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The problem of mapping human close-range proximity networks has been tackled using a variety of technical approaches. Wearable electronic devices, in particular, have proven to be particularly successful in a variety of settings relevant for research in social science, complex networks and infectious diseases dynamics. Each device and technology used for proximity sensing (e.g., RFIDs, Bluetooth, low-power radio or infrared communication, etc.) comes with specific biases on the closerange relations it records. Hence it is important to assess which statistical features of the empirical proximity networks are robust across different measurement techniques, and which modeling frameworks generalize well across empirical data. Here we compare time-resolved proximity networks recorded in different experimental settings and show that some important statistical features are robust across all settings considered. The observed universality calls for a simplified modeling approach. We show that one such simple model is indeed able to reproduce the main statistical distributions characterizing the empirical temporal networks.

Introduction

Being social animals by nature, most of our daily activities involve face-toface and proximity interactions with others. Although technological advances have enabled remote forms of communication such as calls, video-conferences, e-mails, etc., several studies [START_REF] Whittaker | Informal workplace communication: What is it like and how might we support it?[END_REF][START_REF] Nardi | The place of face to face communication in distributed work[END_REF] and the constant increase in business traveling, provide evidence that co-presence and face-to-face interactions still represent the richest communication channel for informal coordination [START_REF] Kraut | Informal communication in organizations: Form, function, and technology[END_REF], socialization and creation of social bonds [START_REF] Kendon | Organization of Behavior in Face-to-Face Interaction[END_REF][START_REF] Storper | Buzz: Face-to-face contact and the urban economy[END_REF], and the exchange of ideas and information [START_REF] Doherty-Sneddon | Face-to-face and video-mediated communication: A comparison of dialogue structure and task performance[END_REF][START_REF] Nohria | Face-to-face: Making network organizations work[END_REF][START_REF] Wright | The associations between young adults' face-to-face prosocial behaviorsand their online prosocial behaviors[END_REF]. At the same time, close-range physical proximity and face-to-face interactions are known determinants for the transmission of some pathogens such as airborne ones [START_REF] Liljeros | The web of human sexual contacts[END_REF][START_REF] Salathé | A high-resolution human contact network for infectious disease transmission[END_REF]. A quantitative understanding of human dynamics in social gatherings is therefore important not only to understand human behavior, creation of social bonds and flow of ideas, but also to design effective containment strategies and contrast epidemic spreading [START_REF] Starnini | Immunization strategies for epidemic processes in time-varying contact networks[END_REF][START_REF] Smieszek | A low-cost method to assess the epidemiological importance of individuals in controlling infectious disease outbreaks[END_REF][START_REF] Gemmetto | Mitigation of infectious disease at school: targeted class closure vs school closure[END_REF].

Hence, face-to-face and proximity interactions have long been the focus of major attention in social sciences and epidemiology [START_REF] Bales | Interaction process analysis: A method for the study of small groups[END_REF][START_REF] Arrow | Small groups as complex systems: Formation, coordination, development, and adaptation[END_REF][START_REF] Bion | Experiences in groups and other papers[END_REF][START_REF] Eames | Six challenges in measuring contact networks for use in modelling[END_REF] and recently various research groups have developed sensing devices and approaches to automatically measure these interaction networks [START_REF] Eagle | Reality mining: sensing complex social systems[END_REF][START_REF] Cattuto | Dynamics of person-to-person interactions from distributed RFID sensor networks[END_REF][START_REF] Salathé | A high-resolution human contact network for infectious disease transmission[END_REF][START_REF] Madan | Social sensing for epidemiological behavior change[END_REF][START_REF] Aharony | Social fmri: Investigating and shaping social mechanisms in the real world[END_REF][START_REF] Lepri | The SocioMetric badges corpus: A multilevel behavioral dataset for social behavior in complex organizations[END_REF][START_REF] Stopczynski | Measuring large-scale social networks with high resolution[END_REF][START_REF] Toth | The role of heterogeneity in contact timing and duration in network models of influenza spread in schools[END_REF]. Reality Mining (RM) [START_REF] Eagle | Reality mining: sensing complex social systems[END_REF], a study conducted in 2004 by the MIT Media Lab, was the first one to collect data from mobile phones to track the dynamics of a community of 100 business school students over a nine-month period. Following this seminal project, the Social Evolution study [START_REF] Madan | Social sensing for epidemiological behavior change[END_REF][START_REF] Madan | Sensing the "health state" of a community[END_REF] tracked the everyday life of a whole undergraduate dormitory for almost 8 months using mobile phones (i.e. call logs, location data, and proximity interactions). This study was specifically designed to model the adoption of political opinions, the spreading of epidemics, the effect of social interactions on depression and stress, and the eating and physical exercise habits. More recently, in the Friends and Family study 130 graduate students and their partners, sharing the same dormitory, carried smartphones running a mobile sensing platform for 15 months [START_REF] Aharony | Social fmri: Investigating and shaping social mechanisms in the real world[END_REF]. Additional data were also collected from Facebook, credit card statements, surveys including questions about personality traits, group affiliations, daily mood states and sleep quality, etc.

