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Abstract

We consider the stochastic target problem of finding the collection of initial laws of a

mean-field stochastic differential equation such that we can control its evolution to en-

sure that it reaches a prescribed set of terminal probability distributions, at a fixed time

horizon. Here, laws are considered conditionally to the path of the Brownian motion

that drives the system. We establish a version of the geometric dynamic program-

ming principle for the associated reachability sets and prove that the corresponding

value function is a viscosity solution of a geometric partial differential equation. This

provides a characterization of the initial masses that can be almost-surely transported

towards a given target, along the paths of a stochastic differential equation. Our results

extend those of Soner and Touzi, Journal of the European Mathematical Society (2002)

to our setting.

Mathematics Subject Classification (2010): 93E20, 60K35, 49L25.

Keywords: McKean-Vlasov SDEs, dynamic programming, stochastic target, mass trans-

portation, viscosity solutions.

1 Introduction

Stochastic target problems are optimization problems in which the controller looks for the

set V (t) of values x of a state process Xt,x,ν at time t such that it can reach some given

set K at a given terminal time T , by choosing an appropriate control ν. Such optimization

problems were first studied in [1] and [2] in which the function v(t, x) = 1−1V (t)(x) is shown

to solve a Hamilton-Jacobi-Bellman equation, in the viscosity solution sense. The main
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motivation of [2, 1] is the so-called super-replication problem, in financial mathematics:

the controller looks for possible initial endowments such that there exists an investment

strategy allowing the terminal wealth to satisfy a super-hedging constraint, almost-surely

(see, e.g., [3]). But, the range of applications is obviously much wider.

Another important type of stochastic target problems concerns the case where the

terminal constraint is imposed on the mean value of a function of the controlled process. In

this case, the reachability sets take the following form: V`(t) = {x ∈ Rd : E[`(Xt,x,ν
T )] ≥ 0

for some admissible control ν}, for t ∈ [0, T ]. This type of constraints is also common in

financial applications. Indeed, the super-replication price is usually too high to be accepted

by buyers. This is a motivation for relaxing the a.s. super-hedging criteria by only asking

that Xt,x,ν
T ∈ K holds, for instance, with a (high) probability p < 1. In this case, the

function ` takes the form `(x) = 1K(x)− p. For p = 1, one retrieves V (t). This approach

was introduced in [4] and further developed in [5] where the authors take advantage of the

martingale representation theorem to transform the constraint given in terms of the mean

value into an almost-sure constraint.

The constraint in the stochastic target problem V`(t) is a constraint on the marginal law

PXt,x,ν
T

of Xt,x,ν
T , which can be embedded into a more general class of problems involving

the conditional law given the Brownian path. Indeed, using the martingale representation

theorem as in [5], the constraint in V`(t) can be rewritten as EB[`(Xt,x,ν
T )]−

∫ T
t αsdBs ≥ 0

a.s. for some controls ν and α, where EB denotes the conditional expectation given B.

In particular, if we define the control ν̄ = (ν, α) and the controlled process X̄t,(x,0),ν̄ =

(Xt,x,ν ,
∫ .
t αsdBs), this reads L

(
PB
X̄
t,(x,0),ν̄
T

)
≥ 0 a.s. for some control ν̄, in which PBζ denotes

the conditional law of a random variable ζ given B, and L(µ) =
∫
Rd×R(`(x)− y)µ(dx, dy).

These considerations suggest to study a general constraint: PB
Xt,χ,ν
T

∈ G a.s. for some

admissible control ν, in which Xt,χ,ν is now a nonlinear controlled diffusion defined by

Xt,χ,ν
s = χ+

∫ s

t
bu(Xt,χ,ν

u ,PB
Xt,χ,ν
u

, νu)du+

∫ s

t
σu(Xt,χ,ν

u ,PB
Xt,χ,ν
u

, νu)dBu, (1)

G is a Borel subset of probability measures and χ is a (random) initial position whose

distribution can be interpreted as the initial probability distribution of a population.

This general formulation is of importance on its own right as it is related to the prob-

abilistic analysis of large scale particle systems, e.g. polymers in random media, in which

one is interested in the behavior of particles conditionally on the environment. This is

also known as ‘quenched’ behaviors/properties (quenched law of large numbers, quenched

large deviations etc.), which is in general different from the so-called ‘annealed’ behaviors

obtained by averaging over the underlying random environment (see e.g. [6, 7, 8] and the

references therein). For diffusion processes, quenching boils down to making the drift and

diffusion coefficients dependent on the conditional marginal law given the environment,

while annealing corresponds to the case where the coefficients depend on the unconditional

marginal law (see e.g. [8]). We therefore coin the term quenched diffusion instead of con-
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ditional diffusion to refer to SDEs of the form (1). For our stochastic target problem, the

constraint PBXT ∈ G imposed on the conditional law of the diffusion process is a quenched

property for the underlying process.

One can also further identify the initial condition χ as a law µ. Then, our problem

can be interpreted as a transport problem. What is the collection of initial distributions

µ of a population of particles, that all have the same dynamics, such that the terminal

conditional law PB
Xt,χ,ν
T

, given the environment modeled by the Brownian path B, satisfies

a certain constraint. This amounts to asking what kind of masses can be transported along

the SDE so as to reach a certain set, almost-surely, at T : V(t) = {µ : ∃(χ, ν) s.t. PBχ = µ

and PB
Xt,χ,ν
T

∈ G}.
This type of viability problems appears naturally in limits of particle systems. Indeed,

consider i.i.d. random variables (χi)i≥0 representing initial positions of particles following

(1) and suppose to simplify that σ is constant and b depends only on the control. If

each particle is controlled by a closed loop control νi = u(χi, B), the terminal positions

(Xt,χi,νi

T )i≥0 are i.i.d. given B. Therefore, a constraint on the empirical measure of the

form 1
N

∑N
i=1 δXt,χi,νi

T

∈ G leads, by the Law of Large Numbers, to a constraint on the

conditional law PB
Xt,χ,ν
T

∈ G, as N tends to infinity.

This kind of target problem is also encountered in e.g. agricultural crop management,

as highlighted in Example 3.1 below.

The rest of the paper is organized as follows. In Section 2, we describe in details the

quenched controlled diffusion. We provide some (expected) existence and stability results,

together with a conditioning property. Section 3 is devoted to the detailed presentation

of the quenched stochastic target problem. We prove that it admits a geometric dynamic

programming principle. This is the main result of the paper. Then, one can combine the

technologies developped in [9, 10] and [2] to derive in Section 4 the associated Hamilton-

Jacobi-Bellman equation, which extends the main result of [2] to our context. In Section

5, we provide an alternative formulation which is more adapted to the case where the

reachability set is a half space in one direction (see [11]), we also comment on the choice

of the class of controls, and provide an interpretation in terms of control of the law of a

population of particles.

2 Quenched Mean-Field SDE

We first describe our probabilistic setting. The d-dimensional Brownian motion is con-

structed on the canonical space in a usual way. More precisely, given a fixed time horizon

T > 0, we let Ω◦ denote the space of continuous Rd-valued functions on [0, T ], starting at 0,

and let F◦ = (F◦t )t≤T denote the filtration generated by the canonical process B(ω◦) := ω◦,

ω◦ ∈ Ω◦. We set F◦ = F◦T and endow (Ω◦,F◦) with the Wiener measure P◦. Later on,

F̄◦ = (F̄◦t )t≤T will denote the P◦-completion of F◦.
In order to model the initial probability distribution of the population, we let Ω1 :=
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[0, 1]d be endowed with its Borel σ-algebra F1 := B([0, 1]d) and the Lebesgue measure P1.

It supports the [0, 1]d-uniformly distributed random variable ξ(ω1) = ω1, ω1 ∈ Ω1. We

then define the product filtered space (Ω,F ,F,P) by setting Ω := Ω◦ × Ω1, F = FT where

F = (Ft)t≤T is the P◦⊗P1-augmentation of (F◦t ⊗F1)t≤T and P is the extension of P◦⊗P1 to

FT . From now on, any identity involving random variables has to be taken in P-a.s. sense.

We canonically extend the random variable ξ and the processB on Ω by setting ξ(ω) = ξ(ω1)

and B(ω) = B(ω◦) for any ω = (ω◦, ω1) ∈ Ω. We still denote by F◦ the filtration generated

by the extended process B on Ω. Note that it follows from [12, Chapter 2, Theorem 6.15

and Proposition 7.7] applied to the process (t, ω) ∈ [0, T ] × Ω 7→ (ξ(ω), Bt(ω)) that F is

right continuous.

Given a random variable Y ∈ L0(Ω,F ,P;Rd) (resp. Y ∈ L1(Ω,F ,P;Rd)), we let PBY
(resp. EB[Y ]) denote a regular conditional law (resp. expectation) under P of the random

variable Y given (Bt)t≤T on Rd. In particular, we have the following identifications

PBY (A,ω) = P1

Y (ω◦,.)(A) (2)

EB
[
Y
]
(ω) = E1

[
Y (ω◦, .)

]
(3)

for any ω = (ω◦, ω1) ∈ Ω and any A ∈ B(Rd). Here, E1 denotes the expectation under P1

and P1

Y (ω◦,.) denotes the law under P1 of the random variable defined on Ω1 by Y (ω◦, .)(ω1) =

Y (ω◦, ω1). We let P(S) denote the space of probability measures on a Borel space (S,B(S)),

and define

P2 :=

{
µ ∈ P(Rd) s.t.

∫
Rd
|x|2µ(dx) < +∞

}
,

where |x| is the Euclidean norm of x. This space is endowed with the 2-Wasserstein distance

defined by

W2(µ, µ′) :=
(

inf
{∫

Rd×Rd
|x− y|2π(dx, dy) : π ∈ P(Rd × Rd,B(Rd × Rd))

s.t. π(· × Rd) = µ and π(Rd × ·) = µ′
}) 1

2
,

for µ, µ′ ∈ P2. For later use, we also define the collection P F̄◦
2 of F̄◦-adapted continuous

P2-valued processes.

