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Global well-posedness and asymptotics for a penalized

Boussinesq-type system without dispersion

Frédéric Charve∗

Abstract

J.-Y. Chemin proved the convergence (as the Rossby number ε goes to zero) of the
solutions of the Primitive Equations to the solution of the 3D quasi-geostrophic system
when the Froude number F = 1 that is when no dispersive property is available. The result
was proved in the particular case where the kinematic viscosity ν and the thermal diffusivity
ν
′ are close. In this article we generalize this result for any choice of the viscosities, the key

idea is to rely on a special feature of the quasi-geostrophic structure.

1 Introduction

1.1 Presentation of the models

The Primitive Equations we consider in this article (also called Primitive System) are a Boussinesq-
type system that describes geophysical flows located in a large scale at the surface of the Earth
under the assumption that the vertical motion is much smaller than the horizontal one. Two
phenomena have a great influence on geophysical fluids: the rotation of the Earth around its axis
and the vertical stratification of the density induced by gravity. The former induces a vertical
rigidity in the fluid velocity as described by the Taylor-Proudman theorem, and the latter induces
a horizontal rigidity to the fluid density: heavier masses lay under lighter ones.

In order to measure the importance of these two concurrent structures, physicists defined two
numbers: the Rossby number Ro and the Froude number Fr. We refer to the introduction of
[6, 11] for more details and to [3, 17, 4, 23] for an in-depth presentation.

The smaller are these numbers, the more important become these two phenomena and we will
consider the Primitive Equations in the whole space, under the Boussinesq approximation and
when both phenomena share the same importance i.-e. Ro = ε and Fr = εF with F ∈]0, 1]. In
what follows ε will be called the Rossby number and F the Froude number. The system is then
written as follows (we refer to [13, 1] for the model):





∂tUε + vε · ∇Uε − LUε +
1
ε
AUε =

1
ε
(−∇Φε, 0),

div vε = 0,

Uε|t=0 = U0,ε.

(PEε)

The unknowns are Uε = (vε, θε) = (v1ε , v
2
ε , v

3
ε , θε) (where vε denotes the velocity of the fluid and θε

the scalar potential temperature), and Φε which is called the geopotential. The diffusion operator
L is defined by

LUε
def
= (ν∆vε, ν

′∆θε),
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where ν, ν′ > 0 are the kinematic viscosity and the thermal diffusivity. The matrix A is defined
by

A def
=




0 −1 0 0
1 0 0 0
0 0 0 F−1

0 0 −F−1 0


 .

We will also precise later the properties satisfied by the sequence of initial data (as ε goes to
zero).

Remark 1 This system generalises the well-known rotating fluids system and for more precisions
we refer to [11]. The fact that AUε is divided by the Rossby number ε imposes formal conditions
to the limit system as ε goes to 0, this term is said to be penalized. The major difference between
the classical Navier-Stokes system and (PEε) consists in this penalized term which involves a
skew-symmetric matrix, so that for the canonical C4 inner product and any L2 or Hs/Ḣs inner
products, we have AUε · Uε = 0 therefore for all fixed ε > 0, any energy method will not ”see”
these penalized terms and will work as for (NS). Then the Leray and Fujita-Kato theorems are
very easily adapted and provide global in time (unique in 2D) weak solutions if U0,ε ∈ L2 and

local in time unique strong solutions if U0,ε ∈ Ḣ
1
2 (global for small initial data). We refer to

Remark 6 for the notion of well/ill-prepared initial data.

Remark 2 As explained in [5, 11] two distinct regimes have to be considered regarding the
eigenvalues of the linearized system: the case F ∈]0, 1[ where the system features dispersive
properties, and the case F = 1, with simpler operators but where no dispersion occurs. In the
dispersive case (see [6] for weak solutions, [5] for strong solutions), using the approach developped
by Chemin, Desjardins, Gallagher and Grenier in [14, 15, 16] for the rotating fluids system, we
manage to filter the fast oscillations (going to zero in some norms thanks to Strichartz estimates
providing positive powers of the small parameter ε) and prove the convergence to the solution of
System (QG) below (even for blowing-up ill-prepared initial data as in [7, 11], less regular initial
data as in [8] or with evanescent viscosities as in [9]). On the contrary when F = 1 no dispersion
is available and only well-prepared initial data are considered. In addition, in [13] the asymptotics
are obtained only when ν and ν′ are very close, in [20] is dealt the inviscid case. We refer also
refer to [21, 22, 24] for results in other context such as periodic domains for example where there
is no dispersion, and resonences have to be studied.

1.2 The limit system

We are interested in the asymptotics, as the small parameter ε goes to zero. Let us recall that in
[13, 6] the limit system, which is a transport-diffusion system coupled with a Biot-Savart inversion
law, is first formally obtained, and is called the 3D quasi-geostrophic system:

{
∂tΩ̃QG + ṽQG.∇Ω̃QG − ΓΩ̃QG = 0

ŨQG = (ṽQG, θ̃QG) = (−∂2, ∂1, 0,−F∂3)∆
−1
F Ω̃QG,

(QG)

where the operator Γ is defined by:

Γ
def
= ∆∆−1

F (ν∂2
1 + ν∂2

2 + ν′F 2∂2
3),

with ∆F = ∂2
1 + ∂2

2 + F 2∂2
3 . Moreover we also have the relation

Ω̃QG = ∂1Ũ
2
QG − ∂2Ũ

1
QG − F∂3Ũ

4
QG = ∂1ṽ

2
QG − ∂2ṽ

1
QG − F∂3θ̃QG.

Remark 3 The operator ∆F is a simple anisotropic Laplacian but Γ is in general a tricky non-
local diffusion operator of order 2. In the present article we will focus on the case F = 1 where
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∆F = ∆ and Γ = ν∂2
1 + ν∂2

2 + ν′∂2
3 . We refer to [10, 11] for a study of Γ in the general case (then

neither the Fourier kernel nor the singular integral kernel have a constant sign and no classical
result can be used).

Remark 4 From now on we will consider the very particular case F = 1. On one hand the
operator Γ is much simpler, but on the other hand (and as explained for example in [6, 10, 11])
the system is not dispersive anymore. This lack of dispersive and Strichartz estimates (that were
abundantly used in previous works) will force us to use completely different methods, part of
them coming from [13].