Along similar lines, the SocioPatterns (SP) initiative [START_REF] Cattuto | Dynamics of person-to-person interactions from distributed RFID sensor networks[END_REF][START_REF] Isella | Close encounters in a pediatric ward: Measuring face-to-face proximity and mixing patterns with wearable sensors[END_REF] and the Sociometric Badges projects [START_REF] Olguín Olguín | Sensible organizations: Technology and methodology for automatically measuring organizational behavior[END_REF][START_REF] Lepri | The SocioMetric badges corpus: A multilevel behavioral dataset for social behavior in complex organizations[END_REF][START_REF] Onnela | Using sociometers to quantify social interaction patterns[END_REF] have been studying since several years the proximity patterns of human gatherings, in different social contexts, such as scientific conferences [START_REF] Stehlé | Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees[END_REF], museums [START_REF] Van Den Broeck | The making of sixty-nine days of close encounters at the science gallery[END_REF], schools [START_REF] Stehlé | High-resolution measurements of face-to-face contact patterns in a primary school[END_REF][START_REF] Fournet | Contact patterns among high school students[END_REF], hospitals [START_REF] Isella | Close encounters in a pediatric ward: Measuring face-to-face proximity and mixing patterns with wearable sensors[END_REF] and research institutions [START_REF] Lepri | The SocioMetric badges corpus: A multilevel behavioral dataset for social behavior in complex organizations[END_REF] by endowing participants with active RFID badges (SocioPatterns initiative) or with devices equipped with accelerometers, microphones, Bluetooth and Infrared sensors (Sociometric Badges projects) which capture body movements, prosodic speech features, proximity, and face-to-face interactions respectively.

However, the different technologies (e.g., RFID, Bluetooth, Infrared sensors) employed in these studies might imply potentially relevant differences in measuring contact networks. Interaction range and the angular width for detecting contacts, for instance, vary in a significant way, from less than 1 meter using Infrared sensors to more than 10 meters using Bluetooth sensors, and from 15 degrees using Infrared sensors to 360 degrees using Bluetooth sensors. In many cases, data cleaning and post-processing is based on calibrated power thresholds, temporal smoothing, and other assumptions that introduce their own biases. Finally, experiments themselves are diverse in terms of venue (from conferences to offices), size (from N 50 to N 500 individuals), duration (from a single day to several months) and temporal resolution. The full extent to which the measured proximity networks depends on experimental and data-processing techniques is challenging to assess, as no studies, to the best of our knowledge, have tackled a systematic comparison of different proximity-sensing techniques based on wearable devices.

Here we tackle this task, showing that empirical proximity networks measured in a variety of social gatherings by means of different measurement systems yield consistent statistical patterns of human dynamics, so we can assume that such regularities capture intrinsic properties of human contact networks. The presence of such apparently universal behavior, independent of the measurement framework and details, calls, within a statistical physics perspective, for an explanatory model, based on simple assumptions on human behavior. Indeed, we show that a simple multi-agent model [START_REF] Starnini | Modeling human dynamics of face-to-face interaction networks[END_REF][START_REF] Starnini | Model reproduces individual, group and collective dynamics of human contact networks[END_REF] accurately reproduces the statistical regularities observed across different social contexts.