Let now U be a closed subset of Rq for some q ≥ 1 and denote by U the collection of U-

valued F-progressively measurable processes. This will be the set of controls. Let T̄ ◦ denote

the set of [0, T ]-valued F̄◦-stopping times. Given θ ∈ T̄ ◦ and χ ∈ X2
θ := L2(Ω,Fθ,P;Rd),

ν ∈ U , and (b, a) : [0, T ]×Rd ×P2 ×U −→ Rd ×Rd×d, we let Xθ,χ,ν denote the solution of

X· = E[χ|Fθ∧·] +

∫ θ∨·

θ
bs
(
Xs,PBXs , νs

)
ds+

∫ θ∨·

θ
as
(
Xs,PBXs , νs

)
dBs, (4)

in which (b, a) is assumed to be continuous, bounded and satisfies:
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(H1) There exists a constant L such that

|bt(x, µ, ·)− bt(x′, µ′, ·)|+ |at(x, µ, ·)− at(x′, µ′, ·)| ≤ L
(
|x− x′|+W2(µ, µ′)

)
for all t ∈ [0, T ], x, x′ ∈ Rd and µ, µ′ ∈ P2.

The term E[χ|Fθ∧·] in (4) allows to define X as a continuous adapted process on [0, T ],

which is done for convenience of notations. One could obviously only consider the process

on [[θ, T ]].

Remark 2.1. Note that the controls can depend on the initial value of χ. One could also

restrict to F̄◦-progressively measurable processes, see Section 5 for a discussion.

The above condition ensures as usual that a unique strong solution to (4) can indeed

be defined.

Proposition 2.1. For all θ ∈ T̄ ◦, ν ∈ U and χ ∈ X2
θ, (4) admits a unique strong solution

Xθ,χ,ν , and it satisfies

E
[

sup
s∈[0,T ]

|Xθ,χ,ν
s |2

]
< +∞ . (5)

Moreover, for all (t, χ, ν) ∈ [0, T ]×X2
t ×U , if tn → t, χn → χ in L2 with χn ∈ X2

tn for all

n, and (νn)n ⊂ U converges to ν dt× dP-a.e., then

lim
n→∞

E[W2(PB
Xtn,χn,νn

T

,PB
Xt,χ,ν
T

)2] = 0. (6)

Proof. 1. The estimate (5) is a consequence of the boundedness of (b, a).

2. Existence follows from a similar fixed point argument as in [13] (see also [14] and [15, 16]

for the martingale problem approach). Since we work in a slightly different context, we

provide the proof for completeness.

2.a. Let C denote the space of continuous Rd-valued maps on [0, T ] endowed with the

sup-norm topology and P2(C,B(C)) denote the set of probability measures P̂ on (C,B(C))

such that
∫
C sups≤T |fs|2 P̂ (df) < ∞. For Q̂, P̂ ∈ P2(C,B(C)) and t ≤ T , we define the

Wasserstein metric:

Dt(P̂ , Q̂) := inf
{∫

C2

sup
0≤s≤t

|fs − gs|2 R̂(df, dg) : R̂ ∈ P(C2,B(C2))

s.t. R̂(· × C) = P̂ and R̂(C× ·) = Q̂
} 1

2 .

If Q̂ ∈ P2(C,B(C)) has time marginals (Q̂s)s≤T then

W2(Q̂t, Q̂s)
2 ≤

∫
C
|Yt − Ys|2Q̂(dY )

so thatW2(Q̂t, Q̂s)→ 0 as s→ t, by dominated convergence. Hence, (Q̂s)s≤T is continuous.

2.b. Let S2 denote the set of continuous adapted Rd-valued processes Z such that ‖Z‖S2 :=

E[sup[0,T ] |Z|2]
1
2 < ∞. Let L2(Ω◦;P2(C,B(C))) be the collection of random variables de-

fined on Ω◦ and with values in P2(C,B(C)), with finite norm E[‖ · ‖2P2(C,B(C))]
1
2 . Let Φ be
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the map that to Q̄ ∈ L2(Ω◦;P2(C, B(C))) associates PB
XQ̄ ∈ L2(Ω◦;P2(C,B(C))) in which

PB
XQ̄(ω◦) is a regular conditional law of XQ̄ given ω◦ ∈ Ω◦ with XQ̄ defined as the solution

of

XQ̄
· =E[χ|F̄◦θ∧·] +

∫ θ∨·

θ
bs
(
XQ̄
s , Q̄s, νs

)
ds+

∫ θ∨·

θ
as
(
XQ̄
s , Q̄s, νs

)
dBs,

and where Q̄s(ω
◦) is the s-marginal of Q̄(ω◦) for ω◦ ∈ Ω◦. It follows from 2.a. that PB

XQ̄(ω◦)

has continuous paths, for P◦-a.e. ω◦ ∈ Ω◦. By repeating the arguments in [13, Proof of

Proposition 2], see also 3. below, we obtain that Φ is contracting. Since L2(Ω◦;P2(C,B(C)))

is complete, it follows that Φ admits a fixed point Q̄.

3. It remains to prove our last estimate. The Lipschitz continuity and boundedness of (b, a)

combined with Burkholder-Davis-Gundy inequality implies that one can find C > 0, that

only depends on (b, a), such that

E[ sup
u∈[0,s]

|Xt,χ,ν
u −Xtn,χn,νn

u |2]

≤C(|t− tn|+ E[|χ− χn|2])

+ CE

[∫ s

0

(
sup
u∈[0,r]

|Xt,χ,ν
u −Xtn,χn,νn

u |2 +W2
2 (PB

Xt,χ,ν
r

,PB
Xtn,xn,νn
r

)

)
dr

]

+ CE
[∫ s

0
|br(Xt,χ,ν

r ,PB
Xt,χ,ν
r

, νr)− br(Xt,χ,ν
r ,PB

Xt,χ,ν
r

, νnr )|2dr
]

+ CE
[∫ s

0
|ar(Xt,χ,ν

r ,PB
Xt,χ,ν
r

, νr)− ar(Xt,χ,ν
r ,PB

Xt,χ,ν
r

, νnr )|2dr
]
.

Since

E[W2
2 (PB

Xt,χ,ν
r

,PB
Xtn,xn,νn
r

)] ≤ E[D2
r(PBXt,χ,ν ,PBXtn,xn,νn )]

≤ E[ sup
u∈[0,r]

|Xt,χ,ν
u −Xtn,xn,νn

u |2],

by Gronwall’s Lemma we obtain (for a different constant C > 0)

E[W2
2 (PB

Xt,χ,ν
T

,PB
Xtn,xn,νn

T

)]

≤ E[ sup
u∈[0,T ]

|Xt,χ,ν
u −Xtn,xn,νn

u |2]

≤ C(|t− tn|+ E[|χ− χn|2])

+ CE
[∫ T

0
|br(Xt,χ,ν

r ,PB
Xt,χ,ν
r

, νr)− br(Xt,χ,ν
r ,PB

Xt,χ,ν
r

, νnr )|2dr
]

+ CE
[∫ T

0
|ar(Xt,χ,ν

r ,PB
Xt,χ,ν
r

, νr)− ar(Xt,χ,ν
r ,PB

Xt,χ,ν
r

, νnr )|2dr
]
.

The function (b, a) being continuous and bounded, the required result follows. 2
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Note that we can also construct a particle approximation of the SDE (4) as follows. We

first note that, for t ∈ [0, T ], χ ∈ Xt and ν ∈ U , there exist Borel maps x and u such that

χ = x((Bs)s≤t, ξ
1) P-a.s. and ν = u(·, (Bs)s≤·, ξ1), up to modification. We then consider a

sequence (ξ`)`≥1 of i.i.d. random variables with uniform law on [0, 1]d, and independent of

B, and we set (χ`, ν`) := (x((Bs)s≤t, ξ
`),u(·, (Bs)s≤·, ξ`)), for ` ≥ 1.

For n ≥ ` ≥ 1, we define X` and Xn,` as the respective solutions to the SDEs:

X`
· = χ` +

∫ ·
t
bs
(
X`
s,PBX`

s
, ν`s
)
ds+

∫ ·
t
as
(
X`
s,PBX`

s
, ν`s
)
dBs,

and

Xn,`
· = χ` +

∫ ·
t
bs
(
Xn,`
s , µ̄ns , ν

`
s

)
ds+

∫ ·
t
as
(
Xn,`
s , µ̄ns , ν

`
s

)
dBs, (7)

where the measures µ̄n, n ≥ 1, are defined by

µ̄ns :=
1

n

n∑
`=1

δ
Xn,`
s

, s ≥ 0 .

Proposition 2.2. The following holds:

lim
n→+∞

sup
`≤n

E
[

sup
u∈[0,T ]

∣∣Xn,`
u −X`

u

∣∣2] = 0 .

In particular, this induces the convergence of the empirical measures:

lim
n→+∞

E
[
W2(µ̄ns ,PBX1

s
)
]

= 0 , s ∈ [0, T ] . (8)

Proof. The proof follows the same lines of arguments as in [13, Theorem 1.3]. We there-

fore only sketch it. Using standard computations involving Itô’s formula, Young’s and

Burkholder-Davis-Gundy’s inequalities, as well as the Lipschitz-continuity properties of b

and a, we can find a constant C such that

E
[

sup
u∈[0,t]

∣∣Xn,`
u −X`

u

∣∣2] ≤ C

∫ t

0

(
E
[∣∣Xn,`

s −X`
s

∣∣2]+ E
[
W2

2 (µ̄ns ,PBX1
s
)
])
ds , t ∈ [0, T ] .

We now introduce the measure µns := 1
n

∑n
`=1 δX`

s
for n ≥ 1 and s ∈ [0, T ]. Since the

couples (X`
s, X

n,`
s ), ` = 1, . . . , n, have the same law, we get by applying Gronwall’s Lemma

a constant C ′ such that

E
[

sup
u∈[0,t]

∣∣Xn,`
u −X`

u

∣∣2] ≤ C ′
∫ t

0
E
[
W2

2 (µns ,PBX1
s
)
]
ds , t ∈ [0, T ] .

Then, applying [13, Lemma 1.4] to (X`
s(ω
◦, .))`≥1, we get limn→∞ E1

[
W2

2 (µns ,PBX1
s
)
]

= 0.

Finally, since b and a are bounded, we can apply the dominated convergence Theorem and

get the required result. 2

In the sequel, we denote by tω◦ the element (ω◦s∧t)s∈[0,T ] for ω◦ ∈ Ω◦ and t ∈ [0, T ]. We

note that the solution can also be defined ω1 by ω1. More precisely, we have the following.
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Proposition 2.3. Fix θ ∈ F̄◦, χ ∈ X2
θ and ν ∈ U . Let XQ be the solution of (4) with

Q = (Qs)s≤T ∈ P F̄◦
2 in place of (PBXs)s≤T . Then, there exist Borel measurable maps

x : Ω◦ × Ω1 → Rd and u : [0, T ] × Ω◦ × Ω1 → U such that χ = x(θB, ξ) P-a.s. and

ν· = u·(
·B, ξ) dt×P-a.e. on [0, T ]×Ω, such that, for all stopping time τ , XQ,ω1

τ∨θ = XQ
τ∨θ(·, ω

1)

P◦-a.s. for P1-a.e. ω1 ∈ Ω1, in which XQ,ω1
solves

XQ,ω1

· =E[x(B,ω1)|F·∧θ] +

∫ θ∨·

θ
bs
(
XQ,ω1

s , Qs,us(
sB,ω1)

)
ds

+

∫ θ∨·

θ
as
(
XQ,ω1

s , Qs,us(
sB,ω1)

)
dBs.

