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—— Abstract

We prove that the Oritatami model of molecular folding is capable of embedding arbitrary computations in

the folding process itself, by a local energy optimisation process, similar to how actual biomolecules such as DNA
or RNA fold into complex shapes and functions.

This result is the first principled construction in this research direction, and motivated the development of
a generic toolbox, easily reusable in future work. One major challenge addressed by our design is that choosing
the interactions to get the folding to react to its environment is NP-complete. Our techniques bypass this issue
by allowing some flexibility in the shapes, which allows to encode different “functions” in different parts of the
sequence (instead of using the same part of the sequence).

However, the number of possible interactions between these functions remains quite large, and each interaction
also involves a small combinatorial optimisation problem. One of the major challenges we faced was to decompose
our programming into various levels of abstraction, allowing to prove their correctness thoroughly in a human
readable/checkable form. We hope this framework can be generalised to other discrete dynamical systems, where
proofs of such large objects are often difficult to get.

@. 5Y licensed under Creative Commons License CC-BY
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1 Introduction

Molecular folding is the biological process that turns one-dimensional sequences into three-dimensional
shapes. In the particular context of proteins and RNA, this process has attracted a lot of attention, as
it could allow us to engineer our own molecules, and therefore to interact with biological functions. The po-
tential applications range from using bacteria as computing devices or nano-factories, to producing targeted
drugs to cure specific diseases with little to no side effects. More fundamentally, understanding “molecu-
lar programming” by engineering our own molecules will shed a new light on how these mechanisms, and
evolution in particular, work in nature.

If we are to have such an engineering discipline crafting “computing molecules” with arbitrary shapes,
we need a theory of these systems to inform of their capabilities and give hints for building actual molecules
in the wet lab.

Unfortunately, we seem quite far from a full understanding of these mechanisms. From a practical
perspective, the latest efforts to solve the protein design problem [19] are still quite far from a complete
general methodology. From a theoretical perspective, it has been shown that, in different variants of the
hydrophobic-hydrophilic (HP) model [6], the problem of predicting the most likely geometry (or conformation)
of a sequence is NP-complete [20, 17, 2, 3, 5], both in two and three dimensional models. Approximation
algorithms have also been developped [1, 16].

However, the effective speed of molecular folding in actual cells seems to contradict these hardness results.
Moreover, its reliability and relative robustness to small changes in conditions or sequences seem to rule out
approximations as well.

To understand these phenomena, two essential ingredients of molecular dynamics need to be considered:
thermodynamics, which governs probability distributions over shapes in the long run, and kinetics, which is
the step-by-step movements of molecules in solution. Some models of tile assembly, such as the abstract Tile
Assembly Model [21, 18] chose to ignore thermodynamics and focused on kinetics, and got excellent results
in the lab. Models of molecular folding, like the HP model, focus on hardness results, and for that reason
ignore kinetics and work entirely on thermodynamics.

Our goal with Oritatami [11] is to try to understand the kinetics of folding, and in the future get a more
complete picture including both aspects. The rationale of this choice is that the wetlab version of Oritatami
already exists, and has been successfully used to engineer shapes with RNA in the wetlab [10]. The main
feature of RNA that motivates our approach is the fact that RNA folds while being produced, which is known
as co-transcriptional folding. This process has been shown to play an important role in the final shape of
biomolecules [12], especially in the case of RNA [7].

1.1 Brief overview of the model

In Oritatami, we consider a finite set of bead types, and a periodic sequence of beads, each of a specific bead
type. Beads are attracted to each other according to a fixed symmetric relation, and in any folding (a folding
is also called a conformation), whenever two beads attracted to each other are found at adjacent positions,
a bond is formed between them.

At each step, the latest few beads in the sequence are allowed to explore all possible positions, and we
keep only those positions that minimise the energy, or otherwise put, those positions that maximise the
number of bonds in the folding. “Beads” are a metaphor for domains, i.e. subsequences, in RNA and DNA.

1.2 Main results

In this paper, we construct a “universal” set of 520 bead types, along with a single universal attraction rule
for these bead types, with which we can simulate any tag system, and therefore any Turing machine M,
within a polynomial factor of the running time M.

This construction motivated the development of a toolbox composed of two things: common structures
that can react to their environment, and solutions to combine these structures into larger constructions.
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» Theorem 1. There is a finite universal set of beads B and an attraction rule @ C B? such that for any
Turing machine M running in time t on input x (where t is possibly infinite), there is a seed structure
o € BE of size O(|x|), and a periodic sequence w of beads from B (with period of length O(1)) such that w
folds into a structure of size O(t3logt).!

Our construction is composed of different modules, or subsequences, each building different “sub-shapes”
of the global conformation. This result had to overcome a number of important challenges, presented in
Sections 1.3 and 1.4.

1.3 Proving our designs

The main challenge we faced in this paper was the size of our constructions: indeed, while we developed
higher-level geometric constructs to program useful shapes, there is a large number of possible interactions
between all different parts of the sequence.

Getting solid proofs on large objects is a common problem in discrete dynamical systems, for instance
on cellular automata [8, 4] or tile assembly systems [13]. In this paper, we introduce a general framework to
deal with that complexity, and prove our constructions rigorously. This method proceeds by decomposing
the sequence into different modules, and the space into different areas where exactly one module grows. We
can then reason on the modules separately, and only deal with interactions at the border between all possible
modules that can have a common border.

1.4 Design challenges

As shown in our previous results [9], the problem of choosing an attraction rule so that a single sequence folds
into different shapes depending on its environment, is NP-complete. That problem is called the sequence
design problem in [9].

In the present paper, since our sequence is periodic and has a small number of bead types, a single module
can interact with a large number of other modules (including previous copies of itself).

We introduce a tool to cope with such situations, called socks. The goal is to “shift” the sequence, so that
different parts interact with the various environments. Socks work as follows: whenever different copies of a
single subsequence $;, S;4+1,- .., Sit+r (for some integer 4, and with k equal to a few dozens) have to interact
with a large number of different unrelated environments (where an environment is a local configuration of
beads), we reduced the number of environments by folding a small part of the molecule, before i, into a
compact useless shape (with the shape of a “sock”), so that only a later part s;,sj+1,... with j > i+ k of
the sequence interact with a subset of all environments.

This allows us to dispatch the different interactions to different parts of the sequence.

1.5 Relationship to other work

This construction generalises our previous results, where we built an arbitrary-width counter with a fixed
periodic sequence [9]. In that result, all parts of the structure are densely packed into parallelograms, and
these structures react to their environment by folding into a different hamiltonian path in each parallelogram.

That result required tedious manual tweaking of the rule, so that different parts of the sequence interacted
nicely with each other. Moreover, finding useful hamiltonian paths is hard, which means that our techniques
could not scale well.

In this paper, we solve these issues to a large extent, using the toolbox we introduce in Section 6. Note
that the dynamics used is slightly changed compared to [9]. We believe the dynamics used here to be more
intuitive, and our previous negative results (NP-completeness of rule design) still hold.

! The constants in the O(-)s only depend on the size of the simulated Turing machine.

XX:3



XX:4

Proving the Turing Universality of Oritatami Co-Transcriptional Folding

2 Definitions and Preliminary Results

The empty word is denoted by €. For 1 < < j < n, by wli..j], we refer to the factor w;w;11 ---w; of w.

2.1 Oritatami Systems

Let B be a finite set of bead types. A conformation ¢ of a bead sequence w € B* U BY is a directed self-
avoiding path in the triangular lattice T, where for all integer i, vertex c; of ¢ is labelled by w;. ¢; is the
position in T of the (i 4+ 1)th bead, of type w;, in conformation ¢. A partial conformation of a sequence w is
a conformation of a prefix of w.

For any partial conformation ¢ of some sequence w, an elongation of ¢ by k beads (or k-elongation) is a
partial conformation of w of length |c| + k. We denote by C,, the set of all partial conformations of w (the
index w will be omitted when the context is clear). We denote by E(c, k) the set of all k-elongations of a
partial conformation ¢ of a sequence w.

Oritatami systems. An Oritatami system O = (w,%,0,0) is composed of (1) a (possibly infinite) bead
sequence w, called the primary structure, (2) an attraction rule, which is a symmetric relation @ C B2, (3) a
parameter 0 called the delay time and (4) o, an initial conformation of w, called the seed. O is said periodic if
w is infinite and its suffix w|; w41 -+ - is a periodic bead sequence. Periodicity ensures that the “program”
embedded in the oritatami system is finite (does not hardcode any specific behavior) and at the same time
allows arbitrary long computation.

We say that two bead types a and b attract each other when a @ b. Furthermore, given a conformation ¢
of w, we say that there is a bond between two adjacent positions ¢; and ¢; of ¢ in T if w; #w; and |i — j| > 1.
The number of bonds of conformation ¢ of w is denoted by H(c) = [{(¢,7) : ¢; ~¢j, j > i+ 1, and w; ®w;}|.

Oritatami dynamics. The folding of an oritatami system is controlled by the delay time ¢. Informally, the
conformation grows from the seed conformation, one bead at a time. This new bead adopts the position(s)
that maximise the potential number of bonds the conformation can make when elongated by d beads in total.
This dynamics is oblivious as it keeps no memory of the previously preferred positions; it differs thus slightly
from the hasty dynamics studied in [11]; it might also be considered as closer to experimental conditions.

Formally, given an Oritatami system O = (p,®,6,0), we consider the dynamics D : 2¢ — 2€ that maps
every subset S of partial conformations of length ¢ of w to the subset D(S) of partial conformations of
length ¢ + 1 of w as follows:

D(S) = U arg max < max H(n))
cos VEE(e,1) \N€EE(Y,0-1)

The possible conformations at time ¢ of the Oritatami system O are the elongations of the seed conformation o
by ¢ beads in the set D*({o}).

We say that the Oritatami system is deterministic if at all time ¢, D!, ({o}) is either a singleton or the
empty set. In this case, we denote by ¢! the conformation at time ¢, such that: ¢ = o and D*({o}) = {c'}
for all t > 0; we say that the partial conformation ¢! folds (co-transcriptionally) into the partial conformation

Can t+1 at the position

deterministically. In this case, at time ¢, the (Jo| 4+ ¢ + 1)-th bead of w is placed in ¢
that maximises the number of bonds that can be made in a d-elongation of ct.

We say that the Oritatami system halts at time ¢ if ¢ is the first time for which D*({o}) = @. The
folding process may only stop because of a geometric obstruction (no more elongation is possible because

the conformation is trapped in a closed area).

In this article, we will only consider deterministic periodic Oritatami systems with delay time § = 3.

2 The triangular lattice is defined as T = (Z2,~), where (z,y9) ~ (uw,v) if and only if (u,v) €
{(z-1,y),(z+ 1L,9),(z,y+ 1), (z,y —1),(x + 1,y + 1),(x — 1,y — 1)}. Every position (z,y) in T is mapped in the eu-
clidean plane to z - X +y - Y using the vector basis X = (1,0) and Y = rotation_j29- (X).
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2.2 Skipping Cyclic Tag systems

In the next sections, we demonstrate the existence of a single periodic primary structure that can simulate
any Turing computation. Precisely, our construction simulates the following particular type of tag systems
which are known to simulate in O(T?InT) steps any Turing machine running in 7" steps [22].

Skipping Cyclic Tag systems A skipping cyclic tag system consists of a set of n productions pg,...,pp—1 €

{0,1}* and an initial word u® € {@,1}*. At each time step, the tag system cycles through the productions

and decides to append the current production or not according to the letter read. We denote by u! the word

at time ¢. Formally, at time ¢ = 0, its pointer ¢° is set to 0. At all time ¢,

Halting step: If u! is the empty word €, then the tag system halts and outputs ¢*; otherwise

Deletion step: If the first letter uf of u’ is @, then set ¢'*! := (¢! + 1) mod n and u!*™! :=u! - "“\tut|717
the suffix of u* without its first letter; finally

Appending step: if ul) =1, then the tag system appends the next production to u and skips to the following
production, i.e.: uttl =l .. u‘tu,,‘f1 “D(qt+1modn) and set ¢! := (¢" +2) mod n.

For instance, the skipping tag system p = (110,¢,11,0) has the following execution ([qt]ut)t on input
word u® = 010:

0 1 Append 3 0 Append 9 Append 0 1
Yot0 — 1o o= Plot1 — P11 5o’ Ve — W Halt

and outputs thus production p; = e.