Related Work

The present study takes inspiration from the emerging body of work investigating the possibilities of analyzing proximity and face-to-face interactions using different kinds of wearable sensors. At present, mobile phones allow the collection of data on specific structural and temporal aspects of social interactions, offering ways to approximate social interactions as spatial proximity or as the co-location of mobile devices, e.g., by means of Bluetooth hits [START_REF] Madan | Social sensing for epidemiological behavior change[END_REF][START_REF] Dong | Modeling the co-evolution of behaviors and social relationships using mobile phone data[END_REF][START_REF] Aharony | Social fmri: Investigating and shaping social mechanisms in the real world[END_REF][START_REF] Madan | Sensing the "health state" of a community[END_REF][START_REF] Stopczynski | Measuring large-scale social networks with high resolution[END_REF]. For example, Do and Gatica Perez have proposed several topic models for capturing group interaction patterns from Bluetooth proximity networks [START_REF] Do | Human interaction discovery in smartphone proximity networks[END_REF][START_REF] Do | Inferring social activities with mobile sensor networks[END_REF]. However, this approach does not always yield good proxies to the social interactions occurring between the individuals carrying the devices.

Mobile phone traces suffer a similar problem: They can be used to model human mobility [START_REF] Gonzaléz | Understanding individual human mobility patterns[END_REF][START_REF] Blondel | A survey of results on mobile phone datasets analysis[END_REF] with the great advantage of easily scaling up to millions of individuals; they too, however, offer only coarse localization and therefore provide only rough co-location information, yielding thus only very limited insights into the social interactions of individuals.

An alternative strategy for collecting data on social interactions is to resort to image and video processing based on cameras placed in the environment [START_REF] Cristani | Social interaction discovery by statistical analysis of F-formations[END_REF][START_REF] Staiano | Salsa: A novel dataset for multimodal group behavior analysis[END_REF]. This approach provides very rich data sets that are, in turn, computationally very complex: They require line-of-sight access to the monitored spaces and people, specific effort for equipping the relevant physical spaces, and can hardly cope with large scale data.

Since 2010, Cattuto et al. [START_REF] Cattuto | Dynamics of person-to-person interactions from distributed RFID sensor networks[END_REF] have used a technique for monitoring social interactions that reconciles scalability and resolution by means of proximitysensing systems based on active RFID devices. These devices are capable of sensing spatial proximity over different length scales and even close face-to-face interactions of individuals (1 to 2m), with tunable temporal resolution. The So-cioPatterns initiative has collected and analyzed face-to-face interaction data in many different contexts. These analyses have shown strong heterogeneities in the contact duration of individuals, the robustness of these statistics across contexts, and have revealed highly non-trivial mixing patterns of individuals in schools, hospitals or offices as well as their robustness across various timescales [START_REF] Stehlé | High-resolution measurements of face-to-face contact patterns in a primary school[END_REF][START_REF] Isella | Close encounters in a pediatric ward: Measuring face-to-face proximity and mixing patterns with wearable sensors[END_REF][START_REF] Isella | What's in a crowd? Analysis of face-to-face behavioral networks[END_REF][START_REF] Fournet | Contact patterns among high school students[END_REF][START_REF] Gnois | Data on face-to-face contacts in an office building suggest a low-cost vaccination strategy based on community linkers[END_REF]. These data have been used in data-driven simulations of epidemic spreading phenomena, including the design and validation of containment measures [START_REF] Gemmetto | Mitigation of infectious disease at school: targeted class closure vs school closure[END_REF].

Along a similar line, Olguin Olguin et al. [START_REF] Olguín Olguín | Sensible organizations: Technology and methodology for automatically measuring organizational behavior[END_REF] have designed and employed Sociometric Badges, platforms equipped with accelerometers, microphones, Bluetooth and Infrared sensors which capture body movements, prosodic speech features, proximity and face-to-face interactions respectively. Some previous studies based on Sociometric Badges revealed important insights into human dynamics and organizational processes, such as the impact of electronic communications on the business performance of teams [START_REF] Olguín Olguín | Sensible organizations: Technology and methodology for automatically measuring organizational behavior[END_REF], the relationship between several behavioral features captured by Sociometric Badges, employee' self-perceptions (from surveys) and productivity [START_REF] Olguín Olguín | Sensible organizations: Technology and methodology for automatically measuring organizational behavior[END_REF], the spreading of personality and emotional states [START_REF] Alshamsi | Beyond contagion: Reality mining reveals complex patterns of social influence[END_REF].