Moreover, the map ω1 ∈ Ω1 7→ XQ,ω1

τ∨θ ∈ L2(Ω1,F1,P1; L2(Ω◦,F◦T ,P◦;Rd)) is measurable.

Proof. Since χ is Fθ-measurable and ν is F-progressive, we get the existence of the Borel

maps x and u from Doob’s measurability theorem. Then, in the case where b and a do

not depend on the unknown XQ, are piece-wise constant together with u, we get by a

standard computation that ω1 ∈ Ω1 7→ XQ,ω1

τ ∈ L2(Ω◦,F◦T ,P◦;Rd) is measurable and

E[|XQ,ξ
τ∨θ −X

Q
τ∨θ|

2|ξ] = 0. We then extend this result for a and b continuous and u progres-

sive by approximation of progressive functions by step functions. Finally, we extend the

result to b and a depending on the unknown by Picard iteration. 2

For later use, we now show that the law of (Xt,χ,ν , B) actually only depends on the

joint law of (χ, ν,tB).

Proposition 2.4. Let x : Ω◦ × Ω1 → Rd and u : [0, T ]× Ω◦ × Ω1 → U be Borel maps such

that χ := x(tB, ξ) ∈ X2
t and ν := u·(B, ξ) ∈ U . Let ξ̄ and ξ̄′ be [0, 1]d-valued Ft-measurable

and set χ̄ := x(tB, ξ̄) and ν̄ := u·(B, ξ̄
′). Assume that (χ, ν·∨t,

tB) and (χ̄, ν̄·∨t,
tB) have the

same law. Then, (Xt,χ,ν , B) and (Xt,χ̄,ν̄ , B) have the same law.

Proof. One can follow [17, Theorem 3.3]. In their case, the conditioning is made with re-

spect to tB, in our case it has to be done with respect to (tB, ξ), where ξ is independent

of B, so that the equation can actually be solved conditionally to ξ, see Proposition 2.3.

Given the fixed point procedure used in Step 2.b. of the proof of Proposition 2.1 above,

one can then find a sequence (P̂n)n≥1 ⊂ L2(Ω◦,P2(C,B(C))) (of iterated conditional laws)

such that both P̂n → PBXt,χ,ν and P̂n → PBXt,χ̄,ν̄ as n→∞. 2

3 The Stochastic Target Problem: Alternative Formulations

and Geometric Dynamic Programming Principle

Our aim is to provide a characterization of the set of initial measures for law of the initial

condition χ independent of B such that the conditional law of Xt,χ,ν
T given B belongs to a
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fixed closed subset G of P2:

V(t) =
{
µ ∈ P2 : ∃(χ, ν) ∈ X2

t × U s.t. PBχ = µ and PB
Xt,χ,ν
T

∈ G
}
.

In the above, and all over this paper, identities involving random variables must be

taken in the a.s. sense. In particular, PB
Xt,χ,ν
T

∈ G means PB
Xt,χ,ν
T

∈ G P− a.s.

Before we go on, let us first give an example of application inspired from agricultural

crop management.

Example 3.1. Consider the problem of a farmer that controls his production of wheat by

spreading nitrogen fertilizer or water on his field. The field is viewed as a collection of

particles to which the farmer will bring additional fertilizer, water, etc. His aim is to

maximize the dry mass level of the field, the quality of the wheat, etc., whose initial state

can be viewed as a random variable χ (assigning d characteristics of the production to

each particle) over the two dimensional state space Ω1 := [0, 1]2 modeling the field surface.

The fertilizing effort is modeled by the control ν. Then, we let Xt,χ,ν denote the current

distribution of these characteristics. Its dynamics is of the form (4) in which the Brownian

diffusion part is used to take into account several contingencies, e.g. climatic ones. In

particular, the dependency of the coefficients on PBXt,χ,ν can model local interactions between

particles (representing the points in the field), e.g. related to the local water ressource, access

to sun light, etc. The aim is to know what kind of initial state of the field allows to reach

some given production level (in terms of volume, quality, etc.) at the end of the farming

season. We shall come back to this example in Section 5.1 below.

We now show that χ in the definition of V(t) can be replaced by any random variable

χ′ ∈ X2
t such that PBχ′ = µ. Apart from showing that only the distribution µ matters

(which is a desirable property if we think in terms of mass transportation), this will be of

important use later on to provide a geometric dynamic programming principle for V.

Proposition 3.1. A measure µ ∈ P2 belongs to V(t) if and only if for all χ ∈ X2
t such that

PBχ = µ there exists ν ∈ U for which PB
Xt,χ,ν
T

∈ G.

Proof. Let Ṽ(t) denote the collection of measures µ ∈ P2 such that for all χ ∈ X2
t satisfying

PBχ = µ there exists ν ∈ U for which PB
Xt,χ,ν
T

∈ G. Clearly, Ṽ(t) ⊂ V(t). We now prove

the reverse inclusion. Let µ ∈ V(t) and consider (χ, ν) ∈ X2
t × U such that PBχ = µ and

PB
Xt,χ,ν
T

∈ G. We fix χ̄ ∈ X2
t such that PBχ̄ = µ and we construct ν̄ ∈ U such that (χ̄, ν̄, B)

and (χ, ν,B) have the same law. Since PBχ is deterministic, one can find a Borel map x such

that χ = x(ξ) a.e.

We first argue as in [18, Proof of Proposition 3.1] and note that we can suppose

x : [0, 1]d → Rd to be surjective. Indeed, if this is not the case, it is enough to mod-

ify x on the set K × Rd−1, where K stands for the Cantor set, by the composition of a

surjective map from [0, 1] to Rd and x ∈ Rd 7→ c(x1) where c is the Cantor function from

9



K to [0, 1]. By [19, Corollary 18.23], it follows that x admits an analytically measurable

right-inverse, denoted by ζ : Rd → [0, 1]d, which satisfies

(i) x(ζ(x)) = x for all x ∈ Rd;

(ii) x−1(ζ−1(A)) = A, for any subset A of [0, 1]d;

(iii) ζ−1(A) is analytically measurable in Rd for each Borel subset A of [0, 1]d.

Recalling that every analytic subset of Rd is universally measurable (see e.g. Theorem 12.41

in [19]), it follows that one can find a Borel measurable map ζ̃ such that ζ = ζ̃ Lebesgue

almost-everywhere.

We now define ξ̄ by ξ̄ = ζ̃(χ̄), so that ξ̄ = ζ(χ̄) a.e. Since F0 is P-complete, ξ̄ is

F0-measurable. Then using (ii) and since χ and χ̄ have the same law, we obtain

P(ξ̄ ∈ A) = P(χ̄ ∈ ζ−1(A)) = P(χ ∈ ζ−1(A)) = P1(A) ,

for all Borel set A. This proves that ξ̄ has the same law as ξ. Moreover, we have from (i)

x(ξ̄) = χ̄ P− a.s.

which shows that (ξ, χ,B) and (ξ̄, χ̄, B) have the same law:

P[ξ ∈ A1, χ ∈ A2, B ∈ A3] = P[ξ ∈ A1, x(ξ) ∈ A2]P[B ∈ A3]

= P[ξ̄ ∈ A1, x(ξ̄) ∈ A2]P[B ∈ A3]

= P[ξ̄ ∈ A1, χ̄ ∈ A2, B ∈ A3]

for all Borel sets A1, A2, A3.

Since ν is F-progressively measurable, it is, up to modification, of the form

νs(ω
◦, ω1) = u(s, sB(ω◦), ξ(ω1)) , s ∈ [t, T ] ,

with u a Borel map. Set now ν̄ := u1[0,t) + 1[t,T ]u(·, ·B, ξ̄) ∈ U , for some u ∈ U.

Then, (χ̄, ν̄t∨·, B) and (χ, νt∨·, B) have the same law, and Proposition 2.4 implies that

PB
Xt,χ,ν
T

= PB
Xt,χ̄,ν̄
T

so that the latter belongs to G, thus proving that V(t) ⊂ Ṽ(t), by arbi-

trariness of χ̄. 2

Before stating the dynamic programming principle, let us provide the following mea-

surable selection lemma. We define the subset G of [0, T ]× L2(Ω1,F1,P1;Rd) by

G :=
{

(t, χ) ∈ [0, T ]× L2(Ω1,F1,P1;Rd) : ∃ν ∈ U s.t. PB
Xt,χ,ν
T

∈ G
}
.

From now on, we consider U as a subset of L2([0, T ]×Ω, dt×dP; U) endowed with its strong

topology. We also introduce the subset Ut of U defined by

Ut =
{
ν ∈ U : ν is progressively measurable w.r.t F[t,T ]

}
where F[t,T ] is the completion of (σ((Br∨t − Bt)0≤r≤s, ξ))s∈[0,T ]. We first rewrite the set G
as follows.
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Lemma 3.1. We have the following identification

G =
{

(t, χ) ∈ [0, T ]× L2(Ω1,F1,P1;Rd) : ∃ν ∈ Ut s.t. PB
Xt,χ,ν
T

∈ G
}
.

Proof. If G = ∅ the result is obvious. Suppose that G 6= ∅ and let ν ∈ U be such that

PB
Xt,χ,ν
T

∈ G. Then, there exists a progressively measurable map u such that νs(ω) =

us(ω
◦, ω1) for s ∈ [0, T ]. For s ∈ [0, T ], w,w′ ∈ Ω◦, set w⊕sw′ := w·∧s+(w′·∨s−w′s). Define

νω
◦

s (ω̃◦, ω1) := us(ω
◦⊕t ω̃◦, ω1). Then, one can find ω◦ ∈ Ω◦ such that PB

Xt,χ,νω
◦

T

(ω̃◦) ∈ G for

P◦-a.e. ω̃◦ ∈ Ω◦, see [17, Theorem 5.4] and Proposition 2.3. The control νω
◦

is progressively

measurable w.r.t. F[t,T ]. 2

Lemma 3.2. Suppose that G 6= ∅. For any probability measure P on [0, T ]×L2(Ω1,F1,P1;Rd),
there exists a measurable map ϑ : G → U such that

PB
X
t,χ,ϑ(t,χ)
T

∈ G

for P-a.e. (t, χ) ∈ G. Moreover, for each (t, χ) ∈ G, ϑ(t, χ) can be chosen to be in Ut.

