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We are interested in the dynamic of a structured branching population where the trait of each individual moves according to a Markov process. The rate of division of each individual is a function of its trait and when a branching event occurs, the trait of a descendant at birth depends on the trait of the mother. We prove a law of large numbers for the empirical distribution of ancestral trajectories. It ensures that the empirical measure converges to the mean value of the spine which is a time-inhomogeneous Markov process describing the trait of a typical individual along its ancestral lineage. Our approach relies on ergodicity arguments for this timeinhomogeneous Markov process. We apply this technique on the example of a size-structured population with exponential growth in varying environment.

Introduction

We are interested in the asymptotic behavior of a continuous-time structured branching Markov process. Each individual in the population is characterized by a trait which follows a Markovian dynamic and which influences the branching events. This trait may describe the position of an individual, its size, the number of parasites inside a cell, etc. The purpose of this article is to prove a law of large numbers i.e. the convergence of the empirical measure to a deterministic limit.

The law of large numbers has already been proved in many different cases. For the convergence in discrete time of the proportions of individuals with a certain type in the population, we refer to [START_REF] Athreya | Some limit theorems for positive recurrent branching Markov chains: I[END_REF][START_REF] Athreya | Some limit theorems for positive recurrent branching Markov chains: II[END_REF] with respectively a discrete or continuous set of types. The generalisation of the law of large numbers to general branching Markov processes has been obtained by Asmussen and Hering in [START_REF] Asmussen | Strong limit theorems for general supercritical branching processes with applications to branching diffusions[END_REF] in both discrete and continuous time. Their proof relies on a specific decomposition of the first moment semigroup which applies to the case of branching diffusions. In the context of cellular aging, Guyon [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF] proved the convergence of the empirical measure for bifurcating Markov chains using the ergodicity of the spine. A generalization of those results to binary Galton-Watson processes can be found in [START_REF] Delmas | Detection of cellular aging in a Galton-Watson process[END_REF]. For results in varying environment, we mention [START_REF] Bansaye | Weak law of large numbers for some Markov chains along non homogeneous genealogies[END_REF][START_REF] Bansaye | Ancestral lineages and limit theorems for branching Markov chains[END_REF]. In continuous-time, we refer to [START_REF] Georgii | Supercritical multitype branching processes: the ancestral types of typical individuals[END_REF] for asymptotic results in the case of a finite number of types, to [START_REF] Harris | A strong law of large numbers for branching processes: almost sure spine events[END_REF] for a strong law of large numbers in the case of local branching and to [START_REF] Ren | Central limit theorems for supercritical branching Markov processes[END_REF] for central limit theorems. The specific case of branching diffusions, popularized by Asmussen and Hering [START_REF] Asmussen | Strong limit theorems for general supercritical branching processes with applications to branching diffusions[END_REF], is adressed in [START_REF] Engländer | Strong law of large numbers for branching diffusions[END_REF]. We also mention [START_REF] Engländer | Law of large numbers for a class of superdiffusions[END_REF][START_REF] Engländer | Law of large numbers for superdiffusions: The non-ergodic case[END_REF] for the study of the case of superdiffusions. For nonlocal branching results in continuous-time, we refer to [START_REF] Bansaye | Branching Feller diffusion for cell division with parasite infection[END_REF] for the study of the proportion of infected cells in a population, to [START_REF] Bansaye | Limit theorems for Markov processes indexed by continuous time Galton-Watson trees[END_REF] for the case of a general Markov branching process with a constant division rate and to [START_REF] Cloez | Limit theorems for some branching measure-valued processes[END_REF] for the convergence of an empirical measure in the general case. Some of those results rely on spectral theory. Here, we will follow another approach which requires no use of eigenelements as in [START_REF] Bansaye | Limit theorems for Markov processes indexed by continuous time Galton-Watson trees[END_REF] or [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF]. In particular, it can be applied to time-inhomogeneous dynamics.

The question of the asymptotic behavior of structured branching processes appears in many different situations and in particular in the modeling of cell population dynamics. In this context, the law of large numbers is a key result for the construction of an estimating procedure for the parameters of the model. We refer to [START_REF] Hoffmann | Nonparametric estimation of the division rate of an age dependent branching process[END_REF] for the estimation of the division rate in the case of an age-structured population.

In this article, we prove the convergence of the empirical measure for a class of general branching Markov processes, using spinal techniques. More precisely, we use the characterization of the trait along a typical ancestral lineage introduced in [START_REF] Marguet | Uniform sampling in a structured branching population[END_REF]. We adapt the techniques of [START_REF] Hairer | Yet another look at Harris ergodic theorem for Markov chains[END_REF] and we prove that under classical conditions [START_REF] Meyn | Markov chains and stochastic stability[END_REF]Chapters 15,16], the semigroup of the auxiliary process, which is a time-inhomogeneous Markov process, is ergodic. Using this property, we prove a law of large numbers for the empirical distribution of ancestral trajectories. We also apply this technique to an example in varying environment where the law of large numbers result holds.

We describe briefly the branching process pZ t , t ě 0q and we refer to [START_REF] Marguet | Uniform sampling in a structured branching population[END_REF] for its rigorous construction. We assume that individuals behave independently and that for each individual u in the population:

• its trait pX u t , t ě 0q follows a Markov process on X with infinitesimal generator and domain pG, DpGqq,

• it dies at time t at rate Bpt, X u t q and is replaced by 2 individuals,

• the trait of the two children are both distributed according to QpX u t , ¨q.

Remark 1.1. Two remarks are in order:

1. For the sake of clarity, we consider only binary division but the model can easily be extended to a random number of descendants as in [START_REF] Marguet | Uniform sampling in a structured branching population[END_REF]. The choice of equal marginal distribution for the traits at birth simplifies calculation but is not mandatory.

2. The reason why we choose to make the time-dependence of the division rate explicit is twofold. First, it is the case in the example we choose to develop in the last section of this article in order to tackle environment changes. Second, it highlights the (possible) time-inhomogeneity of the measure-valued branching process Z. We emphasize that this case is covered by the study in [START_REF] Marguet | Uniform sampling in a structured branching population[END_REF] where the trait lives on X " Y ˆR`.

We focus on the empirical measure which describes the current state of the population

1 N t ÿ uPVt δ X u t , t ě 0,
where V t denotes the set of individuals alive at time t and N t its cardinal. A crucial quantity for the study of this probability measure is the first moment semigroup applied to the constant function equal to 1 given by mpx, s, tq

:" E " N t ˇˇZ s " δ x ‰ .
It is the mean number of individuals in the population at time t starting at time s with a single individual with trait x P X . In fact, the behavior of the empirical measure is linked with the behavior of a uniformly chosen individual in the population and the mean number of individuals in the population.

More precisely, we have the following result, referred to as a Many-to-One formula [Mar16, Theorem 3.1], which holds under Assumptions A and B given below: for all non-negative measurable functions F on the space of càdlàg processes, for all 0 ď s ď t and x 0 P X , (1.

E « ÿ uPVt F pX u s , s ď tq ˇˇZ 0 " δ x0 ff " mpx 0 , 0, tqE " F ´Y ptq s , s ď t ¯ˇY ptq 0 " x 0 ı , ( 1 
2)

The auxiliary process corresponds to the trait of a typical individual in the population [START_REF] Marguet | Uniform sampling in a structured branching population[END_REF]. More precisely, the family of operators pP ptq r,s , 0 ď r ď s ď tq defined for all measurable functions f by

P ptq r,s f pxq " R r,s pf mp¨, s, tqqpxq mpx, r, tq ,
where R r,s f pxq " E "ř uPVs f pX u s q|Z r " δ x ‰ forms a time-inhomogeneous semigroup (i.e. P ptq r,u P ptq u,s " P ptq r,s for all r ď u ď s ď t), which is the semigroup of the auxiliary process. It can also be exhibited using a change of probability measure. Indeed, by Feynman-Kac's formula (see [DM04, Section 1.3]), we have

P ptq r,s f pxq " mpx, r, tq ´1E " e ş s r BpXvqdv mpX s , s, tqf pX s q ˇˇX r " x ı ,
where pX s , r ď s ď tq is a Markov process with infinitesimal generator M given by Mf pxq " Gf pxq `2Bpxq ż X pf pyq ´f pxqq Qpx, dyq.