Empirical data

In this section, we describe datasets gathered by five different studies: The "Lyon hospital" and "SFHH" conference datasets from the SocioPatterns (SP) initiative [START_REF] Cattuto | Dynamics of person-to-person interactions from distributed RFID sensor networks[END_REF], the Trento Sociometric Badges (SB) dataset [START_REF] Lepri | The SocioMetric badges corpus: A multilevel behavioral dataset for social behavior in complex organizations[END_REF], the Social Evolution (SE) dataset [START_REF] Madan | Social sensing for epidemiological behavior change[END_REF][START_REF] Madan | Sensing the "health state" of a community[END_REF], the Friends and Family (FF) [START_REF] Aharony | Social fmri: Investigating and shaping social mechanisms in the real world[END_REF] dataset, and two datasets (Elem and Mid) collected using wireless ranging enabled nodes (WRENs) [START_REF] Toth | The role of heterogeneity in contact timing and duration in network models of influenza spread in schools[END_REF]. The main statistical properties of datasets under consideration are summarized in Table 1, while the settings of the studies are described in detail in the following subsections.

SocioPatterns (SP)

The measurement infrastructure set up by the SP initiative is based on wireless devices embedded in badges, worn by the participants on their chests. Devices exchange radio packets and use them to monitor for proximity of individuals (RFID). Information is sent to receivers installed in the environment, logging contact data. They are tuned so that the face-to-face proximity of two individuals wearing the badges are sensed only when they are facing each other at close range (about 1 to 1.5m). The time resolution is set to 20 seconds, meaning that a contact between two individuals is considered established if their badges exchange at least one packet during such interval, and lasts as long as there is at least one packet exchanged over subsequent 20-second time windows. More details on the experimental setup can be found in Ref. [START_REF] Cattuto | Dynamics of person-to-person interactions from distributed RFID sensor networks[END_REF] Here we consider the dataset "Hospital", gathered by the SP initiative at a Lyon Hospital, during 4 workdays, and the dataset "SFHH", gathered by the SP initiative at the congress of the Société Francaise d'Hygiène Hospitaliére, where the experiment was conducted during the first day of a two-days conference. See Ref. [START_REF] Stehlé | Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees[END_REF] for a detailed description.

Sociometric Badges (SB)

The Sociometric Badges data [START_REF] Lepri | The SocioMetric badges corpus: A multilevel behavioral dataset for social behavior in complex organizations[END_REF] has been collected in a research institute for over a six week consecutive period, involving a population of 54 subjects, during their working hours. The Sociometric Badges, employed for this study, are equipped with accelerometers, microphones, Bluetooth and Infrared sensors which capture body movements, prosodic speech features, co-location and faceto-face interactions respectively [START_REF] Olguín Olguín | Sensible organizations: Technology and methodology for automatically measuring organizational behavior[END_REF]. For the purposes of our study we have exploited the data provided from the Bluetooth and Infrared sensors.

Infrared Data Infrared (IR) transmissions are used to detect face-to-face interactions between people. In order for a badge to be detected by an IR sensor, two individuals must have a direct line of sight and the receiving badge's sensor must be within the transmitting badge's IR signal cone of height h ≤ 1 meter and a radius of r ≤ h tan θ, where θ = ±15 o degrees. The infrared transmission rate (T R ir ) was set to 1Hz.

Bluetooth Data Bluetooth (BT) detections can be used as a coarse indicator of proximity between devices. Radio signal strength indicator (RSSI) is a measure of the signal strength between transmitting and receiving devices. The range of RSSI values for the radio transceiver in the badge is (-128 dBm, 127 dBm). The Sociometric Badges broadcast their ID every five seconds using a 2.4 GHz transceiver (T R radio = 12 transmissions per minute).