Led by the limit system we introduce the following decomposition: for any 4-dimensional
vector field U = (v, θ) we define its potential vorticity Ω(U) (here in the case F = 1):

Ω(U)
def
= ∂1v

2 − ∂2v
1 − ∂3θ,

then its quasi-geostrophic and oscillating (or oscillatory) parts:

UQG = Q(U)
def
=




−∂2
∂1
0

−∂3


∆−1Ω(U), and Uosc = P(U)

def
= U − UQG. (1.1)

As emphasized in [6, 9] this is an orthogonal decomposition of 4-dimensional vector fields (similar
to the Leray orthogonal decomposition into divergence-free and gradient vector fields) and if Q
and P are the associated orthogonal projectors on the quasi-geostrophic or oscillating fields, they
satisfy (see [13, 6, 5]):

Proposition 1 With the same notations, for any function U = (v, θ) we have:

1. P and Q are pseudo-differential operators of order 0.

2. For any s ∈ R, (P(U)|Q(U))Ḣs = (AU |P(U))Ḣs = 0.

3. The same is true for nonhomogeneous Sobolev spaces.

4. P(U) = U ⇐⇒ Q(U) = 0 ⇐⇒ Ω(U) = 0.

5. Q(U) = U ⇐⇒ P(U) = 0 ⇐⇒ there exists a scalar function Φ such that U = (−∂2, ∂1, 0,−∂3)Φ.
Such a vector field is said to be quasi-geostrophic and is divergence-free.

6. If U = (v, θ) is a quasi-geostrophic vector field, then v · ∇Ω(U) = Ω(v · ∇U).

7. If U is a quasi-geostrophic vector field, then ΓU = Q(LU).

Thanks to this, System (QG) can for example be rewritten into the following velocity formulation:





∂tŨQG + ṽQG.∇ŨQG − LŨQG = PΦ̃QG,

ŨQG = Q(ŨQG), (or equivalently P(ŨQG) = 0),

ŨQG|t=0 = Ũ0,QG.

(QG2)

Back to System (PEε), if we introduce Ωε = Ω(Uε), Uε,QG = Q(Uε) and Uε,osc = P(Uε), they
satisfy the following systems (see [6] for details):

∂tΩε + vε · ∇Ωε − ΓΩε = (ν − ν′)∆∂3θε,osc + qε, (1.2)
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where qε is defined by

qε = q(Uε,osc, Uε) = ∂3v
3
ε,osc(∂1v

2
ε − ∂2v

1
ε)− ∂1v

3
ε,osc∂3v

2
ε + ∂2v

3
ε,osc∂3v

1
ε

+ ∂3vε,QG · ∇θε,osc + ∂3vε,osc · ∇θε, (1.3)

and

∂tUε,osc − (L− 1

ε
PA)Uε,osc = −P(vε · ∇Uε)−




−∂2
∂1
0

−∂3


∆−1

(
− vε · ∇Ωε + qε

)

+ (ν − ν′)∂3




∂2θε
−∂1θε

0
∂1v

2
ε − ∂2v

1
ε


 . (1.4)

Remark 5 For more conciseness and without any loss of generality, we will write in what follows

qε = ∇Uε,osc · ∇Uε.

Remark 6 It is natural to investigate the link between the quasi-geostrophic/oscillating parts
decomposition of the initial data and the asymptotics when ε goes to zero. This leads to the
notion of well-prepared/ill-prepared initial data depending on the fact that the initial data is
already close or not to the quasi-geostrophic structure, i.-e. when the initial oscillating part is
small/large (or going to zero/blowing up as ε goes to zero). We refer to [11] for more details about
this subject. For example in [7, 10, 11] we focussed on the case F ∈]0, 1[ for very ill-prepared
cases in the sense that the initial oscillating part norm goes to infinity as ε goes to zero, a way
to balance these large norms was to take advantage of the dispersive estimates satisfied by the
oscillating part, providing positive powers of ε. On the contrary when F = 1, as in [13], we will
consider well-prepared initial data.

1.3 Statement of the main results

The aim of the present article is to generalize the results of Chemin from [13], which were obtained
only in the case where ν ∼ ν′. To the best of our knowledge, this study has never been investigated
any further in the non-dispersive case F = 1. First let us define the family of spaces Ės

T for s ∈ R,

Ės
T = CT (Ḣs) ∩ L2

T (Ḣ
s+1),

endowed with the following norm (see the appendix for notations):

‖f‖2
Ės

T

def
= ‖f‖2

L∞

T
Ḣs +min(ν, ν′)

∫ T

0

‖f(τ)‖2
Ḣs+1dτ.

When T = ∞ we denote Ės and the corresponding norm is over R+ in time.

Theorem 1 (Global existence and uniqueness) There exists a positive constant C such that for
any initial data U0 ∈ H1 = L2 ∩ Ḣ1, if





‖U0,osc‖Ḣ−1 ≤ 1

C2

min(ν, ν′)4

‖U0‖3Ḣ1

exp

(
−C

‖U0‖L2‖U0‖Ḣ1

min(ν, ν′)2

)
,

ε ≤ 1

C2

min(ν, ν′)4

‖U0‖4
Ḣ1

(
‖U0‖

Ḣ
1
2
+max(ν, ν′)

) exp

(
−C

‖U0‖L2‖U0‖Ḣ1

min(ν, ν′)2

)
,

(1.5)
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then System (PEε) has a unique global solution in the space Ė1 and we have ‖Uε‖Ė1 ≤ 2‖U0‖Ḣ1 .

Remark 7 Of course, due to the Leray estimates, we obtain that in fact all norms in Ės for
s ∈ [0, 1] are uniformly bounded and more precisely, for all t ≥ 0,

‖Uε(t)‖2Ḣs +min(ν, ν′)

∫ t

0

‖Uε(τ)‖2Ḣs+1dτ ≤ ‖U0‖2(1−s)
L2 (2‖U0‖Ḣ1)

2s.