Then, the change of probability measure given by the σpX l , l ď sq-martingale M ptq s :" e ş s r BpXsqds mpX s , s, tq mpx, r, tq , for r ď s ď t exhibits the probability measure corresponding to the auxiliary process.

The auxiliary process and its asymptotic behavior are the keys to obtain the main result of this article which is the following law of large numbers for the empirical distribution of ancestral trajectories:

˜řuPV t`T F `Xu t`s , s ď T Nt`T ´E " F ´Y pt`T q t`s , s ď T ¯ˇˇY pt`T q 0 " x 1 ı ¸Ý ÝÝÝ Ñ tÑ`8 0, in L 2 pδ x0 q,
for all x 0 , x 1 P X and T ą 0, where the L 2 pδ x0 q-convergence is the L 2 -convergence with initial measure δ x0 . This result ensures that the behavior of the whole population becomes deterministic asymptotically and that this behavior is given by the limit behavior of the auxiliary process. This weak law of large numbers gives information on the ancestral lineages in the population. To establish this result, we prove in particular that under the classical drift and minorization conditions [START_REF] Meyn | Markov chains and stochastic stability[END_REF]Chapters 15,16] adapted to the time-inhomogeneous case, the auxiliary process is ergodic in the sense that there exists c ą 0 such that for all x, y P X , T ą 0, for all bounded measurable functions F : Dpr0, T s, X q Ñ R and all 0 ď r ď t, we have |P r,t,T F pxq ´Pr,t,T F pyq| ď Ce ´cpt´rq dpx, yq }F } 8 , where d is a distance on X , C is a positive constant and

P r,t,T F pxq :" E " F ´Y pt`T q t`s , s ď T ¯ˇY pt`T q r " x ı . (1.3)
We also apply our method to study a size-structured population with a division rate that depends both on the trait and the time. This example models the dynamic of size-structured cell population. Hence, the trait of interest is the size of each individual, increasing exponentially at rate a. We assume that each cell divides at rate Bpt, xq " xϕptq, where ϕ is a positive function which describes environment changes. At division, a cell of size x splits into two daughter cells of size θx and (1 ´θqx, where θ is uniformly distributed on rε, 1 ´εs for some ε ą 0. In this case, the infinitesimal generator of the auxiliary process is given by Spectral techniques fall apart in this case because of the time dependence of the division rate whereas our method works. We prove the law of large for the distribution of ancestral trajectories in this special case. In particular, we exhibit a Lyapunov function, i.e. a function V satisfying the first condition of Assumption D below, for the time-inhomogeneous auxiliary process associated with this population dynamic and we establish the minorization condition D.2 detailed in Section 3.

A ptq s f pxq "
Outline In Section 2, we detail the structured branching process and the assumptions considered for its existence and uniqueness. Then, in Section 3, we study the asymptotic behavior of the empirical measure: first, in Section 3.1, we give our result on the ergodicity of the auxiliary process, then, in Section 3.2, we state the law of large numbers for the empirical distribution of ancestral trajectories for the structured branching process. Section 3.3 is dedicated to proofs. Finally, in Section 4, we apply the techniques developed in the previous sections to study the asymptotic behavior of a size-structured population in a fluctuating environment.

Notation. We use the classical Ulam-Harris-Neveu notation to identify each individual. Let

U " ď nPN t0, 1u n .
The first individual is labeled by H. When an individual u P U dies, its descendants are labeled by u0, u1. If u is an ancestor of v, we write u ď v. With a slight abuse of notation, for all u P V t and s ă t, we denote by X u s the trait of the unique ancestor living at time s of u. We also introduce the following notation for the time-inhomogeneous auxiliary process: for all measurable functions f , we set

E x ´f ´Y ptq s ¯¯:" E ´f ´Y ptq s ¯ˇY ptq 0 " x ¯,
for all x P X , 0 ď s ď t.

Finally, we recall that for all t ě 0 and all 0 ď r ď s ď t, P ptq r,s is also a linear operator from the set of measures of finite mass into itself through the left action. In particular, for any x P X , we will denote the measure δ x P ptq r,s pdyq by P ptq r,s px, dyq.

The structured branching process

First, we introduce some useful notations and objects to characterize the branching process. Henceforth, we work on a probability space denoted by pΩ, F, Pq.

Dynamic of the trait. Let X Ă R d be a measurable complete space for some d ě 1. It is the state space of the Markov process describing the trait of the individuals. Let G : DpGq Ă C b pX q Ñ C b pX q be the infinitesimal generator associated with a strongly continuous contraction semigroup where C b pX q denotes the continuous bounded functions on X . Then, pX t , t ě 0q is the unique X -valued càdlàg strong Markov process solution of the martingale problem associated with pG, DpGqq [EK09, Theorems 4.4.1 and 4.4.2]. We denote by pX x t , t ě 0q the corresponding process starting from x P X .

Division events. An individual with trait x at time t dies at an instantaneous rate Bpt, xq, where B is a continuous function from R `ˆX to R `. It is replaced by two children. Their traits at birth are distributed according to the probability measure Qpx, ¨q on X 2 . We suppose that the probability measures corresponding to the marginal distributions are equal. By a slight abuse of notation, we will also denote them by Q.

We refer the reader to Remark 1.1 in the introduction for comments on the choice of model. In order to ensure the non-explosion in finite time of such a process, we need to consider the following hypotheses.

Assumption A. We suppose that 1. there exist b 1 , b 2 : R `Ñ R ˚continuous and γ ě 1 such that for all pt, xq P R `ˆX ,

Bpt, xq ď b 1 ptq |x| γ `b2 ptq, 2. for all x P X , Y 1 pxq `Y2 pxq ď x,
where the law of the couple of random variables pY 1 pxq, Y 2 pxqq is given by Qpx, dy 1 , dy 2 q, 3. for all x P X ,

lim tÑ`8 ż t 0
Bps, X x s qds " `8, almost surely, 4. there exists a sequence of functions ph n,γ q nPN such that for all n P N, h n,γ P DpGq and lim nÑ`8 h n,γ pxq " |x| γ for all x P X and there exist c 1 , c 2 ě 0 such that for all x P X :

lim nÑ`8 Gh n,γ pxq ď c 1 |x| γ `c2 ,
where γ is defined in the first item and for

x P R d , |x| γ " ´řd i"1 |x i | ¯γ.
Remark 2.1. We have slightly modified the first condition on the division rate compared to the one in [START_REF] Marguet | Uniform sampling in a structured branching population[END_REF] to better fit the framework of this paper. The adaptation of the proof of the non-explosion of the population to use this modified assumption is straightforward.

Under Assumption A, we have the strong existence and uniqueness of the structured branching process Z in the state of càdlàg measure-valued processes, where for all t ě 0,

Z t " ÿ uPVt δ X u t , t ě 0.
We refer to Theorem 2.3. in [START_REF] Marguet | Uniform sampling in a structured branching population[END_REF] for more details and to [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF] for the study of càdlàg measurevalued processes.

For the existence of the auxiliary process Y ptq with infinitesimal generators given by (1.2), we need to consider additional assumptions on the mean number of individuals in the population at a given time. Let us define the domain of the infinitesimal generator of the auxiliary process by DpAq " tf P DpGq s.t. mp¨, s, tqf ps, xq P DpGq for all t ě 0 and s ď tu .