Social Evolution (SE)

The Social Evolution dataset was collected as part of a longitudinal study with 74 undergraduate students uniformly distributed among all four academic years (freshmen, sophomores, juniors, seniors). Participants in the study represents 80% of the residents of a dormitory at the campus of a major university in North America. The study participants were equipped with a smartphone (i.e. a Windows Mobile device) incorporating a sensing platform designed for collecting call logs, location and proximity data. Specifically, the software scanned for Bluetooth wireless devices in proximity every six minutes, a compromise between short-term social interactions and battery life [START_REF] Eagle | Inferring friendship network structure by using mobile phone data[END_REF]. With this approach, the BT log of a given smartphone would contain the list of devices in its proximity, sampled every six minutes.

Participants used the Windows Mobile smartphones as their primary phones, with their existing voice plans. Students had also online data access with these phones due to pervasive Wi-Fi on the university campus and in the metropolitan area. As compensation for their participation, students were allowed to keep the smartphones at the end of the experiment. Although relevant academic and extra-curricular activities might have not been covered either because the mobile phones may not be permanently on (e.g., during classes), or because of contacts with people not taking part to the study, the dormitory may still represent the preferential place where students live, cook, and sleep. Additional information on the SE study is available in Madan et al. [START_REF] Madan | Social sensing for epidemiological behavior change[END_REF][START_REF] Madan | Sensing the "health state" of a community[END_REF].

Friends and Family (FF)

The Friends and Family dataset was collected during a longitudinal study capturing the lives of 117 subjects living in a married graduate student residency of a major US university [START_REF] Aharony | Social fmri: Investigating and shaping social mechanisms in the real world[END_REF]. The sample of subjects has a large variety in terms of provenance and cultural background. During the study period, each participant was equipped with an Android-based mobile phone incorporating a sensing software explicitly designed for collecting mobile data. Such software runs in a passive manner and does not interfere with the every day usage of the phone.

Proximity interactions were derived from Bluetooth data in a manner similar to previous studies such as [START_REF] Eagle | Reality mining: sensing complex social systems[END_REF][START_REF] Madan | Social sensing for epidemiological behavior change[END_REF]. Specifically, the Funf phone sensing platform was used to detect Bluetooth devices in the participant's proximity. The Bluetooth scan was performed periodically, every five minutes in order to keep from draining the battery while achieving a high enough resolution for social interactions. With this approach, the BT log of a given smartphone would contain the list of devices in its proximity, sampled every 5 minutes. See Ref. [START_REF] Aharony | Social fmri: Investigating and shaping social mechanisms in the real world[END_REF] for a detailed description of the study.

Toth et al. datasets (Toth et al.)

The datasets, publicly available, were collected by Toth et al. [START_REF] Toth | The role of heterogeneity in contact timing and duration in network models of influenza spread in schools[END_REF] deploying wireless ranging enabled nodes (WRENs) [START_REF] Forys | Wrenmining: large-scale data collection for human contact network research[END_REF] to students in Utah schools. Each WREN was worn by a student and collected time-stamped data from other WRENs in proximity at intervals of approximately 20 seconds. Each recording included a measure of signal strength, which depends on the distance between and relative orientation of the pair of individuals wearing each WREN. More specifically, Toth et al. [START_REF] Toth | The role of heterogeneity in contact timing and duration in network models of influenza spread in schools[END_REF] have applied signal strength criteria such that each retained data point was most likely to represent a pair of students, with face-toface orientation, located 1 meter from each other.

In the current paper, we resort to the data collected from two schools in Utah: One middle school (Mid), an urban public school with 679 students (age range 1214); and one elementary school (Elem), a suburban public school with 476 students, (age range 512). The contact data were captured during school 1. Some average properties of the datasets under consideration. SP-hosp = "SocioPatterns Lyon hospital", SP-sfhh = "SocioPatterns SFHH conference", SB = "Sociometric Badges", SE = "Social Evolution", FF = "Friends and Family", Elem = "Toth's Elementary school", Mid = "Toth's Middle school" hours of two consecutive school days in autumn 2012 from 591 students (87% coverage) at Mid and in winter 2013 from 339 students (71% coverage) at Elem.

