N
N

N

HAL

open science

Proving the Turing Universality of Oritatami
Co-Transcriptional Folding

Cody Geary, Pierre-Etienne Meunier, Nicolas Schabanel, Shinnosuke Seki

» To cite this version:

Cody Geary, Pierre-Etienne Meunier, Nicolas Schabanel, Shinnosuke Seki. Proving the Turing Uni-
versality of Oritatami Co-Transcriptional Folding. 2017. hal-01567227

HAL Id: hal-01567227
https://hal.science/hal-01567227

Preprint submitted on 21 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01567227
https://hal.archives-ouvertes.fr

Proving the Turing Universality of Oritatami
Co-Transcriptional Folding

Cody Geary!, Pierre-Etienne Meunier?, Nicolas Schabanel®, and Shinnosuke
Sekit

California Institute of Technology, Pasadena, CA, USA. codyge@gmail.com.

Tapdance, Inria Paris, France. pe@pijul.org

CNRS, U. Paris Diderot, France and IXXI, U. de Lyon, France. www.irif. fr/users/nschaban/
Oritatami Lab, University of Electro-Communications, Tokyo, Japan.
www.sseki.lab.uec.ac. jp/

W N =

—— Abstract

We prove that the Oritatami model of molecular folding is capable of embedding arbitrary computations in

the folding process itself, by a local energy optimisation process, similar to how actual biomolecules such as DNA
or RNA fold into complex shapes and functions.

This result is the first principled construction in this research direction, and motivated the development of
a generic toolbox, easily reusable in future work. One major challenge addressed by our design is that choosing
the interactions to get the folding to react to its environment is NP-complete. Our techniques bypass this issue
by allowing some flexibility in the shapes, which allows to encode different “functions” in different parts of the
sequence (instead of using the same part of the sequence).

However, the number of possible interactions between these functions remains quite large, and each interaction
also involves a small combinatorial optimisation problem. One of the major challenges we faced was to decompose
our programming into various levels of abstraction, allowing to prove their correctness thoroughly in a human
readable/checkable form. We hope this framework can be generalised to other discrete dynamical systems, where
proofs of such large objects are often difficult to get.

@. 5Y licensed under Creative Commons License CC-BY

mailto:codyge@gmail.com
mailto:pe@pijul.org
http://www.irif.fr/users/nschaban/
http://www.sseki.lab.uec.ac.jp/
http://creativecommons.org/licenses/by/3.0/

XX:2

Proving the Turing Universality of Oritatami Co-Transcriptional Folding

1 Introduction

Molecular folding is the biological process that turns one-dimensional sequences into three-dimensional
shapes. In the particular context of proteins and RNA, this process has attracted a lot of attention, as
it could allow us to engineer our own molecules, and therefore to interact with biological functions. The po-
tential applications range from using bacteria as computing devices or nano-factories, to producing targeted
drugs to cure specific diseases with little to no side effects. More fundamentally, understanding “molecu-
lar programming” by engineering our own molecules will shed a new light on how these mechanisms, and
evolution in particular, work in nature.

If we are to have such an engineering discipline crafting “computing molecules” with arbitrary shapes,
we need a theory of these systems to inform of their capabilities and give hints for building actual molecules
in the wet lab.

Unfortunately, we seem quite far from a full understanding of these mechanisms. From a practical
perspective, the latest efforts to solve the protein design problem [19] are still quite far from a complete
general methodology. From a theoretical perspective, it has been shown that, in different variants of the
hydrophobic-hydrophilic (HP) model [6], the problem of predicting the most likely geometry (or conformation)
of a sequence is NP-complete [20, 17, 2, 3, 5], both in two and three dimensional models. Approximation
algorithms have also been developped [1, 16].

However, the effective speed of molecular folding in actual cells seems to contradict these hardness results.
Moreover, its reliability and relative robustness to small changes in conditions or sequences seem to rule out
approximations as well.

To understand these phenomena, two essential ingredients of molecular dynamics need to be considered:
thermodynamics, which governs probability distributions over shapes in the long run, and kinetics, which is
the step-by-step movements of molecules in solution. Some models of tile assembly, such as the abstract Tile
Assembly Model [21, 18] chose to ignore thermodynamics and focused on kinetics, and got excellent results
in the lab. Models of molecular folding, like the HP model, focus on hardness results, and for that reason
ignore kinetics and work entirely on thermodynamics.

Our goal with Oritatami [11] is to try to understand the kinetics of folding, and in the future get a more
complete picture including both aspects. The rationale of this choice is that the wetlab version of Oritatami
already exists, and has been successfully used to engineer shapes with RNA in the wetlab [10]. The main
feature of RNA that motivates our approach is the fact that RNA folds while being produced, which is known
as co-transcriptional folding. This process has been shown to play an important role in the final shape of
biomolecules [12], especially in the case of RNA [7].