Assumption B. We suppose that for all t ě 0:

-for all x P X , s Þ Ñ mpx, s, tq is continuously differentiable on r0, ts, -for all x P X , f P DpAq, s Þ Ñ Gpmp¨, s, tqf qpxq is continuous.

-DpAq is dense in C b pX q for the topology of uniform convergence.

This assumption allows us to derive the expression of the generator of the auxiliary process [Mar16, Lemma 3.4 ]). It is in particular satisfied in the example developed in Section 4 and in the examples of [START_REF] Marguet | Uniform sampling in a structured branching population[END_REF].

Assumption C. For all t ě 0, sup xPX sup sďt ż X mpy, s, tq mpx, s, tq Qpx, dyq ă `8,
This assumption tells us that we control uniformly in x the benefit or the penalty of a division. In the general case, the control of the ratio mpy, s, tqpmpx, s, tqq ´1 seems difficult to obtain. We refer to [START_REF] Marguet | Uniform sampling in a structured branching population[END_REF] or to Section 4 for examples where this assumption is satisfied.

Asymptotic behaviour of the structured branching process

The purpose of this section is to prove the law of large numbers result. We show that asymptotically, the behavior of the whole population corresponds to the mean behavior of the auxiliary process introduced in [START_REF] Marguet | Uniform sampling in a structured branching population[END_REF]. The ergodicity of this process is the key for the proof of the law of large numbers. We notice that the ergodicity of the auxiliary process is also required for the proof of the convergence of the empirical measure in [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF], [START_REF] Bansaye | Limit theorems for Markov processes indexed by continuous time Galton-Watson trees[END_REF] and [START_REF] Cloez | Limit theorems for some branching measure-valued processes[END_REF].

In Subsection 3.1, we prove the ergodicity of the auxiliary process. Then, in Subsection 3.2, we state the main theorem of this article which is the convergence in L 2 -norm of the difference between the empirical measure and the mean value of the auxiliary process towards zero as time goes to infinity. Subsection 3.3 is devoted to proofs.

Ergodicity of the auxiliary process

For all t ě 0, we recall that ´P ptq r,s , r ď s ď t ¯denotes the semigroup of the auxiliary process defined in (1.2) by its infinitesimal generators.

The next assumption gathers two classical hypotheses to obtain the ergodicity of a process [MT12, Chapters 15, 16]. We adapt them to the time-inhomogeneous case.

Assumption D. We suppose that:

1. there exists a function V : X Ñ R `and c, d ą 0 such that for all x P X , t ě 0 and s ď t,

A ptq s V pxq ď ´cV pxq `d,
2. for all 0 ă r ă s, there exists α s´r P p0, 1q and a probability measure ν r,s on X such that for all t ě s, inf xPBpR,V q P ptq r,s px, ¨q ě α s´r ν r,s p¨q, with BpR, V q " tx P X : V pxq ď Ru for some R ą 2d c where c, d are defined in the first point.

In what follows, as in [START_REF] Meyn | Markov chains and stochastic stability[END_REF][START_REF] Hairer | Yet another look at Harris ergodic theorem for Markov chains[END_REF] we call Lyapunov function any function V satisfying the first condition of Assumption D and we will refer to the second point of Assumption D as a minorization condition. Adapting directly Theorem 3.1 of [START_REF] Hairer | Yet another look at Harris ergodic theorem for Markov chains[END_REF], we prove that the semigroup of the auxiliary process is a contraction operator for a well-chosen norm. For all β ą 0, we define the following metric on X :

d β px, yq " # 0
x " y, 2 `βV pxq `βV pyq x ‰ y.

We can now state the result on the ergodic behavior of the trajectories of auxiliary process.

Proposition 3.1. Let T ą 0. Under Assumptions A,B,C,D, there exists c ą 0 and β ą 0 such that for all x, y P X , for all bounded measurable functions F : Dpr0, T s, X q Ñ R and all 0 ď r ď t, we have |P r,t,T F pxq ´Pr,t,T F pyq| ď Ce ´cpt´rq }F } 8 d β px, yq.

(3.1)

where C ą 0 is a positive constant.

In the case of a division rate independent of time, the auxiliary process is still time-inhomogeneous but we obtain the convergence of the trajectories of the auxiliary process. Proposition 3.2. Let T ě 0. Assume that Bpt, xq " Bpxq for all t ě 0 and x P X . Then, under Assumptions A,B,C,D, there exists a probability measure Π on the Borel σ-field of D pr0, T s, X q endowed with the Skorokhod distance such that for all bounded measurable functions F : D pr0, T s, X q Ñ R and for all x P X ,

|P 0,t,T F pxq ´ΠpF q| ď Ce ´ct }F } 8 ˆ2 `2βV pxq `β d c ˙.
This convergence is different from classical ergodicity results because pP ptq 0,t , t ě 0q is not a semigroup.

A law of large numbers

Before stating the law of large numbers, we need to consider a final set of assumptions. For x, y P X and s ą 0, let ϕ s px, yq " sup těs mpx, 0, sqmpy, s, tq mpx, 0, tq .

(3.2)

It quantifies the benefit, in term of number of individuals at time t, of "changing" the trait of the entire population at time s by the trait y. This quantity is possibly infinite, but Assumption E below ensures that it is finite. For all x P X , we define:

cpxq " lim inf tÑ8 logpmpx, 0, tqq t , (3.3) 
which corresponds to the growth rate of the total population. In particular, if the division rate is constant B " b, we have that cpxq " b (see (2.6) and below in [START_REF] Marguet | Uniform sampling in a structured branching population[END_REF]).

Using the same notations as [START_REF] Marguet | Uniform sampling in a structured branching population[END_REF], we set for all measurable functions f : X Ñ R and for all x P X , Jf pxq " 2 ż X ˆX f py 0 q f py 1 q Qpx, dy 0 , dy 1 q.

(3.4) It represents the average trait at birth of the descendants of an individual.

Assumption E. We suppose that 1. for all x P X , cpxq ą 0, 2. there exist α 1 , D 1 ě 0 such that α 1 ă cpxq for all x P X and for all t ą 0,

E x " B ´t, Y ptq t ¯J pp1 _ V p¨qqϕ t px, ¨qq ´Y ptq t ¯ı ď D 1 e α1t ,
where V is defined in Assumption D.

By the definition of cpxq, the first point ensures that the growth of the population is exponential (which is not the case, for example, if the trait of the initial individual remains constant at a value where B is equal to zero). This condition is satisfied for instance if the division rate is lower bounded by a positive constant or in the example given in the last section. The second point is a technical assumption. In particular, if ϕ t , B, V are upper bounded by polynomials and if we can control the moments of the measure m, the first point of Assumption E amounts to bounding the moments of the auxiliary process. We refer the reader to Lemma 4.5 in the last section of this article for the verification of this hypothesis in an example.

We first state a slightly less strong result than the law of large numbers.

Theorem 3.3. Let T ą 0. Under Assumptions A,B,C,D,E, we have for all bounded measurable functions F : Dpr0, T s, X q Ñ R, for all x 0 , x 1 P X ,

E δx 0 » - - ¨ÿ uPV t`T F `Xu t`s , s ď T ˘´P 0,t,T F px 1 q mpx 0 , 0, t `T q '2 fi ffi fl ÝÑ tÑ8 0. (3.5)
Moreover, the rate of convergence is lower-bounded by: vptq " exp ˆmin ˆc,

cpx 0 q ´α1 2 ˙t˙,
where c is defined below in (3.12).

As in [START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF] and [START_REF] Bansaye | Limit theorems for Markov processes indexed by continuous time Galton-Watson trees[END_REF], we could generalize this result to unbounded functions F satisfying specific conditions such as P ptq 0,t F ď e bt for some b ă cpxq. The rate of convergence of the empirical measure depends both on the growth rate of the population and on the rate that governs the exponential ergodicity for the auxiliary process. The same type of rate of convergence appeared in [HO16, Theorem 3], in the case of an age structured population.