Temporal network formalism

Proximity patterns can be naturally analyzed in terms of temporally evolving graphs [START_REF] Holme | Temporal networks[END_REF][START_REF] Holme | Modern temporal network theory: a colloquium[END_REF], whose nodes are defined by the individuals, and whose links represent interactions between pairs of individuals. Interactions need to be aggregated over an elementary time interval ∆t 0 in order to build a temporal network [START_REF] Ribeiro | Quantifying the effect of temporal resolution on time-varying networks[END_REF]. This elementary time step represents the temporal resolution of data, and all the interactions established within this time interval are considered as simultaneous. Taken together, these interactions constitute an "instantaneous" network, formed by isolated nodes and small groups of interacting individuals (not necessarily forming cliques). The sequence of such instantaneous networks forms a temporal, or time-varying, network. The elementary time step ∆t 0 is set to ∆t 0 = 20 seconds in the case of SP data, ∆t 0 = 60 seconds for SMBC data, ∆t 0 = 300 seconds for SE and FF data, and ∆t 0 = 20 seconds for Toth et al. datasets. Note that temporal networks are built by including only non-empty instantaneous graphs, i.e. graphs in which at least a pair of nodes are connected.

Each data set is thus represented by a temporal network with a number N of different interacting individuals, and a total duration of T elementary time steps. Temporal networks can be described in terms of a characteristic function χ(i, j, t) taking the value 1 when individuals i and j are connected at time t, and zero otherwise [START_REF] Starnini | Random walks on temporal networks[END_REF]. Integrating the information of the time-varying network over a given time window T produces an aggregated weighted network, where the weight w ij between nodes i and j represents the total temporal duration of the contacts between agents i and j, w ij = t χ(i, j, t), and the strength s i of a node i, s i = j w ij , represents the cumulated time spent in interactions by individual i. In Table 1 we summarize a number of significant statistical properties, such as the size N , the total duration T in units of elementary time steps ∆t 0 , and the average fraction of individuals interacting at each time step, p. We also report the average degree, k , defined as the average number of interactions per individual, and average strength, s = N -1 i s i , of the aggregated networks, integrated over the whole sequence. One can note that the data sets under consideration are highly heterogeneous in terms of the reported statistical properties. Aggregated network representations preserve such heteogeneity, even though it is important to remark that aggregated properties are sensitive to the time-aggreagating interval [START_REF] Ribeiro | Quantifying the effect of temporal resolution on time-varying networks[END_REF] and therefore to the specificity of data collection and preprocessing.

Comparison among the different datasets

In this section we perform a comparison of several statistical properties of the temporal networks, as defined above, representing the different datasets under consideration.

The temporal pattern of the agents' contacts is probably the most distinctive feature of proximity interaction networks. We therefore start by considering the distribution of the durations ∆t of the contacts between pairs of agents, P (∆t), and the distribution of gap times τ between two consecutive proximity events involving a given individual, P (τ ). The bursty dynamics of human inter- Fig. 2. Probability distribution of the gap times τ between consecutive contacts of pairs of agents, P (τ ), for the different datasets under consideration, compared with numerical simulations of the attractiveness model. A power law form, P (τ ) ∼ τ -γτ , with γτ = 2.1, is plotted as a reference in dashed line.

actions [START_REF] Barabasi | The origin of bursts and heavy tails in human dynamics[END_REF] is revealed by the long-tailed form of these two distributions, which can be described in terms of a power-law function. Figures 1 and2 show the distribution of the contacts duration P (∆t) and gap times P (τ ) for the various sets of empirical data. In both cases, all dataset shows a broad-tailed behavior, that can be loosely described by a power law distribution. In Figures 1 and2 we plot, as a guide for the eye, power-law forms P (∆t) ∼ ∆t -γ ∆t , with exponent γ ∆t ∼ 2.5, and P (τ ) ∼ τ -γτ , with exponent γ τ ∼ 2.1, respectively.

The probability distributions of strength, P (s), and weight, P (w), are a signature of the topological structure of the corresponding aggregated, weighted networks. Since the duration T of the datasets under consideration is quite heterogeneous, see Table 1, we do not reconstruct the aggregated networks by integrating over the whole duration T , but we integrate each temporal network over a time window of fixed length, ∆T = 1000 elementary time steps. That is, we consider a random starting time T 0 (provided that T 0 < T -∆T ), and reconstruct an aggregated network by integrating the temporal network from T 0 to T 0 + ∆T . We average our results by sampling 100 different starting times. Note that, since the elementary time step ∆t 0 is different across different experiments, the real duration of the time window considered is different across different datasets.

