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A law of large numbers for branching Markov processes by
the ergodicity of ancestral lineages

Aline Marguet*
December 30, 2018

Abstract

We are interested in the dynamic of a structured branching population where the trait of each
individual moves according to a Markov process. The rate of division of each individual is a
function of its trait and when a branching event occurs, the trait of a descendant at birth depends
on the trait of the mother. We prove a law of large numbers for the empirical distribution
of ancestral trajectories. It ensures that the empirical measure converges to the mean value
of the spine which is a time-inhomogeneous Markov process describing the trait of a typical
individual along its ancestral lineage. Our approach relies on ergodicity arguments for this time-
inhomogeneous Markov process. We apply this technique on the example of a size-structured
population with exponential growth in varying environment.

Keywords: Branching Markov processes, law of large numbers, time-inhomogeneous Markov pro-
cess, ergodicity.

A.M.S classification: 60J80, 60F17, 60F25, 60J85, 92D25.

1 Introduction

We are interested in the asymptotic behavior of a continuous-time structured branching Markov
process. Each individual in the population is characterized by a trait which follows a Markovian
dynamic and which influences the branching events. This trait may describe the position of an
individual, its size, the number of parasites inside a cell, etc. The purpose of this article is to prove a
law of large numbers i.e. the convergence of the empirical measure to a deterministic limit.

The law of large numbers has already been proved in many different cases. For the convergence
in discrete time of the proportions of individuals with a certain type in the population, we refer to
[AK98al [AK98D] with respectively a discrete or continuous set of types. The generalisation of the law
of large numbers to general branching Markov processes has been obtained by Asmussen and Hering in
[AHT76] in both discrete and continuous time. Their proof relies on a specific decomposition of the first
moment semigroup which applies to the case of branching diffusions. In the context of cellular aging,
Guyon [Guy07] proved the convergence of the empirical measure for bifurcating Markov chains using
the ergodicity of the spine. A generalization of those results to binary Galton-Watson processes can be
found in [DMI0]. For results in varying environment, we mention [BHI5, Ban14|. In continuous-time,
we refer to [GBO3| for asymptotic results in the case of a finite number of types, to [HR14] for a
strong law of large numbers in the case of local branching and to [RSZ14] for central limit theorems.
The specific case of branching diffusions, popularized by Asmussen and Hering [AHT76], is adressed in
[EHK10]. We also mention [EW06, [Eng09| for the study of the case of superdiffusions. For nonlocal

*Univ. Grenoble Alpes, Inria, 38000 Grenoble, France. E-mail: aline.marguet@inria.fr



branching results in continuous-time, we refer to [BT11] for the study of the proportion of infected
cells in a population, to [BDMTT1] for the case of a general Markov branching process with a constant
division rate and to [Clol7| for the convergence of an empirical measure in the general case. Some
of those results rely on spectral theory. Here, we will follow another approach which requires no use
of eigenelements as in [BDMTT11] or [Guy07]. In particular, it can be applied to time-inhomogeneous
dynamics.

The question of the asymptotic behavior of structured branching processes appears in many differ-
ent situations and in particular in the modeling of cell population dynamics. In this context, the law
of large numbers is a key result for the construction of an estimating procedure for the parameters of
the model. We refer to [HOT6] for the estimation of the division rate in the case of an age-structured
population.

In this article, we prove the convergence of the empirical measure for a class of general branching
Markov processes, using spinal techniques. More precisely, we use the characterization of the trait
along a typical ancestral lineage introduced in [Marl6]. We adapt the techniques of [HM11] and we
prove that under classical conditions [MT12, Chapters 15, 16|, the semigroup of the auxiliary process,
which is a time-inhomogeneous Markov process, is ergodic. Using this property, we prove a law of
large numbers for the empirical distribution of ancestral trajectories. We also apply this technique to
an example in varying environment where the law of large numbers result holds.

We describe briefly the branching process (Z;,t = 0) and we refer to [Marl6|] for its rigorous
construction. We assume that individuals behave independently and that for each individual u in the
population:

e its trait (X}, ¢t > 0) follows a Markov process on X with infinitesimal generator and domain

(G, D(9)),
e it dies at time ¢ at rate B(t, X}*) and is replaced by 2 individuals,
e the trait of the two children are both distributed according to Q(X}, ).
Remark 1.1. Two remarks are in order:

1. For the sake of clarity, we consider only binary division but the model can easily be extended to
a random number of descendants as in [Marl6|. The choice of equal marginal distribution for
the traits at birth simplifies calculation but is not mandatory.

2. The reason why we choose to make the time-dependence of the division rate explicit is twofold.
First, it is the case in the example we choose to develop in the last section of this article in order
to tackle environment changes. Second, it highlights the (possible) time-inhomogeneity of the
measure-valued branching process Z. We emphasize that this case is covered by the study in
[Marl6] where the trait lives on X = Y x R.

We focus on the empirical measure which describes the current state of the population
! D oxp, =0
T X = Y,
Nt ueVy

where V; denotes the set of individuals alive at time ¢ and N; its cardinal. A crucial quantity for
the study of this probability measure is the first moment semigroup applied to the constant function
equal to 1 given by

m(x,s,t) :=E [Nt|ZS = 536] )

It is the mean number of individuals in the population at time ¢ starting at time s with a single
individual with trait z € X. In fact, the behavior of the empirical measure is linked with the behavior of
a uniformly chosen individual in the population and the mean number of individuals in the population.
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More precisely, we have the following result, referred to as a Many-to-One formula [Mar16, Theorem
3.1], which holds under Assumptions |A|and [Bf given below: for all non-negative measurable functions
F on the space of cadlag processes, for all 0 < s <t and g € X,

E

N F(XYs<t)]Z = 5:”0] = m(z0,0,t)E [F (Y;”,s < t) v = mo] 7 (1.1)

ueVy

where (Ys(t),s < t) is a time-inhomogeneous Markov process, called the auxiliary process, whose

infinitesimal generators (.Agt), s < t) are given for all suitable functions f and x € X’ by

g(m(,s,0)f) (@) = fx)G(m(, s, 1)) (x)

m(z, s, t)

+28(5.0) [ (1) - 1) 28200 ay).
(1.2)

AL () =
The auxiliary process corresponds to the trait of a typical individual in the population [Marl6]. More
precisely, the family of operators (Pr(ts) ,0 <7 < s <t) defined for all measurable functions f by

Rr,s(fm(" S,t))(:l?)