Proof. Since G 6= ∅, we get from Lemma 3.1 that the set

J := {(t, χ, ν) ∈ [0, T ]× L2(Ω1,F1,P1;Rd)× U : PB
Xt,χ,ν
T

∈ G and ν ∈ Ut}

is not empty. The set J is also analytic. Indeed, denote by ι the map from NN to [0, T ]

defined by

ι((σn)n∈N) = T
(

10−σ0

+∞∑
n=1

(σn mod 10).10−n+1
)
.

Then ι is surjective and we can write the set J as

J =
⋃

(σn)n∈NN

∞⋂
n=1

J (σ1, . . . , σn)

where

J (σ1, . . . , σn) =
{

(t, χ, ν) ∈ [ι((σ1, . . . , σn, 0, 0, . . .)), ι((σ1, . . . , σn, 0, 0, . . .)) +
1

10n
]

×L2(Ω1,F1,P1;Rd)× Uι(σ1,...,σn,0,0,...) : PB
Xt,χ,ν
T

∈ G
}

Then from (6) of Proposition 2.1, each J (σ1, . . . , σn) is closed and J is analytic (see e.g.

Definition 7.16 in [20])

Moreover, the set [0, T ]×L2(Ω1,F1,P1;Rd)×U is a Polish space. Then, the Jankov-von

Neumann Theorem (see [20, Proposition 7.49]), ensures the existence of an analytically

measurable function

ϑ̃ : [0, T ]× L2(Ω1,F1,P1;Rd) −→ U

11



such that

(t, χ, ϑ̃(t, χ)) ∈ J for all (t, χ) ∈ G .

Since any analytically measurable map is also universally measurable, the existence of ϑ

follows from [20, Lemma 7.27]. 2

We can now state the dynamic programming principle. In the following, PB
Xt,χ,ν
θ

∈ V(θ)

means

P◦
({
ω◦ ∈ Ω◦ : PB

Xt,χ,ν
θ

(ω◦) ∈ V(θ(ω◦))
})

= 1 .

Theorem 3.1. Fix t ∈ [0, T ] and θ ∈ T̄ ◦ with values in [t, T ]. Then,

V(t) =
{
µ ∈ P2 : ∃(χ, ν) ∈ X2

t × U s.t. PBχ = µ and PB
Xt,χ,ν
θ

∈ V(θ)
}
.

Proof. Denote by V̂(t) the right hand side of the equality in Theorem 3.1.

1. We first prove the inclusion V(t) ⊂ V̂(t). If V(t) = ∅ the result is obvious. Suppose

then V(t) 6= ∅ and fix µ ∈ V(t). Then, there exists (χ, ν) ∈ X2
t × U and Ω̃◦ ∈ F◦ such that

P◦(Ω̃◦) = 1, PBχ = µ and PB
Xt,χ,ν
T

∈ G on Ω̃◦. For ω̃◦ ∈ Ω̃◦, we define (χω̃
◦
, νω̃

◦
) by

χω̃
◦
(ω) = Xt,χ,ν

θ(ω̃◦)(ω̃
◦, ω1) , νω̃

◦
s (ω) = νs(ω̃

◦ ⊕θ(ω̃◦) ω◦, ω1) , s ∈ [0, T ]

for all ω = (ω◦, ω1) ∈ Ω. Note that χω̃
◦ ∈ X2

θ(ω̃◦), PB
χω̃◦

= PB
Xt,χ,ν
θ

(ω̃◦) and νω̃
◦ ∈ U

for all ω̃◦ ∈ Ω̃◦. Moreover, it follows from [17, Theorem 5.4] and Proposition 2.3 that

X
θ(ω̃◦),χω̃

◦
,νω̃
◦

T has the same law as Xt,χ,ν
T given B·∧θ = ω̃◦·∧θ(ω̃◦), for P◦-a.e. ω̃◦ ∈ Ω◦. Since

PB
Xt,χ,ν
T

(ω◦) ∈ G for ω◦ ∈ Ω̃◦, it follows that PB
Xt,χ,ν
θ

(ω̃◦) = PB
χω̃◦
∈ V(θ(ω̃◦)) for all ω̃◦ ∈ Ω̃◦.

Therefore µ ∈ V̂(t).

2. We now prove the inclusion V̂(t) ⊂ V(t). If V̂(t) = ∅ the result is obvious. Sup-

pose then V(t) 6= ∅ and fix µ ∈ V̂(t) and (χ, ν) ∈ X2
t × U such that PBχ = µ and

PB
Xt,χ,ν
θ

∈ V(θ). It follows from Proposition 3.1 that
(
θ(ω◦), Xt,χ,ν

θ(ω◦)(ω
◦, .)
)
∈ G 6= ∅, for

P◦-a.e. ω◦ ∈ Ω◦. Let P be the probability measure induced by ω◦ 7→
(
θ(ω◦), Xt,χ,ν

θ(ω◦)(ω
◦, .)
)

on [0, T ] × L2(Ω1,F1,P1;Rd). By Lemma 3.2, there exists a measurable map ϑ such that

PB
X
t′,χ′,ϑ(t′,χ′)
T

∈ G P◦-a.s. for P-a.e. (t′, χ′) ∈ G. Since ϑ(t′, χ′) can be chosen in the filtration

F[t′,T ] to which t′B is independent, PB
X
t′,χ′,ϑ(t′,χ′)
T

is measurable with respect to σ(B·∨t′−Bt′).

Hence, there exist null sets N and Ñ such that

PB
X
α(ω◦,·)
T

(ω̃◦) ∈ G for ω◦ /∈ N and ω̃◦ /∈ Ñ ,

where

α(ω◦, ·) := (θ(ω◦), Xt,χ,ν
θ (ω◦, ·), ϑ(θ(ω◦), Xt,χ,ν

θ (ω◦, ·)).

It remains to define the process ν̄ ∈ U by

ν̄(ω) = ν(ω)1[0,θ(ω◦)) + ϑ(θ(ω◦), Xt,χ,ν
θ (ω◦, ·))(ω)1[θ(ω◦),T ] , (9)

and observe that Xα
T = Xt,χ,ν̄

T , to conclude that µ ∈ V(t).
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4 The Dynamic Programming PDE

Let v : [0, T ]×P2 → R be the indicator function of the complement of the reachability set

V:

v(t, µ) = 1− 1V(t)(µ) , (t, µ) ∈ [0, T ]× P2. (10)

The aim of this section is to provide a characterization of v as a (discontinuous) viscosity

solution of a fully non-linear second order parabolic partial differential equation, in the

spirit of [2]. Given Theorem 3.1, this follows from combining the technologies developped

in [9, 10] and [2]. We refer to Section 5.1 for the specific case where the reachability set is

an half-space in one direction.

4.1 Derivatives on the Space of Probability Measures and Itô’s Lemma

We first recall here the notion of derivative with respect to a probability measure that has

been introduced by Lions, see the lecture notes [9], and further developed in [10], to our

context.

We let Ω̃1 be a Polish space, F̃1 its Borel σ-algebra and P̃1 an atomless probability mea-

sure on (Ω̃1, F̃1). We recall that we have P2 = {P̃1
Y := P̃1 ◦ Y −1 : Y ∈ L2(Ω̃1, F̃1, P̃1;Rd)}.

For a function w : P2 → R, we define its lifting as the functionW from L2(Ω̃1, F̃1, P̃1;Rd)
to R such that

W (X) = w(P̃1
X) , for all X ∈ L2(Ω̃1, F̃1, P̃1;Rd) .

We then say that w is Fréchet differentiable (resp. C1) on P2 if its lift W is (resp. con-

tinuously) Fréchet differentiable on L2(Ω̃1, F̃1, P̃1;Rd). If it exists, the Fréchet derivative

DW (X) of W at X ∈ L2(Ω̃1, F̃1, P̃1;Rd) can be identified by Riesz Theorem to an element

of L2(Ω̃1, F̃1, P̃1;Rd) and admits a representation of the form

DW (X) = ∂µw(P̃1
X)(X) (11)

for some measurable map ∂µw(P̃1
X) : Rd → Rd, that we call the derivative of w at P̃1

X and

we have ∂µw(µ) ∈ L2(Rd,B(Rd), µ;Rd) for µ ∈ P2. In the case where x ∈ Rd 7→ ∂µw(µ)(x)

is differentiable at x, given µ ∈ P2, we denote by ∂x∂µw(µ)(x) the corresponding gradient.

Following [10, Section 3.1], we say that w is fully C2 if it is C1 on P2 and

• the map (µ, x) 7→ ∂µw(µ)(x) is continuous at any (µ, x) ∈ P2 × Rd,

• for any µ ∈ P2, the map x 7→ ∂µw(µ)(x) is continuously differentiable and the map

(µ, x) 7→ ∂x∂µw(µ)(x) is continuous at any (µ, x) ∈ P2 × Rd,

• for any x ∈ Rd, the map µ 7→ ∂µw(µ)(x) is differentiable in the lifted sense and

its derivative, regarded as the map (µ, x, x′) 7→ ∂2
µw(µ)(x, x′), is continuous at any

(µ, x, x′) ∈ P2 × Rd × Rd.
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From now on, we define C1,2([0, T ]×P2) as the set of continuous functions w : [0, T ]×
P2 → R such that w(t, ·) is fully C2 for all t ∈ [0, T ], ∂tw exists and is continuous on

[0, T ] × P2, ∂µw, ∂x∂µw and ∂2
µw are continuous respectively on [0, T ] × P2 × Rd, [0, T ] ×

P2 × Rd and [0, T ]× P2 × Rd × Rd. We also define C1,2
b ([0, T ]× P2) as the set of functions

w ∈ C1,2([0, T ]× P2) such that

sup
t∈[0,T ], µ∈K

{∣∣∂tw(t, µ)
∣∣+

∫
Rd

∣∣∂µw(t, µ)(x)
∣∣2dµ(x)

+

∫
Rd

∣∣∂x∂µw(t, µ)
∣∣2dµ(x)

+

∫
Rd×Rd

|∂2
µw(t, µ)(x, x′)

∣∣2d(µ⊗ µ)(x, x′)
}

< ∞ (12)

for any compact subset K of P2.