In order to derive the law of large numbers from the previous result, we need to control the variance of the number of individuals in the population.

Assumption F. For all x P X ,

sup tě0 E δx ˜ˆN t mpx, 0, tq ˙2¸ă 8. 
The meaning of this assumption is that the number of individuals at time t in the population is of the same order as the expected number of individuals in the population at time t. We can now state the law of large numbers.

Corollary 3.4. Let T ą 0. Under Assumptions A,B,C,D,E,F, for all bounded measurable functions F : Dpr0, T s, X q Ñ R, for all x 0 , x 1 P X , we have,

ř uPV t`T F `Xu t`s , s ď T Nt`T ´P0,t,T F px 1 q Ý ÝÝÝ Ñ tÑ`8 0, in L 2 pδ x0 q.
Remark 3.5. It is possible to extend this convergence to population processes allowing death events i.e. if p 0 ı 0. In this case, the convergence is only valid on the survival event tN t ą 0u.

Remark 3.6. We are not able to give the rate of convergence in this case because we did not prove the convergence of pN t mpx, tq ´1, t ě 0q, for x P X .

In the case of a division rate that does not depend on time, even if the auxiliary process is still time-inhomogeneous, it converges when time goes to infinity according to Proposition 3.2. Therefore, we obtain the following result.

Corollary 3.7. Let T ą 0. Under Assumptions A,B,C,D,E,F, if Bpt, xq " Bpxq for all t ě 0 and x P X , there exists a probability measure Π on the Borel σ-field of D pr0, T s, X q endowed with the Skorokhod distance such that:

ř uPV t`T F `Xu t`s , s ď T Nt`T Ý ÝÝÝ Ñ tÑ`8
ΠpF q, in L 2 pδ x0 q.

Therefore, the empirical measure of ancestral trajectories converges toward the limit of the auxiliary process.

Proofs

We first give a useful inequality. Combining the first point of Assumption D and Dynkin's formula applied to x Þ Ñ e ct V pxq where c, V are defined in Assumption D, we have,

P ptq r,s V pxq ď e ´cps´rq V pxq `d c ´1 ´e´cps´rq ¯. (3.6) 
We will use this inequality in the two following subsections. We also introduce the following weighted norm:

}f } β " sup x |f pxq| 1 `βV pxq .
Step 1. Let 0 ď r ď s ď t and f : X Ñ R be a bounded measurable function. First, we prove that for all ∆ ą 0, there exists α ∆ P p0, 1q and β ∆ ą 0 such that for all r ą 0 and all t ě r `∆,

~P ptq r,r`∆ f ~β∆ ď α ∆ ~f ~β∆ . (3.7)
Let β ą 0 that will be specified later. Fix R ą 2d c and f : X Ñ R such that ~f ~β ď 1. Using Lemma 2.1 in [START_REF] Hairer | Yet another look at Harris ergodic theorem for Markov chains[END_REF], we can assume without loss of generality that }f } β ď 1. To obtain (3.7), it is sufficient to prove that for all x, y P X , there exists α ∆ P p0, 1q and β ∆ ą 0 such that ˇˇP ptq r,r`∆ f pxq ´P ptq r,r`∆ f pyq ˇˇď α ∆ d β∆ px, yq.

If x " y, the claim is true. Let x ‰ y P X . We assume first that x and y are such that V pxq `V pyq ě R. Let γ 0 ∆ " e ´c∆ `2d Rc `1 ´e´c∆ ˘. We have

γ 0 ∆ ă 1. Then, ˇˇP ptq r,r`∆ f pxq ´P ptq r,r`∆ f pyq ˇˇď 2 `βγ 0 ∆ pV pxq `V pyqq ď ˆ2 `γ0 ∆ βpV pxq `V pyqq 2 `βpV pxq `V pyqq ˙p2 `βV pxq `βV pyqq ď γ 1 ∆ d β px, yq, (3.8) 
where

γ 1 ∆ " 2 `βRγ 0 ∆ 2 `βR ă 1.
Assume now that x and y are such that

V pxq `V pyq ă R.
Let us consider the following linear operator:

r P ptq r,r`∆ " 1 1 ´α∆ P ptq r,r`∆ ´α∆ 1 ´α∆ ν r,r`∆ ,
where α ∆ is given in Assumption D2. We have ˇˇP ptq r,r`∆ f pxq ´P ptq r,r`∆ f pyq ˇˇ" p1 ´α∆ q| r P ptq r,r`∆ f pxq ´r P ptq r,r`∆ f pyq|.

According to the second point of Assumption D, r P ptq r,r`∆ f pxq ě 0 for all f ě 0 and x P BpR, V q. Then, ˇˇP ptq r,r`∆ f pxq ´P ptq r,r`∆ f pyq ˇˇď p1 ´α∆ q ´r P ptq r,r`∆ f pxq `r P ptq r,r`∆ f pyq ¯.

Next, using that }f } β ď 1 and that r P ptq r,r`∆ V pxq ď 1 1´α∆ P ptq r,r`∆ V pxq, we get ˇˇP ptq r,r`∆ f pxq ´P ptq r,r`∆ f pyq ˇˇď 2 p1 ´α∆ q `β ´P ptq r,r`∆ V pxq `P ptq r,r`∆ V pyq

ď 2 ˆ1 ´α∆ `β d c `1 ´e´c∆ ˘˙`βe ´c∆ pV pxq `V pyqq,
where the second inequality comes from (3.6). Let α 0 ∆ P p0, 2d Rc α ∆ q. Then, fixing β " β ∆ :" cd ´1α 0 ∆ p1 ´e´c∆ q ´1, yields

ˇˇP ptq r,r`∆ f pxq ´P ptq r,r`∆ f pyq ˇˇď 2 `1 ´α∆ `α0 ∆ ˘`β ∆ e ´c∆ pV pxq `V pyqq ď γ 2 ∆ d β∆ px, yq, (3.9) 
where γ 2 ∆ " e ´c∆ _ p1 ´pα ∆ ´α0 ∆ qq. Finally, combining (3.8) and (3.9) and noticing that γ 1 ∆ ą e ´c∆ , yields the result with α ∆ " γ 1 ∆ _ p1 ´pα ∆ ´α0 ∆ qq.

Step 2. We now prove (3.1). Conditioning with respect to σ ´Y pt`T q u , r ď u ď t ¯and using the Markov property, we obtain P r,t,T F pxq ´Pr,t,T F pyq " ż X P t,t,T F pzq ´P pt`T q r,t px, dzq ´P pt`T q r,t py, dzq ¯.

(3.10) For all z P X , we set gpzq " P t,t,T F pzq. Let ∆ ą 0. Let lpr, tq P N and ε r,t ě 0 be such that t ´r " lpr, tq∆ `εr,t and ε r,t ă ∆. Using (3.7), we have ˇˇP pt`T q r,t gpxq ´P pt`T q r,t gpyq ˇˇ" ˇˇP pt`T q r,r`∆ P pt`T q r`∆,t gpxq ´P pt`T q r,r`∆ P pt`T q r`∆,t gpyq ˇď (3.12)

α ∆ d β∆ px, yq~P pt`T q r`∆,t g~β ∆ ď pα ∆ q lpr,
In particular, c ă c because α ∆ ą e ´c∆ . Finally, combining (3.10) and (3.11), and using that

› › ›P pt`T q t,t`T F › › › 8
ď }F } 8 , we get the result.

Proof of Proposition 3.2

Let F : D pr0, T s, X q Ñ R be a bounded measurable function. We have for all t, r ě 0,

P 0,t`r,T F pxq " E x " F ´Y pt`r`T q t`r`s , s ď T ¯ı " E x " E " F ´Y pt`r`T q t`r`s
, s ď T ¯ˇF pt`r`T q r ıı .

