START_REF] Scott | Inactivation of factor XIa by plasma protease inhibitors: predominant role of alpha 1-protease inhibitor and protective effect of high molecular weight kininogen[END_REF] we get:

w 0 = -βw * + β 2 w 2 * -2(α -β)r α -β . (41) 
Thus, instead of (33) we consider the following equations:

Dw + cw + β(w -w * ) = 0, x < 0, Dw + cw + αw = 0, x > 0, (42) 
with the additional conditions on the continuity of solution and its first derivative:

w(0) = w 0 , w (-0) = w (+0).
We find the explicit solution:

           w = (w 0 -w * ) exp x c 2 2 -4βD -c 2 2D + w * , x < 0, w = w 0 exp x -c 2 2 -4αD -c 2 2D , x > 0. (43) 
From the condition of continuity of the derivative we obtain the following formula:

c 2 = √ D(α w2 -β) ( w -1)(α w2 -β w) , w = w 0 w 0 -w * . (44) 
It gives a good approximation of the wave speed for equation (26) (Fig. 4). 

Considering system (1) and taking the parameter values for (32), [START_REF] Rosing | Role of Phospholipids and Factor-Va in the Prothrombinase Complex[END_REF] according to [START_REF] Ataullakhanov | Spatio-Temporal Dynamics of Blood Coagulation and Pattern Formation: a Theoretical Approach[END_REF], we approximate the speed of wave propagation by the following formula obtained by the narrow reaction zone method: 

c 1 = √ D bT 2 0 - 4 5 bT 3 0 -2h 2 2 bT 2 0 - 4 5 bT 3 0 , (45) 
and by the piecewise linear approximation:

c 2 = √ D -3bT 0 2 -h 2 T + 4bT 3 0 -h 2 (T 0 -1) T -h 2 T -3bT 2 0 + 4bT 3 0 + h 2 , (47) 
where: We compare the speed of wave propagation for model (1) found numerically with the analytical formulas (Fig. 5). As it was demonstrated above, the computational speed for the one-equation model is higher than for the complete model (Fig. 3). The analytical formulas for the speed of the wave propagation for one-equation model in turn provide the estimates from below (Fig. 4). As the result, the analytical estimates for one equation give better approximations of the speed in the complete model than the numerical speed for one equation (Fig. 5). If we then compare two different analytical estimates for the wave speed in one-equation model, we can conclude that narrow reaction zone method gives the speed further from the one-equation computational speed than piecewise linear approximation (Fig. 4) but at the same time it better approximates the wave speed in the complete model (the narrow reaction zone speed is 1.5 times higher than the computational one).

T = T * T * -T 0 , T * = -3bT 2 0 + 4bT 4 0 + h 2 4bT 2 0 -3bT 0 + (3bT 2 0 -4bT 3 0 -h 2 ) 2 -2b(4T 0 -3)T 2 0 -3 2 bT 2 0 -b 2 4 T 2 0 + 11 5 bT 3 0 + h 2 4bT 2 0 -3bT 0 . ( 48 
)

Comparison with experimental data

The speed of clot formation has crucial influence on the organism physiology. Coagulation disorders such as hemophilia A, B or C are the result of severe deficiency of the clotting factors. The effect of this deficiency on the propagation phase is the most critical for situation in vivo [START_REF] Tokarev | Spatial Dynamics of Contact-Activated Fibrin Clot Formation in vitro and in silico in Haemophilia B : Effects of Severity and Ahemphil B Treatment[END_REF][START_REF] Ovanesov | Effect of factor VIII on tissue factor-initiated spatial clot growth[END_REF][START_REF] Ovanesov | Hemophilia A and B are associated with abnormal spatial dynamics of clot growth[END_REF]. Speed of the thrombin propagation in mathematical model of the intrinsic pathway functioning can provide estimation of the clot growth rate dependence on different factors.

As an example, here we consider the experimental results obtained by [START_REF] Tokarev | Spatial Dynamics of Contact-Activated Fibrin Clot Formation in vitro and in silico in Haemophilia B : Effects of Severity and Ahemphil B Treatment[END_REF] on the patients with hemophilia B. Authors examined the effect of factor IX deficiency on the spatial clotting dynamics. Plasma used was obtained from hemophiliacs with different extent of the disease and from severe hemophiliacs treated with factor IX concentrate (Ahemphil B). Clotting process was launched through the intrinsic pathway by small artificial contact activation by plastic material. The obtained results show that the most pronounced changes in clotting kinetics occurred at factor IX activity less than 20% [START_REF] Tokarev | Spatial Dynamics of Contact-Activated Fibrin Clot Formation in vitro and in silico in Haemophilia B : Effects of Severity and Ahemphil B Treatment[END_REF].

Experimental data correlate well with the results given by the analytical estimate of the thrombin propagation speed (Fig. 6). In the lack of precise Here the functions ϕ i (T ) are determined by the equalities: We can express U i , i = 5, 8, 9, 10, 11 as functions of T from the corresponding equations in (A.1) or, the same, from (A.2): U i = ϕ i (T ). Therefore the solutions of the system of equations F τ (T ) = 0 coincide with the solutions of the system F (T ) = 0.

ϕ
Thus, systems (A.1) and (A. The principal eigenvalue of this matrix is positive if P (T * ) < 0 and negative if this inequality is opposite. 

Figure 1 :

 1 Figure 1: The main activation reactions of the intrinsic pathway of the coagulation cascade. Thrombin (IIa) catalyzes activation of factors V, VIII, XI; factors XIa and IXa catalyze activation of factors IX and X respectively; factors VIIIa and Va form active complexes with factors IXa and Xa respectively and further increase thrombin production.