Annotated trimmed space-time diagram. Given a SCTS (po, ..., pn_1;u’), we denote by 0 < t; < to < ---
all the times ¢ such that the word u! starts with letter 1 and set t; = —1 by convention. Let us now compress
the deletion steps occurring during steps ¢; + 1 and ¢;,4.1 — 1 by simply indicating in exponent the production
index for each deleted letter:

0], [1 Append 31 10
Olplilyp 2220, [3pi0l1 4

Append 2] Append

0]l (1
oo ol Halt

and align the resulting words in a 2D diagram according to their common parts:

tg t1 t2 t3
I i il
Olg|ll1| o — Append [2]:11
Blg|lol4 | 4 — Append [1]:¢
(214 — Append [3]:0
Olp|l  —  Halt [1]:€

we obtain the annotated trimmed space-time diagram for the SCTS (p,010). The following lemma gives
a formal definition:

» Lemma 2. The annotated word on row i (indexed from i = 0) of the annotated trimmed space-time diagram
is: (the production indices in exponent are computed modulo n)
if u'™t = 0™ . s for somer > 0 and s € {0,1}*: then, r = t;11 —t; — 1 and the annotated word on
row i is iH1Htlg .. i-t+tinlglittinlg . 5 whose first letter is placed in column t; + 1 (where the leftmost
column is indexed by 0);
if ultt = Q" for some r > 0: then, row i is the last row of the diagram and its annotated word is
li+lttilg . .. i+titrlglittitr+l] gnd starts at column t; + 1.

Proof. Observe that ¢% =i +t; mod n as exactly ¢; letters have been read and i appending steps occurred
before reading the i-th 1. <

XX:5
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Finally, we use a result by Cook [4], and Neary and Woods [22, 14] to show that simulating a skipping
cyclic tag system is sufficient to simulate universal Turing machines efficiently:

» Lemma 3. Let M be a Turing machine running in time t. There is a skipping cyclic tag system S
simulating M in O(t*logt) steps. Moreover, the number of productions of S is a multiple of 4.

Proof. The original cyclic tag system by Cook [4] differs from the skipping cyclic tag system only in that
in the original, the list rotates by 1 no matter which letter the current word begins with. By a classi-
cal result about tag systems, 2-tag system with m productions (i.e. over an m letter alphabet) can be
simulated by a cyclic tag system with 2m productions: that simulation works by encoding the m letters
as 10™ 71, 010™ 2, 0%10™ 3, ... 0™ 1, respectively. We can in turn simulate a cyclic tag system with n
productions pg, p1, .- .,Pn—1, Starting from an input u, by a skipping cyclic tag system with 2n productions
e, f(po),e, f(p1),€,..., f(pn—1), starting from the word f(u), where f is the automorphism over {0,1}*
defined as f(@) =00 and f(1) =1.

Finally, the result by Neary and Woods [15, 22] on cyclic tag systems implies that 2-tag systems can
simulate ¢ steps of a Turing machines in O(t?logt). <

3 Proof structure

Figure 1 shows the global structure of our construction: at the abstract level (Section 4), we will show how
the geometrical arrangement of big blocks (regions of the plane) simulates a tag system. The construction
then becomes local: we only have to construct a molecule that correctly folds into the blocks, and interacts
with neighbouring blocks as planned.

In Section 5, we will introduce modules (parts of the sequence), functions (possible conformations of a
module in response to the environment in which it is folded), and bricks (partial conformations contained
inside a block). Finally, in Section 7, we will show the actual sequences and attraction rule that implement
all bricks, and show that our choice of geometric parameters guarantees that important parts of the sequence
always fold in the same environments, in all possible conformations and inputs.

Section 8 gives a proof that the bricks actually implement the blocks, and shows how we verified the
assembly level using a program on a specific tag system that exhibited all possible interactions between
modules. This last step of our proof will follow the following steps:

1. Enumerate all the surroundings for each brick of each module

2. Enumerate all possible modules following the module

3. Generate automatically human-readable certificate of the correctness of the folding for each possibility,
in the form of proof trees.

4. In the few cases where the surrounding may vary, prove that it has no incidence in the folding of the
brick.

(Section 4)
Abstract

Modul
odues (Section 5)

Assembly

Lovel (Section 7)

Figure 1 Programming framework.
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4  Simulating Tag Systems with Blocks

This section presents the simulation logic and the global geometry, without any folding. The simulation is
decomposed into blocks, which are regions of the plane.

In the simulation, these blocks only interact at their border. In Section 5, we will show how to implement
each block, and interactions between blocks, using actual folding. The names of blocks, introduced here, will
be the same between the different parts of the paper.

4.1 The Blocks
4.1.1 Overview

Our simulation proceeds by mimicking the annotated trimmed space-time diagram of the skipping cyclic tag
system to be simulated. The folding walks to the South, i.e. each new step is below the previous step.

At each step, the simulation starts in a general movement from left to right. Leading zeros are trimmed
off, and the simulation halts if the remaining word is empty. If the remaining word is not empty, there is at
least one 1 in the word. The simulation removes the leading 1, skips over (and copies) the rest of the word,
and appends the relevant production at the end of the word. Finally, the sequence is folded again in the
opposite direction (i.e. right to left), and copies the computed word for the nest step to start. See Figure 2
for an example.

/

2|g > g [@hﬁﬁ] APPEND PRODUCTION [2]:11

READ 1> (DPY >
[0]:110

i+14+t=3

\/_)X . ' ®© O

EINE
Y [[OHO

Figure 2 Execution of the block automaton simulating the SCTS (p = (¢,100,1,0);u° = O‘l@) Every other row
is shaded in blue. Each row encodes one step of the tag system, and each row is divided into a “zig part” (on top)
and a zag part (on the bottom). The word at the end of each step can be read at the bottom of the zag part for the
corresponding row. In this figure, 1 is pictured as a flat border with a red rectangle and @ is pictured as a red spike
with a red circle. Green and cyan ovals mark the presence of a letter, on zig and zag rows respectively.
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4.1.2 Types of blocks

There are 10 different types of blocks, shown in Figure 31. All of them are used in our example in Figure 2:

Seed encodes the initial word into a conformation beads where @s are represented as red-dot spikes and
1s as red rectangles.

Readow, Readl», Copy@w», Copyl» are responsible for reading, and copying the letters of the current
word during the zig phase (left to right). When clear from the context, we will sometimes refer to both
Readd» and Read1w collectively as Readw, and to both Copy@» and Copy1» as Copyp.

< Copy@, €Copy1 are responsible for copying the letters of the new word over to the next step, during
the zag pass (right to left). When clear from the context, we will sometimes refer to both 4 Copy@ and
<4 Copy1 collectively as €4 Copy.

Append & CR% and 4 CopyLineFeed are responsible for appending a production, carriage return and line-
feed.

Halt is the last block produced corresponding to the halt of the simulated tag system.

4.1.3 The block automaton

A visual depiction of the logic is shown in Figure 3 in the form of an automaton: starting from the seed
block, blocks attach at the orange anchors (» and «) one next to the other as described by the block
automaton in Figure 3. Each block is labelled with the current production index of the tag system which
determines the production to be appended. An example of execution of the block automaton for the SCTS
(p = (110,¢,11,0); u’ = 010) is illustrated in Figure 2.

4.1.4 Simulating tag systems with blocks

Let S = (po,p1 - --Pn_1;u’) be a skipping cyclic tag system, and for all integer i > 0, let ¢; be the i'" step
where u® starts with 1 (starting from 0, i.e. tq is the first step where u® starts with 1). The following lemma
describes the encoding of S into blocks (i.e. generalises Figure 2 to arbitrary tag systems).

» Lemma 4. The (possibly infinite) final block configuration consists of: (see illustration on Figure 6)

The seed row consists of the block Seed(u®) anchored at its end point at coordinates (0,1).

For i > 0, the i-th row consists of a zig row anchored at height Y = 2i, and a zag row anchored at height

Y = 2i+ 1 defined as follows:

e (Compute) if ultt =0"1. s and if s and pyy;1+

as illustrated in Figure 4(b) and Figure 4(c):

the i-th zig-row, growing from left to right, contains the sequence of annotated blocks located at the
following coordinates (with respect to their anchor point, shown in Figure 31):

.41 are not both €: then r=t;41 —t;—1 and,

Y 2i+1 2i

X i+1+t o i4rH+t; i+t i+ 1+t oo i |s|+tiga i+ |s| + 1+t
Blocks Readow» --- Readow»  Readlp» Copy(so)» -+ Copy(s|sj—1)» Append&CRE(P14itt;,,)

lq] f+1+t] - [t4+r+t] [0+ tis] [i+1+tia] -+ [E+1+tip] [t 41+ tip]

the i-th zag-row consists from left to right of the sequence of blocks located at the following
coordinates (with respect to their anchor point, see Figure 31):

Y 2141

X i+ 3+t — A t+4d+tip—A - i+ 24 v+t — A
Blocks <«CopyLineFeed(vg) <«Copy(v1) <Copy (Vjy|-1)

(a] [i+2+tiy1] [i+2+tipa] - [0 +2+tiy1]

where v = u! i+t = s piiyy, #€ (as s and pipi4e,,, are not both €).

e (Halt 1) ifu'tt =0"1 and Piyite,, = € then r = tiy1 —t; — 1 and the last rows of the block
configuration consist from left to right in the sequence of annotated blocks located at the following
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LEADING ZEROS TRIMMING ZIG-LOOP

no - above:

there is - above

WORD SUFFIX COPYING ZIG-LOOP

S -

thereisa
red dot
spike
above'

there is [\

above

there is

above

no - above (at the end of the word)
-

ZIG =

READ THE FIRST ONE

READ 1
lq1:p,

qg:=q+1 modn

above (i.e. we are at the end of the word)
and

noE to the left (i.e. the word is empty)
and
Pq =€

>

/APPENDIPRODUCTION LINE FEED)

NOTHING TO APPEND, WORD IS EMPTY,
CARRIAGE RETURN FOLLOWED BY LINE FEED
THEN SIMULATION HALTS

APPEND PRODUCTION
& ZIG-TO-ZAG CARRIAGE RETURN

=« ZAG

CORY{0)
EINE|REED)

Q

thereis a
red dot 4

spike
above

APPEND PRODUCTION []:p,

qg:=q+1 modn

NEW WORD COPYING ZAG-LOOP

<<

there is a red dot

spike'above

there is E

above

-
3
- &
COPY/0!
ZAG]

ZAG-COPY
i LASTLETTER ( )
| &2zAG-TO-ZIG
LINEFEED | thereis

above

there is-

above

no E above (at the beginning of the word) )

Figure 3 The block automaton.
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coordinates, as illustrated in Figure 4(d):

Y 2i+1 2 2043

X i1t o idrdt; it T P42+t
Blocks Reado» --- Reado» Read1p» CarriageReturn&LineFeed Halt

lq] [i+1+t] - [i4+r+t] [i+tis] [i4+1+tipq] [t 42+ tipa]

e finally, (Halt 2) if u'™% = @" for some r > 0: then the i-th zig-row is last row of the block con-
figuration and consists of the sequence of annotated blocks located at the following coordinates, as
illustrated in Figure 4(e):

Y 2i+1

X i+ 1+t o i+t itr+l4t
Blocks Readow» --- Readow Halt

lq] f+1+t] - [i+r+t] [+r+1+¢)

Proof. This follows from an easy induction on the number of rows The induction hypothesis at step 7 is that
the word encoded by the blocks at the bottom of the zag-row (i — 1) is u!*% and the production index in
this zag row is ¢'t% =14+ i+¢; mod n.

First, since we choose the conformation of the seed, we choose the encoding of the initial word in the tag
system. Then, showing that if the induction hypothesis holds at step 4, it also holds at step i + 1, follows
from the case enumeration in Figure 6 and the block automaton in Figure 3. <

4.2 General geometry of the Blocks

The precise geometry of each block is given by the figures 5 and 32-39. We begin by introducing a number
of parameters we will use to align bricks properly® for all possible tag systems and inputs.

We first define the write position of a block the position on its border where its value is
as either a spike (@, red circles on Figure 4) or a dent (1, red squares on Figure 4). Similarly, read positions
are positions where the shape of the folding depends on whether there is a spike or a dent on the adjacent
block. See Figure 5 for an illustration.

Starting from a skipping cyclic tag system S, we first build a tag system 7 by turning S into a skipping
cyclic tag system such that n, the number of productions of 7, is a multiple of 4, and moreover n > 8. We
build 7 by duplicating all the productions of S and all the @s in all productions of S, until 4|n and n > 8.

“written”, i.e.

n is the number of productions in 7, hence n is a multiple of 4, and n > 8.

L is the length of the longest production in 7.