Using the Markov property, we have P 0,t`r,T F pxq " ż X P r,t`r,T F pyqP pt`r`T q 0,r px, dyq.

Since B does not depend on time, we have mpy, r, t `r `T q " mpy, 0, t `T q. Then, using the Many-to-One formula (1.1) and the Markov property, we get P r,t`r,T F pyq " E " ř uPV t`T F `Xu t`s , s ď T ˘ˇZ 0 " δ y ı mpy, 0, t `T q " P 0,t,T F pyq, so that P 0,t`r,T F pxq "

ż X P 0,t,T F pyqP pt`r`T q 0,r px, dyq. Next, |P 0,t`r,T F pxq ´P0,t,T F pxq| ď ż X |P 0,t,T F pyq ´P0,t,T F pxq| P pt`r`T q 0,r px, dyq.
Then, according to (3.1), there exist c ą 0, β ą 0 and a constant C ą 0 such that |P 0,t`r,T F pxq ´P0,t,T F pxq| ď Ce ´ct }F } 8 ż X p2 `βV pyq `βV pxqq P pt`r`T q 0,r px, dyq

ď Ce ´ct }F } 8 ˆ2 `2βV pxq `β d c ˙Ý ÝÝÝÝ Ñ r,tÑ`8 0,
where the last inequality comes from (3.6). Finally, pP 0,t,T F pxq, t ě 0q is a Cauchy sequence in X which is complete. Then, it has a limit as t Ñ `8 and this limit is independent of x by (3.1).

Proof of Theorem 3.3, Corollary 3.4 and Corollary 3.7

Let F : Dpr0, T s, X q Ñ R `be a bounded measurable function. For all x P Dpr0, t `T s, X q and x 1 P X , we define the following function:

φ t,T px 1 , px s , s ď t `T qq " F px t`s , s ď T q ´P0,t,T F px 1 q.

Proof of Theorem 3.3. Fix x 0 P X . Let ε ą 0 be such that cpx 0 q ´α1 ą ε, where α 1 is defined in Assumption E. Let t ą 0 be such that cpx 0 q ă inf sět logpmpx 0 , 0, sqq s `ε.

We have

E δx 0 » - - ¨ÿ uPV t`T φ t,T px 1 , pX u s , s ď t `T qq mpx 0 , 0, t `T q '2 fi ffi fl " Apt, T q `Bpt, T q, where Apt, T q " mpx 0 , 0, t `T q ´2E δx 0 » - ÿ uPV t`T φ t,T px 1 , pX u s , s ď t `T qq 2 fi fl , Bpt, T q " mpx 0 , 0, t `T q ´2E δx 0 » - ÿ u‰vPV t`T φ t,T px 1 , pX u s , s ď t `T qqφ t,T px 1 , pX v s , s ď t `T qq fi fl .
For the first term, using that φ t,T px 1 , pX u s , s ď t `T qq 2 ď 4 }F } 2 8 , we get Apt, T q ď 4e ´pcpx0q´εqpt`T q }F } 2 8 Ý ÝÝÝ Ñ tÑ`8 0.

For the second term, using the Many-to-One formula for forks [Mar16, Proposition 3.6], we have mpx 0 , 0, t `T q 2 Bpt, T q " ż t`T 0 mpx 0 , 0, sqE x0 " B ´Y psq s ¯Js,t`T φ t,T px 1 , ¨q ´Y psq r , r ď s ¯ı ds,

where for x P Dpr0, ss, X q,

J s,t`T φ t,T px 1 , ¨q pxq "2 ż X 2 m py 0 , s, t `T q E " φ t,T ´x1 , ´r Y pt`T q r , r ď t `T ¯¯ˇˇˇY pt`T q s " y 0 ı m py 1 , s, t `T q E " φ t,T ´x1 , ´r Y pt`T q r , r ď t `T ¯¯ˇˇˇY pt`T q s " y 1 ı Qpx s , dy 0 , dy 1 q, where r Y pt`T q r " " x r if r ă s, Y pt`T q r if s ď r ď t `T.
We split the integral into two parts: Bpt, T q " I 1 `I2 , where 

I 1 " mpx 0 , 0, t `T q ´2 ż t`T t mpx 0 , 0,
D 1 cpx 0 q ´α1 ´ε e pα1´cpx0q`εqt Ý ÝÝÝ Ñ tÑ`8 0,
where the second inequality comes from Assumption E. Therefore, we only have to deal with the remaining integral I 2 . First, we notice that for any 0 ď s ď t and 0 ď r ď T ,

r Y pt`T q t`r " Y pt`T q t`r
.

Therefore, we get

φ t,T ´x1 , ´r Y pt`T q r , r ď t `T ¯¯" φ t,T ´x1 , ´Y pt`T q r , r ď t `T ¯¯.
Next, Assumption E yields

I 2 ď ż t 0 mpx 0 , 0, sq ´1 ˆEx0 " B ´Y psq s ¯J ´ϕs px 0 , ¨qE ´φt,T ´x1 , ´Y pt`T q r
, r ď t `T ¯¯ˇˇˇY pt`T q s " ¨¯¯´Y psq s ¯ı ds. Moreover, for any y P X and s ď t, we have E ´φt,T ´x1 , ´Y pt`T q r , r ď t `T ¯¯ˇˇˇY pt`T q s " y ¯" P s,t,T F pyq ´P0,t,T F px 1 q.

According to Proposition 3.1, there exists c ą 0, β ą 0 and C ą 0 such that

|P s,t,T F pyq ´P0,t,T F px 1 q| ď Ce ´cpt´sq › › ›P pt`T q t,t`T F › › › 8 ż X d β py, x 2 qP pt`T q 0,s px 1 , dx 2 q.
Finally:

|P s,t,T F pyq ´P0,t,T F px 1 q| ď Ce ´cpt´sq }F } 8 ˆ2 `βV pyq `βV px 1 q `β d c ˙.

Then, we have

I 2 ďC }F } 2 8 ż t 0 e ´2cpt´sq mpx 0 , 0, sq ´1 ˆEx0 " B ´Y psq s ¯J ˆϕs px 0 , ¨q ˆ2 `βV p¨q `βV px 1 q `β d c ˙˙´Y psq s ¯ ds.
Next, using Assumption E we obtain

I 2 ďC }F } 2 8 ˆ2 `β `βV px 1 q `β d c ˙ż t 0
e ´2cpt´sq e pα1´cpx0q`εqs ds, where C ą 0 denotes a positive constant which can vary from line to line. Then,

I 2 ď C }F } 2 8 e ´2ct ż t 0 e pα1´cpx0q`2c`εqs ds ď C }F } 2 8 α 1 ´cpx 0 q `2c `ε e ´2ct ´epα1´cpx0q`2c`εqt ´1ď C }F } 2 8 α 1 ´cpx 0 q `2c `ε ´epα1´cpx0q`εqt ´e´2ct ď C }F } 2 8 e ´minp2c,cpx0q´α1´εqt
.

Finally, we obtain

Apt, T q `Bpt, T q ď C }F } 2 8 e ´minp2c,cpx0q´α1´εqt where C is a constant depending on x 0 , β, V px 1 q, c, d, cpx 0 q, α 1 , R.

We now prove Corollary 3.4.