1.1 Brief overview of the model

In Oritatami, we consider a finite set of bead types, and a periodic sequence of beads, each of a specific bead
type. Beads are attracted to each other according to a fixed symmetric relation, and in any folding (a folding
is also called a conformation), whenever two beads attracted to each other are found at adjacent positions,
a bond is formed between them.

At each step, the latest few beads in the sequence are allowed to explore all possible positions, and we
keep only those positions that minimise the energy, or otherwise put, those positions that maximise the
number of bonds in the folding. “Beads” are a metaphor for domains, i.e. subsequences, in RNA and DNA.

1.2 Main results

In this paper, we construct a “universal” set of 520 bead types, along with a single universal attraction rule
for these bead types, with which we can simulate any tag system, and therefore any Turing machine M,
within a polynomial factor of the running time M.

This construction motivated the development of a toolbox composed of two things: common structures
that can react to their environment, and solutions to combine these structures into larger constructions.

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki

» Theorem 1. There is a finite universal set of beads B and an attraction rule @ C B? such that for any
Turing machine M running in time t on input x (where t is possibly infinite), there is a seed structure
o € BE of size O(|x|), and a periodic sequence w of beads from B (with period of length O(1)) such that w
folds into a structure of size O(t3logt).!

Our construction is composed of different modules, or subsequences, each building different “sub-shapes”
of the global conformation. This result had to overcome a number of important challenges, presented in
Sections 1.3 and 1.4.

1.3 Proving our designs

The main challenge we faced in this paper was the size of our constructions: indeed, while we developed
higher-level geometric constructs to program useful shapes, there is a large number of possible interactions
between all different parts of the sequence.

Getting solid proofs on large objects is a common problem in discrete dynamical systems, for instance
on cellular automata [8, 4] or tile assembly systems [13]. In this paper, we introduce a general framework to
deal with that complexity, and prove our constructions rigorously. This method proceeds by decomposing
the sequence into different modules, and the space into different areas where exactly one module grows. We
can then reason on the modules separately, and only deal with interactions at the border between all possible
modules that can have a common border.

1.4 Design challenges

As shown in our previous results [9], the problem of choosing an attraction rule so that a single sequence folds
into different shapes depending on its environment, is NP-complete. That problem is called the sequence
design problem in [9].

In the present paper, since our sequence is periodic and has a small number of bead types, a single module
can interact with a large number of other modules (including previous copies of itself).

We introduce a tool to cope with such situations, called socks. The goal is to “shift” the sequence, so that
different parts interact with the various environments. Socks work as follows: whenever different copies of a
single subsequence $;, S;4+1,- .., Sit+r (for some integer 4, and with k equal to a few dozens) have to interact
with a large number of different unrelated environments (where an environment is a local configuration of
beads), we reduced the number of environments by folding a small part of the molecule, before i, into a
compact useless shape (with the shape of a “sock”), so that only a later part s;,sj+1,... with j > i+ k of
the sequence interact with a subset of all environments.

This allows us to dispatch the different interactions to different parts of the sequence.

1.5 Relationship to other work

This construction generalises our previous results, where we built an arbitrary-width counter with a fixed
periodic sequence [9]. In that result, all parts of the structure are densely packed into parallelograms, and
these structures react to their environment by folding into a different hamiltonian path in each parallelogram.

That result required tedious manual tweaking of the rule, so that different parts of the sequence interacted
nicely with each other. Moreover, finding useful hamiltonian paths is hard, which means that our techniques
could not scale well.

In this paper, we solve these issues to a large extent, using the toolbox we introduce in Section 6. Note
that the dynamics used is slightly changed compared to [9]. We believe the dynamics used here to be more
intuitive, and our previous negative results (NP-completeness of rule design) still hold.

! The constants in the O(-)s only depend on the size of the simulated Turing machine.

XX:3

XX:4

Proving the Turing Universality of Oritatami Co-Transcriptional Folding

2 Definitions and Preliminary Results

The empty word is denoted by €. For 1 < < j < n, by wli..j], we refer to the factor w;w;11 ---w; of w.

2.1 Oritatami Systems

Let B be a finite set of bead types. A conformation ¢ of a bead sequence w € B* U BY is a directed self-
avoiding path in the triangular lattice T, where for all integer i, vertex c; of ¢ is labelled by w;. ¢; is the
position in T of the (i 4+ 1)th bead, of type w;, in conformation ¢. A partial conformation of a sequence w is
a conformation of a prefix of w.

For any partial conformation ¢ of some sequence w, an elongation of ¢ by k beads (or k-elongation) is a
partial conformation of w of length |c| + k. We denote by C,, the set of all partial conformations of w (the
index w will be omitted when the context is clear). We denote by E(c, k) the set of all k-elongations of a
partial conformation ¢ of a sequence w.