P () = m(z,7,t)

s

)

where R, f(

x) =
Pr(,ts) for all r < u < s < t), which is the semigroup of the auxiliary process. It can also be exhibited
using a change of probability measure. Indeed, by Feynman-Kac’s formula (see [DM04], Section 1.3]),
we have

E [Zuevs f(X")|Z, = b, forms a time-inhomogeneous semigroup (i.e. Pﬁ%P&tz =

T8

PO f(z) = m(z,r,t)'E [eSiB<Xv>dvm(Xs, s, ) f(Xs)| X, = x] ,

where (X, 7 < s <t) is a Markov process with infinitesimal generator M given by

Mf(@) = 05(@) +2B(2) | (£(0) = 1) Qo).
Then, the change of probability measure given by the o(X;,! < s)-martingale
elr B(Xo)dsm (X, s,1)

m(x,r,t)

Ms(t):: , forr<s<t
exhibits the probability measure corresponding to the auxiliary process.

The auxiliary process and its asymptotic behavior are the keys to obtain the main result of this
article which is the following law of large numbers for the empirical distribution of ancestral trajecto-
ries:

F(Xtg,s<T
(Zer 020 g [ (0170 < )i ] ) 2
NtJrT t——+0o0

for all zg, 21 € X and T' > 0, where the Ly (d,, )-convergence is the Lop-convergence with initial measure
Ozg-

This result ensures that the behavior of the whole population becomes deterministic asymptotically
and that this behavior is given by the limit behavior of the auxiliary process. This weak law of large
numbers gives information on the ancestral lineages in the population. To establish this result, we
prove in particular that under the classical drift and minorization conditions [MT12, Chapters 15, 16]
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adapted to the time-inhomogeneous case, the auxiliary process is ergodic in the sense that there exists
¢ > 0 such that for all x,y € X', T > 0, for all bounded measurable functions F' : D([0,T],X) — R
and all 0 < r < ¢, we have

|PrarF (@) = Pror F(y)| < Ce™ 7 d(,y) |F,
where d is a distance on X, C'is a positive constant and
PoyrF(z) :=E [F (Yt(j‘;T’, s < T) |y, (+T) — x] . (1.3)

We also apply our method to study a size-structured population with a division rate that depends
both on the trait and the time. This example models the dynamic of size-structured cell population.
Hence, the trait of interest is the size of each individual, increasing exponentially at rate a. We
assume that each cell divides at rate B(t,z) = zp(t), where ¢ is a positive function which describes
environment changes. At division, a cell of size x splits into two daughter cells of size z and (1 —0)z,
where 6 is uniformly distributed on [g,1 — €] for some ¢ > 0. In this case, the infinitesimal generator
of the auxiliary process is given by

(1—e)z

AD @) = anf (@) + 200(5) | ()~ (@) % 2 § - or

for all f: R, — R continuously differentiable, s,t € R, such that s <t and z € R,.

Spectral techniques fall apart in this case because of the time dependence of the division rate
whereas our method works. We prove the law of large for the distribution of ancestral trajectories in
this special case. In particular, we exhibit a Lyapunov function, i.e. a function V satisfying the first
condition of Assumption [D] below, for the time-inhomogeneous auxiliary process associated with this
population dynamic and we establish the minorization condition [D}2 detailed in Section [3]

Outline In Section[2] we detail the structured branching process and the assumptions considered for
its existence and uniqueness. Then, in Section [3] we study the asymptotic behavior of the empirical
measure: first, in Section 3.1} we give our result on the ergodicity of the auxiliary process, then, in
Section [3.2] we state the law of large numbers for the empirical distribution of ancestral trajectories
for the structured branching process. Section [3.3]is dedicated to proofs. Finally, in Section[d] we apply
the techniques developed in the previous sections to study the asymptotic behavior of a size-structured
population in a fluctuating environment.

Notation. We use the classical Ulam-Harris-Neveu notation to identify each individual. Let

u=|Jf13".
neN
The first individual is labeled by . When an individual u € U dies, its descendants are labeled by
u0,ul. If w is an ancestor of v, we write u < v. With a slight abuse of notation, for all v € V; and
s < t, we denote by X the trait of the unique ancestor living at time s of w.
We also introduce the following notation for the time-inhomogeneous auxiliary process: for all
measurable functions f, we set

5 (1)) 5 s (20 -
forallze X,0<s<t.

Finally, we recall that for all ¢t > 0 and all 0 <7 < s < ¢, P,Stg) is also a linear operator from the
set of measures of finite mass into itself through the left action. In particular, for any x € X, we will
denote the measure 5$Pr(,ts) (dy) by Pr(ts) (z,dy).



2 The structured branching process

First, we introduce some useful notations and objects to characterize the branching process. Hence-
forth, we work on a probability space denoted by (2, F,P).

Dynamic of the trait. Let X c R? be a measurable complete space for some d > 1. It is the state
space of the Markov process describing the trait of the individuals. Let G : D(G) < Cp(X) — Cp(X) be
the infinitesimal generator associated with a strongly continuous contraction semigroup where Cp(X)
denotes the continuous bounded functions on X. Then, (X;, ¢t = 0) is the unique X-valued cadlag
strong Markov process solution of the martingale problem associated with (G, D(G)) [EK09, Theorems
4.4.1 and 4.4.2]. We denote by (X7,t = 0) the corresponding process starting from z € X.

Division events. An individual with trait z at time ¢ dies at an instantaneous rate B(t,x), where
B is a continuous function from R, x X to Ry. It is replaced by two children. Their traits at birth
are distributed according to the probability measure Q(z,-) on X2. We suppose that the probability
measures corresponding to the marginal distributions are equal. By a slight abuse of notation, we will
also denote them by Q.

We refer the reader to Remark [[I] in the introduction for comments on the choice of model. In
order to ensure the non-explosion in finite time of such a process, we need to consider the following
hypotheses.

Assumption A. We suppose that

1. there exist b1, by : Ry — R* continuous and v = 1 such that for all (t,z) e Ry x X,
B(t,z) < bi(t) |z|" + ba(t),

2. forallze X,
Yi(z) + Ya(2) < =,

where the law of the couple of random variables (Y1(x), Ya(x)) is given by Q(z, dy1, dys),
3. forallrze X,

t

lim | B(s,X¥)ds =400, almost surely,
t>+o J,

4. there exists a sequence of functions (R )nen such that for all n € N, h,., € D(G) and
limy, 40 hn () = |2|7 for all x € X and there exist ¢1,co = 0 such that for all x € X:

Jim Ghy o (2) < afa]” + ez,

N
where ~y is defined in the first item and for v € RY |z|7 = (Z?zl |x2|) .