Proof of Corollary 3.4. Let T ą 0, ε ą 0, x 0 P X and let F : Dpr0, T s, X q Ñ R be a bounded measurable function. Let δ ą 0. We have

E δx 0 » -˜řuPV t`T φ t,T px 1 , pX u s , s ď t `T qq N t`T ¸2fi fl ďδ 2 E δx 0 » -˜řuPV t`T φ t,T px 1 , pX u s , s ď t `T qq mpx 0 , 0, t `T q ¸2fi fl `4 }F } 2 8 P δx 0 `Nt mpx 0 , 0, t `T q ´1 ď δ ´1˘.
According to Paley-Zygmund inequality and Assumption F, we have

P δx 0 `Nt ď δ ´1mpx 0 , 0, t `T q ˘ď 1 ´p1 ´δ´1 q 2 E δx 0 « ˆNt`T mpx 0 , 0, t `T q ˙2ff ´1 ď 1 ´p1 ´δ´1 q 2 gpx 0 q , (3.13) 
where g : X Ñ R `is such that for all x 0 P X , we have E δx 0 " N 2 t`T mpx 0 , 0, t `T q ´2‰ ď gpx 0 q. Finally, we can fix δ such that, combining (3.13) and Theorem 3.3, for t large enough, we have

E δx 0 » -˜řuPV t`T φ t,T px 1 , pX u s , s ď t `T qq N t`T ¸2fi fl ď ε.
Corollary 3.7 is a direct consequence of Proposition 3.2 and Corollary 3.4.

Asymptotic behavior a time-inhomogeneous dynamic: application of ergodicity techniques

In the study of population dynamics, time-inhomogeneity typically appears in fluctuating environment. This effect can be modeled by a division rate that changes over time. In this section, we show how our method via the ergodicity of the auxiliary process applies to such models. We consider a size-structured cell population in a fluctuating environment: each cell grows exponentially at rate a ą 0 and division occurs at time t at rate Bpt, xq " xϕptq, if x is the size of the cell at time t. We assume that ϕ : R `Ñ R `is continuous and that there exist ϕ 1 , ϕ 2 ą 0 such that for all t P R `,

ϕ 1 ď ϕptq ď ϕ 2 .
The choice Bpxq " x is classical in the study of growth-fragmentation equations [START_REF] Mischler | Spectral analysis of semigroups and growth-fragmentation equations[END_REF]. The originality comes from the function ϕ which models a changing environment.

At division, the cell splits into two daughter cells of size θx and p1 ´θqx, with θ " U prε, 1 ´εsq for some 0 ă ε ă 1 2 and x the size of the cell at division. Then, the process that we consider is a Piecewise Deterministic Markov Process (PDMP) on a tree with individual jump rate B and transition density function Q given by Qpx, yq "

" 1 p1´2εqx if εx ď y ď p1 ´εqx, 0 otherwise.
Let us first make some comments on the choice of the model. The function ϕ is lower bounded to ensure that each cell effectively divides after some time. The upper bound is convenient for the calculations. An interesting example is Bpt, xq " xpα `β sinptqq, with α ´β ą 0 for the modeling of the growth of a cell population in a periodic environment. Finally, we consider a uniform law on rε, 1 ´εs for the kernel at division but the next lemmas can easily be extend to a more general kernel.

Following the same calculations as in [Mar16, Section 2.2], we have mpx, s, tq " 1 `xφps, tq, @x P R `.

where φps, tq "

ż t s ϕprqe apr´sq dr.
Moreover, in this case, the infinitesimal generator of the auxiliary process is given by corresponds to a normalization term so that p Q ptq s px, dyq is a probability measure. We have the following result on the asymptotic behavior of the measure-valued branching process.

A ptq s f pxq "
Theorem 4.1. Let T ą 0. For all bounded measurable functions F : Dpr0, T s, X q Ñ R, for all x 0 , x 1 P X , we have

ř uPV t`T F `Xu t`s , s ď T Nt`T ´Ex1 " F ´Y pt`T q t`s , s ď T ¯ı Ý ÝÝÝ Ñ tÑ`8 0, in L 2 pδ x0 q. (4.2)
The proof of Theorem 4.1 is detailed in several lemmas. First, in Lemma 4.2, we exhibit a Lyapunov function and a probability measure which ensure that Assumption D is satisfied. Next, in Lemma 4.3, we prove that the moments of the auxiliary process are bounded. Finally, in Lemmas 4.5 and 4.6, we prove that Assumptions E and F are satisfied.

Let V pxq " 1 x `x for x P R ˚. We recall that BpR, V q " tx P R `, V pxq ă Ru. Lemma 4.2. We have the following:

1. There exists dpεq ą 0 such that for all 0 ď s ď t and x P R ˚we have A ptq s V pxq ď ´aV pxq `dpεq.

2. For all R ą 2dpεqa ´1, for all r ă s ď t, there exists α s´r ą 0 such that for all Borel set A of R `, inf xPBpR,V q P ´Y ptq s P A ˇˇY ptq r " x ¯ě α s´r ν r,s pAq.

Proof. We first prove that V pxq " 1 x `x satisfies the first point of Lemma 4.2. Let us compute A ptq s V 1 pxq where V 1 pxq " x. We have for x P R `,

A ptq s V 1 pxq " ax `2 1 ´2ε ϕpsq ż p1´εqx εx
py ´xq 1 `yφps, tq 1 `xφps, tq dy

" ax ´ϕpsqx 2 `2 3 ϕpsqpε 2 ´ε `1qx 2 ˆ1 ´1 1 `xφps, tq ˙.
Then, we obtain

A ptq s V 1 pxq ď a ˆ1 ´1 3a ϕpsqp1 `2ε ´2ε 2 qx ˙x ď ´ax `3a 2 ϕ 1 p1 `2ε ´2ε 2 q .
Next, let V 2 pxq " 1 x . We have

A ptq s V 2 pxq " ´a x `2 1 ´2ε ϕpsq ż p1´εqx εx ˆ1 y ´1 x ˙1 `yφps, tq 1 `xφps, tq dy.
Using that for all x ě 0 and y P rεx, p1 ´εqxs, 1 `yφps, tq ď 1 `xφps, tq, we get

A ptq s V 2 pxq ď ´a x `2ϕpsqCpεq, where Cpεq " 1 1´2ε " log `1´ε ε ˘´p1 ´2εq ‰ . Noticing that Cpεq ą 0 because ε ă 1 2 yields A ptq s V 2 pxq ď ´aV 2 pxq `2ϕ 2 Cpεq. (4.3) 

Finally

A ptq s V pxq ď ´aV pxq `dpεq, where dpεq " 2ϕ 2 Cpεq `3a 2 ϕ 1 p1 `2ε ´2ε 2 q .

Next, we prove the second point of Lemma 4.2. Let us describe the shape of the subset BpR, V q of R `that we will consider. For all R ą 2dpεqa ´1, we have BpR, V q " tx P R `, V pxq ă Ru " tx 1 pRq ă x ă x 2 pRqu , (4.4)

where

x 1 pRq " R ´?R 2 ´4 2 , x 2 pRq " R `?R 2 ´4 2 .
Now, we prove the second point. Let R ą 2dpεqa ´1, x P BpR, V q and let A be a Borel set. Let n P N be such that

ˆ1 ´ε ε ˙n´1 ą x 2 pRq x 1 pRq . (4.5)
Let 0 ď r ă s ď t. Considering the case where the auxiliary process jumped exactly n times between r and s, we have

P ptq r,s px, Aq ě E " 1 ! Y ptq s PA ) 1 trďτ1ďsu 1 tτ1ďτ2ďsu . . . 1 tτn´1ďτnďsu 1 tτn`1ěsu ˇˇˇY ptq r " x  ,
where τ i denotes the time of the ith jump of the auxiliary process, i " 1, . . . , n. Let us denote by F ptq s the filtration generated by the auxiliary process pY ptq s , s ď tq up to time s. Conditioning with respect to F ptq τ1 and using the strong Markov property and the fact that between two jumps, the growth of the auxiliary process is exponential at rate a, we get

P ptq r,s px, Aq ě E « 1 trďτ1ďsu ż Jr,τ 1 pxq E « 1 tτ1ďτ2ďsu . . . 1 tτn´1ďτnďsu 1 tτn`1ěsu 1 ! Y ptq s PA ) ˇˇˇˇY ptq τ1 " y 1 ff ˆp Q ptq τ1 ´xe apτ1´rq , y 1 ¯dy 1 ˇˇˇˇY ptq r " x ff .
where for all r ď s ď t and x P X , we set J r,s pxq " 1 tzPAu dz ¸dy n´1 dt n´1 . . . dy 1 dt 1 .