Oritatami systems. An Oritatami system O = (w,%,0,0) is composed of (1) a (possibly infinite) bead
sequence w, called the primary structure, (2) an attraction rule, which is a symmetric relation @ C B2, (3) a
parameter 0 called the delay time and (4) o, an initial conformation of w, called the seed. O is said periodic if
w is infinite and its suffix w|; w41 -+ - is a periodic bead sequence. Periodicity ensures that the “program”
embedded in the oritatami system is finite (does not hardcode any specific behavior) and at the same time
allows arbitrary long computation.

We say that two bead types a and b attract each other when a @ b. Furthermore, given a conformation ¢
of w, we say that there is a bond between two adjacent positions ¢; and ¢; of ¢ in T if w; #w; and |i — j| > 1.
The number of bonds of conformation ¢ of w is denoted by H(c) = [{(¢,7) : ¢; ~¢j, j > i+ 1, and w; ®w;}|.

Oritatami dynamics. The folding of an oritatami system is controlled by the delay time ¢. Informally, the
conformation grows from the seed conformation, one bead at a time. This new bead adopts the position(s)
that maximise the potential number of bonds the conformation can make when elongated by d beads in total.
This dynamics is oblivious as it keeps no memory of the previously preferred positions; it differs thus slightly
from the hasty dynamics studied in [11]; it might also be considered as closer to experimental conditions.

Formally, given an Oritatami system O = (p,®,6,0), we consider the dynamics D : 2¢ — 2€ that maps
every subset S of partial conformations of length ¢ of w to the subset D(S) of partial conformations of
length ¢ + 1 of w as follows:

D(S) = U arg max < max H(n))
cos VEE(e,1) \N€EE(Y,0-1)

The possible conformations at time ¢ of the Oritatami system O are the elongations of the seed conformation o
by ¢ beads in the set D*({o}).

We say that the Oritatami system is deterministic if at all time ¢, D!, ({o}) is either a singleton or the
empty set. In this case, we denote by ¢! the conformation at time ¢, such that: ¢ = o and D*({o}) = {c'}
for all t > 0; we say that the partial conformation ¢! folds (co-transcriptionally) into the partial conformation

Can t+1 at the position

deterministically. In this case, at time ¢, the (Jo| 4+ ¢ + 1)-th bead of w is placed in ¢
that maximises the number of bonds that can be made in a d-elongation of ct.

We say that the Oritatami system halts at time ¢ if ¢ is the first time for which D*({o}) = @. The
folding process may only stop because of a geometric obstruction (no more elongation is possible because

the conformation is trapped in a closed area).

In this article, we will only consider deterministic periodic Oritatami systems with delay time § = 3.

2 The triangular lattice is defined as T = (Z2,~), where (z,y9) ~ (uw,v) if and only if (u,v) €
{(z-1,y),(z+ 1L,9),(z,y+ 1), (z,y —1),(x + 1,y + 1),(x — 1,y — 1)}. Every position (z,y) in T is mapped in the eu-
clidean plane to z - X +y - Y using the vector basis X = (1,0) and Y = rotation_j29- (X).

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki

2.2 Skipping Cyclic Tag systems

In the next sections, we demonstrate the existence of a single periodic primary structure that can simulate
any Turing computation. Precisely, our construction simulates the following particular type of tag systems
which are known to simulate in O(T?InT) steps any Turing machine running in 7" steps [22].

Skipping Cyclic Tag systems A skipping cyclic tag system consists of a set of n productions pg,...,pp—1 €

{0,1}* and an initial word u® € {@,1}*. At each time step, the tag system cycles through the productions

and decides to append the current production or not according to the letter read. We denote by u! the word

at time ¢. Formally, at time ¢ = 0, its pointer ¢° is set to 0. At all time ¢,

Halting step: If u! is the empty word €, then the tag system halts and outputs ¢*; otherwise

Deletion step: If the first letter uf of u’ is @, then set ¢'*! := (¢! + 1) mod n and u!*™! :=u! - "“\tut|717
the suffix of u* without its first letter; finally

Appending step: if ul) =1, then the tag system appends the next production to u and skips to the following
production, i.e.: uttl =l .. u‘tu,,‘f1 “D(qt+1modn) and set ¢! := (¢" +2) mod n.

For instance, the skipping tag system p = (110,¢,11,0) has the following execution ([qt]ut)t on input
word u® = 010:

0 1 Append 3 0 Append 9 Append 0 1
Yot0 — 1o o= Plot1 — P11 5o’ Ve — W Halt

and outputs thus production p; = e.