P is the length of an extra padding on each production. We let P = 11 4+ (L mod 2), hence L 4+ P is
even.

w is an atomic width we need to define other constants W and h. For now, let w = 6(L + P) + 18. We
will later use the fact that w mod 12 = 6.

W is the width of the Copy» and «Copy blocks.

Let W =n - (w+ 6). We will later use the fact that W mod 48 = 0 (because n is a multiple of 4 and
w + 6 is a multiple of 12).

h is the height of the Read», Copy» and € Copy blocks, not counting the small bumps.

Let h =W — (w + 3). Note that A mod 12 = 3.

We can now translate Lemma 4, to give blocks their actual coordinates in the simulation:

3 Here, we understand “align” both as “align in the plane” and “adjust the length of sequences to match modulo common
parameters”.
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THE SEED

X=0

(a) The seed row anchored at coordinates (0, 0).

utH=0"1-5

X=i+1+ ~ e
X=(i+1)+ 1+t

(b) The case where u'™" =0"1 - s and the production to be appended is pititt,,, # €.

wH =0t 5

APPEND
PRODUCTION
\ Pltitti =€

Zag ([l

Y=2i+2 —&

PR

X=(+1)+1+ti

(c) The case where u't*i =@ - s with s # € and the production to be appended is p14itt,,, = €.

ultt = or1

APPEND
PRODUCTION

Pltitt =€

Y=2i
Row i
Zigh

Zag [l
Y=2i+2 —&

X=i+1+¢;

X=(E+)+1+tn (e) The case where u' ™" = 0",
(d) The case where u'™* = @™ and the production to be ap-
pended is Pltittiy, = €

Figure 4 The ith row of the final block configuration (the previous and next rows are shaded in blue). Production
index in the label are computed modulo n. Observe that the Read» and Copy® in the i-th zig row correspond readily

the i-th line in the annotated trimmed space-time diagram of the simulated SCTS.
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Figure 5 Geometry of the Read» blocks. Note that the internal structures (the lines in white) of both blocks
Readow and Readlw agree until position (w + 2, —h + 1) where the presence or absence of a spike, encoding a @, at
the bottom of the row above forces the block to adopt the shape Read@» or Read1» respectively.

(0,1-h)

Yo k
L

Read position at (w+2,1-h)

Y

N

X

k.

I 45
(0,0) (W,0)
(a) The Read@» block has the shape of a trapezium whose bottom basis has length W and top basis has length w+5,
with height h. It has a dent (an empty position) located at (w + 2, —h + 1) (w.r.t. to its origin at the bottom left
corner), in which plugs the spike of the block from the row above it, encoding the letter @. The next block will start

folding at the bottom right corner, at (W, 0).

Read position at (w+2,1-h) (W-1,1-h)

)

READ1 »
l,

V (W71¢U>

(0,0)
(b) The Read1» block has the shape of a parallelogram with horizontal side length W and vertical side length h. The
red rectangle area at position (w + 2, —h + 1) (w.r.t. its origin at the bottom left corner) aligns with the flat bottom
block above encoding the letter 1 (as opposed to a spiked-block encoding a @). The next block will start folding at

the top right corner, at (W — 1, —h 4 1).
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» Lemma 5. The (possibly infinite) final block configuration consists of: (see illustration on Figure 6)

The seed row, i.e. the block Seed(u®) ending at coordinates (—1,h).

Fori >0, the i-th row consists of a zig row located between y = 2ih+ 1 and y = (2i + 1)h, and a zag row

located between y = (2i + 1)h + 1 and y = 2(i + 1), defined as follows:

e (Compute) if u'*t* =0"1-s and if s and pyy;y,,, are not both e: then =t —t;—1 and,

as illustrated in Figure 6(a) and Figure 6(b):

the i-th zig-row consists from left to right of the sequence of geometrical blocks whose origin is
located at the following coordinates:

Sy (2i 4+ 1)h 2ih + 1
=z th+ 1 +t)W - ih+(r+t)W ih+t W ih+ 1+t )W —1 - ih+(|s| +ti )W —1 dh+ (14 |s|+t1)W -1
Blocks Reado» Reado» Read1p» Copy (s)» Copy (s|s—1)» Append & CRE(p1yiteiy,)

This row ends at position ((i + 1)h 4+ (L + [s| + |pisv14t,s, | + tig ) W =7, (20 + 1)h + 1).

the i-th zag-row consists from left to right of the sequence of geometrical blocks whose origins are
located at the following coordinates:

Y (2i+1)h+1
-z ((+Dh+ Q24+t )W -8 (+1Dh+ B+t )W -8 - (i+1)h+ 14 |v|+tp)W -8
Blocks <«CopyLineFeed(vy) < Copy (v1) e <Copy (Vjy|-1)

where v = w1 =5 Py, F#€ (as s and piy14e,,, are not both €). This row ends at position
((G+1Dh+ (1 +tip)W = 1,(2(6 4+ 1) + 1)h).
e (Halt 1) if u' ™ =@"1 and py1iy¢, , = €: thenr =ty —t; — 1 and the last rows of the geomet-
rical block configuration consist from left to right of the sequence of geometrical blocks located at the
following coordinates, as illustrated in Figure 6(c):

Y (2i+1)h 2th +1 (2i + 3)h
—ax  dh+ A +t)W o ih+ (r+ )W ih 4t W th4+ (1+t)W -1 G+ 1Dh+ (14 tip)W
Blocks Reado» e Reado» Readl» CarriageReturn&LineFeed Halt

e finally, (Halt 2) if u'tt = @" for some r > 0: then the i-th zig-row is last row of the geometrical
block configuration and consists of the sequence of geometrical blocks located at the following coordi-

nates, as illustrated in Figure 6(d):

Y (2i +1)h
—x  ih+Q+t)W - dh+(r+t)W dh+ (147 +t)W
Blocks Reado» e Readop» Halt

Hence, the read positions and write positions of blocks in consecutive rows are adjacent.

Proof. We map each block from Lemma 4 to its actual position, using the following table to compute the

space taken by each block:

Block Ax Ay
Reado» w 0
Readl» wW—-1 1—-h
Copy@» and Copy1» w 0
Append & CRYX(u) |u| - W +h =7 h
< Copy@ and «€Copy1 -w 0
<« CopylLineFeedd and €CopylLineFeedl W +38 2h —1

» Corollary 6. The geometrical blocks simulate the associated skipping cyclic tag system.
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(b) The case where 't = @™ - s with s # ¢ and the production to be appended is Pltittiy, = €
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(c) The case where ' = @"1 and the production to be ap- (d) The case where u' ™" =0@".
pended is pi4itt,,, = €.

Figure 6 The ith row of the final geometrical block configuration (the previous and next rows are shaded in blue).
Production index in the label are computed modulo n. Observe that the Readw» and Copy® in the i-th zig row
correspond readily the i-th line in the annotated trimmed space-time diagram of the simulated SCTS.
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4.3 Production segments: encoding the production index

The primary structure we use to simulate a skipping cyclic tag system with n productions pg, p1,...,Pn—1, is
a periodic sequence of n strings of beads of equal length called production segments [po],. .., [Pn-1], Wwhere

for all 7, [p;] encodes production p;. The first module of production segments is written as black lines on
the figures in Section B.

The primary sequence of the oritatami system corresponding to the skipping cyclic tag system with
productions (po, ...,pnp—1) is the infinite sequence with period [po] - [p1] - - - [Pn-1]-

Each block is the result of folding a number of production segments (depending on the block type):

Readw» and Append &CRX%(u) take one production segment each,
Halt stops before folding one full production segment,
all other blocks take n production segments each.

We call the internal state of a block B the production index ¢ of the first (and possibly only, for Readw,
Append & CR%(u) and Halt blocks) production segment [p,] of B.

» Lemma 7. At each step, the internal state of every block is equal to the state variable q in the block
automaton in Figure 3.
Therefore, the block automaton simulates exactly the SCTS.

Proof. In the construction of our blocks, the internal state is increased by one (modulo n) each time a
block consisting of one production segment is folded (Readw» or Append&CRX), and is unchanged (modulo
n) otherwise (Copy», €4Copy or «€CopylLineFeed). The case of Halt, which stops the entire simulation, is
special.

This is exactly the same as in the block automaton (Figure 3).

Moreover, the zag phase contains only blocks of n productions segments (i.e. of width W), hence does
not change the internal state, again as in the block automaton. <

5 The Structure of the Sequence: the Modules and the Bricks

5.1 Modules

Each production segment is split into seven modules , e ,, each serving one or several purposes:

Module JAY (3h — 2 beads long) is the initial scaffold upon which the other modules fold.

Module (5 beads long) is responsible for the detection of an empty tape word: if it is empty, it folds to
the left and the molecule gets traped in a closed space and the computation halts; otherwise, it folds to
the right and the computation continues.

Module (€ (3h—10 beads long) is responsible for the detection of the end of the tape word to start appending
to it the production word.

Modules Dgjii (3W + 30 beads long each) encodes each letter of the production word inside the production
segment. It adopts two shapes: compact inside reading and copying blocks, or expanded in appending
blocks.

Module (B3W(L — a+ P) + 8h — 1 beads long) ensures by padding that all production segment have
the same length (even if the production word have different length). It serves two other purposes: its
presence indicates to |€| and |B] that the end of tape is not yet reached; and it accomplishes the carriage
return initiating the Zag-phase once the current productionaword has been appended.

Module E (4h beads long) is the scaffold upon which folds. It is specially designed to induce two very
distinct shapes on depending on the initial shift of .

Module (6h—1 beads long) is the real “brain” of the molecule. It implements three distinction functions
which are triggered by its interaction with its environments: in the zig-up phase, it reads the current
letter of the tape word, ignoring the @s and moves to the zig-down phase when it reads a 1; it copies

XX:15
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the @ and 1 in the zig-down and zag phases; it accomplishes the line feed when the molecule reaches the
beginning of the tape word at the end of each zag-phase.

The bead-by-bead description of each of these sequences will be given in Section 7.
Each production segment [p;] is split into a sequence of modules: [p;] :m-~ G- Dol - Donn
S D(pi)|l’i|*1 m [Ii where - denotes the concatenation of two bead sequences.

5.2 Bricks

» Definition 8 (Brick). Each module adopts different conformations to accomplish each of its tasks. We call
brick every conformation that a given module adopts when folded in a valid environment.

Figure 7 lists all the bricks that adopts the modules in our design and how they are organized inside
each block. The exact geometry of the bricks will be given together with their beads sequence in Section 7.
Bricks are the lowest design level we will consider in this article before going to the beads level. Figure 8
presents the brick automaton which details how the bricks articulates with eachother. The lemma below
shows that if the modules folds into bricks according to this automaton, then our design simulates indeed
the block automaton and thus the SCTS. We are left with proving that each module folds into the expected
brick for every possible environment to complete the proof of our main theorem.

» Lemma 9. Starting from a wellformed seed (see section 7), the brick automaton in Figure 8 simulates the
Skipping Cyclic Tag System.

Proof sketch. Starting from a wellformed seed, we prove by induction that the brick automaton implements
precisely the block automaton which simulates the SCTS by Lemma 7. <

We are left with designing sequences implementing the bricks. We can forget about the simulation itself
and focus on the local folding of each module in every possible environment.

6 Design Toolbox

In this section, we present several key tools to program Oritatami design and which we believe to be generic
as they allowed us to get a lot of freedom in our design.

6.1 Expanding shapes: Glider and Switchback

In our design we need to store many letters in a very compact space inside the blocks Read», Copy» and
<« Copy, and to expand each of them to the width of a block in the Append & CRX blocks. This is achieved
using the glider/switchback device illustrated in Figure 9. The key in this design is that both shapes use a
small enough number of bonds so that they don’t interfere once the beginning of the molecule is folded in
one way, it keeps folding that way. The design of modules D], E’ and is based on this bonding pattern
(see Section 7). This behavior is best observed in the proof-trees (see Section 8.2 or the companion website
of this paper?).

6.2 Implementing the logic

As in [11], the internal state of our “molecular computing machinery” consists essentially of two parameters:
1) the position inside the primary structure of the part currently folding; and 2) the entry point of molecule
inside the environment. Indeed, depending on the entry point or the position inside the primary structure,
different beads will be in contact with the environment and thus different “functions” will be applied as a

4 https://www.irif.fr/ nschaban /oritatami/prooftrees/
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Figure 7 The bricks inside each block.