"
Let 0 ă δ 1 ă 1 ă δ 2 be such that

ˆδ1 δ 2 ˙n´1 ě ε 1 ´ε . (4.6)
We prove the following proposition by induction for 1 ď k ď n: there exists C ą 0 depending on ε, k, δ 1 , δ 2 and a such that

I pkq r,s px, Aq ě C ´1 ´e´aps´rq ¯k x k´1 ż δ k´1 1 p1´εq k xe aps´rq δ k´1 2 ε n xe aps´rq 1 zPA dz.
The verification for k " 1 is straightforward. We assume now that the proposition is satisfied for k ´1, for some k P 2, n . Then, there exists C ą 0 such that

I pkq r,s px, Aq " ż s r ż Jr,t 1 pxq I pk´1q t1,s py 1 , Aqdy 1 dt 1 ě C ż s r ż Jr,t 1 pxq y k´2 1 ´1 ´e´aps´t1q ¯k´1 ż δ k´2 1 p1´εq k´1 y1e aps´t 1 q δ k´2 2 ε k´1 y1e aps´t 1 q 1 tzPAu dzdy 1 dt 1 .
Switching the integrals and using that y 1 ą εxe apt1´rq , we get

I pkq r,s px, Aq ě C ż s r ´1 ´e´aps´t1q ¯k´1
x k´2 e apk´2qpt1´rq pI 1 `I2 `I3 q dt 1 ,

where ˙.

I 1 " ż δ k´2
Next, reducing the intervals of integration for I 1 and I 3 and using that δ 2 ε ď p1 ´εq and δ 1 p1 ´εq ě ε according to (4.6), we obtain,

I 1 ě ż δ k´2 2 p1´εqε k´1 xe aps´rq δ k´1 2 ε k xe aps´rq 1 tzPAu dzpδ 2 ´1qεxe apt1´rq , I 3 ě ż δ k´1 1 p1´εq k xe aps´rq δ k´2 1 p1´εq k´1 εxe aps´rq 1 tzPAu dzp1 ´δ1 qp1 ´εqxe apt1´rq .
Therefore, gathering the three integrals and integrating with respect to t 1 , we get

I pkq r,s px, Aq ě C ´1 ´e´aps´rq ¯k x k´1 ż δ k´1 1 p1´εq k xe aps´rq δ k´1 2 ε k xe aps´rq 1 tzPAu dz,
where the constant C varies from line to line and the proposition holds at stage k. a.

To check the second point of Assumption E, we prove that the moments of the auxiliary process are bounded. For all p P N ˚, 0 ď s ď t and x ě 0, we denote by Remark 4.4. The moments that we need to control in order to check the second point of Assumption E depend on the function V . The shape of the Lyapunov function V pxq " x `x´1 was convenient for the proof of the second point of Lemma 4.2. Indeed, the proof relies on the fact that BpR, V q is lower bounded by a positive real number. This is the case because of the term x ´1 in V . Because of this term, we need to control the first harmonic moment of the auxiliary process.

f ptq p px, sq " E x "´Y
Proof. Let p P N ˚be a positive integer. We have, using (4.1) and Dynkin's formula, where F pxq " apx ´Cpεqx 1`1{p for all x ě 0. We notice that there exists x 0 ą 0 such that F ą 0 on p0, x 0 q and F ă 0 on px 0 , `8q. Then, any solution to the equation y 1 " F pyq is bounded by yp0q _ x 0 and so is f ptq p px, ¨q. Next, we prove that the first harmonic moment of the auxiliary process is bounded. Let us recall that V 2 pxq " 1{x. Let x P X and 0 ď s ď t. According to Kolmogorov's forward equation, we have Proof. In our case, 1 _ V pxq " V pxq. First, we have for all x P R `and all s, t P R `with s ď t, 1 `x a ϕ 1 pe apt´sq ´1q ď mpx, s, tq ď 1 `x a ϕ 2 pe apt´sq ´1q.

f
B
Then, for all x, y P X , we obtain ϕ t px, yq " sup rět mpx, 0, tqmpy, t, rq mpx, 0, rq ď sup rět `1 `x a ϕ 2 e at ˘`1 `y a ϕ 2 e apr´tq 1 `x a ϕ 1 pe ar ´1q ď `1 `x a ϕ 2 ˘`1 `y a ϕ 2 x a ϕ 1 ^1 .

Next, for all θ P p0, 1q, we have 

ϕ

3.3. 1

 1 Proof of Proposition 3.1 This is adapted from [HM11, Theorem 3.1]. We consider the semi-norm on measurable functions from X into R defined by ~f ~β " sup x‰y |f pxq ´f pyq| d β px, yq .

  `∆ f pxq ´P ptq r,r`∆ f pyq ˇˇď 2 `βP ptq r,r`∆ V pxq `βP ptq r,r`∆ V pyq, because }f } β ď 1. Next, using (3.6), we obtain ˇˇP ptq r,r`∆ f pxq ´P ptq r,r`∆ f pyq ˇˇď 2 `βe ´c∆ pV pxq `V pyqq `2β d c `1 ´e´c∆ ď 2 `βe ´c∆ pV pxq `V pyqq `2β d Rc pV pxq `V pyqq `1 ´e´c∆ ˘.

2 p1´εqε k´1 xe aps´rq δ k´2 2 ε k xe aps´rq 1 tzPAu dz ˆz δ k´2 2 ε k´1 e ´aps´t1q ´εxe apt1´rq ˙, I 2 " ż δ k´2 1 p1´εq k´1 εxe aps´rq δ k´2 2 p1´εqε k´1 xe aps´rq 1 tzPAu dzp1 ´2εqxe apt1´rq , I 3 " ż δ k´2 1 p1´εq k xe aps´rq δ k´2 1 p1´εq

 21211 k´1 εxe aps´rq 1 tzPAu dz ˆp1 ´εqxe apt1´rq ´z δ k´2 1 p1 ´εq k´1 e ´aps´t1q

  For all p P N ˚Ť t´1u and x ě 0, we have sup

  R `Ñ R continuously differentiable, s, t P R `such that s ă t and x P R `.

	axf 1 pxq `2xϕpsq	ż p1´εqx εx	pf pyq ´f pxqq	mpy, s, tq mpx, s, tq	dy p1 ´2εqx	,
	for all f :					

  tq d β px, yq }g} 8 ,

	where β " cd ´1. Finally, we obtain			
	ˇˇP r,t pt`T q	gpxq	´P pt`T q r,t	gpyq ˇˇď Ce ´cpt´rq d β px, yq }g} 8 ,	(3.11)
	where C :" 1 `cR 2d and				
			c :" sup	

∆ą0 logpα ´1 ∆ q∆ ´1.

  axf 1 pxq `2xϕpsq Then, the division rate of the auxiliary process is given by

	ż p1´εqx εx	pf pyq ´f pxqq	mpy, s, tq mpx, s, tq	dy p1 ´2εqx	,	(4.1)
	p B ptq s pxq " 2xϕpsq	mpx{2, s, tq mpx, s, tq	,	
	and the transition kernel for the trait at birth is given by		
	p Q ptq s px, dyq " p Q ptq s px, yqdy "	mpy, s, tq xp1 ´2εqmpx{2, s, tq	1 εxďyďp1´εqx dy,
	where					
	ż p1´εqx				
	mpx{2, s, tq "		mpy, s, tqQpx, yqdy,
	εx				

for all f : R `Ñ R continuously differentiable, all s, t P R `such that s ă t and all x P R `.