Annotated trimmed space-time diagram. Given a SCTS (po, ..., pn_1;u’), we denote by 0 < t; < to < ---
all the times ¢ such that the word u! starts with letter 1 and set t; = —1 by convention. Let us now compress
the deletion steps occurring during steps ¢; + 1 and ¢;,4.1 — 1 by simply indicating in exponent the production
index for each deleted letter:

0], [1 Append 31 10
Olplilyp 2220, [3pi0l1 4

Append 2] Append

0]l (1
oo ol Halt

and align the resulting words in a 2D diagram according to their common parts:

tg t1 t2 t3
I i il
Olg|ll1| o — Append [2]:11
Blg|lol4 | 4 — Append [1]:¢
(214 — Append [3]:0
Olp|l — Halt [1]:€

we obtain the annotated trimmed space-time diagram for the SCTS (p,010). The following lemma gives
a formal definition:

» Lemma 2. The annotated word on row i (indexed from i = 0) of the annotated trimmed space-time diagram
is: (the production indices in exponent are computed modulo n)
if u'™t = 0™ . s for somer > 0 and s € {0,1}*: then, r = t;11 —t; — 1 and the annotated word on
row i is iH1Htlg .. i-t+tinlglittinlg . 5 whose first letter is placed in column t; + 1 (where the leftmost
column is indexed by 0);
if ultt = Q" for some r > 0: then, row i is the last row of the diagram and its annotated word is
li+lttilg . .. i+titrlglittitr+l] gnd starts at column t; + 1.

Proof. Observe that ¢% =i +t; mod n as exactly ¢; letters have been read and i appending steps occurred
before reading the i-th 1. <

XX:5

XX:6

Proving the Turing Universality of Oritatami Co-Transcriptional Folding

Finally, we use a result by Cook [4], and Neary and Woods [22, 14] to show that simulating a skipping
cyclic tag system is sufficient to simulate universal Turing machines efficiently:

» Lemma 3. Let M be a Turing machine running in time t. There is a skipping cyclic tag system S
simulating M in O(t*logt) steps. Moreover, the number of productions of S is a multiple of 4.

Proof. The original cyclic tag system by Cook [4] differs from the skipping cyclic tag system only in that
in the original, the list rotates by 1 no matter which letter the current word begins with. By a classi-
cal result about tag systems, 2-tag system with m productions (i.e. over an m letter alphabet) can be
simulated by a cyclic tag system with 2m productions: that simulation works by encoding the m letters
as 10™ 71, 010™ 2, 0%10™ 3, ... 0™ 1, respectively. We can in turn simulate a cyclic tag system with n
productions pg, p1, .- .,Pn—1, Starting from an input u, by a skipping cyclic tag system with 2n productions
e, f(po),e, f(p1),€,..., f(pn—1), starting from the word f(u), where f is the automorphism over {0,1}*
defined as f(@) =00 and f(1) =1.

Finally, the result by Neary and Woods [15, 22] on cyclic tag systems implies that 2-tag systems can
simulate ¢ steps of a Turing machines in O(t?logt). <

3 Proof structure

Figure 1 shows the global structure of our construction: at the abstract level (Section 4), we will show how
the geometrical arrangement of big blocks (regions of the plane) simulates a tag system. The construction
then becomes local: we only have to construct a molecule that correctly folds into the blocks, and interacts
with neighbouring blocks as planned.

In Section 5, we will introduce modules (parts of the sequence), functions (possible conformations of a
module in response to the environment in which it is folded), and bricks (partial conformations contained
inside a block). Finally, in Section 7, we will show the actual sequences and attraction rule that implement
all bricks, and show that our choice of geometric parameters guarantees that important parts of the sequence
always fold in the same environments, in all possible conformations and inputs.

Section 8 gives a proof that the bricks actually implement the blocks, and shows how we verified the
assembly level using a program on a specific tag system that exhibited all possible interactions between
modules. This last step of our proof will follow the following steps:

1. Enumerate all the surroundings for each brick of each module

2. Enumerate all possible modules following the module

3. Generate automatically human-readable certificate of the correctness of the folding for each possibility,
in the form of proof trees.

4. In the few cases where the surrounding may vary, prove that it has no incidence in the folding of the
brick.

(Section 4)
Abstract

Modul
odues (Section 5)

Assembly

Lovel (Section 7)

Figure 1 Programming framework.

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki

4 Simulating Tag Systems with Blocks

This section presents the simulation logic and the global geometry, without any folding. The simulation is
decomposed into blocks, which are regions of the plane.

In the simulation, these blocks only interact at their border. In Section 5, we will show how to implement
each block, and interactions between blocks, using actual folding. The names of blocks, introduced here, will
be the same between the different parts of the paper.

4.1 The Blocks
4.1.1 Overview

Our simulation proceeds by mimicking the annotated trimmed space-time diagram of the skipping cyclic tag
system to be simulated. The folding walks to the South, i.e. each new step is below the previous step.

At each step, the simulation starts in a general movement from left to right. Leading zeros are trimmed
off, and the simulation halts if the remaining word is empty. If the remaining word is not empty, there is at
least one 1 in the word. The simulation removes the leading 1, skips over (and copies) the rest of the word,
and appends the relevant production at the end of the word. Finally, the sequence is folded again in the
opposite direction (i.e. right to left), and copies the computed word for the nest step to start. See Figure 2
for an example.