Figure 2 :

 2 Figure 2: Propagation of thrombin wave for the model of [28] (a) and for the reduced model (1) (b). Concentration profiles are plotted every 2 min of physical time, the speed of the wave propagation is about 0.05 mm/min. Parameters of the simulations are provided in Tab. C.1.

  It always has a trivial solution u * = 0. It has one (two) positive solution if and only if the polynomial P (T ) has one (two) positive root(s). A positive solution u *

Figure 3 :

 3 Figure 3: Speed of wave propagation (mm/min) as a function of D (left) and k 9 (right). Solid line: reduced model (1); dashed line: two-equation model (17); dash-dot line: one equation model (18). Parameters of the simulations are provided in Tab. C.1.

Figure 4 : 1 , dashed line c c 2 .

 412 Figure 4: Ratio of wave speeds found numerically and analytically for different values of n; σ = 0.01, D = 2, b = 10. Solid line: c c 1 , dashed line c c 2 . Parameters of the simulations are provided in Tab. C.1.
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 4 Comparison of the estimated speed of the wave propagation with the complete model and experimental data 5.4.1. Comparison of the estimated speed with the computational speed in system

Figure 5 :

 5 Figure 5: Speeds of wave propagation (mm/min) as function of D (left) and k 9 (right). Solid line: model (1); dashed line: narrow reaction zone approximation; dash-dot line: piecewise linear approximation. Parameters of the simulations are provided in Tab. C.1.

6 .Figure 6 :

 66 Figure 6: Speeds of the thrombin wave propagation (mm/min) as function of percentage of factor IX activity. Dots: experimental data [25]; dashed line: narrow reaction zone approximation; dash-dot line: piecewise linear approximation (Tab. 1)

2 )

 2 have the same stationary solutions for all τ ∈ [0, 1]. For τ = 1 these two systems coincide. For τ = 0 the equation for T in (A.2) does not depend on other variables. This will allow us to determined the eigenvalues of the corresponding linearized matrix.It can be verified by the direct calculations that det F τ (u * ) = 0 if and only if det F (u * ) = 0 for all τ ∈ [0, 1]. Suppose that the latter is different from zero. Then the principal eigenvalue of the matrix F τ , which is real and simple, cannot change sign when τ changes from 0 to 1. Hence the sign of the principal eigenvalue of the matrix F (u * ) is the same as for the matrix F 0 (u * ). This matrix has the form:

Figure B. 7 :

 7 Figure B.7: Illustration of the narrow reaction zone method approximation.

  11 k 10 k 8 k 89 k 2 k 5 k 510 T 2 0 h 9 h 10 h 11 h 8 h 89 h 5 h 510 ,

	where	
	b =	k 9 k

  TableC.1: Parameter rates used for the modeling of the coagulation cascade.

	parameter	value	units	reference
	k 11	0.000011	min -1	[12]
	h 11	0.5	min -1	[38]
	k 10	0.00033	min -1	[39]
	k 10	500	min -1	[39]
	h 10	1	min -1	[40]
	k 9	20	min -1	[41]
	h 9	0.2	min -1	[42]
	k 89	100	nM -1 min -1	[30]
	h 89	100	min -1	[30]
	k 8	0.00001	min -1	[30]
	h 8	0.31	min -1	[43]
	k 5	0.17	min -1	[30]
	h 5	0.31	min -1	[30]
	k 510	100	nM -1 min -1	[30]
	h 510	100	min -1	[30]
	k 2	2.45	min -1	[44]
	k 2	2000	min -1	[44]
	h 2	1.45	min -1	[33]
	K 2m	58	nM	[44]
	K 2m	210	nM	[44]
	D	0.0037	mm 2 min -1	[30]
	T 0	1400	nM	[1]
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wave solutions.

The most important parameter determining the dynamics of clot growth is the speed of the thrombin wave propagation or, in terms of the mathematical model, the speed of propagation of the reaction-diffusion wave. In the current work we obtain analytical formula for the speed of wave propagation in the model of blood coagulation. We reduce the system of equations to one equation on the thrombin concentration and then determine the wave speed for this equation. The method of reduction is based on the minimax representation of the wave speed applicable for monotone reaction-diffusion systems. One-equation model gives the speed of the wave propagation above the wave speed obtained in the initial system. The difference dues to the assumption on the fast reactions applied for the derivation of the one-equation model. Analytical estimates obtained for the wave speed in one-equation model in turn provide its approximation from below. Since narrow reaction zone method was originally developed for the description of the flame front propagation in the combustion theory with the exponential function in reaction term. In our work thrombin activation is described with the polynomial of the third degree that makes the obtained estimate less precise. Nevertheless, the obtained analytical estimates give good approximation of both computational and experimental speed of the thrombin propagation.

The described approach for system analysis and estimation of the wave propagation speed can be further expanded on other cascade models. Analytical formulas for the reaction front propagation can provide important information on the system response on different factors and is of big importance for the model validation. ). We will look for a decreasing solution of equation ( 26) with the limits:

Multiplying the equation ( 26) by u and integrate through the hole axis we obtain:

Along with equation ( 26) we consider the system of two first-order equations:

The wave solution of (26) corresponds to the trajectory connecting the stationary points (u * , 0) and (0, 0) (Figure B.7). This trajectory coincides with the line p = λu for 0 < u ≤ u 0 , where λ is a negative solution of the equation

The integral in the denominator of (B.1) can be approximated by replacing the trajectory function by the straight line p = -λu:

Substituting this expression into (B.1) we obtain the same formula for the speed as by the narrow reaction zone method (32).

Thus, narrow reaction zone method is equivalent to replacing the equation trajectory by the straight line. Hence we can conclude that this method provides the estimate of the speed from below, and it also gives asymptotically correct result in the limiting case as the support of the function F (u) converges to a point.