  εxe aps´rq ; p1 ´εqxe aps´rq ‰ . Introducing the probability density function of the first division time τ 1 yields PAu dy n ¸dt n ¸dy n´1 dt n´1 . . . dy 1 dt 1 ,

	where						
		I pnq r,s px, Aq "	1 a	ż En´2	´1 ´e´aps´tn´1q	¯˜ż Jt n´1 ,s pyn´1q
	P ptq r,s px, Aq ě	ż s r	g ptq r px, t 1 q	ż Jr,t 1 pxq	E « 1 tt1ďτ2ďsu . . . 1 tτn´1ďτnďsu 1 tτn`1ěsu 1 ! Y	ptq s PA	t1 " y 1 ) ˇˇˇˇY ptq	ff
									ˆp Q ptq t1 ´xe apt1´rq , y 1 ¯dy 1 ,
	where for all r ď s ď t and x P X ,
						g ptq r px, sq " p B ptq s ´xe aps´rq ¯exp	ˆ´ż s	p B ptq u ´xe apu´rq ¯du ˙.
									r
	Using the same argument iteratively, we get
		P ptq r,s px, Aq ě	ż		g ptq r px, t 1 q	ż	g t1 py 1 , t 2 q . . . ptq	ż	g tn´1 py n´1 , t n qe ptq	´şs tn p B ptq u pyne apu´tn q qdu
					E0			E1	En´1
									n´1
									ź
									ˆ1tyne aps´tnq PAu	p Q
									i"0
									ptq s pxq is
	increasing, we have			
	n ź	exp	ˆ´ż ti`1	p B ptq u ´yi e apu´tiq ¯du ˙ě exp	ˆ´ż s	p B ptq u ´xe apu´rq ¯du ˙ě e ´2ϕ2a ´1x2pRqpe aps´rq ´1q ,
	i"0		ti						r
	where t n`1 " s. Noticing that
									p B ptq s pxq ě xϕ 1 , p Q ptq s px, yq ě	2ε xp1 ´2εq	,
	yields						
	P ptq r,s px, Aq ěC r,s 1 tyne aps´tn q where E n´2 " E 0 ˆ. . . ˆEn´2 and ż En´2 ˜ż s tn´1 ˜żJt n´1 ,tn pyn´1q
							C r,s " exp ˆ´2ϕ 2	x 2 pRq a	´eaps´rq ´1¯˙ˆ2 ϕ 1 ε 1 ´2ε	˙n .

ptq ti`1 ´yi e apti`1´tiq , dy i`1 ¯dt n ˆ. . . ˆdt 1 , where y 0 " x and t 0 " r and E i " rt i , ss ˆJti,ti`1 py i q, for i " 0, . . . , n ´1. Next, since x Þ Ñ p B

Applying the substitution z " y n e aps´tnq , we get P ptq r,s px, Aq ěC r,s I pnq r,s px, Aq,

  Finally, we have P ptq r,s px, Aq ě α s´r ν r,s pAq, where α s´r "C ´1 ´e´aps´rq ¯n x 1 pRq n´1 e aps´rq `δn´1

							1	p1 ´εq n x 1 pRq ´δn´1 2	ε n x 2 pRq ˘Cr,s ,
	ν r,s pAq "	e aps´rq `δn´1 1	1 p1 ´εq n x 1 pRq ´δn´1 2	ε n x 2 pRq ˘ż δ n´1 1 2 ε n xe aps´rq p1´εq n xe aps´rq δ n´1	1 tzPAu dz,
	and					
			δ n´1 1	p1 ´εq n x 1 pRq ´δn´1 2	ε n x 2 pRq ą 0,
	according to (4.5) and (4.6).				
	Next, we check that Assumption E is satisfied. The verification of the first point is straightforward
	as	logpmpx, 0, tqq t	"	logp1	`x ş t 0 ϕprqe ar drq t	Ý ÝÝÝ Ñ tÑ`8

  ptq p px, sq "x p `ap By differentiation with respect to s of the last equality we get B s f ptq p px, sq " apf ptq p px, sq `2E x Then B s f ptq p px, sq ď apf ptq p px, sq `2εE x ptq p psq 1`1{p . Finally, we obtain the following differential inequality: B s f ptq p px, sq ďF ´f ptq p px, sq

							« ϕpsq	s ż p1´εqY ptq εY ptq s	s ´yp ´´Y ptq	1 ´2ε ¯p¯d y	ff
	ď apf ptq p px, sq ´Cpεqf	ptq p`1 px, sq,
	where Cpεq :" 2ε 1´2ε ϕ 1 ´1 ´2ε ´p1´εq p`1 ´εp`1 p`1	¯. Moreover, Cpεq ą 0 because ε ă 1 2 . Applying Jensen
	inequality, we have f p`1 psq ě f ptq								
											¯,
		ż s							
			f ptq p px, rqdr						
		0								
	`2 ż s 0	E x	« ϕprq	ż p1´εqY ptq r εY ptq r	´yp ´´Y ptq r	¯p¯1 `yφpr, tq 1 `Y ptq r φpr, tq	dy	ff	dr 1 ´2ε	.
				« ϕpsq	ż p1´εqY ptq s εY ptq s	´yp ´´Y ptq s	¯p¯1 `yφps, tq 1 `Y ptq s φps, tq	dy 1 ´2ε	ff	.
	Next, we notice that for εx ď y ď p1 ´εqx, we have	
			mpy, s, tq mpx, s, tq	ě	1 `εxφps, tq 1 `xφps, tq	ě ε.

  t px, θyq ϕ t px, p1 ´θqyq ď pϕ t px, yqq 2 ď A 1 pxqA 2 pyq, Moreover, for θ P rε, 1 ´εs and for all x P X , V pθxqV pp1 ´θqxq ď pεxq ´2 `x2 `2ε ´1. Then, J pV p¨qϕ t px, ¨qq pyq ď 2ż 1´ε ε V pθyq V pp1 ´θqyq ϕ t px, θyq ϕ t px, p1 ´θqyq C k pεqy k´2 ,where for all k " 0 . . . 6 C k pεq are constants depending on x, a, ε, ϕ 2 . Then, we get Lemma 4.6. For all t ě 0, x P X , we have According to Itô's formula, we have, for all x P X and t ě 0, ϕpsqe as p2E δx rN s s `1q ds.

												dθ
												1 ´2ε
												6
				ď `pεyq ´2 `y2 `2ε	1 pxqA 2 pyq ď A 1 pxq ´1˘A	ÿ
												k"0
	E x	" B ´t, Y t ¯J pV p¨qϕ t px, ¨qq ptq	´Y ptq t ¯ı ď ϕ 2 A 1 pxq	6 ÿ k"0	C k pεq sup tě0	E x	"	´Y ptq t	¯k´1		ă 8,
	according to Lemma 4.3.									
	Last, we verify that Assumption F is satisfied.
		E δx 0	« ˆNt mpx 0 , 0, tq	˙2ff	ď	a 2 `ϕ2 x pa `2ϕ 2 xq `ϕ2 2 x 2 pminpa, ϕ 1 xqq
		E δx	"	N 2 t	‰	" 1	`x ż t
												0
	After some calculations, we obtain			
			E δx	"	N 2 t	‰	ď	e 2at a 2	`a2 `ϕ2 x pa `2ϕ 2 xq `ϕ2 2 x 2 Moreover,
		we have									
		mpx, 0, tq 2 ě e 2at ´e´at `x a	ϕ 1 p1 ´e´at q ¯2 ě e 2at ´min ´1,	x a	ϕ 1	¯¯2	,
	and the result follows.									
	where										
		A 1 pxq "	´x a	ϕ 1	^1¯´2 ´1	`x a	ϕ 2 ¯2 , A 2 pyq " ´1	`y a	ϕ 2 ¯2 .
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