/

2|g > g [@hﬁﬁ] APPEND PRODUCTION [2]:11

READ 1> (DPY >
[0]:110

i+14+t=3

\/_)X . ' ®© O

EINE
Y [[OHO

Figure 2 Execution of the block automaton simulating the SCTS (p = (¢,100,1,0);u° = O‘l@) Every other row
is shaded in blue. Each row encodes one step of the tag system, and each row is divided into a “zig part” (on top)
and a zag part (on the bottom). The word at the end of each step can be read at the bottom of the zag part for the
corresponding row. In this figure, 1 is pictured as a flat border with a red rectangle and @ is pictured as a red spike
with a red circle. Green and cyan ovals mark the presence of a letter, on zig and zag rows respectively.

XX:7

XX:8 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

4.1.2 Types of blocks

There are 10 different types of blocks, shown in Figure 31. All of them are used in our example in Figure 2:

Seed encodes the initial word into a conformation beads where @s are represented as red-dot spikes and
1s as red rectangles.

Readow, Readl», Copy@w», Copyl» are responsible for reading, and copying the letters of the current
word during the zig phase (left to right). When clear from the context, we will sometimes refer to both
Readd» and Read1w collectively as Readw, and to both Copy@» and Copy1» as Copyp.

< Copy@, €Copy1 are responsible for copying the letters of the new word over to the next step, during
the zag pass (right to left). When clear from the context, we will sometimes refer to both 4 Copy@ and
<4 Copy1 collectively as €4 Copy.

Append & CR% and 4 CopyLineFeed are responsible for appending a production, carriage return and line-
feed.

Halt is the last block produced corresponding to the halt of the simulated tag system.

4.1.3 The block automaton

A visual depiction of the logic is shown in Figure 3 in the form of an automaton: starting from the seed
block, blocks attach at the orange anchors (» and «) one next to the other as described by the block
automaton in Figure 3. Each block is labelled with the current production index of the tag system which
determines the production to be appended. An example of execution of the block automaton for the SCTS
(p = (110,¢,11,0); u’ = 010) is illustrated in Figure 2.

4.1.4 Simulating tag systems with blocks

Let S = (po,p1 - --Pn_1;u’) be a skipping cyclic tag system, and for all integer i > 0, let ¢; be the i'" step
where u® starts with 1 (starting from 0, i.e. tq is the first step where u® starts with 1). The following lemma
describes the encoding of S into blocks (i.e. generalises Figure 2 to arbitrary tag systems).

» Lemma 4. The (possibly infinite) final block configuration consists of: (see illustration on Figure 6)

The seed row consists of the block Seed(u®) anchored at its end point at coordinates (0,1).

For i > 0, the i-th row consists of a zig row anchored at height Y = 2i, and a zag row anchored at height

Y = 2i+ 1 defined as follows:

e (Compute) if ultt =0"1. s and if s and pyy;1+

as illustrated in Figure 4(b) and Figure 4(c):

the i-th zig-row, growing from left to right, contains the sequence of annotated blocks located at the
following coordinates (with respect to their anchor point, shown in Figure 31):

.41 are not both €: then r=t;41 —t;—1 and,

Y 2i+1 2i

X i+1+t o i4rH+t; i+t i+ 1+t oo i |s|+tiga i+ |s| + 1+t
Blocks Readow» --- Readow» Readlp» Copy(so)» -+ Copy(s|sj—1)» Append&CRE(P14itt;,,)

lq] f+1+t] - [t4+r+t] [0+ tis] [i+1+tia] -+ [E+1+tip] [t 41+ tip]

the i-th zag-row consists from left to right of the sequence of blocks located at the following
coordinates (with respect to their anchor point, see Figure 31):

Y 2141

X i+ 3+t — A t+4d+tip—A - i+ 24 v+t — A
Blocks <«CopyLineFeed(vg) <«Copy(v1) <Copy (Vjy|-1)

(a] [i+2+tiy1] [i+2+tipa] - [0 +2+tiy1]

where v = u! i+t = s piiyy, #€ (as s and pipi4e,,, are not both €).

e (Halt 1) ifu'tt =0"1 and Piyite,, = € then r = tiy1 —t; — 1 and the last rows of the block
configuration consist from left to right in the sequence of annotated blocks located at the following

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki

LEADING ZEROS TRIMMING ZIG-LOOP

no - above:

there is - above

WORD SUFFIX COPYING ZIG-LOOP

S -

thereisa
red dot
spike
above'

there is [\

above

there is

above

no - above (at the end of the word)
-

ZIG =

READ THE FIRST ONE

READ 1
lq1:p,

qg:=q+1 modn

above (i.e. we are at the end of the word)
and

noE to the left (i.e. the word is empty)
and
Pq =€

>

/APPENDIPRODUCTION LINE FEED)

NOTHING TO APPEND, WORD IS EMPTY,
CARRIAGE RETURN FOLLOWED BY LINE FEED
THEN SIMULATION HALTS

APPEND PRODUCTION
& ZIG-TO-ZAG CARRIAGE RETURN

=« ZAG

CORY{0)
EINE|REED)

Q

thereis a
red dot 4

spike
above

APPEND PRODUCTION []:p,

qg:=q+1 modn

NEW WORD COPYING ZAG-LOOP

<<

there is a red dot

spike'above

there is E

above

-
3
- &
COPY/0!
ZAG]

ZAG-COPY
i LASTLETTER ()
| &2zAG-TO-ZIG
LINEFEED | thereis

above

there is-

above

no E above (at the beginning of the word))

Figure 3 The block automaton.