Remark 2.1. We have slightly modified the first condition on the division rate compared to the one
in [Marl6] to better fit the framework of this paper. The adaptation of the proof of the non-explosion
of the population to use this modified assumption is straightforward.

Under Assumption [A] we have the strong existence and uniqueness of the structured branching
process Z in the state of cadlag measure-valued processes, where for all ¢ > 0,

Zy= ) 6xp, t=0.

ueVy

We refer to Theorem 2.3. in [Marl6] for more details and to [FMO04] for the study of cadlag measure-
valued processes.



For the existence of the auxiliary process Y*) with infinitesimal generators given by (T.2)), we need
to consider additional assumptions on the mean number of individuals in the population at a given
time. Let us define the domain of the infinitesimal generator of the auxiliary process by

D(A) = {f € D(G) s.t. m(-,s,t)f(s,x) € D(G) for all t = 0 and s < t}.
Assumption B. We suppose that for all t = 0:
- forallx e X, s > m(x,s,t) is continuously differentiable on [0, t],
- forallz e X, fe D(A), s — G(m(:,s,t)f)(x) is continuous.
- D(A) is dense in Cy(X) for the topology of uniform convergence.

This assumption allows us to derive the expression of the generator of the auxiliary process [Mar16,
Lemma 3.4 ]). It is in particular satisfied in the example developed in Section [4] and in the examples
of [Mar16].

Assumption C. For allt >0,

sup sup Q(z,dy) < +0,

reX s<t

J m(y, s, t)

x m(z,s,t)

This assumption tells us that we control uniformly in z the benefit or the penalty of a division. In
the general case, the control of the ratio m(y, s,t)(m(z, s,t)) ™! seems difficult to obtain. We refer to
[Mar16] or to Section 4] for examples where this assumption is satisfied.

3 Asymptotic behaviour of the structured branching process

The purpose of this section is to prove the law of large numbers result. We show that asymptotically,
the behavior of the whole population corresponds to the mean behavior of the auxiliary process
introduced in [Marl6]. The ergodicity of this process is the key for the proof of the law of large
numbers. We notice that the ergodicity of the auxiliary process is also required for the proof of the
convergence of the empirical measure in [Guy07], [BDMTII] and [Clo17].

In Subsection we prove the ergodicity of the auxiliary process. Then, in Subsection we
state the main theorem of this article which is the convergence in Lo-norm of the difference between
the empirical measure and the mean value of the auxiliary process towards zero as time goes to infinity.
Subsection [3.3]is devoted to proofs.

3.1 Ergodicity of the auxiliary process

For all ¢t > 0, we recall that (Pr(ts) ,r<s< t) denotes the semigroup of the auxiliary process defined

in (1.2) by its infinitesimal generators.
The next assumption gathers two classical hypotheses to obtain the ergodicity of a process [MT12]
Chapters 15, 16]. We adapt them to the time-inhomogeneous case.

Assumption D. We suppose that:

1. there exists a function V : X — R, and ¢,d > 0 such that for allz e X, t >0 and s < t,

ADV (z) < —cV (2) + d,

2. for all 0 <r < s, there exists as—, € (0,1) and a probability measure v, s on X such that for all
t=s,

zeBi’I(llg,V) Pr(,ts) () = as—rtrs ("),

with B(R,V) ={x e X : V(x) < R} for some R > %d where ¢, d are defined in the first point.
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In what follows, as in [MT12, HMII] we call Lyapunov function any function V satisfying the first
condition of Assumption [D] and we will refer to the second point of Assumption [D]as a minorization
condition. Adapting directly Theorem 3.1 of [HM11], we prove that the semigroup of the auxiliary
process is a contraction operator for a well-chosen norm. For all 8 > 0, we define the following metric
on X

0 =1y,

dp(@,y) = {2 +BV(z)+ BV(y) z=#uy.

We can now state the result on the ergodic behavior of the trajectories of auxiliary process.

Proposition 3.1. Let T > 0. Under Assumptions [A[BIQID] there exists ¢ > 0 and B > 0 such that
for allx,y € X, for all bounded measurable functions F : D([0,T],X) —> R and all 0 < r < t, we have

|PraoF(x) = PryrF(y)| < Ce 7 | P dg(a, ). (3.1)
where C > 0 is a positive constant.

In the case of a division rate independent of time, the auxiliary process is still time-inhomogeneous
but we obtain the convergence of the trajectories of the auxiliary process.

Proposition 3.2. Let T > 0. Assume that B(t,z) = B(x) for allt = 0 and x € X. Then,
under Assumptions|A|fBICID, there exists a probability measure I1 on the Borel o-field of D ([0,T1], X)
endowed with the Skorokhod distance such that for all bounded measurable functions F : D ([0,T], X) —
R and for all x € X,

|Po ¢, rF(z) —I(F)| < Ce " |F|, (2 + 28V (x) + 662) .

This convergence is different from classical ergodicity results because (Pétt) ,t = 0) is not a semi-
group.

3.2 A law of large numbers

Before stating the law of large numbers, we need to consider a final set of assumptions. For z,y € X

and s > 0, let
m(m, 07 s)m(y, S t)

@s(x,y) = sup (3.2)

t=s m($7 07 t)
It quantifies the benefit, in term of number of individuals at time ¢, of "changing" the trait of the
entire population at time s by the trait y. This quantity is possibly infinite, but Assumption [E] below
ensures that it is finite. For all x € X', we define:
1 0,t
c(x) = liminfiog(m(w’ : )), (3.3)
t—00 t
which corresponds to the growth rate of the total population. In particular, if the division rate is
constant B = b, we have that ¢(z) = b (see (2.6) and below in [Marl16]).
Using the same notations as [Marl6], we set for all measurable functions f : X — R and for all
re X,

Tf(z) =2 f £ (90) f (1) Qe dyo, ). (3.4)

XXX

It represents the average trait at birth of the descendants of an individual.