Figs. 3 and4 show the weight and strength distributions, P (w) and P (s), of the aggregated networks over ∆T , for the considered datasets. Again, all datasets display a similar heavy tailed weight distribution, roughly compatible with a power-law form, meaning that the heterogeneity shown in the broad-tailed form of the contact duration distribution, P (∆t), persists also over longer time scales. Data sets SB-BT, SE and FF present deviations with respect to the other data sets. The strength distribution P (s) is also broad tailed and quite similar for all data sets considered, but in this case it is not compatible with a power law.

Finally, Fig. 5 shows the average strength as a function of the degree, s(k), in the aggregated networks integrated over an interval ∆T . One can see that if the strength is rescaled by the total strength of the network in the considered time window, s = N -1 T0+∆T t=T0 ij χ(i, j, t), the different data sets show a similar correlation between strength and degree. In particular, Fig. 5 shows that all data sets considered present a slightly superlinear correlation between strength and degree, s(k) ∼ k γ with γ > 1, as highlighted by the linear correlation plotted as a dashed line.

Modeling human contact networks

In the previous Section, we have shown that the temporal networks representing different datasets, highly heterogeneous in terms of size, duration, proximitysensing techniques, and social contexts, are characterized by very similar statistical properties. Here we show that a simple model, in which individuals are endowed with different social attractiveness, is able to reproduce the empirical distributions.

Model definition

The social contexts in which the data were collected can be modeled by a set of N mobile agents free to move in a closed environment, who interact when they are close enough (within the exchange range of the devices) [START_REF] Starnini | Modeling human dynamics of face-to-face interaction networks[END_REF]. The simplifying assumption of the model proposed in [START_REF] Starnini | Modeling human dynamics of face-to-face interaction networks[END_REF] is that the agents perform a random walk in a box of linear size L with periodic boundary conditions (the average density is ρ = N/L 2 ). Whenever two agents are within distance d (with d << L), they start to interact. The key ingredient of the model is that each agent is characterized by an "attractiveness", a i , a quenched random number, extracted from a distribution η(a), representing her power to raise interest in the others, which can be thought of as a proxy for social status or the role played in the considered social gathering. Attractiveness rules the interactions between agents in a natural way: Whenever an individual is involved in an interaction with other peers, she will continue to interact with them with a probability proportional to the attractiveness of her most interesting neighbor, or move away otherwise. Finally, the model incorporates the empirical evidence that not all agents are simultaneously present in system: Individuals can be either in an active state, where they can move and establish interactions, or in an inactive one representing absence from the premises. Thus, at each time step, every active individual becomes inactive with a constant probability r, while inactive individuals can go back to the active state with the complementary probabillty 1-r. See Refs. [START_REF] Starnini | Modeling human dynamics of face-to-face interaction networks[END_REF][START_REF] Starnini | Model reproduces individual, group and collective dynamics of human contact networks[END_REF] for a detailed description of the model.

Model validation

Here we contrast the results obtained by the numerical simulation of the model against empirical data sets. We average our results over 100 runs with parameters N = 100, L = 50, T = 5000. The results of numerical experiments are reported in Figs. 1 to 5, for the corresponding quantities considered, represented by a continuous, blue line.

In the case of the contact duration distribution, P (∆t), Fig. 1, numerical and experimental data show a remarkable match, with some deviations for the SB-BT and FF datasets. Numerical data also show a close behavior to the mentioned power-law distribution with exponent γ ∆t = 2.5. Also in the case of the gap times distribution, P (τ ), Fig. 2, the distribution obtained by numerical simulations of the model is very close to the experimental ones, spanning the same orders of magnitude. The weight distribution P (w) of the model presents a very good fit to the empirical data, see Fig. 3, with the exception of data sets SB-BT, SE and FF, as mentioned above. The strength distribution P (s), Fig. 4, is, as we have commented above, quite noisy, especially for the datasets of smallest size. It follows however a similar trend across the different datasets that is well matched by numerical simulations of the model. Finally, in the case of the average strength of individuals of degree k, s(k), Fig. 5, the most striking feature, namely the superlinear behavior as a function of k, is correctly captured by the numerical simulations of the model.