XX:9

XX:10 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

coordinates, as illustrated in Figure 4(d):

Y 2i+1 2 2043

X i1t o idrdt; it T P42+t
Blocks Reado» --- Reado» Read1p» CarriageReturn&LineFeed Halt

lq] [i+1+t] - [i4+r+t] [i+tis] [i4+1+tipq] [t 42+ tipa]

e finally, (Halt 2) if u'™% = @" for some r > 0: then the i-th zig-row is last row of the block con-
figuration and consists of the sequence of annotated blocks located at the following coordinates, as
illustrated in Figure 4(e):

Y 2i+1

X i+ 1+t o i+t itr+l4t
Blocks Readow» --- Readow Halt

lq] f+1+t] - [i+r+t] [+r+1+¢)

Proof. This follows from an easy induction on the number of rows The induction hypothesis at step 7 is that
the word encoded by the blocks at the bottom of the zag-row (i — 1) is u!*% and the production index in
this zag row is ¢'t% =14+ i+¢; mod n.

First, since we choose the conformation of the seed, we choose the encoding of the initial word in the tag
system. Then, showing that if the induction hypothesis holds at step 4, it also holds at step i + 1, follows
from the case enumeration in Figure 6 and the block automaton in Figure 3. <

4.2 General geometry of the Blocks

The precise geometry of each block is given by the figures 5 and 32-39. We begin by introducing a number
of parameters we will use to align bricks properly® for all possible tag systems and inputs.

We first define the write position of a block the position on its border where its value is
as either a spike (@, red circles on Figure 4) or a dent (1, red squares on Figure 4). Similarly, read positions
are positions where the shape of the folding depends on whether there is a spike or a dent on the adjacent
block. See Figure 5 for an illustration.

Starting from a skipping cyclic tag system S, we first build a tag system 7 by turning S into a skipping
cyclic tag system such that n, the number of productions of 7, is a multiple of 4, and moreover n > 8. We
build 7 by duplicating all the productions of S and all the @s in all productions of S, until 4|n and n > 8.

“written”, i.e.

n is the number of productions in 7, hence n is a multiple of 4, and n > 8.

L is the length of the longest production in 7.

P is the length of an extra padding on each production. We let P = 11 4+ (L mod 2), hence L 4+ P is
even.

w is an atomic width we need to define other constants W and h. For now, let w = 6(L + P) + 18. We
will later use the fact that w mod 12 = 6.

W is the width of the Copy» and «Copy blocks.

Let W =n - (w+ 6). We will later use the fact that W mod 48 = 0 (because n is a multiple of 4 and
w + 6 is a multiple of 12).

h is the height of the Read», Copy» and € Copy blocks, not counting the small bumps.

Let h =W — (w + 3). Note that A mod 12 = 3.

We can now translate Lemma 4, to give blocks their actual coordinates in the simulation:

3 Here, we understand “align” both as “align in the plane” and “adjust the length of sequences to match modulo common
parameters”.

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki

THE SEED

X=0

(a) The seed row anchored at coordinates (0, 0).

utH=0"1-5

X=i+1+ ~ e
X=(i+1)+ 1+t

(b) The case where u'™" =0"1 - s and the production to be appended is pititt,,, # €.

wH =0t 5

APPEND
PRODUCTION
\ Pltitti =€

Zag ([l

Y=2i+2 —&

PR

X=(+1)+1+ti

(c) The case where u't*i =@ - s with s # € and the production to be appended is p14itt,,, = €.

ultt = or1

APPEND
PRODUCTION

Pltitt =€

Y=2i
Row i
Zigh

Zag [l
Y=2i+2 —&

X=i+1+¢;

X=(E+)+1+tn (e) The case where u' ™" = 0",
(d) The case where u'™* = @™ and the production to be ap-
pended is Pltittiy, = €

Figure 4 The ith row of the final block configuration (the previous and next rows are shaded in blue). Production
index in the label are computed modulo n. Observe that the Read» and Copy® in the i-th zig row correspond readily

the i-th line in the annotated trimmed space-time diagram of the simulated SCTS.

XX:11

XX:12 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

Figure 5 Geometry of the Read» blocks. Note that the internal structures (the lines in white) of both blocks
Readow and Readlw agree until position (w + 2, —h + 1) where the presence or absence of a spike, encoding a @, at
the bottom of the row above forces the block to adopt the shape Read@» or Read1» respectively.

(0,1-h)

Yo k
L

Read position at (w+2,1-h)

Y

N

X

k.