Assumption E. We suppose that
1. forallz e X, ¢(x) >0,

2. there exist a1, D1 = 0 such that oy < c(z) for all x € X and for all t > 0,

B [ B (6Y7) 7 (v Ve (@) (V)] < Dien,
where V' is defined in Assumption[D

By the definition of ¢(x), the first point ensures that the growth of the population is exponential
(which is not the case, for example, if the trait of the initial individual remains constant at a value
where B is equal to zero). This condition is satisfied for instance if the division rate is lower bounded
by a positive constant or in the example given in the last section. The second point is a technical
assumption. In particular, if ¢y, B,V are upper bounded by polynomials and if we can control the
moments of the measure m, the first point of Assumption [E] amounts to bounding the moments of
the auxiliary process. We refer the reader to Lemma in the last section of this article for the
verification of this hypothesis in an example.

We first state a slightly less strong result than the law of large numbers.

Theorem 3.3. Let T > 0. Under Assumptions [AIBIOIDIE], we have for all bounded measurable
functions F : D([0,T],X) = R, for all xo,z1 € X,

2
= (Xtos ST) = PoarF () | | (3.5)

E
0 m(xzo,0,t + T) t—w0

z0
u€Vipr

Moreover, the rate of convergence is lower-bounded by:

v(t) = exp (min (c, W) t) ,

where ¢ is defined below in (3.12)).

As in [Guy07] and [BDMTT11], we could generalize this result to unbounded functions F satisfying
specific conditions such as PO(,tt) F < eb for some b < ¢(x). The rate of convergence of the empirical
measure depends both on the growth rate of the population and on the rate that governs the expo-
nential ergodicity for the auxiliary process. The same type of rate of convergence appeared in [HO16),
Theorem 3], in the case of an age structured population.

In order to derive the law of large numbers from the previous result, we need to control the variance
of the number of individuals in the population.

N, 2
sup E _ < 0.
21;18 O ((m(az,o,t)) ) @

The meaning of this assumption is that the number of individuals at time ¢ in the population is of
the same order as the expected number of individuals in the population at time ¢. We can now state
the law of large numbers.

Corollary 3.4. Let T > 0. Under Assumptions [A[B[OIDIEIE], for all bounded measurable functions
F:D([0,T],X) = R, for all xo,z1 € X, we have,

ZuEVHT F (Xgﬂrs,s < T)
Nitr

Assumption F. For all z e X,

— Py 7F (1)

0, m ]]_42(510).

t—+o0



Remark 3.5. It is possible to extend this convergence to population processes allowing death events
i.e. if pg # 0. In this case, the convergence is only valid on the survival event {N; > 0}.

Remark 3.6. We are not able to give the rate of convergence in this case because we did not prove
the convergence of (Nym(x,t)~1,¢t > 0), for z € X.

In the case of a division rate that does not depend on time, even if the auxiliary process is still
time-inhomogeneous, it converges when time goes to infinity according to Proposition [3.2] Therefore,
we obtain the following result.

Corollary 3.7. Let T > 0. Under Assumptions [A|{BICIDIE|F], if B(t,xz) = B(z) for allt = 0 and
x € X, there exists a probability measure II on the Borel o-field of D ([0,T],X) endowed with the
Skorokhod distance such that:

ZUEVtJrT F (X;J-i-sv 5 < T)
Nt+T t—+00

II(F), in La(ds,)-

Therefore, the empirical measure of ancestral trajectories converges toward the limit of the auxiliary
process.

3.3 Proofs

We first give a useful inequality. Combining the first point of Assumption [D] and Dynkin’s formula
applied to x — eV (x) where ¢,V are defined in Assumption @ we have,

POV () < eIV () + (1 - e*C<H>) : (3.6)
’ C

We will use this inequality in the two following subsections.

3.3.1 Proof of Proposition [3.1

This is adapted from [HM11] Theorem 3.1]. We consider the semi-norm on measurable functions from
X into R defined by

|f(z) — ()]
fllg = sup ————=.
11lls = sup =2
We also introduce the following weighted norm:
_ /()]

Step 1. Let0<r<s<tand f: X — R be a bounded measurable function. First, we prove that
for all A > 0, there exists @a € (0,1) and Sa > 0 such that for all » > 0 and all ¢t > r + A,

1P, Afllss < @allfllga- (3.7)

Let 3 > 0 that will be specified later. Fix R > 2¢ and f: X — R such that || f||s < 1. Using Lemma
2.1 in [HMII], we can assume without loss of generality that | f||; < 1. To obtain (3.7)), it is sufficient
to prove that for all z,y € X, there exists @a € (0,1) and Ba > 0 such that

Pyl ad (@) = Bl af ()] < Aadsy (2.).
If x = y, the claim is true. Let = # y € X. We assume first that  and y are such that

V(z)+V(y) = R.



Then, we have

P af(@) = PO afy)| <2+ 8P, V(@) + BPL AV (),
because | f||5 < 1. Next, using (3.6), we obtain

PO, af@) = PO s @) <24 8 (Vi) + V() + Zﬂg (1— )

d
<2+ Be A (V(x) + V(y) + ZﬂE(V(x) +V(y) (1—e ).
Let 1% = e 4 + 24 (1 — =), We have /% < 1. Then,

P af@) = P afm)| < 2+ ARV () + V(y)

)+ V()
2+ 2BV (2) + V() )
<( 27 V(@) + V(1) ><2+W( ) +AVW)

< Yads(z,y), (3.8)

where
2+ BRYQ

1.
2+ 3R

VA =
Assume now that z and y are such that
V(z) +V(y) <R.

Let us consider the following linear operator:

50 _ 1 5 aa
PT,T+A - 1— aa rr+A 1 _ an Vrr+ A,

where ap is given in Assumption [DR. We have

P af@) = PUL @) = (0= aa) B, ot (@) = B s f )]

According to the second point of Assurnp‘c1on|§|7 i + Af(x) =0forall f>0and ze B(R,V). Then,
P af@) = PO, afw)| < (= aa) (B af@) + B af @)

Next, using that | f|; <1 and that PT(T)+AV( ) < T(3+AV( ), we get
P af@) = P, af(y)| <201 -as) + 8 (P“Lm )+ P.aV)