XX:18 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

E above

ﬂat
above
A>Zigup BrZigUp CrZigUp DppZigUp EL-|p,»ZigUp F»ZJgUp / W
block READM |
GPReadt

ZIG-DOWN bim b1
.
bump
mou if b = 0 mod n: output
: block COPYo»|q]
\ —

GPZigCopy@
E ab
) above >
B»ZigDown f'at
- —

ZIG-UP G- g+ 1
block HALT
START o E above / bump
from the = above/ 7
seed brick / Y Brale / GPReado block READ@M[g]
=0 —m / —> —» —
4 / ~— v

A»zlgDown c»zlgDown Dpg>ZigDown EL—|pg/>ZigDown F»ZigDown
if b= 0 mod n: output

1o E above block COPY1»[g]

G ZigCopy1
// A»ZigUp
£ .
/ // BhHalt
WRITE . — =
gi=q+1
/ i /
nothing 1/ GdtineFeed / block Carriage Return &
- above Line Feed & Halt[q]
" o [T
L PR »
CrEnd of Tape D Wiite pg EPCarriage Return \ &
T — —
something
PR above
block
» Faz G4Copyl
} % 4Copy Append & Carriage Return(p,)
GLine Feed
(b= 0 mod n) Output
" block 4COPYLineFeed[q|(c) PR
gi—q+ land bim0
ZAG
nothing
above
W~ bump
above
///// G4ZagCopye - - - -«— - - «
if b= n-2 mod n /- . BdZag
co / y 4
if b= 0 mod n: output FaZag EL |p,4Zag Dp,4Zag Cazag AdZag
block 4COPY|g(c)
flat
above
G 4ZagCopy1
if b= n-2 mod
c:=1
q q+1 >

Figure 8 The brick automaton implementing the block automaton. Note that in the Zig Down-phase, each letter
of the word above is copied by the first module @ of the Copy» block and the end of the word is detected by the
first module €| of the block. In the Zag-phase however, each letter of the word above is copied by the penultimate
module @ of the «4Copy block and the beginning of the word is detected by the last @ of the block.

Note that this automaton is presented as a“transducer” producing the block diagram: the variables ¢ and b, which
counts up to n, are introduced only to output the right module at the right time during the zig-down and zag phases
(assuming the seed is wellformed).
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Figure 9 The glider/switchback bond pattern. To the left: the @-rule for the F-beads. In the middle: the strong
binding of the F-beads with the B-beads triangular shape imposes the glider shape. To the right: the strong bonding
of the F-beads to the C-beads imposes the switchback pattern forever.

result of their interactions. Similarly, the memory of the system consists of the beads already placed in the
area currently visited (the environment).

At different places, we need the molecule to read information from the environment and trigger the
appropriate folding. This is obtained through different mechanisms.

Default folding. By default, during the zig-up phase, is attracted to the left and folds to the right only
in presence of E above. This allows to continue the folding only if the tape word is not empty or to halt
it otherwise (see Figure 14).

Geometry obstruction. An typical example is illustrated by . During the zig-up phase where the absence
of environment below the block Read» allows @ to fold downward at the beginning (see Figure 22) which
shift the molecule by 7 beads along |RI resulting in to adopt the glider-shape (more details on this
mechanism in the next section). Whereas during the zig-down phase, cannot make this loop because
it is occupied by a previously placed @ This results in a perfect alignment of [G] with |[R whose strong
attraction forces [G] to adopt the switchback shape.

Geometry of the environment. Figure 10 shows how the shape of the environment is used to change the
direction of in glider-shape. This results in modifying the entry point in the environment and allows
the Oritatami system to trim the leading @s in the tape word, switch from zip-up to zig-down phase when
reading a 1 and from zag- to zig-up phase when it has rewind to the beginning of the tape word.

6.3 Easing the design: getting the freedom you need

Several key tools allowed to ease considerably our design, and even in some cases to make it feasible. These
tools are generic enough to be considered as programming paradigms. One main difficulty we had to face
is that the different functions one wants to implement tend to concentrate at the same “hot-spots” in the
molecule. A typical example is the center of which is the place where one wants to implement all the
functions: Read, Copy, Line Feed. The following powerful tools allowed to overcome these difficulties:

Socks work by letting a glider/switchback module fold into a switchback conformation for some time when
it would otherwise fold into a glider. Examples are shown in Figure 11. They are easy to implement,
since the socks naturally adopt the same shape as turn that part of the module has in the switchback
conformation. They offer a lot of freedom in the design, for several reasons:

First, they simplify the design of important switchback part by lifting the need for implementing the
glider conformation for that part, as shown in Figure 11(a).
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(a) [G] goes straight southwestward in
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(b) bounces southeastward in
presence of a bump.
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(c) bounces eastward in presence
of a flat surface.

Figure 10 The interactions of module @ in “glider”-mode with different environments result in heading to different
entry points to the next area of the folding.
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(a) Easing the design of switchback-
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extremities even in “glider”-mode.
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Figure 11 Different uses of socks: (a) Easing bond design; (b) Delaying; (c) Preventing unwanted interactions.

= Second, a glider naturally progresses at speed 1/3. Adding a sock allows us to slow its progression
down to speed 1/5 for some time, as in Figure 11(b), and therefore realign them. We used that
feature repeatedly to “shift” some modules, by starting them with an initial speed-1 (i.e. straight line)
progression, as in Figure 11(b), and then compensate for that speed by introducing a socket later on,
and realign the brick with others. This is a key point in the design, as it allowed us to separate the
Read and Copy functions into different parts of module , and therefore to get less constraints on
rule design. In the specific case of module , the Copy-function occurs at the center of the module,
while the Read-function is implemented earlier in module!

- Finally, socks allow to prevent unwanted interactions between beads by concealing potentially armful
beads in unreachable area as in Figure 11(c).

Exponential coloring is a key tool to allow module to fold into different shapes, glider or switchback,
along module , when folding in the Read® configuration. This trick is described in greater detail in
Section 7.10. The problem it solves is that in order for to fold into its switchback shape, we need
strong interactions between and neighboring module , whereas in order for to adopt the glider
shape, we want to avoid those interactions. This is made possible because gliders progress at speed 1/3
while switchbacks progress at speed 1. Using a power-of-3 coloring allows to realise these contradicting
goals altogether (precise construction is analysed in Lemma 15 in Section 8).
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7 The Sequences for the Bricks

We now define the primary structure we use to simulate a skipping cyclic tag system. The complete rule &
is given in the appendix in Section C.

7.1 Extra notations for sequences

In order to do so, we need a few extra notations to manipulate sequences: if u and v are finite sequences, we
write their concatenation as v -v. For any two integers 0 < i < j < |u|, we also write uj;. ;) for wsu;q ... u;.
The reverse sequence of u, written as u%, is Upy| =1 W[ —2 - - - ULUp-

Finally, given a sequence u, we write u{(a1@iy, . .., axQ@iy)) for the sequence w where for all j € {1,2,...k},
bead i; of u has been replaced by a;:

I if ¢ = 4; for some j
K3 .
u; otherwise

By extension, we write u{{(v@k..l)) for the sequence w where for all ¢ € {k,k + 1,...,1}, the beads at
indices k to [ of u have been replaced by the word v (of length | — k + 1):

Vi—k if k& < ) < l
w; = .
u;  otherwise

For an infinite sequence of (finite) words (u;);>1, we denote by @i>1 u; the infinite word wqug ---u; ...
obtained by containing all the words u, ...

7.2 More constants: k£, A and &

We also define three new constants as helpers for the module sequences:

k= % Note that by the definition of h in Section 4.2, k is even.
A = W/2. By the definition of W in Section 4.2, A\ mod 24 = 0.
k = W/24. By the definition of W in Section 4.2, k is even.

7.3 :Seed for input w.

We first describe the seed , which is essentially an encoding of the input word u to the skipping cyclic
tag system we are simulating. As per the definition of oritatami systems, this is a conformation, thus a
sequence of beads together with positions (i.e. all other sequences have their positions defined by the folding
dynamics). These positions will be encoded incrementally, using the following notation, relative to the axes
define in Figure 6:
0
a s‘ﬁ b means a bead of type a, followed by a bead of type b, such that posb = posa + ( 1 >
a s\g‘ b means a bead of type a, followed by a bead of type b, such that posb = posa +

at b means a bead of type a, followed by a bead of type b, such that posb = posa +

a y b means a bead of type a, followed by a bead of type b, such that posb = posa +

a g b means a bead of type a, followed by a bead of type b, such that posb = posa + ( 0 >
a 'y b means a bead of type a, followed by a bead of type b, such that posb = posa + (

XX:21
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<

For example, a sequence such as a § <

T e dy e, starting at ( 8 ) is a sequence of five beads: a bead
0
1

of type a at < 8 >,abeadoftypebat < >,abeadoftypecat ( 1 ),abead of type d at ( ; ),and

a bead of type e at < (2) >

We are now ready to describe module , built by combining 4 types of conformation segments, see
Figure 12:

24023
SegSeedTerm — (Js 57 s{,) J11% 125 J16 & J17 & J18
SegSeedPrefix — A9 5, A12 5 B0y B1 Y B2 B35 B4 X C4 X A0 (7 AD)" ™' & H8 & H19% H20
H21 & H24 § 115§ 1155 116 4 117 4 119§ 119§ J12 % J16 4 J17 5 J18
SegSeed(@) = L17 § L18 § L47 %, L48 Y L49 | L82 § L83\ A6
SegSeed(1) = L17 § L18 § L48 {/ L82 {, L83 ' L84 | A6

11 k—2
SegSeedLineFeed = K34 % (K45 £ KA0Z (K46 £ K47 s/w) (K57 £ K52 s{,)
k—18 10
(ngs/w Kﬁosﬁ) (Kﬁgs{, K64S/w) K69 5, M20 o M26 &% M27
£ M28 £, M29 2 M30.

k—2

Each letter a € {0,1} is encoded in the seed by the conformation:

SegSeedLetter(a) = (SegSeed(1) |, SegSeedPrefix <\,,_)"_1 SegSeed(a) |, SegSeedPrefix

Then, the module is:

|l

= SegSeedTerm |, @ SegSeedLetter(u|, ;) y | SegSeedLineFeed

i=1

7.4 [N:zig-Init.

The first module, @, is defined as:

[AY = A0..4 - (A5..10)**~! . A5..7 - A6 - A9..10 - A11..12.

The length of m is therefore 5+ 6(3k — 1) + 3+ 1+ 2+ 2 = 3h — 2. The proof trees in Section 8.2 prove
that @ always has height H =2 + 2(3k — 1) + 3 = h, and width 3, and folds as in Figure 13.

7.5 : Empty word detector.

The next module is , whose purpose is to test whether the word is empty, and orient the folding either
into a closed connected component of the place, if the word is empty, or to the outside of that connected
component. This module is defined as = BO0..4, which is of length 5, and its two possible functions are
shown in Figure 14.

7.6 |C: End of word detector.

If does not detect an empty word, the folding goes on to (€|, whose purpose is to detect the end of the
word: if the current position is at the end of the current word, a production segment (encoded by a sequence
of Dg) and Djl) needs to fold into a word appended at the end of the current word. Else, €| folds into a
switchback conformation.
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© @ TR0k
@2 [»

Figure 14 The folding of |[B] in the zig phase. The two possible outcomes of the text are shown in this figure: the
one in dashed lines is what happens when the word is empty, i.e. when the two 119 beads are absent, and the one in
full lines when the word is not empty

This module is defined as [€ = (C0..2)?* . (C3..5)* . C3.C7-C8 - (C6..8)*~1 . (C9..14)*~1 . C9..10 -
C15..16 - C13.

The length of |Clis 3h —10 =3 x 2k +3k+3+3(k—1)+6(k—1)+ 5.

Its two possible conformations in the zig phase are shown in Figure 15:

The left-hand side figure shows the conformation at the end of the word. Its height is Heyp = %T—g -2,
and its width is Weyp, = 2.
The right-hand side figure shows the conformation in the other case. Height (upright): H,, = h — 3.
Width (upright): W, = 3.

7.7 D!: Letters

Module D] defines the encoding of the letters in productions of the skipping cyclic tag system. It takes three
parameters:

a letter z € {0,1},

a parameter r € {0, 1,2} to indicate whether this letter is the first letter in the production word (in which
case r = 0), at an odd position in the production word (in which case r = 1), or at an even position in
the production word (in which case r = 2),
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(b) The conformation of [€] when not at the
end of the word.

(a) The conformation of (€ at the end of the
word (before Eﬂ folds into the appended pro-
duction).

Figure 15 The folding of €] in the zig phase.