Discussion

All datasets under consideration show similar statistical properties of the individuals' contacts. The distribution of the contact durations, P (∆t), and the inter-event time distribution, P (τ ), are heavy tailed and compatible with power law forms, and the attractiveness model is able to quantitavely reproduce such behavior. The weight distribution of the aggregated networks, P (w), is also heavy tailed for all datasets and for the attractiveness model, even though some datasets show deviations. The strength distribution P (s) and the correlation between strength and degree, s(k), present a quite noisy behavior, especially for smaller datasets. However, all datasets show a long tailed form of P (s) and a superlinear correlation of the s(k), correctly reproduced by the attractiveness model.

Previous work [START_REF] Cattuto | Dynamics of person-to-person interactions from distributed RFID sensor networks[END_REF][START_REF] Isella | What's in a crowd? Analysis of face-to-face behavioral networks[END_REF][START_REF] Fournet | Contact patterns among high school students[END_REF] have shown that the functional shapes of contact and inter-contact durations' distributions were very robust across contexts, for data collected by the SocioPatterns infrastructure as well as by similar RFID sensors. Our results show that this robustness extends in fact to proximity data collected through different types of sensors (e.g., Bluetooth, Infrared, WREN, RFID). This is of particular relevance in the context of modeling human behavior and building data-driven models depending on human interaction data, such as models for the spread of infectious diseases, from two points of view. On the one hand, the robust broadness of these distributions implies that different contacts might play very different roles in a transmission process: Under the common assumption that the transmission probability between two individuals depends on their time in contact, the longer contacts, which are orders of magnitude longer than average, could play a crucial role in disease dynamics. The heterogeneity of contact patterns is also relevant at the individual level, as revealed by broad distributions of strengths and the superlinear behavior of s(k), and is known to have a strong impact on spreading dynamics. In particular, it highlights the existence of "super-contactors", i.e. individuals who account for an important proportion of the overall contact durations and may therefore become super-spreaders in the case of an outbreak On the other hand, the robustness of the distributions found in different contexts represents an important information and asset for modelers: It means that these distributions can be assumed to depend negligibly on the specifics of the situation being modeled and thus directly plugged into the models to create for instance synthetic populations of interacting agents. From another modeling point of view, they also represent a validation benchmark for microscopic models of interactions, which should correctly reproduce such robust features. In fact, as we have shown, a simple model based on mobile agents, and on the concept of social appealing or attractiveness, is able to reproduce most of the main statistical properties of human contact temporal networks. The good fit of this model hints towards the fact that the temporal patterns of human contacts at different time scales can be explained in terms of simple physical processes, without assuming any cognitive processes at work.

It would be of interest to measure and compare several other properties of the contact networks, such as the evolution of the integrated degree distribution P T (k) and of the aggregated average degree in k(T ), or the rate at which the contact neighborhoods of individuals change. Unfortunately, these quantities are difficult to measure in some cases due to the small sizes of the datasets.

Fig.

  Fig. Probability distribution of the duration ∆t of the contacts between pairs of agents, P (∆t), for the different datasets under consideration, compared with numerical simulations of the attractiveness model. A power law form, P (∆t) ∼ ∆t -γ ∆t , with γ∆t = 2.5, is plotted as a reference in dashed line.

Fig. 3 .

 3 Fig. 3. Weight distribution P (w), for the different datasets under consideration, compared with numerical simulations of the attractiveness model.

Fig. 4 .

 4 Fig. 4. Strength distribution P (s), for the different datasets under consideration, compared with numerical simulations of the attractiveness model.

Fig. 5 .

 5 Fig. 5. Strength as a function of the degree, s(k), for the different datasets under consideration, compared with numerical simulations of the attractiveness model. A linear correlation s(k) ∼ k is plotted in dashed line, to highlight the superlinear correlation observed in data and model.

Acknowledgments

M.S. acknowledges financial support from the James S. McDonnell Foundation. R.P.-S. acknowledges financial support from the Spanish MINECO, under projects FIS2013-47282-C2-2 and FIS2016-76830-C2-1-P, and additional financial support from ICREA Academia, funded by the Generalitat de Catalunya. C.C. acknowledges support from the Lagrange Laboratory of the ISI Foundation funded by the CRT Foundation.