<2 (1 —aa + 5% (1- e_CA)> + Be= A (V(z) + V(y)),

where the second inequality comes from (3.6]). Let a2 € (0, %aA). Then, fixing

B=Ba:=cd taj (1 —e )7,
yields

P st (@) = PULAT)| < 2(1-as +ak) + Bac™A(V(2) + V(y)
< Rds (2.y), (3.9)

where

YA = e v (1 - (aa —ad)).
Finally, combining (3.8) and (3.9) and noticing that vX > e~°2, yields the result with @an = 74 Vv
(1= (aa —aQ)).
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Step 2. We now prove (3.1). Conditioning with respect to o (Yu(HT),r <u< t) and using the
Markov property, we obtain

Pr,t,TF(x) — Pr,t,TF(y) = J Pt,t7TF(Z) (Pf,ttJrT) (3;’ dZ) — PfftJrT) (y7 dZ)) . (310)

x
For all z € X, we set g(z) = Py rF(2). Let A > 0. Let I(r,t) € N and ,; > 0 be such that
t—r=1IUrt)A+eand ey < A. Using (3.7), we have
P Dgw) - P Dg()| = [PEER P a(@) - PETRR ()|
_ t+T

< @adp, (@) 1P gl o

< @a)' " ds(x,y) |9l ,

where 8 = cd~'. Finally, we obtain

P g(x) — PED g(y)| < Ce ™ dg (2, y) 9], (3.11)
where C : =1+ % and
¢ := sup log(a )AL (3.12)
A>0

In particular, ¢ < ¢ because an > e °*. Finally, combining (3.10) and (3.11), and using that

HP&i?FH < || F|,,, we get the result.
’ ©

3.3.2 Proof of Proposition

Let F: D ([0,T],X) — R be a bounded measurable function. We have for all ¢,7 > 0,
Pussirla) - B [P (V500 < 7)) = 5, 2 [ (50557, ) (777

Using the Markov property, we have

PO,tJrr,TF(x) = f Pr,t+r,TF(y)P(§)tT+T+T) ({177dy)
X

Since B does not depend on time, we have m(y,r,t + r + T) = m(y,0,t + T). Then, using the
Many-to-One formula (1.1) and the Markov property, we get

E[Suevir F (X5 <T) |20 = 5,
m(y,0,t+T)

PT,H—T,TF(y) = = PO,t,TF(y)a

so that
PuvsraF(@) = [ PooaPa)RE o)
Next,
|PoirrF(z) = PoyrF(x)| < L |PosrF(y) = PosaF (@) PG (@, dy).
Then, according to , there exist ¢ > 0, 8 > 0 and a constant C' > 0 such that

|PosrrF(x) = PoyrF(z) < Ce | F| L 2+ BV(y) + BV (x) BT (@, dy)

<Ce ™|F|, <2 + 28V (z) + ﬂi) 0,

r,t—~+00

where the last inequality comes from (3.6). Finally, (Py .7 F(x),t = 0) is a Cauchy sequence in X
which is complete. Then, it has a limit as ¢t — +oo and this limit is independent of x by (3.1)).
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3.3.3 Proof of Theorem Corollary and Corollary

Let F : D([0,T],X) — R, be a bounded measurable function. For all z € D([0,¢t+T],X) and z; € X,
we define the following function:

Gr,7(w1, (25,8 <t +T)) = F (2445, <T) — PoyrF(x1).

Proof of Theorem[3.3 Fix zo € X. Let € > 0 be such that c(zg) — @y > ¢, where a; is defined in
Assumption [E] Let ¢ > 0 be such that

log(m(x()v Oa S))

e(xg) < irig B — +e.
We have
2
¢thlv( 78<t+T))
E 2 = A, T)+ B(t,T
O Z (.'L'(),Ot"‘T) (7 )+ (7 )a
ueViyr
where
A, T) =m(z0,0,t + T) Ky, | >, ez, (XY, s <t+T))*|,
| ueViyT
B(t,T) = m(z0,0,t + T)°Es, D (e, (X s <t+T)r(zr, (X2, s <t+T))
_u#’UGV}+T
For the first term, using that ¢; 7 (z1, (X%, s <t+1T))? < 4 HF||307 we get

A(t,T) < 4e=CE0=0+T) | |2

D ot

0.

For the second term, using the Many-to-One formula for forks [Marl6, Proposition 3.6], we have

t+T

m(zo,0,t + T)2B(t,T) = J m(20,0, 8)Eq, [B (Y;”) Jsasroer(zi,”) (YT(S),r < s)] ds,

0
where for z € D([0, s], X),

Js t+T¢t T $17 =2 m y07 St + T)]E [¢t,T (9517 (?}(HT),?" <t+ T)) ‘YS(HT) = yo]
X2

m (y1,s,t+T)E [¢t,T (xl, (?T(HT)J“ <t+ T)) ‘YS(HT) = yl] Q(xs, dyo, dyr),

where

T _ Ty if r < s,
v v ifs<r<t+T.

We split the integral into two parts:
B(t,T) =1 + I,

where

I = m(z0,0,¢ + T)~2 JtHTm(mo,a $)Eq, [B (YS(S)) Jswrrder(tn,-) (YT(S),T < s)] ds,
I = m(x0,0,¢ + T)~2 Lt m(zo0,0, 8)Ex, [B (YS(S)> Jyserder(zr, ) (y}sw < s)] ds.
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For the first integral, we have
t+T

Li<4 HF”i)J m(zo,0,s) By, [B (YS<S>) Jos (20, ) (yS(S))] ds

t

t+T
<4 HFHiO f e~ (c@0)=e)s ) e13 g
t

D
<AJFPE DLl

T 0
(ro) —a1 —¢ t—to0

where the second inequality comes from Assumption [E] Therefore, we only have to deal with the
remaining integral I5. First, we notice that for any 0 < s <tand 0 <r < T,

o (t+T t+T
SASEEES A

Therefore, we get

bs1 (xl, (?T(HT)J“ <t+ T)) = ¢ <$1, (YT(HT)J’ <t+ T)) .

Next, Assumption [E] yields
t
I, < J m(zo,0, )"
0

x By, [B (V) 7 (a0, ) (60 (21, (V0D r < £+ 7))

Moreover, for any y € X and s < t, we have

E (¢t,T (561, (YT(HT), r<t-+ T))

According to Proposition there exists ¢ > 0, 8 > 0 and C' > 0 such that

Pt(,ttizl:)FHoo JX dﬂ (ya $2)P0(7t:T) (551, d.’]?g)

) ()

}/s(tJrT) _ y) — Ps,thF(y) — P07t7TF(£U1).

|Pos7F(y) — PosrF(z)| < Ce o)

Finally:
a(t—s d
Pt F) = PasrF ()] < e [Pl (24 8V() + 0 (@) + 55 )
Then, we have

¢
I, <C ||FH§OJ e~ =) m(z0,0,5) 7"
0

X By, [B (vi)s (mxo, ) (2 +BV() + BV (21) + ﬂi)) (Yﬁ)] ds.