= and a parameter ¢ indicates whether that letter is the last letter of the word (¢t = 1) or not (¢ = 0).

This module therefore comes in twelve different versions, all of the same length 3W +6 x5 =6(A+5) =
6 x (12K + 5).

We first describe four helper sequences, each of length A +5 = 12k + 5:

= SegDO0 = D23..33 - E6..11 - (E0..11)~~L,
= SegD1 = (E12..23)" - D49..45.
= SegD2 = D34..44 - E30..35 - (E24..35)" .

- SegD3 = (E36..47)" - D54..50.
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7.7.1 Encoding of z =1

Then, we define two particular versions of |Djl, from which the other versions are derived by replacing a few
beads:

D120 = SegDO0 - SegD1 - SegD2 - SegD3 - SegDO - SegD1.
Dj10l = SegD2 - SegD3 - SegDO0 - SegD1 - SegD2 - SegD3.

Module |Djgg| is obtained by modifying the 17 first beads of |Dj20):
Dio0) = D120 <<D0..16@0..16>>

Then, for all r € {0, 1,2}, the trailing versions |Dj,1i of |Dj| are obtained by modifying the 8th and 5 last
beads of |Dj,q), as follows:

D = IDYRN(D17Q(3W + 22), D18..22Q(3W + 25)..(3W + 29)))

7.7.2 Encoding of z =0

For all r € {0,1,2} and ¢t € {0,1}, module Dg,; is obtained by replacing most of the beads in the range
3w+ 1..3w + 13 as follows:

Do, = [DY(L17@(3w + 1), L18@(3w + 2), D55..62Q (3w + 6)..(3w + 13)))

7.7.3 Possible conformations

The possible conformations of D) are shown in Figures 16 and 17.

7.7.4 Size and alignment of the module

First note that the height of module D] (i.e. the encoding of a single letter of a production), when folded
into its switchback conformation, is Hyp, = L/6 = W/2 + 5, and its width is Wy, = 6.
We will now prove a small lemma to make the proofs of a claim in Section 8 easier:

» Lemma 10. The segment of Dy encoding the “bump” in the expanded conformation is always adjacent
to the same beads of \C, when both (€| and \Di,; are in their switchback conformation.

Proof. Note that w = 6 mod 12, hence index ¢ = 3w + 1, the first index of the bump, is such that i
mod 12 = 7. This corresponds to index j = (11 —4) +5 =9 mod 12 in the previous column, and hence we
get the following table:

¢ mod 12 j=(11-4)+5 mod 12 Neighboring beed in previous and next columns

Sw+1=7 9 36+9 =E45 /L17 /E21 = 1249
3w+2=38 8 36+8 = E44 - L18 - E20 = 12+ 8
3w+6=0 4 36 +4 = E40 - D55 - E16 = 12+ 4
3Sw+13=7 9 36+9 =E45 - D62 - E21 =12+ 9

This proves the lemma statement.
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K — 2 times
in total

First position Odd Positive Last columns of last letter at
(r=0) position  even position even or odd position
(r=1) (r=2)

Figure 16 Module DE, during the zig phase, folded in its switchback/upright conformation.

7.8 : Padding with L — a extra blanks for 0 < a < L.

The purpose of module is to make sure that all production segments are of the same length, independently
from the length of production words in the simulated skipping cyclic tag system S. Recall from Section 4.2
that L is the length of the longest production word of S.

This module has two possible conformations: one in switchback, as shown in Figure 18, and one expanded
at the end of the appended production. An outline of the latter conformation is shown in Figure 19.

We will now define the different parts of module E, composed of 4 parts:

= the two first parts are based on the two infinite sequences:

- SegEA = ((F0..11)" - (F12..23)* - (F24..35)" - (F36..47)")™
- SegEB = ((G0..11)" - (G12..23)" - (G24..35)" - (G36..47)")™

= SegEC = HO0..4 - (H5..16)9~! - H5..10 - H17..24 of length 5 + 12(q — 1) + 6 + 8 = 3h — 2, where

h—3
q:TZO mod 3.

XX:27
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Figure 17 Module D], expanded to append the new production word at the end of the current word.

(f) The brick Dgp; -write.
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k — 1 times

(°5,0)
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(64+6(L+P),0

(3¢-1) mod %

6(L-a+P) columns
Yes1

Junction between bricks EA -Up and EB_-Up

if 6a+[3¢/x] = 0 mod 4, or = 2 mod 4, or = 1 mod 4, or = 3 mod 4

Up

Repeated
bond pattern
inside brick EA -

~Up

(b) Precise description of the E—Zig-Up brick.

Beginning of brick EA

(a) Blueprint of the [E5}-Zig-Up brick.
Figure 18 The [E4}-Zig-Up brick.
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(=2,h~4) Brick EA0 (when a=1)
(0, h
( PN (hoht 1) 2h 1h+1))-\(3h 4,h+1)% 5,h+1))" (5-9.8) \b (85-16,7) (ch)
Brick ED Brick EC Brick EB

(a) The blueprint of the [Ef}-CarriageReturn Brick, made of four bricks EAO, EB, EC and ED.
Brick EA1 (if L—a is odd) or EA2 (if L—a is even and a<L)

mmmmmmmm

(0,h-1)
M) h-9,h =
2R\ (bt 1) 2h 1,11 (3h4 hi1) (4h—5,h+1)» (5-9,8) (=) (e,h)
Brick ED Brick EC Brick EB
(b) The blueprint of the m-CarriageReturn Brick, made of bricks EA1/2, EB, EC and ED.

Figure 19 Outline of the four different parts of module E, when folded at the end of the appended production
word. See Figure 20 for the detailed beads of each part.

= the last part is composed of five sequences:
- SegED, = 115 -11..5- (10..5)*=1 .10 - 11 - 118 of length 6 + 6(k — 1) +3 =h
- SegED, =119 -17-18 - (16..8)2*=1 .16 - 17 - 115 - 116 of length 3 +3(2k — 1) +4=h + 1
- SegED, = 117 -110 - 111 - (19..11)%*~119 . 110 - 119 of length 3 + 3(2k — 1) +3 =h
- SegED; = 118113114 - (112..14)?*=1 . 112 - 113.119 of length 3+ 3(2k — 1) +3 ="h
- and SegED, = 119 -11-12- (10..2)2* of length 3 +3 x 2k = h

We may now define the sequence for the module for 0 < a < L by letting K = 3W(L — a + P), and:

= HeadE, = (SegEA)[ y13.—2) - F51 - (SegEB)[p13.. 44 k2], of length K — 1, where b = 0 if a is even, and
b=2\if ais odd.
= TailE = SegEC - SegED,, - SegED, - SegED, - SegED, - SegED,.

Then the module is:

- = (HeadE)((F48..49@0..1, F50Q11)) - G48 - TailE
= and for a > 0: [E}] = (HeadE,) - G48 - TailE.

The length of module is:

EY = K+8h—1=6AL—a+P)+8h—1
= 6x12kx(L—a+P)+ Sh -1
=0 mod (3x48) =24 mod (2x48)

Therefore, for any word a, |[ER| mod 48 = 23.
We will now prove a lemma, used later in Section 8 to prove that the two conformations (switchback and
expanded) can be obtained at the same time:

» Lemma 11. When folded in the switchback conformation (i.e. as in Figure 18), all beads of SegEC are
far enough from SegEA to be attracted by them.

Hence, the attractions between these two parts can be freely chosen to “force” SegEC to fold into a straight
line instead of a glider in the expanded conformation.
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_ e -15 _ . .
Proof. Let ¢ = ———— and note that ¢ mod 12 = 2. Now, the width of SegEB, when folded in the

switchback conformation is K — (3¢ — 1). Moreover, 3¢ — 1 =5 mod 36. Therefore, for any padding length
a:

6 3
K—(30—1)ZZA(L—a—l—P)—Gh—I—l?):5A(L—a+P)—12)\+6(w+3)+13
3P
>)\<2 —12) > 4.5\, since P > 11.

Therefore, the width of SegEB is at least 5 columns, and since the delay of our simulation is 3, no bead of
SegEC can ever be attracted to a bead of SegEA in the switchback conformation. <

» Lemma 12. Bead F51 is never on an edge of brick —Carm'ageReturn.

Therefore, that bead is not involved in a turn in that brick, which means that the attraction rule can
be decided mostly based on its EAQ brick, to initiate the turn at the end of the padding, in the expanded
conformation of[E.

Proof. That bead is at index 3c — 1 from the beginning of the module, and moreover between the SegEA
and SegEB segments, which are both folded into switchbacks of height A in that brick. Now, note that A
mod 12 = 0, and that ¢ mod 12 = 2. Therefore, (3¢ — 1) mod 12 = 5, which means that bead F51 cannot
be on the edge of the switchback. |

XX:31
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(f) The subbrick ED.

Figure 20 The -carriageReturn bricks.
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7.9 : Zag-Init.

Finally, after the end of the padding, module [E is used to start the copying phase. Module [ﬁ has the some
conformation in the zig and zag phases, up to a rotations of 180 degrees. The conformation of E in the zig
phase is shown in Figure 21.

@d @@
(w-4,1-h) ooo Se
TP ORI (1-1,1-h)
(’LU*4,5* ) /“‘

0.0 @ (U}*l,*35732j+1) Truncate this
; infinite sequence

to height h—50

Concatenate
for j=1
to o0

B o e
(w-4,0) (w-1,0)

Figure 21

Module [R1 is composed of three parts. The beginning is HeadF and the end is TailF, defined as:

= HeadF = J0..4 - (J5..10)3*~1 . J5..7 - J11..23 of length 5+ 6(3k — 1) + 3+ 13 =3h + 6
= TailF = J48 - (J51..48)° - J51 - J52 - J49..48 of length 1 +4 x 10 = 41

The middle part is made of the following “exponential” sequence:

m for even i > 2, let SegExp(i) = J24..29 - (J30..35)3i*1_1 of length 6 - 37 1;



XX:34 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

and for odd i >3 , let SegExp(i) = J36..41 - (J42..47)3" ~1 of length 6 - 3~ 1;
so as to define the following infinite sequence, which is the concatenation of SegExp(2), SegExp(3),
SegExp(4)...:

SegExpF = @ SegExp(i)

i>2

Finally, the beads sequence for [H is:

[& = HeadF - (J39..41 - SegExpF|_,_s;y)) " - TailF.

Therefore, the length of module [E is 3h + 6 + (h — 50) + 3 + 41 = 4h.
We claim that for all i, the pattern SegExp(i) starts at index 3¢ — 9 of SegExpF. Indeed:

i—1 i

) 3 _9 )
> 6.3 =2. =3"-9
ot 3-1

Finally, notice ’SegEpr[Ou(hﬂ%l)]‘ mod 12 = (h — 50) mod 12 = 1.

7.10 : Read-Copy-Line Feed module.

Module is the last module, and the one in charge of reading and copying the information around. This
module can fold into a seven different conformations:

Figures 22 and 23 show the module reading the encodings of @ and 1, respectively. These conformations
only happen during the zig phase.

Figures 24 and 25 show the module copying the encodings of @ and 1, respectively. These conformations
are shown on these figures in the zig phase, but are the same in the zag phase, rotated by 180 degrees.
Figures 26 only happens at the end of the zag phase, after copying the word, and before starting the next
step.

Module is of length exactly 6h — 1, and consists of six parts, each of length approximately h. We
described these parts now:

The first part is the most sophisticated since it can be folded either in a straight line, and hence “progress
at speed 1 (i.e. one row per bead), or in a glider, which progresses vertically at speed 1/3 (i.e.
two rows every six beads).

The other parts just contains a small delay loop (a sock) that allow to separate crucial sensing function

”

vertically

from basic geometry, as explained in Section 6.3. For the rest of this section, let k = b 0 mod 2.

Part 1: As for Module [ﬁ we define the following exponential pattern:

for even i > 2, let SegExp’(i) = K4..9 - (K10..15)3 ' 1 of length 6 - 31
and for odd i > 3 , let SegExp’(i) = K16..21 - (K22..27)3" 'L of length 6 - 31
so as to define the infinite sequence:

SegExpG = @ SegExp’(7)

i>2
As for SegExpF, the pattern SegExp’(i) starts at index 3¢ — 9 exactly in SegExpG.
The first part of @ is:

SegGl = L0..6 - K3 (K0..3)° - K0..2- L7..10 - SegExpGs_, 3]

of length 7+1+9x4+34+4+h—-51—-7=h—"7. Note that h —51 =0 mod 12 and thus the index of
the last bead of the exponential part is a multiple of 12.
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Figure 23 The brick [G]-read1.