The second result is devoted to the asymptotics as ε → 0:

Theorem 2 (Convergence) Let (U0,ε)ε∈]0,ε0] be a family of initial data, uniformly bounded in

L2 ∩ Ḣ1. Assume in addition that U0,ε,osc ∈ Ḣ−1 and there exists a quasi-geostrophic function

Ũ0,QG and δ > 0 such that:




U0,ε,osc −→
ε→0

0 in Ḣ−1,

U0,ε,osc is uniformly bounded in Ḣ1+δ,

U0,ε,QG −→
ε→0

Ũ0,QG in Ḣ1,

then there exists ε1 ∈]0, ε0] such that for any ε < ε1, the assumptions from the previous theorem
are fulfilled so that System (PEε) admits a unique global solution Uε and the family (Uε)ε∈]0,ε1]

converges to the unique global solution ŨQG of System (QG) with initial data Ũ0,QG in the
following sense: 




Uε,osc −→
ε→0

0 in Ės for any s ∈ [−1, 1[,

Uε,QG − ŨQG −→
ε→0

0 in Ės for any s ∈]0, 1].

Remark 8 The extra regularity assumption 1 + δ on the oscillating part is needed to prove the
convergence of the quasi-geotrophic part.

2 Proof of Theorem 1

In this section, we will follow some parts of the method from [13], we will also explain which parts
are useless if we do not assume ν ∼ ν′ anymore, and explain how (as in [11]) the quasi-geostrophic
structure can once more help obtaining the result.

Let us recall that according to Remark 1, as U0 ∈ L2 we have a global weak Leray-type
solution Uε ∈ L∞(L2)∩L2(Ḣ1). Moreover as in addition U0 ∈ Ḣ1 then it also belongs to Ḣ

1
2 and

thanks to the Fujita and Kato theorem, and the weak-strong uniqueness, Uε is also the unique

local strong solution in Ė
1
2

T for all T < T ∗
ε which is the maximal lifespan.

Moreover we recall the classical propagation of regularity estimates (we refer for example to
[12, 2], or [13] section 2, for more details in the Navier-Stokes setting, and the proofs which only
rely on energy estimates, are still valid in our case), for all s ∈]− 1, 1], for all t,

‖Uε(t)‖2Ḣs +min(ν, ν′)

∫ t

0

‖∇Uε(τ)‖2Ḣsdτ ≤ ‖U0‖2Ḣs exp

(
C

min(ν, ν′)

∫ t

0

‖Uε(τ)‖2
Ḣ

3
2

dτ

)
, (2.6)

Thanks to this we also have Uε ∈ Ė1
T for all T < T ∗

ε and finally we have the classical blowup
criterion:

T ∗
ε < ∞ ⇒

∫ T∗

ε

0

‖∇Uε(τ)‖2
Ḣ

1
2

dτ = ∞. (2.7)
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Remark 9 Let us emphasize that the previous blowup criterion is given by results adapted to
the general Navier-Stokes system (the penalization term is invisible to them so we can use them)
but according to our computations, and as also observed in [13], it is in fact the smaller quantity∫ T∗

ε

0
‖∇Uε,osc(τ)‖2

Ḣ
1
2

dτ that controls the lifespan (see (2.19)).

2.1 First step: estimates on ∂tUε +
1
ε
AUε,osc

The first important idea in [13] consists in changing the formulation of System (PEε): taking the
divergence of the first three equations from (PEε) we get:

−1

ε
∆Φε = div (vε · ∇Uε) +

1

ε
div (AUε) =

∑

1≤i,j≤3

∂i∂j(v
i
εv

j
ε)−

1

ε
Ωε.

Observing that AUε,QG = −(∇∆−1Ωε, 0), we end up with the following equivalent formulation
of (PEε):





∂tUε + vε · ∇Uε − LUε +
1
ε
AUε,osc = (∇pε,osc, 0)

def
=
(
∇

∑

1≤i,j≤3

∂i∂j∆
−1(viεv

j
ε), 0

)
,

div vε = 0,

Uε|t=0 = U0,ε.

(PEε,2)

From this reformulation, Chemin connects the Ḣ−1 or L2 norm of the block ε−1Uε,osc to ∂tUε

through the following proposition, that we state here in the general setting for ν, ν′:

Proposition 2 There exists a constant C > 0 such that for any Uε solution of (PEε) in CT (L2∩
Ḣ1), the following estimates hold for all t ≤ T :





∥∥∥∂tUε(t) +
1

ε
AUε,osc(t)

∥∥∥
Ḣ−1

≤ ‖Uε(t)‖Ḣ1

(
max(ν, ν′) + C‖Uε(t)‖

Ḣ
1
2

)
,

∥∥∥∂tUε(t) +
1

ε
AUε,osc(t)

∥∥∥
L2

≤ ‖Uε(t)‖Ḣ2

(
max(ν, ν′) + C‖Uε(t)‖

Ḣ
1
2

)
.

(2.8)

Then we derive in time System (PEε,2) and obtain (we easily adapt [13], Section 2 step 3, and
skip details) that for all t:

‖∂tUε(t)‖2Ḣ−1+min(ν, ν′)

∫ t

0

‖∂tUε(τ)‖2L2dτ ≤ ‖∂tUε(0)‖2Ḣ−1 exp

(
C

min(ν, ν′)

∫ t

0

‖Uε(τ)‖2
Ḣ

3
2

dτ

)
.

(2.9)
Using (2.8) to roughly estimate ‖∂tUε(0)‖Ḣ−1 we obtain:

‖∂tUε(t)‖2Ḣ−1 +min(ν, ν′)

∫ t

0

‖∂tUε(τ)‖2L2dτ

≤
(1
ε
‖U0,osc‖Ḣ−1 + ‖U0‖Ḣ1

(
max(ν, ν′) + C‖U0‖

Ḣ
1
2

))2
exp

(
C

min(ν, ν′)

∫ t

0

‖Uε(τ)‖2
Ḣ

3
2

dτ

)
.

(2.10)

Then, writing

‖1
ε
AUε,osc(t)‖Ḣ−1 ≤ ‖1

ε
AUε,osc(t) + ∂tUε(t)‖Ḣ−1 + ‖∂tUε(t)‖Ḣ−1 ,
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and thanks once more to (2.8), we get:

‖Uε,osc(t)‖Ḣ−1 ≤ ε‖Uε(t)‖Ḣ1

(
max(ν, ν′) + C‖Uε(t)‖

Ḣ
1
2

)

+
(
‖U0,osc‖Ḣ−1 + ε‖U0‖Ḣ1

(
max(ν, ν′) + C‖U0‖

Ḣ
1
2

))
exp

(
C

2min(ν, ν′)

∫ t

0

‖Uε(τ)‖2
Ḣ

3
2

dτ

)
.