I 45
(0,0) (W,0)
(a) The Read@» block has the shape of a trapezium whose bottom basis has length W and top basis has length w+5,
with height h. It has a dent (an empty position) located at (w + 2, —h + 1) (w.r.t. to its origin at the bottom left
corner), in which plugs the spike of the block from the row above it, encoding the letter @. The next block will start

folding at the bottom right corner, at (W, 0).

Read position at (w+2,1-h) (W-1,1-h)

)

READ1 »
l,

V (W71¢U>

(0,0)
(b) The Read1» block has the shape of a parallelogram with horizontal side length W and vertical side length h. The
red rectangle area at position (w + 2, —h + 1) (w.r.t. its origin at the bottom left corner) aligns with the flat bottom
block above encoding the letter 1 (as opposed to a spiked-block encoding a @). The next block will start folding at

the top right corner, at (W — 1, —h 4 1).

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki XX:13

» Lemma 5. The (possibly infinite) final block configuration consists of: (see illustration on Figure 6)

The seed row, i.e. the block Seed(u®) ending at coordinates (—1,h).

Fori >0, the i-th row consists of a zig row located between y = 2ih+ 1 and y = (2i + 1)h, and a zag row

located between y = (2i + 1)h + 1 and y = 2(i + 1), defined as follows:

e (Compute) if u'*t* =0"1-s and if s and pyy;y,,, are not both e: then =t —t;—1 and,

as illustrated in Figure 6(a) and Figure 6(b):

the i-th zig-row consists from left to right of the sequence of geometrical blocks whose origin is
located at the following coordinates:

Sy (2i 4+ 1)h 2ih + 1
=z th+ 1 +t)W - ih+(r+t)W ih+t W ih+ 1+t)W —1 - ih+(|s| +ti)W —1 dh+ (14 |s|+t1)W -1
Blocks Reado» Reado» Read1p» Copy (s)» Copy (s|s—1)» Append & CRE(p1yiteiy,)

This row ends at position ((i + 1)h 4+ (L + [s| + |pisv14t,s, | + tig) W =7, (20 + 1)h + 1).

the i-th zag-row consists from left to right of the sequence of geometrical blocks whose origins are
located at the following coordinates:

Y (2i+1)h+1
-z ((+Dh+ Q24+t)W -8 (+1Dh+ B+t)W -8 - (i+1)h+ 14 |v|+tp)W -8
Blocks <«CopyLineFeed(vy) < Copy (v1) e <Copy (Vjy|-1)

where v = w1 =5 Py, F#€ (as s and piy14e,,, are not both €). This row ends at position
((G+1Dh+ (1 +tip)W = 1,(2(6 4+ 1) + 1)h).
e (Halt 1) if u' ™ =@"1 and py1iy¢, , = €: thenr =ty —t; — 1 and the last rows of the geomet-
rical block configuration consist from left to right of the sequence of geometrical blocks located at the
following coordinates, as illustrated in Figure 6(c):

Y (2i+1)h 2th +1 (2i + 3)h
—ax dh+ A +t)W o ih+ (r+)W ih 4t W th4+ (1+t)W -1 G+ 1Dh+ (14 tip)W
Blocks Reado» e Reado» Readl» CarriageReturn&LineFeed Halt

e finally, (Halt 2) if u'tt = @" for some r > 0: then the i-th zig-row is last row of the geometrical
block configuration and consists of the sequence of geometrical blocks located at the following coordi-

nates, as illustrated in Figure 6(d):

Y (2i +1)h
—x ih+Q+t)W - dh+(r+t)W dh+ (147 +t)W
Blocks Reado» e Readop» Halt

Hence, the read positions and write positions of blocks in consecutive rows are adjacent.

Proof. We map each block from Lemma 4 to its actual position, using the following table to compute the

space taken by each block:

Block Ax Ay
Reado» w 0
Readl» wW—-1 1—-h
Copy@» and Copy1» w 0
Append & CRYX(u) |u| - W +h =7 h
< Copy@ and «€Copy1 -w 0
<« CopylLineFeedd and €CopylLineFeedl W +38 2h —1

» Corollary 6. The geometrical blocks simulate the associated skipping cyclic tag system.

XX:14 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

o
7(3 > N
£ & S S -
o o % R N X N A
gof $og S g @
\/—> z § ¥ N N N N N N X
7 7 Y - .) N < RS
Y ® /@ b 5 u' = 0"10s B ‘ =
/) 8 \\t \\g‘ \Q\‘
N ~ N
NS NS N
— /// 7/ //////// / / 7 ////////[,,,,,,,,,,, ZZZ[......... ////////., //////// eenn PRODUCT,ON; i
. (Ml)h,/A \\\ . \\\\\ . \\\\\ . \\\\\ o)
S /// 7/// 7//// 7//////// ///
J& S .@k A's y—2(z+1)h—l ,,,,,,,,,,, WS8/8/ 8y 4 4 4 /— V114 W7
soov ‘ witten ¥
v = @MH)+h—L Y 5 &
& BF R
3 38 >
o 2 ¢ &
9 S& z
< Nw S
N >N &
z <
< g 2
7 N
& *
X
&
o
Vi
&
(a) The case where u'™" = @1 - s and the production to be appended is pitite, , # €.
&
X
& & * s 3
2 8 & S = &
g ¢ S S
\/_) z 5% N N s N 3
Y ® /&/ /&// s u'=0"10s 5 s S
7 S
// // s 3
/0 /.