Part 2: SegG2 = K32 - K33 (K28..33)*2 . K28..32 of length 2+ 6(k —3) +5=h — 14 =1 mod 12.

Part 3: SegG3 = K35..39 - (K34..39)k*14 - K34 - K35 - - K45 - (K40..45)10 . K40 - K41 of length
546(k—14)+6+10x6+2=h—14=1 mod 12.

Part 4: SegG4 = Kb50..51 - (K46..51)k*3 - K46..48 of length 24+ 6(k—3)+3=h—-13-3=h—-16=5
mod 6.

Part 5: SegGb = Kb55..57 - (K52..57)”“_6 -K52..53 - L74 - L75 - K56..57 - (K52..57)? - K52..53 of length
34+6(k—6)+2+2+242x6+2=h—16=5 mod 6.

Part 6: SegGb = K63-(K58..63)’“_19 -K58..61-191..99 - M0..19-K67..69 - (K64..69)'° - M20..30 of length
14+6(k—19)4+44+9+20+3+60+11=h—9=6 mod 12.

Finally,

= SegG1-L11..24 - SegG2 - 1.25..38 - SegG3 - L42..55 - SegG4 - L56..73
-SegG5 - L76..90 - SegG6

of total length =h —-7+14+h—-14+14+h—-144+14+h—-16+184+h —-16+15+h -9 =6h — 1.

8 Correctness of the folding

We will now resume and expand the explanation give in Section 3. Here is how we proceeded to ensure the
correctness of our design:

1. Enumerate all the surrounding for each brick of each module

2. Enumerate all possible modules following the module

3. Generate automatically human-readable certificate of the correctness of the folding for each possibility,
in the form of proof trees.

4. In the few cases where the surrounding may vary, prove that it has no incidence on the folding of the
brick. This happens only for three bricks exactly: when the brick G»Read zig-folds along F»ZigUp,
when the top of the brick G»Read1 folds, and when the zag-bricks folds under D»Write.
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The lemmas in Section 7 have proved that the bead alignment in each brick does not change when n and
L vary. This implies that the figures of the bricks are indeed generic. It follows that with the exception of
the three cases listed in point 4 above, and handled in Section 8.1, it is enough to prove the folding of each
brick only once. And as most of them are made of repeating patterns, only a finite number of environments
have to be considered. That last case will be treated in Section 8.2 using an automatic procedure which
produces human-readable certificates called proof-trees.

8.1 The three bricks with varying environments

The following lemma show that it is enough to proof one folding of the bricks under a D»Write, all the other
are the same since there are no interaction between the D-write brick and any brick folding immediately
below it.

» Lemma 13 (Zag-folding under D»Write). The modules ZAG-folding under the bricks D»Write have no
interaction with D»Write, with the only exceptions of:

the beads AQ and Al of module [AY which have bonds with beads E(2+12i) and L17 for AO, and E(9+12i)
for A1, for all 0 < i< 3.

the beads L17,L18, D57, D58 (the bump in module Dg ) which bond with the beads L65,L64,L31 so that
the corresponding module folds into the expected brick G4ZagCopy Q.

Proof. Figure 27 lists all the possible @-interactions between the beads accessible from below the D»Write
bricks (to the left) with the beads at the top the modules zag-folding below it that can interact with them
(to the right).

The only possible bonds are thus:

with beads D17 and D22: (in green on Figure 27) these are only present at the junction between the bricks
DpWrite and E§Carriage Return, at the end of the rightmost D»Writebrick. The correctness of the
zag-folding of the F4Zag brick below is given next in the proof-trees section.

with beads L17, L18, D56, D57, D58, D62: (in blue on Figure 27) these beads are only present in the
spike encoding a @ in the brick D»Write, and these interactions are the one expected to ensure the copy
of the encoding of @ by the module that will Zag-fold below.

and finally between beads A0 and A1, and 4 groups of beads: E2, E3, E8, E9, then E14, E15, E20, E21,
then E26, E27, E32, E33, and finally E38, E39, E44, E45 (in red on Figure 27). As the width of a zag-
folded production segment is w+ 6 = 0 mod 12, the beads A0 and Al are always aligned with the same
beads within each of these groups (see Figure 17), namely AQ with E2, E14, E26 and E38, and Al with
E9, E21, E33 and E45. Furthermore as the interactions of AQ and Al are the same with each of them,
it is enough to prove that the module @ zag-folds correctly between one of these groups only, which is
done next in the proof-trees section.

It follows that outside these three cases (each handled by a proof-tree, see later), no interactions are
possible and the modules will zag-fold below the D»Write bricks independently of the exact beads that are
present inside. It is thus enough to show that each module zag-folds correctly at any location to ensure that
it zag-folds correctly anywhere below the D»Write brick. <

» Lemma 14 (Top of G»Read1). During the folding of the brick G»Read 1, no bead in [G] interacts with the
row above but at its two extremeties, i.e. the 82 top-leftmost beads and the 11 last (K34..L55 and M20..M30
resp. in Figure 23).

Proof. Figure 28(a) lists the only beads exposed and accessible from below above G»Read1. And Fig-
ure 28(b) lists all the possible @-interactions between them (to the left) and the beads of the brick G»Read 1
zig-folding below (to the right).

According to the rule in Figure 28(b), besides the interactions at the 82 first beads at the very top-
leftmost part of G»Read1 (K34..L55 in Figure 23, interactions in green in Figure 28(b)) and the 11 beads
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L6859 L70

7

Figure 27 The @-rule between the beads accessible from below of brick D»Write and the beads that will get in
touch with them from all the modules Zag-folding below.
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(c) The closest bead L74 in brick G»-Read1 can get from one bead L82 above (case n =1 mod 3).
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Figure 29 #-rule between the two exponential segments in E and . Note that each bead makes exactly one
bond, with a bead of the same shade, red, blue, yellow or green (see Figure 22 and 23) and of the same rank within
the shade.

at the very end of G»Read1 (M20..M30 in Figure 23, interactions in blue in Figure 28(b)), the only possible
interaction between G»Read1 and the already present beads above it is: L82@#L74. But L74 appears only
once in G»Read 1, at coordinates (w + 10 + 4k, 1 — h) (see Figure 23), while L82 appears above G»Read 1
at coordinates (w + 1 4 i(w + 6),2 — h) for i = 0..n. The minimal a-distance between L82 and L74 is thus
min;—o..p, |9+4k—i(w+6)|. But 9+4k—i(w+6) = 9+4(n—1)(w+6)/6—i(w+6) = 9+2(n—1-3i)(2(L+P)+38).
It follows that the minimum difference in z-coordinate between L82 and L74 is:

17+ 2(L+ P) > 41, if n =0 mod 3;
9,if n =1 mod 3; and
1-2(L+P)<—23,ifn=2 mod 3.

As a consequence, L74 never gets close enough to interact with L82 above (see Figure28(c) for the closest
situation). It follows that one only need to take into account the environnement for the folding of the top-
leftmost and top-rightmost part of brick G»Read 1 (which is done next using proof-trees), the glider between
them, zig-folds regardless of the beads above in the environment. <

» Lemma 15 (G»Read1 along F»ZigUp). When [G] folds into the brick G»Read, no bead in SegExpG can
make bonds with the beads in F»ZigUp nearby and thus folds regardless of the beads nearby (as a glider).

Proof. Figure 29 lists the interactions between the beads in SegExpG and the beads in SegExpF: these
are exactly K(4 + ¢)@#J(24 + i) for ¢ = 0..23; in particular red-shaded beads K4..K9 in (resp. yellow,
K10..K15; blue, K16..K21; and green, K22..K27) can only bond with beads of the same shade J24..J29 in
[& (resp. J30..J35; J36..J41; J42..147).

As shown on Figure 21 and 22 the y-coordinates explored by these beads are as follows when [G] zig-folds
into G»Read @ or G»Read1:

Red : the y-coordinates of beads J24..J29 in [E belong to {—40 — 3% ..., —35 — 3%/} for j > 1, while the
corresponding beads K4..K9 in [G] explore y-coordinates in {—38 — 32'+1 | —34 — 3%'+1} for j/ > 1.

Yellow : the y-coordinates of beads J30..J35 in [B] belong to {—34 — 3%+ ... —41 — 3%} for j > 1, while
the corresponding beads K10..K15 in [G] explore y-coordinates in {—36 — 32'+2 ... —36 — 3%'+1} for
J>1

Blue : the y-coordinates of beads J36..J41 in [E belong to {—40 — 3%+ .. 35— 3%*1} for j > 1, while

the corresponding beads K16..K21 in [G] explore y-coordinates in {—38 — 3% ... —34 — 321"} for j' > 1.

XX:43
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Green : the y-coordinates of beads J42..J47 in [E belong to {—34 — 3%%2 .. —41 —3%7+1} for j > 1,
while the corresponding beads K2..K27 in [G] explore y-coordinates in {—36 — 3%'+1 .. —36 — 327"} for
i > 1.

Now, as for all j > 1 (with the notation, a < b iff a < b—2)

—35 —3%12 <« 38 — 39Tl <« 34 — 3% < 40— 3%
and —36 — 3% <« —34 — 3¥ ! <« 41 — 3% < 36 — 3%
and —34 —3%T2 < 40 - 3% <« —35 - 3%l <« 38 — 3%
and —41 — 3% « 36 - 3% <« —36 —3% <« —34 — 3%

none of the (same-shade) interacting beads ever get close enough to each other and the beads in the segment
SegExpG folds without making any bond (into a glider), regardless of the beads next to them in F»ZigUp
when zig-folds into brick G»Read. <

8.2 Proof-trees

A proof-tree is a compact representation of the enumeration of all the possible paths the molecule explores
as it folds. Figure 30 presents the proof-tree for the folding of when bouncing on a bump encoding a
0 in G»Read@. For the sake of readability, several paths are drawn in the same ball when they share the
same beginning up to their last bond with the environment; then, as a sanity check, the grey number at the
bottom left of the ball indicates how many paths are drawn in this ball. The black number in the top right
corner of each ball indicates how many bonds are made by the paths with the environment. The ball(s) with
the maximum number of bonds is(are) highlighted in black and go to the next round, together with the balls
that place the first bead at the same position.

These proof-trees are automatically generated as the molecule folds. Each environment (surrouding + the
three beads currently folding) is given a number (written #xxxx). When an already studied environment is
encountered, the proof-tree is stopped, and the next (already encountered) environment number is written,
allowing easy navigation in the proof — note that Figure 30 is an excerpt from a larger proof-tree and does
not show its beginning nor its end, this is why the navigation tag cannot be observed in this figure.

The complete proof certificates may be found on the website:

https://www.irif. fr/~nschaban/oritatami/prooftrees/
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Figure 30 Excerpt from the proof-tree certificate for the folding of into G»Read® when bouncing on a spike
encoding a @.
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A  Types of blocks
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Figure 31 The different type of blocks. The orange circles locate their anchors on the underlying triangle grid.
The orange chevrons shows where they plug into each other. The current row of each block is shaded in white while
the previous and the next rows are shaded in blue in the underlying triangular grid.

B Geometry of the blocks

The following figures 32-39 describe the geometry of each block (except for the Readw blocks presented in
Figure 5). Note that they display an idealized version of the real path inside them, omitting details (mainly,
socks) that are vital for computing but irrelevant to the block general geometry — see Section 7 for the exact

geometry of each brick inside each block.
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Figure 33 Geometry of the Copy» blocks. The Copy@» and Copy1» blocks have both the shape of a parallelogram
with horizontal side length W and vertical side length h. For both, the next block will start folding at the top right
corner, at (W,0). Note that the Copy@» and Copy1» blocks have identical internal structure apart from the line
joining the two red areas at (w + 3,0) and (h + w + 2, h). Indeed, when folding, the part of the molecule located in
the red area, either: (1) detects a spike on top (encoding a @) and then folds into a dent on top which induces spike
at the bottom (copying the @ below, the block Copy@m); or (2) folds flat (encoding a 1) on top which induces a flat
folding at the bottom, copying the 1 from the top to the bottom of the Zig-row (the block Copy1p).

(-1,1-h) S Read position at (w+2,1-h) (W-1,1-h) i

COPRY/0l2

a

(h-2,0)

Write position at (h+w+1,1) (W+h-3,0)
(a) The Copy@» block has a dent (an empty position) located at (w+3,0) (w.r.t. to its origin at the top left corner),
in which plugs the spike of the block from the row above it, and which induces (when folding) a spike at the bottom
at (h +w + 2, h), copying the letter @ from the top to the bottom of the Zig-row.