Next, using Assumption [E] we obtain

d\ [t _,.
I, <C HFH?)O (2 + 5+ BV (xy) + Bc) J e~ Zelt=s) glan—c(@o)+e)s g
0
where C' > 0 denotes a positive constant which can vary from line to line. Then,

t
I, <C HFH?C e_%tj plan—c(@o)+2e+2)s g o
0

2
< HFHOO 672Et <e(alfc(mo)+26+s)t _ 1)
ag —c(xo) + 2+ ¢
2
< ”FHOO (e(alfc(mg)Jrs)t o 672Et>
a; —c(xo) +2c+ ¢

<C HFH; e~ min(2E,C(IU)7ale)t'
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Finally, we obtain
ALT) + B(,T) < O ||, e minCoetzo) oo
where C'is a constant depending on zo, 5,V (z1), ¢, d, c¢(xo), a1, R. O
We now prove Corollary

Proof of Corollary[3.4 Let T > 0, ¢ > 0, 9 € X and let F : D([0,7],X) — R be a bounded
measurable function. Let § > 0. We have

2 2
E ZueVH.T Grr (21, (Xg,s <t +T)) <8°E ZueVH.T Grr (21, (X, s <t +T))
0o =7 R0 m(zo,0,t+ 1)

Nyt
+ 4| F|% Py, (Nem(zo,0,t +T) "t < 671).

According to Paley-Zygmund inequality and Assumption [F] we have
-1

N, 2 1-4§1)2
Ps,, (N <6 'm(z0.0,t+ T)) <1— (1 -6 ")°Es,, [((”TQ 1 <1 Q=07
m

9(o)
(3.13)

Zo, O, t+7T
where g : X — Ry is such that for all zy € X, we have Es, [N7_ pm(z0,0,t+T)"?| < g(x0). Finally,
we can fix ¢ such that, combining (3.13)) and Theorem @: for t large enough, we have

2
ZuthJrT ¢t,T (.’1/'17 (X:7 s<t+ T))
Es,, Novr <e.

Corollary is a direct consequence of Proposition and Corollary

4 Asymptotic behavior a time-inhomogeneous dynamic: appli-
cation of ergodicity techniques

In the study of population dynamics, time-inhomogeneity typically appears in fluctuating environment.
This effect can be modeled by a division rate that changes over time. In this section, we show how
our method via the ergodicity of the auxiliary process applies to such models.

We consider a size-structured cell population in a fluctuating environment: each cell grows expo-
nentially at rate a > 0 and division occurs at time ¢ at rate B(t,z) = zp(t), if x is the size of the cell
at time . We assume that ¢ : R — R, is continuous and that there exist (1, s > 0 such that for
all t e Ry,

1 < p(t) < 2.

The choice B(x) = z is classical in the study of growth-fragmentation equations [MSI16]. The origi-
nality comes from the function ¢ which models a changing environment.

At division, the cell splits into two daughter cells of size 0z and (1 —6)z, with § ~ U ([¢,1 —€]) for
some 0 < e < % and x the size of the cell at division. Then, the process that we consider is a Piecewise
Deterministic Markov Process (PDMP) on a tree with individual jump rate B and transition density
function @ given by

Q(xay) =

m lffxéyé(]._é‘)x,
0 otherwise.
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Let us first make some comments on the choice of the model. The function ¢ is lower bounded
to ensure that each cell effectively divides after some time. The upper bound is convenient for the
calculations. An interesting example is B(t,z) = x(a + Bsin(t)), with a — 8 > 0 for the modeling
of the growth of a cell population in a periodic environment. Finally, we consider a uniform law on
[e,1— €] for the kernel at division but the next lemmas can easily be extend to a more general kernel.

Following the same calculations as in [Marl6l, Section 2.2], we have

m(xz,s,t) =1+ xzp(s,t), Yr e R,.

where

o(s,) = j ()

S
Moreover, in this case, the infinitesimal generator of the auxiliary process is given by

(1—e)z

AD 1) = a (@) 20006) [ () - flo) B (4.1)

for all f: Ry — R continuously differentiable, all s,¢ € R, such that s <t and all x € R;. Then, the
division rate of the auxiliary process is given by
m(z/2,s,t)

BY(@) = 2mp(e) " 10

)

and the transition kernel for the trait at birth is given by

m(y, s,t)
1., _.d
(1 —2e)m(z/2,s,t) cr<y<(1-e)z

QW (x,dy) = QY (z,y)dy =
X

where
(1—e)x

m(af2,5,t) = f m(y, s, )Q(x, y)dy.

ET

corresponds to a normalization term so that @gt) (z, dy) is a probability measure. We have the following
result on the asymptotic behavior of the measure-valued branching process.

Theorem 4.1. Let T > 0. For all bounded measurable functions F : D([0,T],X) — R, for all
To,x1 € X, we have

F (X} ,,s<T
ZueVHT ( t+s1S ) _E,, [F (Y(HT),S < T)] 0, in La(8y,)- (4.2)

Nijr ts t—+00

The proof of Theorem[:1]is detailed in several lemmas. First, in Lemmal[4:2] we exhibit a Lyapunov
function and a probability measure which ensure that Assumption [D]is satisfied. Next, in Lemma[£.3]
we prove that the moments of the auxiliary process are bounded. Finally, in Lemmas [£.5] and [£.6, we
prove that Assumptions [E] and [F] are satisfied.

Let V(z) = 1 + z for z € R%. We recall that B(R,V) = {zx € Ry, V(z) < R}.