We are now in position to derive a chain rule for the flow of conditional marginal laws

of the controlled process. To this end, we introduce the probability space (Ω̃, F̃ , P̃) defined

by

Ω̃ = Ω◦ × Ω̃1 , F̃ = F◦ ⊗ F̃1 and P̃ = P◦ ⊗ P̃1. (13)

As for the space (Ω,F ,P), we denote by ẼB the regular conditional expectation given B

on (Ω̃, F̃ , P̃).

Proposition 4.1. Let w ∈ C1,2
b ([0, T ]×P2). Given (t, χ, ν) ∈ [0, T ]×Xt×U , set X = Xt,χ,ν ,

a = a(X,PBX , ν) and b = b(X,PBX , ν). Then,

w(s,PBXs) = w(t,PBχ )

+

∫ s

t
EB
[
∂tw(r,PBXr) + ∂µw(r,PBXr)(Xr)br

]
dr

+
1

2

∫ s

t
EB
[
Tr
(
∂x∂µw(r,PBXr)(Xr)ara

>
r

)]
dr

+
1

2

∫ s

t
EB
[
ẼB
[
Tr
(
∂2
µw(r,PBXr)(Xr, X̃r)arã

>
r

)]]
dr

+

∫ s

t
EB
[
∂µw(r,PBXr)(Xr)ar(Xr,PBXr , νr))

]
dBr

for all s ∈ [t, T ], where1 (X̃, ã) is a copy of (X, a) on (Ω̃, F̃ , P̃).

Proof. The proof follows from similar arguments as in [10] and we only mention the main

ideas.

We first define on Ω̃1 a sequence of i.i.d. random variables (ξ`)`≥2 following the uniform

law on [0, 1]d (such a sequence exists since Ω̃1 is Polish and P̃1 is atomless). We then extend

1This means that (X̃, ã)(ω◦, ·), defined on Ω̃1, has the same law as (X, a)(ω◦, ·), defined on Ω1, for

a.e. ω◦ ∈ Ω◦.
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B, ξ and ξ`, ` ≥ 2 to (Ω̂ = Ω◦×Ω1× Ω̃1, F̂ = F◦⊗F1⊗F̃1, P̂ = P◦⊗P1⊗ P̃1) in a canonical

way by setting

ξ1(ω̂) = ξ(ω̂) = ω1 , ξ`(ω̂) = ξ`(ω̃1) and B(ω̂) = ω◦,

for all ω̂ = (ω◦, ω1, ω̃1). Note that (ξ`)`≥1 is then an i.i.d. sequence, independent of B.

Since χ ∈ Xt and ν ∈ U , we can find Borel maps x and u such that χ = x(B, ξ1) P-a.s.

and ν = u(·,·B, ξ1), up to modification. We then set (χ`, ν`) := (x(ξ`),u(·,·B, ξ`)), for

` ≥ 1, and define X` as the solution on [t, T ] of

X` =χ` +

∫ ·
t
b`sds+

∫ ·
t
a`sdBs,

in which (b`, a`) = (b, a)(X`,PBX1 , ν
`). It follows from Proposition 2.3 that (X`

r)`≥1 is a

sequence of i.i.d. random variables given (Br′)r′≤T , for each r ∈ [t, s]. Set µ̄Nr := 1
N

∑N
`=1 δX`

r

for t ≤ r ≤ s.
1. We first assume that w ∈ C1,2

b ([0, T ]× P2) is such that

(µ, x, x′) 7→ (∂µw(µ)(x), ∂x∂µw(µ)(x), ∂2
µw(µ)(x, x′))

is continuous, and that w, ∂µw, ∂x∂µw and ∂2
µw are bounded and uniformly continuous.

Then, it follows from [10, Proposition 3.1] combined with Itô’s Lemma that

w(s, µ̄Ns ) = w(t, µ̄Nt ) +

∫ s

t
∂tw(r, µ̄Nr )dr +

1

N

N∑
`=1

∫ s

t
∂µw(r, µ̄Nr )(X`

r)b
`
rdr

+
1

N

N∑
`=1

∫ s

t
∂µw(r, µ̄Nr )(X`

r)a
`
rdBr

+
1

2N

N∑
`=1

∫ s

t
Tr
[
∂x∂µw(r, µ̄Nr )(X`

r)a
`
r(a

`
r)
>
]
dr

+
1

2N2

N∑
`,n=1

∫ s

t
Tr
[
∂2
µw(r, µ̄Nr )(X`

r , X
n
r )a`r(a

n
r )>
]
dr.

We now take the expectation given (Br′)r′≤T on both sides and use [21, Corollaries 2

and 3 of Theorem 5.13] and [22, Lemma 14.2] together with the fact that the tuples

(µ̄Nr , X
`
r , X

n
r , b

`
r, b

n
r , a

`
r, a

n
r ), `, n ≤ N , have all the same law given (Br′)r′≤T , for t ≤ r ≤ s,

to obtain

ÊB[w(s, µ̄Ns )] = ÊB[w(t, µ̄Nt )] +

∫ s

t
ÊB
[
∂tw(r, µ̄Nr ) + ∂µw(r, µ̄Nr )(X1

r )b1r
]
dr

+

∫ s

t
ÊB
[
∂µw(r, µ̄Nr )(X1

r )a1
r)
]
dBr

+
1

2

∫ s

t
ÊB
[
Tr
(
∂x∂µw(r, µ̄Nr )(X1

r )a1
r(a

1
r)
>
)]
dr

+
1

2N

∫ s

t
ÊB
[
Tr
(
∂2
µw(r, µ̄Nr )(X1

r , X
1
r )a1

r(a
1
r)
>
)]
dr

+
N − 1

2N

∫ s

t
ÊB
[
Tr
(
∂2
µw(r, µ̄Nr )(X1

r , X
2
r )a1

r(a
2
r)
>
)]
dr,
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where ÊB stands for the conditional expectation given (Br′)r′≤T on Ω̂. We then use the

fact that W2(µ̄Nr ,PBX1
r
) → 0 a.s. as N → ∞ for all r ∈ [t, s]. This is a consequence of [13,

Lemma 4] and the fact that (X`
r)`≥1 is a sequence of i.i.d. random variables given (Br′)r′≤T .

Since all the involved maps are assumed to be bounded and continuous, one can take the

limit as N →∞ in the above to obtain

w(s,PBX1
s
) = w(t,PBχ1) +

∫ s

t
EB
[
∂tw(r,PBX1

r
) + ∂µw(r,PBX1

r
)(X1

r )b1r

]
dr

+

∫ s

t
EB
[
∂µw(r,PBX1

r
)(X1

r )a1
r)
]
dBr (14)

+
1

2

∫ s

t
EB
[
Tr
(
∂x∂µw(r,PBX1

r
)(X1

r )a1
r(a

1
r)
>
)]
dr

+
1

2

∫ s

t
EB
[
ẼB
[
Tr
(
∂2
µw(r,PBX1

r
)(X1

r , X
2
r )a1

r(a
2
r)
>
)]]

dr.

2. The validity of (14) can be extended to the case where w is just in C1,2
b ([0, T ] × P2)

by following the mollifying argument of [10, Proposition 3.4] whenever the condition (12)

holds, recall that (b, a) is bounded. 2

Later on, we shall need to use this Itô’s formula at the level of a map W defined on

L2(Ω̃1, F̃1, P̃1;Rd). When W is the lift of a C1,2
b function w, and under the additional

assumption that W is twice continuously Fréchet differentiable2, D2W can be identified by

Riesz Theorem as a self-adjoint operator on L2(Ω̃1, F̃1, P̃1;Rd) and we have the following

identification by [24, Remark 6.4]

Ẽ1

[
D2W (X)(Y )Y >

]
= Ẽ1

[
Tr
(
∂x∂µw(µ)(X)Y Y >

)]
(15)

+Ẽ1

[
Ẽ′1
[
Tr
(
∂2
µw(µ)(X,X ′)Y (Y ′)>

)]]
dr

for any random variables X ∈ L2(Ω̃1, F̃1, P̃1;Rd) with P̃1
X = µ and Y ∈ L2(Ω̃1, F̃1, P̃1;Rd),

where (X ′, Y ′) is a copy of (X,Y ) on another Polish atomless probability space (Ω̃′1, F̃ ′1, P̃′1),
and Ẽ′1 is the expectation operator under P̃′1.

Let us say that W : [0, T ] × L2(Ω̃1, F̃1, P̃1;Rd) → R is C1,2
b if it is the lifting function

of a map w ∈ C1,2
b ([0, T ] × P2). Given a random variable X ∈ L2(Ω̃, F̃ , P̃;Rd) (recall

that (Ω̃, F̃ , P̃) is defined in (13)), we define W (t,X) as the random variable ω◦ ∈ Ω◦ 7→
W (t,X(ω◦, ·)) where X(ω◦, ·) is now a random variable on L2(Ω̃1, F̃1, P̃1;Rd). We use the

same convention for DW (t,X(ω◦, ·)) and D2W (t,X(ω◦, ·)). For (t, χ, ν) ∈ [0, T ]×Xt ×U ,

we introduce χ̃, ν̃ copies of χ, ν defined on Ω̃ and we define the process X̃ on Ω̃ solution to

(4) with initial conditions (t, χ̃) and control ν̃. As an immediate corollary of Proposition

2Being C1,2
b for the function w is not a sufficient condition for the lift W to be twice Fréchet differentiable

as shown in [23, Example 2.3].
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4.1 and (15), we then have the following:

W (s, X̃s) = W (t, χ̃)

+

∫ s

t
ẼB
[
∂tW (r, X̃r) +DW (r, X̃r)br(X̃r, P̃BXr , ν̃r)

]
dr

+
1

2

∫ s

t
ẼB
[
D2W (r, X̃r)(Xr)ara

>
r (X̃r, P̃BX̃r , ν̃r)

]
dr

+

∫ s

t
ẼB
[
DW (r, X̃r)ar(X̃r, P̃BX̃r , ν̃r))

]
dBr, (16)

for all s ∈ [0, T ], whenever W is in C1,2
b ∩ C

1,2([0, T ]× L2(Ω̃1, F̃1, P̃1;Rd)).
This result is in fact true even when W is not necessarily the lift of a law-invariant map,

but simply C1,2([0, T ]× L2(Ω̃1, F̃1, P̃1;Rd)).

Proposition 4.2. Fix W ∈ C1,2([0, T ]× L2(Ω̃1, F̃1, P̃1;Rd)), then (16) holds.

Proof. This follows from the proof of [24, Proposition 6.3] up slight adaptations similar too

the ones made in the Proposition 4.1. 2

4.2 Verification Argument

We recall that we aim at characterizing the function v : (t, µ) ∈ [0, T ]×P2 7→ 1− 1V(t)(µ).