(-1,1-h) 5 Read position at (w+2,1-h) (W—l,l—h)

COPRY/11>]

(1)

(h-2,0)

Write position at (h+w,0) (W+h-3,0)
(b) The Copy1» block is flat at (w4 3,0) (w.r.t. to its origin at the top left corner), which, aligned with a flat block
above (encoding a 1), induces (when folding) a flat bottom at (h + w + 1, h — 1), copying the letter 1 from the top
to the bottom of the Zig-row.
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Figure 34 Geometry of the €« Copy blocks. The €«Copy® and € Copy1 blocks are the horizontal mirror images of
the Copy@» and Copy1» blocks (see Figure 33).

(-W-8,1) Read position at (- W+w+1,1) (-8,1)

< COPY/0]

a

rite position at (~ W+w+2,1+h) (-8,h)

(a) The «4Copy® block is the horizontal mirror image of the Copy@» block (see Figure 33(a)).

(-W-8,1) Read position at (-~W-+w+1,1)(~8,1) <

< COPY 1
lal:p,

(- W-T,h) o 4
Write point at (-W-+w+2,k)  (-8,h)

(b) The «4Copy1 block is the horizontal mirror image of the Copy1» block (see Figure 33(b))
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Figure 35 Geometry of the €«CopyLineFeed blocks. These blocks adopt the shape of a (W — 6) x h-parallelogram
prolongated by an southwestbound "arm" hoping to the beginning of the next zig-row. Folding from right to left, the
< CopyLineFeed blocks are identical to the €4Copy blocks until position (=W + 6,0) where it detects that there are
no more blocks (encoding letter) in the row above (the detection of the absence of a block on top is made possible
by the A = 7 horizontal offset between the zig- and zag-rows). Then, instead of completing a parallelogram, the end
of the €CopyLineFeed blocks is attracted upwards and then folds into a southwestbound glider pattern to reach the
opening position of the next zig-row. The next block will start folding at (=W + 8,2h — 1).

(-W-2,0) _Read position at (-W+w+1,1) (~8,1)

(~-W-6,-2)

<781h>

Write position at (- W+w+2,1+h)

SICORY(0]
EINE|FEED,

Eﬂ@q‘

(_szh)

(a) The «4CopyLineFeedd block proceeds as €4Copy@ to copy the spike encoding a @ from the row above to the row
below. It has a dent (an empty position) at (=W + w + 9,0) in which plugs the spike (encoding a @) of the block
above. When folding, this dent induces a spike at the bottom at position (=W +w + 10, h) w.r.t. to the origin of the
block. Note that the spike below is at position (w + 2, —h + 1) w.r.t. to the beginning of the following block, which
is consistent with the position of the dent in the Read@» block (see Figure 5(a)).

(-W-2,0) Read position at (-W+w+1,1) (-8,1)

(- W6,2)

(-8,

Write position at (- W+w+2,h)

i

-/

\/

(b) The «CopyLineFeed1 block.

<CORY/1! f’j

g(—wgh)
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Figure 39 Geometry of the Halt block. This block appears at the end of the computation. It starts as a Read»
block with a 3-beads wide h-beads high southeastbound glider until it reaches position (2,1 — h). But, as there are
no block in the zag-row above, the next beads are attracted to the left and the construction stops there.

(ALY
]
)
2y

gy

7

C The complete rule

We first gives

AQQ
AQQ
AQQ
AQQ
AQQ
AQQ
AQQ
AQQ
AQQ
AQQ
AQQ
A1
A1l
A1
A1
A1
A1
A1
A1
A1
A1
A1
AQ2
AQ2
AQ2
AQ3
AQ4
Ad4
AQ5
AQS
AR5
AQ5
AQT
AQT
AQT
AQT
AQ8
A8
A9
A9
A10
A10
A1l

@ A02
# E02
P E08
@ E14
@ E20
P E26
@ E32
P E38
P E44
@ J18
P L7
@ A3
@ A04
P E03
9 EQQ
@ E15
P E21
@ E27
P E33
9 E39
@ E45
P 18
P AQQ
@ AQT
P M26
@ A1
@ A1
P Co2
@ A10
¥ Coo
9 Cco1
¥ Co2
P A02
P A8
@ Lo2
P Lo3
@ AQ7
@ Lo3
P A1l
@ A12
@ AR5
P BO4
@ AQ9

A1l
Al1
Al1
A12
A12

BoO
Boo
Boo
Bo1
BoO1
Bo1
Bo1
Bo1
Bo1
BO2
BO2
B02
BO2
B2
B02
B@3
B@3
Bo3
B@3
B@3
Bo4
Bo4
Bo4
Bo4
Bo4
Bo4
Bo4

Coo
Coo
Coo
Coo
Coo
Coo
co1l
Cco1

the rule in
@ Boo  Cot
¥ Bo3 Co2
@ Bo4 Co2
@ A0 Co2
@ U7 ce2

o3
Co3

o3
@ ag %
@ Bo3 %
@ g7 9
@ B0z %
@ pos <%
@ Fos 0%
@ Joo 004
@ Jo1 ces
@ yg 095
@ D03 C%
@ poa P
@ roz %
@ roa %
@7 o7
@ 119 o7
@ a1 CO8
@ oo 098
@ B0t C08
@ poz %
@ Fon 098
@ ato  C08
@ a1 %0
@ cos 0%
@ poo %
@ poz 0%
P Foz ggg
@®Fas

C09
C c10

c1o
P A5 10
G Co5 Cc10
W cov Cc10
®Co8 10
# C10  c10
@ C13 10
W A5 10
# C10  c11

text.

W C13
P A04
@ A0S
¥ Co5
¥ Cos
@ C10
P C11
@ C13
@ C14
# C15
@ Jos
@ J12
¥ Cos
@ Jos
@ J11
¥ Coo
® Co2
@ CoT
@ Jo7
@ Cc11
P C14
¥ Coo
¥ Co5
# Bo4
% Coo
@# Co2
P Co4
@ C11
¥ C14
% DO3
% D15
# D58
% D59
¥ E05
P E11
3 Fo3
¥ FO9
¥ Coo
@ Cot
¥ Co3
¥ D02
% Do8
W D57
% D58
¥ FO2
# Fos
¥ Co3

(0,0

Fig. 40 displays it as a matrix.

C11
C11
C11
C11
C11
C11
C11
C11
C11
C11
C11
C11
C12
C12
Cc12
C12
C12
Cc12
C12
C12
C12
C12
C12
C13
C13
C13
C13
C13
C13
C13
C13
C13
C14
C14
C14
C14
C14
C14
C14
C14
C14
C14
C14
C14
C15
C15
C94

¥ Co6
¥ Cos
@ DoT
% D13
¥ D56
@ D57
¥ D62
¥ E02
P E08
¥ Fo1
¥ FoT
@ L17
@ D12
@ D13
@ D55
¥ D56
¥ D61
¥ D62
¥ E02
P E08
¥ F0Oo
¥ FO6
@ L17
¥ Coo
¥ Co1
¥ Cco3
@ D11
@ D55
¥ D60O
¥ D61
P FO5
@ F11
@ Co3
¥ Co6
¥ Cos
¥ Do4
@ D10
¥ D16
@ D59
¥ D60O
@ EO5
@ EN
¥ Fo4
¥ F10
¥ Co3
@ Do1
¥ Co4

Co4

Do
Do
Do
Do
Do1
Do1
Do2
D2
Do2
Do2
Do3
D@3
Do3
Do3
Do4
Do4
Do4
D5
Do6
Do7
Do7
D7
Do7
Do7
Do8
Do8
Do8
Do9
D10
D10
D10
D11

D11
D12
D12
D13
D13
D13
D13
D14
D15

P Co4

2)

P Bo4
¥ D02
P D11
@ D45
P C15
@ D45
¥ Bo3
P Bo4
¥ C10
¥ D00
P B0O2
¥ Co9
¥ Do8
P D48
¥ Bo2
P C14
@ D48
¥ BO1
P E22
@ Cc11
P E00
P EO1
P E02
P E22
P C10
¥ DO3
¥ D16
P E19
¥ Cl14
P D14
® E19
# C13
¥ DoO
% D13
P C12
P E16
@ C11
P C12
P D11
® E16
¥ D10
P Co9

D15
D16
D16
D16
D17
D18
D18
D18
D18
D18
D18
D19
D19
D19
D19
D19
D19
D20
D20
D21
D21
D21
D21
D22
D22
D22
D22
D22
D23
D23
D23
D24
D24
D25
D26
D26
D26
D27
D27
D27
D28
D28
D29
D29
D30
D30
D30

¥ E13
P C14
¥ Do8
@ E13
P D22
@ D27
¥ D38
P E18
P E42
P Fo3
P F27
¥ D26
3 D27
@ D37
# D38
P E23
P EAT
P FO2
P F26
P Foo
P Fo1
P F24
@ F25
P D17
% D23
@ D24
¥ D34
% D35
@ D22
P D45
@ D51
P D22
@ D45
@ D53
¥ D19
P D48
P D54
¥ D18
¥ D19
% D48
P E46
P EAT
@ E22
P E46
# D32
% D33
P E22

D34

D35

D37
D37
D37
D38
D38
D38
D39
D39

D40

E43

E45
D30
EQ8
E19
E42

D30
EQT

EQ8
E19

E18

E18

CEELCEEEECEEEEeEEEEeEEeiEseCeEEeedEeseceqeEeseqqess
=}
=
©

D45
D46
D47
D48
D48
D48
D48
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D49
D50
D50
D50
D51
D52
D53
D53
D53
D54
D55
D35
D55
D55
D35
D55
D55
D35
D56
D56
D56
D56
D56
D56
D56
D56
D57
D57
D57
D57
D57
D57
D57
D57
D38
D58
D58
D58
D58

(2,1-h)

@ E18
P D34
@ E12
# Do3
P D04
@ D26
@ D27
% D36
@ D37
P D34
% D35
@ E42
¥ D23
® E36
@ D25
% D37
% D38
@ D26
@ C12
@ C13
% D58
% D59
@ E15
P E16
% E39
9 E40
@ C11
@ C12
G D58
P E14
@ E15
P E38
9 E39
@ L18
P C10
@ C11
@ E13
P E14
9% E37
@ E38
P L3
P L64
W Co9
¥ C10
@ D55
P D56
@ D62

D58
D58
D58
D58
D58
D59
D59
D59
D59
D59
D59
D59
D59
D59
D6
D60
D60
D60
D60
D60
D60
D60
D61
D61
D61
D61
D61
D61
D61
D62
D62
D62
D62
D62
D62
D62
D62
EQQ
EQQ
EQO
EQQ
E01
EOQ1
E01
EQ2
EQ2
EQ2

@ E12
# E13
% E36
W E37
P L31
@ Co9
P C14
3 D55
@ D61
¥ D62
@ E11
@ E12
# E35
% E36
W C13
P C14
% E05
@ E22
% E23
% E29
# E46
P EAT
@ C12
# C13
% D59
@ E21
P E22
% E45
# E46
@ C11
@ C12
% D58
% D59
@ E20
P E21
P E44
@ E45
3 DO7
% E05
@ E23
P E46
3 DO7
@ E22
P E46
¥ AQQ
@ C11
@ C12

EQ2
EQ2
EQ2
EQ3
EQ3
EQ3
E04
E04
E@S
E@5
EQ5
E@5
EQ5
EQ6
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EQT
EQT
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EQT
E@8
EQ8
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EQ8
EQ8
E08
EQ8
EQ8
EQ8
EQ9
EQ9
EQ9
EQ@9
E10
E10
E10

E11
E12
E12
E12
E12
E12
E12
E13

¥ Do7
¥ E09
P E45
¥ A01
P E08
P E20
# E19
P E42
¥ Co9
P C14
¥ D60
¥ E00
P E42
P E11
@ E17
% D33
P E16
# E39
P E40
¥ AQO
P C11
P C12
W D32
# D33
% E03
# E15
# E38
% E39
¥ A0l
P E02
P E14
P L17
P E13
P E14
# E36
@ Co9
@ C14
¥ D59
® E06
¥ E36
P DAT
% D58
# D59
P E17
P E34
# E35
% D15
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CL4L 4L 4L 4L 4L 4L EE4E4E4E4EE4ECECEECESIECSERCECECBERCEBERBERBERERBRERBERERERER
o
=
S