(2.11)

Thanks to (2.6) we end up with:

‖Uε,osc(t)‖Ḣ−1 ≤
(
‖U0,osc‖Ḣ−1 + 2ε‖U0‖Ḣ1

(
max(ν, ν′) + C‖U0‖

Ḣ
1
2

))

× exp

(
C

min(ν, ν′)

∫ t

0

‖Uε(τ)‖2
Ḣ

3
2

dτ

)
. (2.12)

Similarly, we obtain that for all t:

min(ν, ν′)

∫ t

0

‖Uε,osc(τ)‖2L2dτ ≤ 4
(
‖U0,osc‖Ḣ−1 + ε‖U0‖Ḣ1

(
max(ν, ν′) + C‖U0‖

Ḣ
1
2

))2

× exp

(
C

min(ν, ν′)

∫ t

0

‖Uε(τ)‖2
Ḣ

3
2

dτ

)
. (2.13)

2.2 Second step: Energy estimates

In [13], Chemin uses the quasi-geostrophic/oscillating orthogonal decomposition of the solution
and estimates each part by energy methods applied to Systems (1.2) and (1.4), combining them
through:

‖Uε‖2Ḣ1 ∼ ‖Uε,QG‖2Ḣ1 + ‖Uε,osc‖2Ḣ1 ∼ ‖Ωε‖2L2 + ‖Uε,osc‖2Ḣ1 ,

More precisely, instead of (1.4), using the changes in the pressure term that lead to System
(PEε,2), Chemin studied the following system (that we write here in a more accurate QG/osc
decomposition):

∂tUε,osc + vε · ∇Uε,osc +
1

ε
AUε,osc = (∇pε,osc, 0) +




[vε · ∇, ∂2∆
−1]

−[vε · ∇, ∂1∆
−1]

0
−[vε · ∇, ∂3∆

−1]


Ωε

+




−∂2
∂1
0

−∂3



(
− (ν − ν′)∂3θε +∆−1qε

)
+ (ν − ν′)




0
0
0
∂3


Ωε. (2.14)

In the general case where ν − ν′ is not assumed to be small, this method is bound to fail. Indeed
taking the L2-inner product of (1.2) with Ωε, we obtain:

1

2

d

dt
‖Ωε‖L2 +min(ν, ν′)‖∇Ωε‖L2 ≤ (ν − ν′)(∂3∆Θε,osc,Ωε)L2 + (qε,Ωε)L2 .

As emphasized in [11] the first term of the right-hand side features too many derivatives for us
to be able to prove it is small, the best we can hope for is to bound it by ‖Uε,osc‖Ḣ2‖Ωε‖Ḣ1 and
obtain that this term is at most bounded whereas we need it to go to zero with ε.

Any hope to neutralize this term thanks to the Ḣ1-innerproduct of (2.14) by Uε,osc is also
completely out of reach as the last term in (2.14) will produce the exact same term in the right-
hand side of the energy estimate instead of a cancellation.
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The only way to get rid of this difficulty is to go back to the original system and use another
very important feature of the quasi-geostrophic decomposition. As was first obtained in [11] (in
the case F 6= 1, see Section 4, let us emphasize that even in this case, dispersion cannot help
when it is about estimating in L2), we can take advantage of Point 6 from Proposition 1 (this
property was first observed in [5]) and gain important cancellations. Taking the Ḣ1-inner product
of (PEε) with Uε, we obtain that

1

2

d

dt
‖Uε‖2Ḣ1 − (LUε|Uε)Ḣ1 = −(vε · ∇Uε|Uε)Ḣ1 . (2.15)

As before −(LUε|Uε)Ḣ1 ≥ min(ν, ν′)‖∇Uε‖2Ḣ1
and thanks to the decomposition Uε = Uε,osc +

Uε,QG we develop the right-hand side as follows:

(vε · ∇Uε|Uε)Ḣ1 = (vε · ∇Uε|Uε,osc)Ḣ1 + (vε · ∇Uε,osc|Uε,QG)Ḣ1 + (vε,osc · ∇Uε,QG|Uε,QG)Ḣ1

+ (vε,QG · ∇Uε,QG|Uε,QG)Ḣ1

def
= A1 +A2 +A3 +A4. (2.16)

Then, as emphasized in [11], the last term (which is the most dangerous term as it does not
involve any occurence of the evanescent oscillating part, and therefore has no reason, at first
sight, to go to zero as ε goes to zero) is equal to zero, this is the key property allowing us to
complete the proof. To show this we simply use the following elementary computation related
to the quasi-geostrophic decomposition: for any function f , we have (here in the particular case
F = 1):

(f |Uε,QG)Ḣ1 = −(f |




−∂2
∂1
0

−∂3


Ωε)L2 = (Ω(f)|Ωε)L2 .

Then, thanks to Point 6 from Proposition 1 and the fact that div vε,QG = 0, we obtain:

(vε,QG · ∇Uε,QG|Uε,QG)Ḣ1 = (Ω(vε,QG · ∇Uε,QG)|Ωε)L2 = (vε,QG · ∇Ωε|Ωε)L2 = 0.

Next let us estimate the first three terms. Thanks to the Sobolev injections or product laws (see
appendix),




|A1| ≤ ‖vε · ∇Uε‖

Ḣ
1
2
‖Uε,osc‖

Ḣ
3
2
≤ ‖vε‖Ḣ1 · ‖Uε‖Ḣ2 · ‖Uε,osc‖

Ḣ
3
2
,

|A3| ≤ ‖vε · ∇Uε,osc‖L2‖Uε,QG‖Ḣ2 ≤ ‖vε‖Ḣ1 · ‖∇Uε,osc‖
Ḣ

1
2
· ‖Uε‖Ḣ2 .