Following [23, 2], one can expect it to solve, in a certain sense, the PDE

− ∂tw(t, µ) +H
(
t, µ, ∂µw(t, µ), ∂µ∂xw(t, µ), ∂2

µw(t, µ)
)

= 0 , (17)

in which

H
(
t, µ, ∂µw(t, µ), ∂µ∂xw(t, µ), ∂2

µw(t, µ)
)

:= sup
u∈N(t,µ,∂µw(t,µ))

(−Lut [w](µ))

with

N(t, µ, ∂µw(t, µ)) :=

{
u ∈ L0(Rd; U) :

∫
∂µw(t, µ)(x)at(x, µ, u(x))µ(dx) = 0

}
where L0(Rd; U) stands for the collection of U-valued Borel maps on Rd, and

Lut [w](µ)

:=

∫ ∫ {
bt(x, µ, u(x))>∂µw(t, µ)(x) +

1

2
Tr
[
∂x∂µw(t, µ)(x)(ata

>
t )(x, µ, u(x))

]
+

1

2
Tr
[
∂2
µw(t, µ)(x, x̃)at(x, µ, u(x))a>t (x̃, µ, u(x̃))

]}
µ(dx)µ(dx̃).

There is however little chance that the above equation admits a smooth solution, and, as

usual, we shall appeal to the notion of viscosity solutions, see Section 4.3 below. Still, one

can check whether a measure µ belongs to the set V(t) by using a verification argument.3

3We leave the study of more precise examples to future research.
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Proposition 4.3. Let w ∈ C1,2
b ([0, T ]× P2) and u be a U -valued map on [0, T ]× Ω◦ × Rd

which is F-progressive⊗B(Rd)-measurable. Fix t ≤ T and µ ∈ P2 and assume that existence

holds for (1) with ν := u(·, Xt,χ,ν
· ), for some χ ∈ Xt such that PBχ = µ. Assume further

that

− ∂tw(·,PB
Xt,χ,ν
·

(ω◦))− Lu(·,ω◦,·)
· [w](PB

Xt,χ,ν
·

(ω◦)) ≥ 0 dt− a.e.

u(·, ω◦, ·) ∈ N(·,PB
Xt,χ,ν
·

(ω◦), ∂µw(·,PB
Xt,χ,ν
·

)(ω◦)) dt− a.e.

w(T, ·) ≥ 1− 1G on P2,

for P◦-almost all ω◦ ∈ Ω◦. Then, µ ∈ V(t) whenever w(t, µ) ≤ 0.

Proof. Our conditions ensure that ν ∈ U . Moreover, the chain rule of Proposition 4.1

combined with the above imply that w(T,PB
Xt,χ,ν
T

) ≤ 0. Hence, 1− 1G(PB
Xt,χ,ν
T

) ≤ 0 so that

PB
Xt,χ,ν
T

∈ G. 2

4.3 Viscosity Solution Property

As already mentioned, we shall in general rely on the notion of viscosity solutions. For this,

we need to work at the level of the lifting function V : [0, T ]×L2(Ω̃1, F̃1, P̃1;Rd)→ R of v.

In view of (11)-(15), one expects that it solves on [0, T )× L2(Ω̃1, F̃1, P̃1;Rd)

− ∂tW +H
(
·, DW,D2W

)
= 0 . (18)

where H is defined as H0 with, for ε ≥ 0,

Lut (χ, P,Q) := ẼB
[
b>t (χ,Pχ, u)P +

1

2
Q
(
at(χ,Pχ, u)Z

)
at(χ,Pχ, u)Z

]
Hε(t, χ, P,Q) := sup

u∈Nε(t,χ,P )

{
− Lut (χ, P,Q)

}
Nε(t, χ, P ) :=

{
u ∈ L0(Ω̃, F̃ , P̃; U) : |ẼB[at(χ,Pχ, u)P ]| ≤ ε

}
,

for t ∈ [0, T ], u ∈ L0(Ω̃, F̃ , P̃; U), χ, P ∈ L2(Ω̃, F̃ ,P;Rd) and Q ∈ S(L2(Ω̃, F̃ , P̃;Rd)), the

set of self-adjoint operators on L2(Ω̃, F̃ , P̃;Rd).
Let us recall that W : [0, T ]× L2(Ω̃1, F̃1, P̃1;Rd) is extended to [0, T ]× L2(Ω̃, F̃ , P̃;Rd)

by defining W (t,X) as the random variable ω◦ ∈ Ω◦ 7→W (t,X(ω◦, ·)).
Since neither V nor H· are a-priori continuous, we define V∗ and V ∗ as the lower-

semicontinous and upper-semicontinuous enveloppes of V , and let H∗ and H∗ be defined

as the relaxed upper- and lower-semilimits as ε→ 0.

We say that V∗ is a viscosity supersolution (resp. V ∗ is a subsolution) of (18) if for any

(t, χ) ∈ [0, T ] × L2(Ω̃1, F̃1, P̃1;Rd) and any function Φ ∈ C1,2
(
[0, T ] × L2(Ω̃1, F̃1, P̃1;Rd)

)
such that

(V∗ − Φ)(t, χ) = min
[0,T ]×L2(Ω̃1,F̃1,P̃1;Rd)

(V∗ − Φ)

( resp. (V ∗ − Φ)(t, χ) = max
[0,T ]×L2(Ω̃1,F̃1,P̃1;Rd)

(V ∗ − Φ) )
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we have

−∂tΦ(t, χ) +H∗
(
t, χ,DΦ(t, χ), D2Φ(t, χ)

)
≥ 0

(resp. − ∂tΦ(t, χ) +H∗
(
t, χ,DΦ(t, χ), D2Φ(t, χ)

)
≤ 0 ) .

If V∗ is a supersolution and V ∗ is a subsolution, we say that V is a discontinuous solution.

Remark 4.1. The presented definition of viscosity solution involves test functions that are

asked to have a second order regularity in the lifted space. In particular a classical solution

to the DPE might not satisfy this regularity and cannot be used as a test function.

To the best of our knowledge, there are two approaches to deal with viscosity solutions

of second order PDEs on the Wasserstein space: the intrinsic viscosity solution definition

on P2 and the viscosity solution for the lifted function.

Unfortunately, none of these tow approaches are satisfactory for the moment. Concern-

ing the first approach, there is not any general theory covering all the cases. As far as

we know, the most recent result in this direction is [25], where a definition is given and a

comparison is proved. However, it requires that the drift and volatility functions depend

only on the marginal law of the diffusion and not on the diffusion itself. As for the second

approach (the one we use), it has the weakness previously mentioned, that is, we do not

know whether a classical solution is a viscosity solution.

We are now ready to state the viscosity property of the function V . This requires the

following continuity assumption on the set N0.

(H2) Let O be an open subset of [0, T ] × L2(Ω̃, F̃ , P̃;Rd) × L2(Ω̃, F̃ , P̃;Rd) such that

N0(t, χ, P ) 6= ∅ for all (t, χ, P ) ∈ O. Then, for every ε > 0, (t0, χ0, P0) ∈ O and

u0 ∈ N0(t0, χ0, P0), there exists an open neighborhood O′ of (t0, χ0, P0) and a measur-

able map û : [0, T ]× Rd × Rd × Ω̃1 → U such that:

(i) ẼB[|ût0(χ0, P0, ξ)− u0|] ≤ ε.
(ii) There exists C > 0 for which

Ẽ[|ût(χ, P, ξ)− ût(χ′, P ′, ξ)|2] ≤ CẼ[|χ− χ′|2 + |P − P ′|2]

for all (t, χ, P ), (t, χ′, P ′) ∈ O′.
(iii) ût(χ, P, ξ) ∈ N0(t, χ, P ) P◦ − a.e., for all (t, χ, P ) ∈ O′.

This assumption is an extension to our framework of the classical continuity assumption

used in the literature on stochastic target problems (see e.g. Assumption 4.1 in [26]). The

typical example is the case of a fully controlled volatility in dimension 1 i.e. at(χ,Pχ, u) = u.

Then assumption (H2) is satisfied in a neigorhood of {P 6= 0} by taking

ût(χ, P, ξ) = u0 − P
ẼB[u0P ]

ẼB[P 2]
.

We also strengthen (H1) by the following additional condition.
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(H1’) There exist a constant C and a function m : R+ → R such that m(t)→ 0 as t→ 0

and

|bt(x, µ, u)− bt′(x, µ, u′)|+ |at(x, µ, u)− at′(x, µ, u′)| ≤ m(t− t′) + C|u− u′|.

for all t, t′ ∈ [0, T ], x ∈ Rd, µ ∈ P2 and u, u′ ∈ U.

Theorem 4.1. Under (H1) and (H1’) the function V∗ is a viscosity supersolution of (18).

If in addition (H2) holds, then V ∗ is a viscosity subsolution of (18).

Proof. Part I. Supersolution property. Fix (t0, χ0) ∈ [0, T )×L2(Ω̃1, F̃1, P̃1;Rd) and a test

function Φ ∈ C1,2
(
[0, T )× L2(Ω̃1, F̃1, P̃1;Rd)

)
such that

(V∗ − Φ)(t0, χ0) = min
[0,T ]×L2(Ω̃1,F̃1,P̃1;Rd)

(V∗ − Φ) = 0 .

We prove that

−∂tΦ(t0, χ0) +H∗
(
t0, χ0, DΦ(t0, χ0), D2Φ(t0, χ0)

)
≥ 0 . (19)

1. Suppose that the function V is constant in a neighborhood of (t0, χ0). Then Φ(t0, χ0)

is a local maximum of Φ and therefore

∂tΦ(t0, χ0) ≤ 0 , DΦ(t0, χ0) = 0 and D2Φ(t0, χ0)≤0 . (20)

Hence, N0(t0, χ0, DΦ(t0, χ0)) = L0(Ω̃, F̃ , P̃; U) and

−∂tΦ(t0, χ0) +H0

(
t0, χ0, DΦ(t0, χ0), D2Φ(t0, χ0)

)
≥ 0 ,

so that (19) is satisfied.