Lemma 4.2. We have the following:

1. There exists d(e) > 0 such that for all 0 < s <t and x € R% we have
ADV (z) < —aV (z) + d(e).

2. For all R > 2d(¢)a™?, for all v < s < t, there ewists as_, > 0 such that for all Borel set A of
R-‘rz

inf P (Y e A[Y,0) = z) = ay s (4).
2eB(R,V)
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Proof. We first prove that V(z) = % + x satisfies the first point of Lemma Let us compute
Agt)Vl(x) where Vi (z) = 2. We have for z € R,

2 e L +yd(s,1)
(t) - _ ’
APVi() = a4 1=gels) | o)y

2 2 2 2 1
= az —p(s)a” + go(s)(e” —e + D (1_1+a?¢(s7t)>

Then, we obtain

3a?
(pl(l + 26 — 252) ’

ADVi(2) <a <1 - %@(3)(1 + 2 — 252)x> TS -6z +
a

Next, let Va(z) = 1. We have

(1—e)x
(t) __a 2 f 1 1\ 1+yg(s,t)
ATV ) = = 75 0) e (y ) T ao(s, )™

Using that for all z = 0 and y € [ex, (1 —&)x], 1 + yo(s,t) < 1+ zd(s,t), we get
ALV () < =7+ 20(5)C(6),

where C(e) = 145 [log (1:32) — (1 — 2¢)]. Noticing that C(g) > 0 because € < 3 yields

€

ADV;y(z) < —aVa(z) + 202C(e). (4.3)
Finally
AV (z) < —aV(z) + d(e),

where

3a?

d(g) = 2p2C(e) + T 22

Next, we prove the second point of Lemma Let us describe the shape of the subset B(R, V') of
R, that we will consider. For all R > 2d(¢)a™!, we have

B(R,V) ={zeRy, V(z) < R} = {z1(R) <z < z2(R)}, (4.4)
where
z1(R) = R_i V2R2_47 z2(R) = L V2R2_4

Now, we prove the second point. Let R > 2d(¢)a™!, x € B(R,V) and let A be a Borel set. Let n e N

be such that
1—e\"'  2(R)
< e > >x1(R)' (4.5)

Let 0 < r < s <t. Considering the case where the auxiliary process jumped exactly n times between
r and s, we have

Prg,ts) ((E,A) =2 E |:1{YS<‘)€A}1{T<T1SS}1{T1STQSS} S 1{Tn_1STn$s}1{Tn+125} Y;(t) = {E:| 5
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where 7; denotes the time of the ith jump of the auxiliary process, i = 1,...,n. Let us denote by ]-'s(t)
the filtration generated by the auxiliary process (Ys(t)7 s < t) up to time s. Conditioning with respect

to ]-'g) and using the strong Markov property and the fact that between two jumps, the growth of
the auxiliary process is exponential at rate a, we get

P,Sf? (x7 A) 2 Ell{réTlés} J‘] ( ) El1{71<72<5} cee 1{T"71<T"<S}1{T"+1>5}1{Ys(t)eA} YT(lt) — y1‘|
x QWY (fwa(n_r),yl) dy [V, = x}

where for all r < s < t and z € X, we set J,,(z) = [eze®®"); (1 —)ze®*~")]. Introducing the
probability density function of the first division time 7 yields

P (2, A) >f gﬁt)(ﬂf,tl)f E 1{t1<m<s}-~-1{rn_1<m<s}1{rn+1>s}1{y<t>eA}
ertl(x) s

T

v = y1]

X @g? (xea(tl_r)ay1> dy1,

where for all r < s <tand x € X,

o (z,5) = BO (Iea(H>) exp ( J =0 (Iea(uﬂ«)) du) .

r

Using the same argument iteratively, we get

—5 BO (4 eru—tn)) gy
PY) (x,A>>f g@(x,mf g£f><y1,t2>--~f 9 (Yno,t)e e B (o )d
Eqg E, E

n—1
n—1
At Lt
x l{ynea(sftn)eA} H Ql(fzzd (yiea(tl+1 tl)7dyi+1> dtn X ... X dtla
1=0

where yo = x and to = 7 and E; = [t;,s] X Jy, 1., (y;), for i = 0,...,n — 1. Next, since z — B (z) is

increasing, we have

n Tiv1 LN 5 -1 R)(ea(s—™ 1
[Texp (_J B (wea(“—“)) du) > exp (—J BY (:Jce“(“_r)) du) > 2z w2(R)(e -1,
i=0 t "

where t,.1 = s. Noticing that
~ A~ 2e
BW = ¢ =z —F
s (33) TP1, Qs (mvy) 1’(1—28)7

yields

Prg,ts) (Z, A) >Cr,s J J J l{y e,,,(s_tn)eA}dyn dtn dyn—ldtn—l e dyldtl,
En—2 th—1 Tty _1otn Yn—1) "

where £, o2 = Fy x ... X E,_5 and

_ @ a(s—r) 2@18 "
Crs = exp (—24,02 4 (e — 1) T— o

Applying the substitution z = y,e®~) we get

Pg,ts) (z,A) 207",817{2) (z, A),
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where

1
Iﬁz) (z,A) = = f (1 _ e—a(s—tn—l)) f 1{zeA}dZ dyp—1dt,—_1 ... dyidt;.
aJe, , Tty _1,s(Yn—1)

Let 0 < §; < 1 < §3 be such that

(51 n-l g
_ > .
(52 1—¢

(4.6)

We prove the following proposition by induction for 1 < k < n: there exists C' > 0 depending on ¢, k,

01, 62 and a such that

S5 (1—e)kweas=m)

k
Ir(f? (x,A)=C (1 — e_“(s_r)) xk1 J 1,cadz.
5

;ﬁflgnwea(kr)

The verification for k£ = 1 is straightforward. We assume now that the proposition is satisfied for

k — 1, for some k € [2,n]. Then, there exists C' > 0 such that

1) (2, A) f f 150 (g, A)dyrdty
rtl(x)

b1 5f72(1_6)k71y16a(541)
= CJ. J ylf_Q (]. - e_a(s_tl)) J l{zeA}dZdyldtl.
JIr,tq (z )

gfzak—lylea(sftl)

Switching the integrals and using that y; > eze®®1—") | we get

s k—1
17(,]1) (x, A) = CJ‘ (1 — eia(sitl)) $k726a(k72)(tlir) (Il + Iy + 13) dtl,

where

5572 (1—e)ePtpea(sm) 2

jo J 1 dz 7@—(1(5—151) _ 6xea(t1—r)) ,

! 5;725kxe“(5*7‘) {zed) <5]2€25k_1

6’1“’2(176)’“_1516“(5_”

L= J Lieydz(1 — 2e)ze 7,
55‘2(175)516*19:8“(5_”
K2 (1—e) ke (=) ( : 5 ( )

Iy = 1 Adz(l—s retlhi—r —e_as_h)’
o2 (1—g)k—legeals—r) {zed) ( ) 511€_2(1 - E)kil