(2.17)

Next using div vε,osc = 0 for A2,

|A2| = |
∑

i=1,...,3

∫

R3

∂i(vε,osc · ∇Uε,QG) · ∂iUε,QGdx| = |
∑

i=1,...,3

∫

R3

∂ivε,osc · ∇Uε,QG · ∂iUε,QGdx|

≤ ‖∇Uε,osc‖L3 · ‖∇Uε,QG‖L6 · ‖∇Uε,QG‖L2 ≤ ‖∇Uε,osc‖
Ḣ

1
2
· ‖Uε‖Ḣ2 · ‖Uε‖Ḣ1 . (2.18)

Plugging this into (2.15) and thanks to the classical estimates 2ab ≤ a2 + b2 we get:

d

dt
‖Uε‖2Ḣ1 +min(ν, ν′)‖∇Uε‖2Ḣ1 ≤ C

min(ν, ν′)
‖Uε‖2Ḣ1 · ‖Uε,osc‖2

Ḣ
3
2

,

and thanks to the Gronwall estimates, we end up (as announced in Remark 9) with for all t < T ∗
ε :

‖Uε(t)‖2Ḣ1 +min(ν, ν′)

∫ t

0

‖∇Uε(τ)‖2Ḣ1dτ ≤ ‖U0,ε‖2Ḣ1 exp
( C

min(ν, ν′)

∫ t

0

‖Uε,osc(τ)‖2
Ḣ

3
2
dτ
)
.

(2.19)
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Consequently, if ∫ t

0

‖Uε,osc(τ)‖2
Ḣ

3
2

dτ ≤ ln 2

C
min(ν, ν′),

then we have

‖Uε(t)‖2Ḣ1 +min(ν, ν′)

∫ t

0

‖∇Uε(τ)‖2Ḣ1dτ ≤ 2‖U0,ε‖2Ḣ1 , (2.20)

and thanks to the Leray estimates together with interpolation:

∫ t

0

‖∇Uε(τ)‖2
Ḣ

3
2

dτ ≤
(∫ t

0

‖∇Uε(τ)‖2Ḣ1dτ
) 1

2
( ∫ t

0

‖∇Uε(τ)‖2Ḣ2dτ
) 1

2 ≤
√
2
‖U0‖L2‖U0‖Ḣ1

min(ν, ν′)
,

which allows us to state some analoguous to Corollary 2.1 from [13]:

Proposition 3 Let Uε ∈ C([0, T ∗
ε [, Ḣ

1)∩L2
loc([0, T

∗
ε [, Ḣ

2) be a solution of (PEε). If there exists
some Tε > 0 such that ∫ Tε

0

‖Uε,osc(τ)‖2
Ḣ

3
2

dτ ≤ ln 2

C
min(ν, ν′),

then for all t ≤ Tε,





‖Uε(t)‖2Ḣ1 +min(ν, ν′)

∫ t

0

‖Uε(τ)‖2Ḣ2dτ ≤ 2‖U0‖2Ḣ1 ,

∫ t

0

‖∇Uε(τ)‖2
Ḣ

3
2

dτ ≤
√
2
‖U0‖L2‖U0‖Ḣ1

min(ν, ν′)
.

(2.21)

2.3 Third step: boostrap and proof of Theorem 1

From the previous estimates we will develop a boostrap argument to prove the first theorem. For
ε > 0 fixed (and which will be precised later), we consider the unique local strong solution Uε

built in the beginning of the previous section. We recall that Uε ∈ Ės
t for all t < T ∗

ε and s ∈ [0, 1]
and that in addition, thanks to the Leray estimates, ‖Uε‖Ė0

t
≤ ‖U0‖L2 for all t < T ∗

ε .

Let us define:

Tε = sup{t ∈]0, T ∗
ε [,

∫ t

0

‖Uε,osc(τ)‖2
Ḣ

3
2

dτ ≤ ln 2

C
min(ν, ν′)}. (2.22)

Obviously, Tε ∈]0, T ∗
ε ], and if Tε = T ∗

ε then by Proposition 3 and the blowup criterion from (2.7)
we immediately obtain that Uε is global and (2.21) becomes valid for any time.

If not then, as Tε ∈]0, T ∗
ε [, it is finite and

∫ Tε

0

‖Uε,osc(τ)‖2
Ḣ

3
2

dτ =
ln 2

C
min(ν, ν′). (2.23)

Moreover for all t ≤ Tε, combining (2.12), (2.13) with (2.21), we get that for all t ≤ Tε

max

(
‖Uε,osc(t)‖2Ḣ−1 ,min(ν, ν′)

∫ t

0

‖Uε,osc(τ)‖2L2dτ

)

≤ 4
(
‖U0,osc‖Ḣ−1 + ε‖U0‖Ḣ1

(
max(ν, ν′) + C‖U0‖

Ḣ
1
2

))2
exp

(
C
‖U0‖L2‖U0‖Ḣ1

min(ν, ν′)2

)
. (2.24)
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As Uε,osc = PUε (with P homogeneous Fourier multiplier of order zero), the first majoration from
(2.21) is also true for Uε,osc, and combining it with the previous estimates through interpolation
(3/2 = (1− θ) · 0 + θ · 2 with θ = 3/4) we obtain:

∫ t

0

‖Uε,osc(τ)‖2
Ḣ

3
2

dτ ≤
2

5
4 ‖U0‖

3
2

Ḣ1

min(ν, ν′)

(
‖U0,osc‖Ḣ−1 + ε‖U0‖Ḣ1

(
max(ν, ν′) + C‖U0‖

Ḣ
1
2

)) 1
2

× exp

(
C
‖U0‖L2‖U0‖Ḣ1

min(ν, ν′)2

)
. (2.25)

This quantity is therefore less than ln 2
2C min(ν, ν′) as soon as

‖U0,osc‖Ḣ−1 + ε‖U0‖Ḣ1

(
max(ν, ν′) + C‖U0‖

Ḣ
1
2

)
≤ ln 2)2

C22
9
2

min(ν, ν′)4

‖U0‖3Ḣ1

exp

(
C√
2

‖U0‖L2‖U0‖Ḣ1

min(ν, ν′)2

)
,

which is realized when ε and U0,osc satisfy (1.5) and then we have proved that for any t ≤ Tε, we
have in fact ∫ t

0

‖Uε,osc(τ)‖2
Ḣ

3
2

dτ ≤ ln 2

2C
min(ν, ν′),

which contradicts (2.23) and the definition of Tε, then Tε = T ∗
ε = ∞ and (2.21) and (2.24) are

valid for any time and Theorem 1 is proved �.
By interpolation we deduce that for all s ∈ [−1, 1[,