2. We now consider the complementary case: V∗(t0, χ0) = 0. Let (tn, χn)n≥1 be a sequence

of [0, T )× L2(Ω̃1, F̃1, P̃1;Rd) converging to (t0, χ0) and such that

V (tn, χn) = 0 , for all n ≥ 1. (21)

We argue by contradiction and suppose that

−∂tΦ(t0, χ0) +H∗
(
t0, χ0, DΦ(t0, χ0), D2Φ(t0, χ0)

)
=: −2η

for some η > 0. Define

Φ̃(t, χ) = Φ(t, χ)− ϕ
(
|t− t0|2 + E

[∣∣χ− χ0

∣∣2]2)
for (t, χ) ∈ [0, T ] × L2(Ω̃1, F̃1, P̃1;Rd), where ϕ ∈ C∞(R,R) is such that ϕ(x) = x for

x ∈ [0, 1] and ϕ(x) = 2 for x ≥ 2. Then,

(∂tΦ̃, DΦ̃, D2Φ̃)(t0, χ0) = (Φ, DΦ, D2Φ)(t0, χ0),
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and we can find ε > 0 and an open ball Bε(t0, χ0) such that

−η ≥− ∂tΦ̃(t, χ)− Lut (χ,DΦ̃(t, χ), D2Φ̃(t, χ)) (22)

for any (t, χ) ∈ Bε(t0, χ0) and any u ∈ Nε(t, χ,DΦ(t, χ)). Let ∂pBε(t0, χ0) := {t0 + ε} ×
cl(Bε(χ0))∪ [t0, t0 + ε)× ∂Bε(χ0) denote the parabolic boundary of Bε(t0, χ0) and observe

that

ζ := inf
∂pBε(t0,χ0)

(V∗ − Φ̃) > 0 . (23)

In view of (21), we can find a control νn ∈ U such that

P̃BXn
t
∈ G ,

where Xn = Xtn,χn,νn . We then define the stopping times

θn(ω◦) = inf
{
s ≥ tn :

(
s,Xn

s (ω◦, .)
)
/∈ Bε(t0, χ0)

}
, ω◦ ∈ Ω◦ .

By Theorem 3.1, V (·, Xn
· ) = 0 on [tn, T ], so that−Φ̃(·, Xn

· ) ≥ 0 on [tn, T ] and−Φ̃(θn, X
n
θn

) ≥ ζ
by (23). Let us set βn := −Φ̃(tn, χn) and define

αnt :=∂tΦ̃(t,Xn
t ) + Lν

n
t
t (Xn

t , DΦ̃(t,Xn
t ), D2Φ̃(t,Xn

t )),

ρn :=− ẼB[αn1An ] , ψn := −ẼB
[
a(Xn, P̃BXn , νn)DΦ̃(·, Xn)

]
with

An :=
{
t ∈ [tn, θn] : −αnt > −η

}
.

Applying Proposition 4.2 to Φ̃(., Xn), we then get

Mn := βn − ζ +

∫ ·
tn

ρnt dt+

∫ ·
tn

ψnt dBt ≥ βn − ζ ≥ −
1

2
ζ, (24)

on [tn, θn] for n large. By (22),∣∣ẼB[at(Xn
t ,PBXn

t
, νnt )DΦ̃(t,Xn

t )
]∣∣ > ε , for t ∈ An,

and we can define the positive F̄◦-local martingale Ln by

Lnt = 1−
∫ t

tn

Lns ρ
n
s |ψns |−2ψns dBs , t ≥ tn .

The coefficients a and b being bounded, Ln is a true martingale. In view of (24), LnMn is

a local martingale that is bounded from below by a martingale. Therefore, it is a super-

martingale and

0 ≤ E[LnθnM
n
θn ] ≤ LntnM

n
tn = Mn

tn = βn − ζ .
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Sending n to ∞, we get a contradiction since βn → 0.

Part II. Subsolution property.

Fix (t0, χ0) ∈ [0, T )×L2(Ω̃1, F̃1, P̃1;Rd) and Φ ∈ C1,2
(
[0, T ]×L2(Ω̃1, F̃1, P̃1;Rd)

)
such that

(V ∗ − Φ)(t0, χ0) = max
[0,T ]×L2(Ω̃1,F̃1,P̃1;Rd)

(V ∗ − Φ). (25)

We have to prove that

−∂tΦ(t0, χ0) +H∗
(
t0, χ0, DΦ(t0, χ0), D2Φ(t0, χ0)

)
≤ 0 .

We distinguish two cases.

1. Suppose that V ∗(t0, χ0) = 0. Then, we deduce from (25) that

∂tΦ(t0, χ0) ≥ 0 , DΦ(t0, χ0) = 0 and D2Φ(t0, χ0) ≥ 0 . (26)

Let (εn, tn, χn, Pn, Qn)n≥1 be a sequence valued in

[0, 1]× [0, T ]× L2(Ω̃1, F̃1, P̃1;Rd)× L2(Ω̃1, F̃1, P̃1;Rd)× S(L2(Ω̃1, F̃1, P̃1;Rd)) converging to

(0, t0, χ0, DΦ(t0, χ0), D2Φ(t0, χ0)) such that

Hεn(tn, χn, Pn, Qn) → H∗(t0, χ0, DΦ(t0, χ0), D2Φ(t0, χ0)) . (27)

It follows from (26) that

lim
n→+∞

Hεn(tn, χn, Pn, Qn)

≤ lim
n→+∞

−1

2
inf

u∈L0(Ω̃1,F̃1,P̃1;U)
Ẽ
[
Qn(atn(χn, P̃χn , u)Z)atn(χn, P̃χn , u)Z

]
.

Since a is continuous and bounded, we get from the convergence of Qn to DΦ(t0, χ0)

lim
n→+∞

inf
u∈L0(Ω̃1,F̃1,P̃1;U)

Ẽ
[
Qn(atn(χn, P̃χn , u)Z)atn(χn, P̃χn , u)Z

]
=

inf
u∈L0(Ω̃1,F̃1,P̃1;U)

Ẽ
[
D2Φ(t0, χ0)(at0(χ0, P̃χ0 , u)Z)at0(χ0, P̃χ0 , u)Z

]
.

Combining the above leads to

lim
n→+∞

Hεn(tn, χn, Pn, Qn)

≤ −1

2
inf

u∈L0(Ω̃1,F̃1,P̃1;U)
E
[
D2Φ(t0, χ0)(at0(χ0, P̃χ0 , u)Z)at0(χ0, P̃χ0 , u)Z

]
,

so that (26) and (27) lead to

−∂tΦ(t0, χ0) +H∗(t0, χ0, DΦ(t0, χ0), D2Φ(t0, χ0)) ≤ 0 .

2. Suppose now that V ∗(t0, χ0) = 1. We argue by contradiction and suppose that

−∂tΦ(t0, χ0) +H∗
(
t0, χ0, DΦ(t0, χ0), D2Φ(t0, χ0)

)
=: 4η > 0 .
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Since the left hand-side is finite and N0 ⊂ Nε for ε ≥ 0, there exists an open neighborhood

O of (t0, χ0, DΦ(t0, χ0)) such that N0 6= ∅ on O and there exists u0 ∈ N0(t0, χ0, DΦ(t0, χ0))

such that

−∂tΦ(t0, χ0)− Lu0
t0

(
t0, χ0, DΦ(t0, χ0), D2Φ(t0, χ0)

)
≥ 2η .

Then, (H2) implies that for any ε > 0 there exists an open neighborhood O′ of

(t0, χ0, DΦ(t0, χ0)) and a measurable map û : [0, T ]× Rd × Rd × Ω̃1 → U such that:

(i) ẼB[|ût0(χ0, P0, ξ)− u0|] ≤ ε
(ii) There exists C > 0 for which

Ẽ[|ût(χ, P, ξ)− ût(χ′, P ′, ξ)|2] ≤ CẼ[|χ− χ′|2 + |P − P ′|2]

for all (t, χ, P ), (t, χ′, P ′) ∈ O′.
(iii) ût(χ, P, ξ) ∈ N0(t, χ, P ) P◦ − a.e., for all (t, χ, P ) ∈ O′.

Define

Φ̃(t, χ) = Φ(t, χ) + |t− t0|2 + ẼB
[
|χ− χ0|2

]2
,

for (t, χ) ∈ [0, T ]× L2(Ω̃, F̃ , P̃;Rd). Then,

(∂tΦ̃, DΦ̃, D2Φ̃)(t0, χ0) = (∂tΦ, DΦ, D2Φ)(t0, χ0).

The above combined with (H1)-(H1’) shows that we can find some ε > 0 such that

−∂tΦ̃(t, χ)− Lût(χ,DΦ̃(t,χ),ξ)
t (χ,DΦ̃(t, χ), D2Φ̃(t, χ)) ≥ η (28)

for all (t, χ) ∈ Bε(t0, χ0).

Let now (tn, χn)n≥1 be a sequence of [0, T ]× L2(Ω̃1, F̃1, P̃1;Rd) such that(
tn, χn, V (tn, χn)

)
→

(
t0, χ0, V

∗(t0, χ0)
)
, (29)

and consider the solution Xn of (4) starting from χn at tn and associated to the feedback

control ν̂n := û·(X
n, DΦ̃(., Xn), ξ). The fact that Xn is well-defined is guaranteed by (ii)

above, this is obtained by a straightforward extension of Proposition 2.1. We then define

the stopping times θn by

θn(ω◦) = inf
{
s ≥ tn : (s,Xn

s (ω◦, .) /∈ Bε(tn, χn)
}
, ω◦ ∈ Ω◦ .

Letting

−ζ := max
∂pBε(t0,χ0)

(V ∗ − Φ̃) < 0 ,

we have (V − Φ)(θn, X
n
θn

) ≤ −ζ.

We then apply Proposition 4.2, to deduce from (iii) and (28) that Φ̃(θn, X
n
θn

) ≤ Φ̃(tn, χn)

which implies V (θn, X
n
θn

) ≤ Φ̃(tn, χn)− ζ. Since Φ̃(tn, χn)→ 1, we have V (θn, X
n
θn

) < 1 for

n large enough, which contradicts Theorem 3.1. 2
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We end this section with the derivation of the boundary condition at the terminal time

T . To this end, let us define the function g = 1− 1Ḡ where

Ḡ =
{
χ ∈ L2(Ω̃1, F̃1, P̃1;Rd) : P̃χ ∈ G

}
.

Note that Ḡ is a closed subset of L2(Ω̃1, F̃1, P̃1;Rd) since G is closed for W2. Hence,

g∗ = 1− 1int(Ḡ) , g∗ = 1− 1Ḡ,

where g∗ and g∗ stand for the upper and lower semi-continuous envelopes of g respectively.

Theorem 4.2. Under (H1), the function V satisfies

V ∗(T, .) = g∗ and V∗(T, .) = g∗

on L2(Ω̃1, F̃1, P̃1;Rd).