E23 & E0O
E23 @ E18
E24 9 E22
E24 & E29
E24 G E4T
E25 4 E22
E25 & E46
E26 G A0Q
E26 9 E21
E26 @ E33
E27 G A0l
E27 9 E32
E27 @ E44
E28 4 E18
E28 @ E43
E29 4 D60
E29 4 E18
E29 90 E24
E30 4 E35
E30 9 E41
E31 4 D44
E31 4 E15
E31 4 E16
E31 @ E40
E32 4 A0Q
E32 & D43
E32 @ D44
E32 4 E14
E32 @ E15
E32 4 E27
E32 4 E39
E33 @ Aol
E33 4 E26
E33 4 E38
E33 & L17
E34 4 E12
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E34 @ E38
E35 4 D59
E35 4 E12
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¥ D18
% D32
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P E04
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P EAT
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# Fos
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# A00
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K56
K56
K56
K56
K56
K56
K56
K56
K56
K56
K56
K56
K56
K56
K37
KST
K&7
K57
K58
K58
K59
K59
K59
K60
K60
K60
K60
K60
K61
K61
K62
K62
K62
K62
K62
K62
K62
K62
K63
K63
K63
K63
K63
K63
K63
K63
K63
K63
K63
K64
K65
K65
K66
K66
K66
K67
K67
K68
K68
K68

P L79
@ L95
P Mot
P MOT
P M13
P M19
P M22
P K46
P K48
P K53
P K59
P K60
P K65
P K66
P L94
P L5
P Moo
P MO1
P Mo6
P MoT
P M12
P M13
P M18
P M19
P M21
P M22
P K47
P K51
P K52
P Mo5
P K53
P K61
P K52
P K56
P K60
P K55
P K56
P K59
P K69
P L75
P K58
P K68
P K53
P K63
@ L93
@ L95
P L9T7
P L99
P Mol
P Mo3
P K52
P K53
P K62
@ Lo
P L92
P L94
P L96
P L98
P Moo
P MO2
P Mo4
P K69
P K56
P K68
P K55
P K56
P K67
P K66
P M22
P K53
P K61
P K65

K68
K69
K69
K69
K69
Loo
Loo
Loo
Loo
Loo
Lo1
Lo1
Lo2

Lo2
Lo2
Lo2
Lo2
LO3
L3
Lo3
LO3
Lo4
Lo4
Lo4
L5
LO5
L5
Lo6
Lo6
Lo6
Lo6
Lo7
Lo7
Lo7
Lo7
Lo8
Lo8
Lo8
Lo8
LO9
L@9
Lo9
L10
L10
L10
L11
L11
L11
L11
L11
L12
L12
L12
L13
L14
L14
L14
L14
L14
L15
L15
L16
L16
L16
L16
L17
L17
L17
L17
L17
L17

9 M21
P K52
P K53
P K60
P K64
P Jo4
¥ J49
P L0o4
P Lo5
P L3
P Jo1
9 L30
@ AQT
P Joo
@ J51
P LO5
P L06
@ 129
P AQT
@ A8
¥ J48
P 128
@ J49
P Loo
@ L27
¥ J50
¥ Loo
P L2
@ J48
@ J51
@ L2
@ 125
P J28
P K28
@ L9
P L10
@ J29
P J48
P K14
@ K33
P J30
P K32
@ Lo7
P J31
9 K31
@ Lo7
P J23
P K6
P K12
P K18
P K24
@ J22
@ L7
@ 123
P 122
@ J20
@ Koo
P K15
P K21
@ K27
P J19
@ 120
P J18
@ J21
@ L19
P L20
P AQQ
@ C11
P C12
% E0Q
@ E33
P J18

L17 G K45
L17 @ L12
L17 9 L65
L18 4 D56
L18 & E20
L18 @ E44
L18 G L23
L18 & L41
L18 @ L47
L18 @ L64
L18 @ L65
L18 @ M22
L19 @ L16
L19 @ L46
L20 4 L15
L20 @ L16
L20 @ L45
L21 G K33
L21 @ L44
L22 9 L13
L22 G L43
L23 @ L12
L23 @ L18
L23 @ L42
L24 @ K30
L24 9 K41
L25 @ K28
L25 @ LO6
L25 G L37
L26 @ L31
L26 @ L36
L27 9 LO4
L27 & L31
L27 @ L35
L28 @ K31
L28 @ LO3
L28 @ L33
L28 @ L34
L29 @ LO2
L29 G L33
L29 @ L34
L30 @ Lo1
L30 4 L32
L30 @ L33
L31 @ D57
L31 & D58
L31 @ Lo
L31 @ L26
L31 @ L27
L31 @ L48
L31 4 L49
L32 ¥ L30
L32 @ L37
L32 4 L63
L32 4 L83
L33 @ L28
L33 4 L29
L33 @ L30
L33 @ L62
L33 @ L63
L34 9 L28
L34 @ L29
L35 @ K36
L35 @ L27
L35 4 L60
L36 @ L26
L36 @ L59
L36 4 L60
L37 @ L25
L37 @ L32
L38 4 K32
L38 @ K39

L38 @ L57
L39 @ K29
L39 4 K30
L39 & K31
L39 4 K37
L39 4 K38
L39 ¢ L41
L40 G K28
L40 9 K29
L40 @ K30
L40 G K35
L40 9 K37
L40 @ K42
L40 ¢ K47
L41 G K28
L41 4 K29
L41 ¢ K33
L41 & K35
L41 G0 K41
L41 9 K46
L41 0 K47
L41 4 L18
L41 9 L39
L41 @ L47
L42 G0 K43
L42 & L23
L42 @ L55
L43 ¢ K43
L43 4 L22
L43 4 L53
L44 9 K42
L44 9 L21
L44 4 L52
L44 9 L53
L45 @ K43
L45 4 L20
L46 G K42
L46 @ L19
L46 4 L50
L46 @ L51
L47 G K43
L47 G L18
L47 G L41
L47 G L49
L47 9 L50
L48 9 K42
L48 ¢ L31
L48 4 L64
L48 @ L82
L48 ¢ M21
L48 G M22
L49 @ L31
L49 ¢ L47
L49 & L81
L49 4 182
L50 9 L46
LS50 G L47
L50 4 L80
L51 ¢ L46
L51 @ L79
L52 40 L44
L52 & L78
L53 @ L43
L53 ¢ L44
L53 4 L77
L54 4 L76
L55 ¢ K41
L55 & K53
L55 4 L42
L56 9 K35
L56 @ K50
L56 G L72

L56 & L73
L57 @ K35
L57 @ K50
L57 & L38
L57 & LT71
L58 4 K49
L58 @ L70
L59 @ K50
L59 4 L36
L59 @ L69
L6O G K49
L6O G L35
L6@ @ L36
L6O G L68
L61 & K50
L61 G L67
L62 G K49
L62 & L33
L62 @ L66
L63 G K50
L63 & L32
L63 G L33
L64 G D57
L64 @ K49
L64 G L18
L64 G L48
L65 @ L17
L65 G L18
L65 & M30
L66 @ L62
L66 G M30
L67 & L61
L67 G M29
L68 @ L6O
L68 G M28
L69 @ L59
L69 G M27
L69 @ M28
L70 4 L58
L70 o M27
L71 & L57
L71 G M25
L72 G K48
L72 @ L56
L72 G M24
L72 G M25
L73 G K48
L73 4 L56
L74 @ K48
L74 4 K55
L74 G L82
L75 @ K47
L75 G K54
L75 & K60
L75 & L81
L76 4 K55
L76 & L54
L76 @ L9
L77 4 K55
L77 @ L53
L77 G L88
L78 G K54
L78 @ L52
L78 G L87
L78 G L88
L79 @ K55
L79 4 L51
L80 & K54
L80 @ L50
L80 @ L85
L81 & L49
L81 @ L75
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L81
L81
L81
L82
L82
L82
L82
L82
L82
L82
L83
L83
L83
L84

D

@ L83
P L84
W L85
W K45
@ L48
@ L49
@ L74
P L84
¥ M20
@ M21
@ L32
@ L81
@ M20
@ L8l

Enumeration of the environments together with their

L84
L85
L85
L87
L88
L88
L90
[Rel]
Lo1
Lo1
L91
L92
L92
L92

@ L82
@ L8o
@ L8l
@ L78
@ L77
@ L78
@ K53
P L76
W K583
W K63
@ M19
W K52
@ K53
P K63

L92
L93
L93
L94
L94
L94
L95
L95
L95
L95
L96
L96
Lo7
Lo7

@ M7
P K62
P M16
P K56
P K63
@ M15
@ K55
P K56
P K62
@ M14
P K63
@ M13
¥ K53
P K62

LO7 G M12
L98 @ K52
L98 @ K53
L98 & K63
L98 @ M11
L99 @ K62
L99 & M10
Moo @ K56
MoO G K63
Moo @ Moo
Mo1 @ K55
Mo1 G K56
Mo1 @ K62
Mo1 G Ma8

Mo2
Mo2
Mo3
Ma3
Mo3
Mo4
Mo4
Mo4
Mo4
Mo5
Mo6
Mo6
Mo6
MoT

Seki

P K63
¥ MoT
@ K53
P K62
¥ Mo6
P K52
P K53
P K63
¥ Mo6
@ K57
P K56
P Mo3
¥ Mo4
@ K55

MoT G K56
MoT @ Mo2
MO8 @ Mol
Mo9 G K53
Mo9 @ Moo
M10 @ K52
M10 G K53
M10 @ L99
M11 G L98
M12 @ K56
M12 @ L97
M13 @ K55
M13 @ K56
M13 @ L96

The following tables refer to the proof-trees on the website:

proving the correctness of the folding of our design in every possible surroundings.

M14
M15
M15
M16
M16
M16
M7
M18
M19
M19
M19
M20
M20
M20

P L95
@ K53
P L94
P K52
@ K53
@ L93
P L92
P K56
W K55
P K56
P LA
P L82
¥ L83
¥ M25

M22

M23
M24
M24

@ K56
¥ K68
W L48
@ L82
P M24
W K55
P K56
P K67
@ L18
G 148
P M28
@ M29
P LT2
@ M21

https://www.irif. fr/~nschaban/oritatami/prooftrees/

Z1G-UP

#4998-5000

C
#104-159
#1314-1315
&)
&
D)) /g V.74
#160-339 #340-384
& &
B ml ,

#385-749

#750-856

A
5

#1393-1401

#857-1285

#1402-1853

M24
M25
M25
M25
M25
M25
M26
M27
M27
M27
M27
M28
M28
M28

proof-trees

@ M28
P LT
P L72
@ M20
@ M27
P M28
P A2
P L69
P L70
@ M25
¥ M30
P L68
¥ L69
@ M23

M28
M28
M28
M29
M29
M30
M30
M30
M30

@ M24
@ M25
P M30
@ Le7
@ M23
P L65
P L66
@ M27
@ M28
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ZI1G-DOWN

e p-
Ay

m

7#1854-1874 #4745-4752 #2382-2578 #2745-2755 #2790-2797
Ny W

#1875-1878 #2756-

#1879-1889 #2798-2838

#2757-2758 #4701-4702

ANt i

D3 , RN -

#1890-1913 #1914-1932 same as previous ones

#2581-2599

#2600-2602

S 44 & Y/ 4S 65
#1933-2011 #2603-2632 #2759-2789
///,
#2012-2041
D)/
7#2042-2381 #2644-2744
WRITE

#3000-3749
#4787-4945

f; -
#3750-3781 #4734-4744

#4946-4959
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ZAG-WRITE
#4994- #3806-3816 , #4059-4069 , #4215-4225
#4310-4320
#3817-3827 , #4070-4080 , #4226-4236
#4321-4331 , #4459-4460 , #4475-4476
#4550-4551 , #4605-4606
Da VET
#3828-3851 #3039-3041 , #4434-4430 | #4525-4527
#4237-4263 #4571-4573 , #4587-4589 , #4595-4597
#4332-4355 #4618-4620
s T
[E] S & WG
#4081-4176 , #4461-4474 #3852-3024 , #3942-4020 , #4264-4271
#4552-4570 , #4607-4617 #4356-4428 , #4440-4458 , #4504-4519

#4528-4549 | #4574-4581 , #4590-4504
#4508-4604 | #4621-4644

4
#3025-3038 , #4021-4034 , #4177-4190

#4272-4285 , #4420-4433 | #4520-4524
#4582-4586

#4960-4967

#4968-4993 #3782-3805 , #4035-4058 , #4191-4214
#4286-4309
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see Zig-Down

7)
1)

see Zig-Down

see Zig-Down

see Zig-Down

see Zig-Down

see Zig-Down

see Zig-Down

see Zig-Down

#4654-4700

see Zig-Down

see Zig-Down
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