‖Uε,osc‖Ės ≤ C
(
‖U0,osc‖Ḣ−1 + ε‖U0‖Ḣ1

(
max(ν, ν′) + C‖U0‖

Ḣ
1
2

)) 1−s
2

× exp

(
C
‖U0‖L2‖U0‖Ḣ1

min(ν, ν′)2

)
‖U0‖

1+s
2

Ḣ1
. (2.26)

As ‖U0,osc‖Ḣ−1 is constant, this estimate is useless, but if we consider the initial data from
Theorem 2, if ‖U0,ε‖H1 ≤ C0, then

1

C2

min(ν, ν′)4

‖U0‖3
Ḣ1

exp

(
−C

‖U0‖L2‖U0‖Ḣ1

min(ν, ν′)2

)
≥ min(ν, ν′)4

C2C3
0

exp

(
− CC2

0

min(ν, ν′)2

)
> 0,

which bounds ‖U0,ε,osc‖Ḣ−1 when ε is small enough, thanks to the assumptions. Then there exists
a positive constant M0,ν,ν′ such that:

‖Uε,osc‖Ės ≤ M0,ν,ν′

(
‖U0,ε,osc‖Ḣ−1 + εM0,ν,ν′

) 1−s
2 −→

ε→0
0,

which ends the proof of the first half of Theorem 2.

3 End of the proof of Theorem 2

Here we prove in a direct way the convergence (in [13], (Ωε)0<ε<ε1 was proved to be a Cauchy
sequence).

Let us emphasize that, as in Theorem 2 the sequence of initial data (U0,ε)ε∈]0,ε0] is assumed to

be bounded in L2∩Ḣ1, then the same is true for its quasi-geostrophic part U0,ε,QG (we recall that
Q is a homogeneous operator of order zero). Moreover as U0,ε,QG goes to some quasi-geostrophic

vector field Ũ0,QG in Ḣ1 then we immediately obtain (thanks to the uniqueness of limits in the
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sense of distributions) that Ũ0,QG in also in L2. Next, we only have to use Theorem 2 from [5]

claiming that System (QG) has a unique global solution ŨQG ∈ Ė0 ∩ Ė1 as soon as Ũ0,QG ∈ H1.
Let us consider the initial data according to the assumptions of Theorem 2 and the unique

global solution given by Theorem 1 for a small enough ε. In the previous section we already
proved that the oscillating part goes to zero and we only have to study the convergence of the
quasi-geostrophic part as ε goes to zero. Let us define δΩ = Ωε− Ω̃QG where Ω̃QG is the potential

vorticity of the global solution ŨQG of the limit system. It satisfies the following system:

∂tδΩ + vε,QG · ∇δΩ− ΓδΩ =
∑

i=1,...,4

Bi

= −(vε,QG − ṽQG) · ∇Ω̃QG + (ν − ν′)∂3∆θε,osc +∇Uε · ∇Uε,osc − vε,osc · ∇Ωε, (3.27)

supplemented by the initial data δΩ(0) = Ω(U0,ε,QG − Ũ0,QG), which goes to zero in L2. Taking
the L2 inner product with δΩ we obtain:

1

2

d

dt
‖δΩ‖2L2 +min(ν, ν′)‖δΩ‖2

Ḣ1 ≤
∑

i=1,...,4

|(Bi, δΩ)L2 |. (3.28)

Three terms are easily estimated:

|(B1, δΩ)L2 | ≤ ‖(vε,QG − ṽQG) · ∇Ω̃QG‖Ḣ−1‖δΩ‖Ḣ1 ≤ ‖vε,QG − ṽQG‖Ḣ1‖∇Ω̃QG‖
Ḣ

−
1
2
‖δΩ‖Ḣ1

≤ ‖δΩ‖L2‖∇Ω̃QG‖
Ḣ

−
1
2
‖δΩ‖Ḣ1 ≤ min(ν, ν′)

8
‖δΩ‖2

Ḣ1 +
C

min(ν, ν′)
‖δΩ‖2L2‖ŨQG‖2

Ḣ
3
2

. (3.29)

Similarly we get that:




|(B3, δΩ)L2 | ≤ min(ν, ν′)

8
‖δΩ‖2

Ḣ1 +
C

min(ν, ν′)
‖∇Uε‖2L2‖∇Uε,osc‖2

Ḣ
1
2

,

|(B4, δΩ)L2 | ≤ min(ν, ν′)

8
‖δΩ‖2

Ḣ1 +
C

min(ν, ν′)
‖Uε‖2Ḣ2‖Uε,osc‖2

Ḣ
1
2

.

(3.30)

The last term seems more delicate at first sight, as the same problem as before appears here due
to the three derivatives: we wish this term to go to zero and from the previous section Uε,osc goes

to zero but only in Ės for s ∈ [−1, 1[. As we cannot transfer more than one derivative to δΩ we
are stuck as Uε,osc is only bounded in Ė1. To overcome this difficulty we will simply cut the low
and high frequencies in order to take advantage of both and obtain two parts that will be small
each for a different reason (we refer to the appendix for the definition of the operator Ṡm):

|(B2, δΩ)L2 | ≤ |ν − ν′|
(
|(∂3∆θε,osc, ṠmδΩ)L2 |+ |(∂3∆θε,osc, (Id − Ṡm)δΩ)L2 |

)

def
= C5 + C6. (3.31)

For the low frequencies we take advantage of the convergence of Uε,osc to zero:

C5 ≤ |ν − ν′|‖∂3∆θε,osc‖
Ḣ

−
3
2
‖ṠmδΩ‖

Ḣ
3
2
≤ |ν − ν′|‖Uε,osc‖

Ḣ
3
2
2

m
2 ‖δΩ‖Ḣ1

≤ min(ν, ν′)

8
‖δΩ‖2

Ḣ1 + C2m
|ν − ν′|2
min(ν, ν′)

‖Uε,osc‖2
Ḣ

3
2
. (3.32)

Estimating the low frequencies as follows, we will not rely anymore on Uε,osc, it is then about to
choose m large enough so that this term is small:

C6 ≤ |ν − ν′|‖∂3∆θε,osc‖Ḣ−1‖(Id − Ṡm)δΩ‖Ḣ1

≤ |ν − ν′|‖Uε‖Ḣ2

(
‖(Id − Ṡm)Ωε‖Ḣ1 + ‖(Id − Ṡm)Ω̃QG‖Ḣ1

)
def
= ‖Uε‖Ḣ2 (D1 +D2) . (3.33)
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The scheme of the proof will be, for some fixed η > 0 small, to choose m large enough so a part of
the right-hand side from (3.28) (after time integration) is bounded by η

2 , then to choose ε small
enough so that the rest (which features in particular 2m multiplied by functions going to zero as
ε goes to zero) is also bounded by η

2 . In (3.33), due to D1 such an m a priori depends on ε which
makes the previous argument impossible to perform, so we will try to cut the dependancy in ε
and give a majoration by an expression going to zero as m goes to infinity independantly of ε. It
is not necessary for D2 but for more simplicity we use the same argument for both terms, let us
begin with D2 as it is simpler. Thanks to the initial regularity of ŨQG we will not need sharp
estimates, and it will be sufficient to write that (no need to introduce commutators):

∂t(Id − Ṡm)Ω̃QG − Γ(Id − Ṡm)Ω̃QG = −(Id − Ṡm)
(
ṽQG · ∇Ω̃QG

)
. (3.34)

Next we compute the inner product in L2 with (Id − Ṡm)Ω̃QG:

1

2

d

dt
‖(Id − Ṡm)Ω̃QG‖2L2 +min(ν, ν′)‖(Id − Ṡm)Ω̃QG‖2Ḣ1

≤ ‖(Id − Ṡm)
(
ṽQG · ∇Ω̃QG

)
‖Ḣ−1‖(Id − Ṡm)Ω̃QG‖Ḣ1 . (3.35)

Thanks to the classical estimates 2ab ≤ a2 + b2 and using that for all f ∈ Ḣs ∩ Ḣs+α,

‖(Id − Ṡm)f‖Ḣs ≤ C

(∫

|ξ|≥ 3
4
2m

|ξ|2s|f̂(ξ)|2dξ
) 1

2

≤ C

2αm
‖f‖Ḣs+α , (3.36)

we get (with s = −1, α = 1
2 ):

‖(Id − Ṡm)Ω̃QG(t)‖2L2 +min(ν, ν′)

∫ t

0

‖(Id − Ṡm)Ω̃QG(τ)‖2Ḣ1dτ

≤ ‖(Id − Ṡm)Ω̃QG(0)‖2L2 +
C

2m

∫ t

0

‖ṽQG · ∇Ω̃QG(τ)‖2
Ḣ

−
1
2
dτ

≤ ‖(Id − Ṡm)Ω̃QG(0)‖2L2 +
C

2m

∫ t

0

‖ṽQG(τ)‖2Ḣ1‖ṽQG(τ)‖2Ḣ2dτ. (3.37)

Finally, thanks to the estimates provided by Theorem 1, we obtain:

‖(Id − Ṡm)Ω̃QG(t)‖2L2 +min(ν, ν′)

∫ t

0

‖(Id − Ṡm)Ω̃QG(τ)‖2Ḣ1dτ

≤ ‖(Id − Ṡm)Ω̃QG(0)‖2L2 +
C

2m
‖Ũ0,QG‖4Ḣ1

min(ν, ν′)
. (3.38)

We do the same for the last part (i.-e. C6), starting from:

∂t(Id − Ṡm)Ωε − Γ(Id − Ṡm)Ωε =
∑

i=1,2,3

Ei =

− (Id − Ṡm) (vε · ∇Ωε) + (ν − ν′)∆∂3(Id − Ṡm)θε,osc + (Id − Ṡm) (∇Uε · ∇Uε,osc) , (3.39)

and as before

‖(Id − Ṡm)Ωε(t)‖2L2 +min(ν, ν′)

∫ t

0

‖(Id − Ṡm)Ωε(τ)‖2Ḣ1dτ

≤ ‖(Id − Ṡm)Ωε(0)‖2L2 +
1

min(ν, ν′)

∫ t

0

∑

i=1,2,3

‖Ei(τ)‖2Ḣ−1dτ. (3.40)
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Similarly as before (we skip details):

∫ t

0

(
‖E1(τ)‖2Ḣ−1 + ‖E3(τ)‖2Ḣ−1

)
dτ ≤ C

2m
‖U0,ε‖4Ḣ1

min(ν, ν′)
, (3.41)

and for the last term,

∫ t

0

‖E2(τ)‖2Ḣ−1dτ ≤ |ν − ν′|2
min(ν, ν′)

∫ t

0

‖(Id − Ṡm)Uε(τ)‖2Ḣ2dτ, (3.42)

we cannot perform as for the other terms as we do not have enough regularity, instead we repeat
once more the same argument of truncation: applying (Id − Ṡm) to (PEε) we get that:

∂t(Id − Ṡm)Uε − L(Id − Ṡm)Uε +
1

ε
A(Id − Ṡm)Uε =

1

ε
(−∇Φε, 0)− (Id − Ṡm) (vε · ∇Uε) ,

and computing the innerproduct in Ḣ1 with (Id − Ṡm)Uε, we obtain (skipping details as they are
close to the previous computations):

‖(Id − Ṡm)Uε(t)‖2Ḣ1 +min(ν, ν′)

∫ t

0

‖(Id − Ṡm)Uε(τ)‖2Ḣ2dτ

≤ ‖(Id − Ṡm)U0,ε‖2Ḣ1 +
C

min(ν, ν′)

∫ t

0

‖(Id − Ṡm) (vε · ∇Uε) ‖2L2dτ

≤ ‖(Id − Ṡm)U0,ε‖2Ḣ1 +
C

min(ν, ν′)

1

2m

∫ t

0

‖vε · ∇Uε‖2
Ḣ

1
2

dτ

≤ ‖(Id − Ṡm)U0,ε‖2Ḣ1 +
C

2m
‖U0,ε‖4Ḣ1

min(ν, ν′)2
. (3.43)

Gathering (3.28), (3.29), (3.30), (3.32) and (3.33) and performing an integration in time, we end
up for all t with:

‖δΩ(t)‖2L2 +min(ν, ν′)

∫ t

0

‖(δΩ(τ)‖2
Ḣ1dτ ≤ ‖U0,ε,QG − Ũ0,QG‖2Ḣ1

+
C

min(ν, ν′)