Proof. (i) We first prove that V ∗(T, .) = g∗. Since V (T, .) = g, we have V ∗(T, .) ≥ g∗. For

the reverse inequality, we argue by contradiction and suppose that 1 = V ∗(T, χ) > g∗(χ) =

0 for some χ ∈ L2(Ω̃1, F̃1, P̃1;Rd). Since g∗(χ) = 0, we know that χ ∈ int(Ḡ). Let (tn, χn)n

be a sequence such that (tn, χn, V (tn, χn)) → (T, χ, 1). Fix some u0 ∈ U and denote by

Xtn,χn,u0 the solution to (4) starting from χn at tn and controlled by the constant processes

ν = u0. Then, Xtn,χn,u0

T ∈ Ḡc, after possibly considering a subsequence. Sending n to ∞,

we obtain that χ belongs to the closure of Ḡc, which is a contradiction.

(ii) We now prove that V∗(T, .) = g∗. Since V (T, .) = g we have V∗(T, .) ≤ g∗. Again

the reserve inequality is proved by contradiction. Suppose that 0 = V∗(T, χ) < g∗(χ) = 1

for some χ ∈ L2(Ω̃1, F̃1, P̃1;Rd). Since g∗ = g, we know that χ ∈ Ḡc. Let (tn, χn)n be

a sequence such that (tn, χn, V (tn, χn)) → (T, χ, 0). Then, up to taking a subsequence,

there exists νn ∈ U such that Xtn,χn,νn
T ∈ Ḡ. Since a and b are continuous bounded and

Ḡ is closed in L2(Ω̃1, F̃1, P̃1;Rd), we deduce that χ ∈ Ḡ by sending n to ∞, which is a

contradiction.

Remark 4.2. Note that the terminal condition in Theorem 4.2 is discontinuous, which

prevents us from proving uniqueness of a solution to our PDE. This point will be further

discussed in Section 5.1 below.

5 Additional Remarks

5.1 On the Formulation of the Target Problem

The formulation considered in this paper naturally leads to a PDE characterization with a

discontinuous terminal condition (upper- and lower-semi-continuous envelopes of 1− 1G).

Even for PDEs stated on a subset of Rd this is problematic from a numerical point of view,

in particular because comparison does not hold. In some cases, an alternative formulation
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can be used in order to retrieve a regular terminal condition and open the door to the

study of comparison and possibly of numerical methods by using already existing results

on PDE’s on Hilbert spaces, see e.g. [27].4 Let us discuss this in the context of Example

3.1.

We consider the same problem as in Example 3.1 but now take the cost induced by the

fertilizing effort of each particle into account. Its dynamics is of the form:

Ct,ν =

∫ ·
t
bC(νs)ds,

in which bC is non-negative. The initial budget of the farmer at t is y ∈ R, and we set

Y t,y,ν := y − Ct,ν· , so that EB[Y t,y,ν ] denotes the remaining running budget: initial budget

minus integral with respect to the Lebesgue measure of the costs associated to each particle.

Letting X̂t,χ,ν := (Xt,χX ,ν , Y t,y,ν), with χ = (χX , y), we retrieve the dynamics (4) for X̂t,χ,ν .

The aim of the farmer is to find the minimal initial budget y and a control ν such that

PB
Xt,χ,ν
T

∈ GX and EB[Y t,y,ν
T ] ≥ 0 P-a.s. for some closed subset GX of the collection of

probability measures with second order moment. Otherwise stated, he aims at computing

at t how much money should be put aside to cover with certainty5 the costs of driving the

field in a given set of acceptable states at time T .

In this context, let us define6, for t ∈ [0, T ] and µX ∈ P2,

v̄(t, µX) := inf{y ∈ R : (µX , δy) ∈ V(t)}

where δy is the Dirac mass at y and V is defined with respect to G = GX × GY for GY

defined as the collection of probability measures with support on R, with finite second

order moments and non-negative first order moment. The dynamic programming principle

of Theorem 3.1 reads as follows :

Theorem 5.1. Fix t ∈ [0, T ] and θ ∈ T̄ ◦ with values in [t, T ]. Then, the following holds:

(GDP1) If y > v̄(t, µX) then there exists ν ∈ U and χX ∈ X2
t such that

EB[Y t,y,ν
θ ] ≥ v̄(θ,PB

X
t,χX,ν

θ

) and PBχX = µX P-a.s.

(GDP2) If there exists ν ∈ U and (χX , y) ∈ X2
t×R such that EB[Y t,y,ν

θ ] > v̄(θ,PB
X
t,χX,ν

θ

)

and PBχX = µX P-a.s., then y ≥ v̄(t, µX).

Proof. The fact that y > v̄(t, µX) implies that (µX , δy) ∈ V(t), which by Theorem 3.1

induces that (PB
X
t,χX,ν

θ

,PB
Y t,y,νθ

) ∈ V(θ), for some ν ∈ U and χX ∈ X2
t such that PBχX = µX .

Since EB[Y t,χY ,ν
T ] ≥ 0 P-a.s. for some χY ∈ L2(Ω1,F1

θ ,P;R) is equivalent to saying that

4Note that, even for general stochastic target problems set on Rd, no general comparison theorem has

been established so far. This is done on a case by case basis, and we therefore do not enter into this issue

in the abstract setting of this paper, but rather leave this to the future study of particular situations.
5One could relax the constraint by just asking for P[EB [Y t,y,ν

T ] ≥ 0] ≥ m for some m ∈]0, 1[; see [5].
6The state space being increased to Rd+1.
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EB[Y t,y,ν
T ] ≥ 0 P-a.s. for y := EB[χY ], this implies that (PB

X
t,χX,ν

θ

, δEB [Y t,y,νθ ]) ∈ V(θ). Con-

versely, EB[Y t,y,ν
θ ] > v̄(θ,PB

X
t,χX,ν

θ

) and PBχX = µX P-a.s. implies (PB
X
t,χX,ν

θ

,PB
Y t,y,νθ

) ∈ V(θ).

From this version of the geometric dynamic programming principle, we get by adapting

the arguments of Section 4.3, see e.g. [5, 1], the following viscosity property.

Theorem 5.2. Suppose that the function bC is continuous and bounded and that (H1),

(H1’) and (H2) hold. Then, the lifting function V̄ of v̄ is a viscosity solution of (18) with

L given by

Lut (χ, P,Q) := ẼB
[
− bC(u) + b>t (χ,Pχ, u)P +

1

2
Q
(
at(χ,Pχ, u)Z

)
at(χ,Pχ, u)Z

]
for t ∈ [0, T ], u ∈ L0(Ω̃, F̃ , P̃; U), χ, P ∈ L2(Ω̃, F̃ ,P;Rd) and Q ∈ S(L2(Ω̃, F̃ , P̃;Rd)). The

function V̄ also satisfies the terminal conditions V̄∗(T, ·) ≥ 0 ≥ V̄ ∗(T, ·).

We then get a continuous terminal condition and we are able to prove uniqueness of V̄

by using comparison theorems in infinite dimension as in [27, Theorem 3.50].

Another point concerning the formulation of the control problem is whether we can

consider a dependence of the coefficient b and a in the laws PXs and Pνs . Unfortunately,

our approach does not allow b and a to depend on PXs or Pνs because we cannot apply

Lemma 3.1 which allows to get the value set at an intermediary time t conditionally to the

brownian information until t and hence to prove the DPP given in Theorem 3.1. However,

we can make b and a depend on the conditional law PBνs . In this case we get the same PDE

properties but the operator L is replace by

Lut (χ, P,Q) := ẼB
[
b>t (χ,Pχ, u,Pu)P +

1

2
Q
(
at(χ,Pχ, u,Pu)Z

)
at(χ,Pχ, u,Pu)Z

]
for t ∈ [0, T ], u ∈ L0(Ω̃, F̃ , P̃; U), χ, P ∈ L2(Ω̃, F̃ ,P;Rd) and Q ∈ S(L2(Ω̃, F̃ , P̃;Rd)).

5.2 On the Particle Approximation of the Target Problem

We come back to the link of our problem with stochastic target of particle systems men-

tionned in the introduction and in Section 2. Let us consider the framework of Proposition

2.2. We recall from Section 2 the construction of Xn,` as the solution to the SDE (7) for

n, ` given. We then define, for n,m ≥ 1, the set Vn,m(t) by

Vn,m(t) =
{
µ ∈ P2 : ∃(χ, ν) ∈ X2

t × U s.t. PBχ = µ and inf
ρ∈G

E
[
W2(µ̄nT , ρ)

]
≤ 1

m

}
. (30)

In view of (8), we get the inclusion V(t) ⊂ ∩m≥1 ∪N≥1 ∩n≥NVn,m(t) for all t ∈ [0, T ]. The

question whether the reciprocal holds is left for future researches, compare with the classical

control case in [28] among others.
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5.3 On the Choice of Controls

In the above sections, the collection U of controls permits to take into account the exact

value of the initial random variable χ, it is F-progressively measurable. If we think in terms

of controlling a population of particles whose initial distribution is the law of χ, this means

that we allow each of the particles to have its own control. One can also consider the case

where the control belongs to the subclass U◦ of controls in U that are only F̄◦-progressively

measurable. This would mean that the control of each particle does not depend on its

position but only of the conditional law of the whole population of particles given B.

This can be treated in a similar way as the case we considered above. In particular, the

result of Proposition 3.1 becomes trivial, see Proposition 2.4. In (9), the control ν will be

F̄◦-progressively measurable and the map ϑ will take values in U◦, so that ν̄ will actually

be F̄◦-progressively measurable since the argument Xt,χ,ν
θ (ω◦, ·) only enters as a random

variable (not as the value of the random variable). As for the first part of the proof of

Theorem 3.1, the construction will just be simpler. Then, Theorem 3.1 actually holds for

the class U◦ as well. We finally get the following viscosity property for the function V .

Theorem 5.3. Under (H1), (H1’) and (H2) the function V is a viscosity solution of

(18) where Nε is is given by

Nε(t, χ, P ) = {u ∈ U : |EB[at(χ,Pχ, u)P ]| ≤ ε}

for all t ∈ [0, T ] and χ, P ∈ L2(Ω̃, F̃ ,P;Rd).

6 Conclusions

We present in this work a new kind of stochastic control problems for which we provide

a dynamic programming principle, a verification result in the regular case, and a viscosity

solution property under additional assumptions. This study also arise some new open ques-

tions that are left for futur research. The first theoretical question is the characterization of

the value function for the same problem with marginal laws PXs instead of the conditional

law PBXs . A second question is the convergence of Vn,m defined in (30) to V, and how it

could serve as a numerical scheme for identifying elements of V.
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