Next, reducmg the intervals of integration for I; and I3 and using that dee < (1 —¢) and 0,1 (1—
accordlng to ( , we obtain,

5’;72(1—5)5k71mea(37”

I > J 1{Z€A}dz(52 — 1)€$€a(t1_r),
5§*1€kzea(sf'r')
51 (1—e)kgeals=m)

= Leeayd=(1 — 61)(1 - e,
5;“_2(176)’6*15:1:6‘1(5*”

Therefore, gathering the three integrals and integrating with respect to t1, we get

6lf_l (17€)kxea(S’T)

1ieaydz,

k
IT(,f“s)(a:,A) =>C (1 — 67“(57’”)) xkilf

55715’%:6‘1(5**)
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where the constant C varies from line to line and the proposition holds at stage k. Finally, we have

PO (2, A) > ay_rvr o(A),

s

where
o =C (1= e72Cm0) g (R 160 (67711 = )" (R) — 637 aa(R)) Cres,
1 S (1—e) e (=)
el = (07X —e)ma1(R) — 85~ enwa(R)) Jop-tengent—n Heeay @
and

ST —&)"xy (R) — 65 e xa(R) > 0,

according to (4.5) and (4.6). O

Next, we check that Assumption [E]is satisfied. The verification of the first point is straightforward
as
log(m(x,0,t)) log(1l + z Sé p(r)es dr)
t B t t—+00

To check the second point of Assumption [E] we prove that the moments of the auxiliary process are
bounded. For all pe N* 0 < s <t and z > 0, we denote by

e - [
Lemma 4.3. For all pe N*| J{—1} and z = 0, we have

supsup E, [(Ys(t))p] < +00.

t=0 s<t

Remark 4.4. The moments that we need to control in order to check the second point of Assumption
depend on the function V. The shape of the Lyapunov function V(x) = x + 2! was convenient
for the proof of the second point of Lemma Indeed, the proof relies on the fact that B(R, V) is
lower bounded by a positive real number. This is the case because of the term z~! in V. Because of
this term, we need to control the first harmonic moment of the auxiliary process.

Proof. Let p € N* be a positive integer. We have, using (4.1) and Dynkin’s formula,
F0.s) =2 +ap 10z, r)dr
0
s (1—:—:)YT(t> p 1 ¢ d
0 ey, 1+Y: 7 é(r,t) 1—2e

By differentiation with respect to s of the last equality we get

(- (") [Leselnt ],

(1—e)y

05 (z,5) = apf) (z,5) + 2E, [w(S)f

Ys(t)
Next, we notice that for ex <y < (1 — ¢)z, we have

m(y, s,t) - 1+ exd(s,t) -
m(z,s,t) = 1+azp(s,t)
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Then

(1) (0 (oo )"y %
t t P _ t
asfp (Qf, S) < a’pfp (.23, 3) + 2€E1 (p(S) J;Ys(t) Y <}/S ) ) 1—2¢

<apfi(x,s) — C(e)f1), (a,9),

(1_E)P+1_5P+1
p+1

where C(g) := 13525 01 (1 — 2 — ) Moreover, C'(g) > 0 because ¢ < % Applying Jensen

inequality, we have flgi)l(s) > fzgt)(s)“’l/ P. Finally, we obtain the following differential inequality:

0 (w,5) <F (J{0(@,5)) .

where F(x) = apx — C()z'*/? for all x > 0. We notice that there exists zo > 0 such that F > 0 on
(0,20) and F' < 0 on (xg,+0). Then, any solution to the equation y’ = F(y) is bounded by y(0) v zg
and so is frgt) (z,).

Next, we prove that the first harmonic moment of the auxiliary process is bounded. Let us recall
that Va(z) = 1/x. Let € X and 0 < s < t. According to Kolmogorov’s forward equation, we have

0 Py Va(x) = P AV (x).
Using (4.3)), we get
0, P IVa(x) < —aP{)Va(x) + 2020 ().

Finally, using Gronwall’s inequality, we obtain

1 2 2
P{Va(2) < ( - ‘P2C(E)> oo 4 20206

8 T a a

Lemma 4.5. For all x = 0, we have

sup E, [B (t,Yt(t)) J(1v V()ei(z,)) (Yt(t))] < +o0.

t=0

Proof. In our case, 1 v V(z) = V(z). First, we have for all z € R, and all s,t € R} with s <1,
z a(t—s) x a(t—s)
1+*(,01(6 *1)<m(;z:,s,t) <1+7<p2(e 71)
a a

Then, for all x,y € X', we obtain

m(z,0,t)m(y,t,r) - (1+ Zpge™) (1+ %Lpge“("_t)) - (1+ Zpo) (14 Lgo)

T,Y) =su < <
i@ y) oy m(z,0,7) r>t L+ 21 (e9” —1) To1nal

Next, for all § € (0,1), we have

i (2,09) i (z, (1 - 0)y) < (pe(z,y))” < Ar(2)Aa(y),

where



Moreover, for 6 € [¢,1 — €] and for all z € X, V(0z)V ((1 — 0)z) < (ex)™2 + 2% + 2e~!. Then,

1=e do
J(V ()i, ) (y) < QJ V(0y) V(1= 0)y) eu (2,0y) pu (2, (1 = O)y) T—-
6
< ((ey) 2+ +2e71) Ar(2)Az(y) < As() Z Cr(e)y* 2,
k=0

where for all k =0...6 Ci(e) are constants depending on z, a, &, 2. Then, we get

6 k—1
E. [B (") 1 (VO)eula, ) () | < 241(@) Y Cule) supE, [(Yt“)) ] <,
o >0
according to Lemma,
Last, we verify that Assumption [F]is satisfied.

Lemma 4.6. For allt >0, x € X', we have

E N, 2 _ a? + o (a + 2p97) + @ia?
520 | \ im0, 0.0) < .

%0, 0,1) (min(a, ¢12))*

Proof. According to Ito’s formula, we have, for all z € X and t > 0,

t

Es, [NE] =1+ xL o(s)e® (2Es, [Ns] + 1) ds.

After some calculations, we obtain

e (a2 + oz (a + 2pax) + cp%mg)
Moreover, we have
2 2at —at E _ ,—at 2 2at : { 2
m(z,0,t)* = e e+ =p(1—e"™)) e min (1, =¢; ,
a a

and the result follows.
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