∫ t

0

(
‖δΩ‖2L2‖ŨQG‖2

Ḣ
3
2
+ ‖∇Uε‖2L2‖∇Uε,osc‖2

Ḣ
1
2
+ ‖Uε‖2Ḣ2‖Uε,osc‖2

Ḣ
1
2

)
dτ

+ C2m
|ν − ν′|

min(ν, ν′)

∫ t

0

‖Uε,osc‖2
Ḣ

3
2

dτ

+ |ν − ν′|
(∫ t

0

‖Uε‖2Ḣ2dτ

) 1
2
(∫ t

0

(
‖(Id − Ṡm)Ωε‖2Ḣ1 + ‖(Id − Ṡm)Ω̃QG‖2Ḣ1

)
dτ

)
. (3.44)

Thanks to the Gronwall estimates (first term in the first integral of the right-hand side), using
that ∫ t

0

‖ŨQG‖2
Ḣ

3
2

dτ ≤ ‖ŨQG‖L2‖ŨQG‖Ḣ1

min(ν, ν′)
,
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and combining it with (3.38) to (3.43) we obtain:

‖δΩ(t)‖2L2+min(ν, ν′)

∫ t

0

‖(δΩ(τ)‖2
Ḣ1dτ ≤ exp

(
C
‖ŨQG‖L2‖ŨQG‖Ḣ1

min(ν, ν′)2

)
×
[
‖U0,ε,QG−Ũ0,QG‖2Ḣ1

+
C

min(ν, ν′)2
‖Uε,osc‖2

Ė
1
2

(
‖U0,ε‖2Ḣ1 + 2m|ν − ν′|2

)

+C
|ν − ν′|

min(ν, ν′)
‖U0,ε‖Ḣ1×

{
‖(Id−Ṡm)Ω̃0,QG‖2L2+‖(Id−Ṡm)Ωε(0)‖2L2+

|ν − ν′|2
min(ν, ν′)

‖(Id−Ṡm)U0,ε‖2Ḣ1

+
C

2m
1

min(ν, ν′)

(
‖Ũ0,QG‖4Ḣ1 + (1 +

|ν − ν′|2
min(ν, ν′)3

)‖U0,ε‖4Ḣ1

)} 1
2

]
. (3.45)

We have to be careful that in the previous estimates, for any fixed ε, ‖(Id − Ṡm)Ωε(0)‖2L2 and

‖(Id − Ṡm)U0,ε‖2Ḣ1
go to zero when m goes to infinity, but nothing ensures the convergence does

not depend on ε. To solve the problem, we use here the extra-regularity assumption on U0,ε,osc

and (3.36):

‖(Id−Ṡm)Ωε(0)‖L2 ≤ C‖(Id−Ṡm)U0,ε‖Ḣ1 ≤ C‖(Id−Ṡm)
(
U0,ε,osc+(U0,ε,QG−Ũ0,QG)+Ũ0,QG

)
‖Ḣ1

≤ C

2δm
‖U0,ε,osc‖Ḣ1+δ + C‖U0,ε,QG − Ũ0,QG‖Ḣ1 + C‖(Id − Ṡm)Ũ0,QG‖Ḣ1

≤ C0

2δm
+ C‖U0,ε,QG − Ũ0,QG‖Ḣ1 + C‖(Id − Ṡm)Ũ0,QG‖Ḣ1 . (3.46)

To sum up we obtained that

‖δΩ‖Ė0 ≤ (1 + 2m)F (ε) +G(m),

where F (ε) −→
ε→0

0 and G(m) −→
m→∞

0. For a given η > 0, let us fix m large enough so that

G(m) ≤ η
2 , then fix ε small enough so that (1 + 2m)F (ε) ≤ η

2 and Theorem 2 is proved. �

Remark 10 On could wonder why not using the extra regularity on U0,ε,osc from the beginning
in (3.31)

|(B2, δΩ)L2 | ≤ |ν − ν′|‖∂3∆θε,osc‖Ḣ−1+δ‖δΩ‖Ḣ1−δ .

This would imply that we can prove that this additional regularity is transmitted for any time to
Uε,osc, which is not clear as taking the Ḣ1+δ inner-product of (2.14) with Uε,osc we would have
to deal with the term

|ν − ν′|(∂3Ωε, θε,osc)Ḣ1+δ .

As ∂3Ωε can only be estimated in L2, we put 2 + 2δ derivatives on the other term which is not
possible as θε,osc is at most in Ḣ2+δ. So we are not able to estimate this term and propagate the
extra regularity on Uε,osc unless we ask extra regularity also on the quasi-geostrophic part.

4 Appendix: notations

For s ∈ R, Ḣs and Hs are the classical homogeneous/inhomogeneous Sobolev spaces in R3

endowed with the norms:

‖u‖2
Ḣs =

∫

R3

|ξ|2s|û(ξ)|dξ, and ‖u‖2Hs =

∫

R3

(1 + |ξ|2)s|û(ξ)|dξ.

We also use the following notations: if E is a Banach space and T > 0,

CTE = C([0, T ], E), and Lp
TE = Lp([0, T ], E).

We make abundant use of the Sobolev injections, and product laws:
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Proposition 4 There exists a constant C > 0 such that if s < 3
2 , then for any u ∈ Ḣs, u ∈ Lp(R3)

with p = 6
3−2s and

‖u‖Lp ≤ C‖u‖Ḣs .

Proposition 5 There exists a constant C such that for any (u, v) ∈ Ḣs × Ḣt, if s, t < 3
2 and

s+ t > 0 then uv ∈ Ḣs+t− 3
2 and we have:

‖uv‖
Ḣ

s+t− 3
2
≤ C‖u‖Ḣs‖v‖Ḣt .

Finally, we introduce the frequency truncation operator Ṡm: consider a smooth radial function χ
supported in the ball B(0, 43 ), equal to 1 in a neighborhood of B(0, 3

4 ) and such that r 7→ χ(r.e1)
is nonincreasing over R+. For any u,

Ṡmu = χ(2−mD)u
def
= F−1

(
χ(2−mξ)û(ξ)

)
.

This operator smoothly cuts the frequencies of size greater than 2m. For more details on general
dyadic decompositions and Besov spaces we refer to [12, 2].
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