Ny7/7/ //1/////,///////1,,,, it | e
/ ,,,,, /A/ . ;\\\ \\\\/ ,,,,,\\\\ ,,,,,\\\\\ Evey

Y, s ® o ylttin
Py y = (2(i+1)+1)h Y \& & §
NS g
e N
N s *
W R R
* NG =
[\ RN 4
* I 2
S > N
£ ~F L
N /& <
y & y
& &

(b) The case where 't = @™ - s with s # ¢ and the production to be appended is Pltittiy, = €

o
£
& %
o S/
& g s
= § ® N 4 2
* A & X 2 L
o & N N N
T Ry < N N £ 2
/ ¥ ¥ N \ & ¥
@// 7 i ’ / \\:L = Qr J
Yy & = Q"1 & .37
o
.7 ////////_/_/_; 7
A PR,ODUCTION /
/Priisiy =E HALT
y= (25‘+1)h7/Aﬁ /_’h,
Q N h A
R R .
& \} N y=2(it1)h 5 —
§ S

, / ¢ jéHALT
© y = (2(i+1)+1)h—

(c) The case where ' = @"1 and the production to be ap- (d) The case where u' ™" =0@".
pended is pi4itt,,, = €.

Figure 6 The ith row of the final geometrical block configuration (the previous and next rows are shaded in blue).
Production index in the label are computed modulo n. Observe that the Readw» and Copy® in the i-th zig row
correspond readily the i-th line in the annotated trimmed space-time diagram of the simulated SCTS.

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki

4.3 Production segments: encoding the production index

The primary structure we use to simulate a skipping cyclic tag system with n productions pg, p1,...,Pn—1, is
a periodic sequence of n strings of beads of equal length called production segments [po],. .., [Pn-1], Wwhere

for all 7, [p;] encodes production p;. The first module of production segments is written as black lines on
the figures in Section B.

The primary sequence of the oritatami system corresponding to the skipping cyclic tag system with
productions (po, ...,pnp—1) is the infinite sequence with period [po] - [p1] - - - [Pn-1]-

Each block is the result of folding a number of production segments (depending on the block type):

Readw» and Append &CRX%(u) take one production segment each,
Halt stops before folding one full production segment,
all other blocks take n production segments each.

We call the internal state of a block B the production index ¢ of the first (and possibly only, for Readw,
Append & CR%(u) and Halt blocks) production segment [p,] of B.

» Lemma 7. At each step, the internal state of every block is equal to the state variable q in the block
automaton in Figure 3.
Therefore, the block automaton simulates exactly the SCTS.

Proof. In the construction of our blocks, the internal state is increased by one (modulo n) each time a
block consisting of one production segment is folded (Readw» or Append&CRX), and is unchanged (modulo
n) otherwise (Copy», €4Copy or «€CopylLineFeed). The case of Halt, which stops the entire simulation, is
special.

This is exactly the same as in the block automaton (Figure 3).

Moreover, the zag phase contains only blocks of n productions segments (i.e. of width W), hence does
not change the internal state, again as in the block automaton. <

5 The Structure of the Sequence: the Modules and the Bricks

5.1 Modules

Each production segment is split into seven modules , e ,, each serving one or several purposes:

Module JAY (3h — 2 beads long) is the initial scaffold upon which the other modules fold.

Module (5 beads long) is responsible for the detection of an empty tape word: if it is empty, it folds to
the left and the molecule gets traped in a closed space and the computation halts; otherwise, it folds to
the right and the computation continues.

Module (€ (3h—10 beads long) is responsible for the detection of the end of the tape word to start appending
to it the production word.

Modules Dgjii (3W + 30 beads long each) encodes each letter of the production word inside the production
segment. It adopts two shapes: compact inside reading and copying blocks, or expanded in appending
blocks.

Module (B3W(L — a+ P) + 8h — 1 beads long) ensures by padding that all production segment have
the same length (even if the production word have different length). It serves two other purposes: its
presence indicates to |€| and |B] that the end of tape is not yet reached; and it accomplishes the carriage
return initiating the Zag-phase once the current productionaword has been appended.

Module E (4h beads long) is the scaffold upon which folds. It is specially designed to induce two very
distinct shapes on depending on the initial shift of .

Module (6h—1 beads long) is the real “brain” of the molecule. It implements three distinction functions
which are triggered by its interaction with its environments: in the zig-up phase, it reads the current
letter of the tape word, ignoring the @s and moves to the zig-down phase when it reads a 1; it copies

XX:15

XX:16 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

the @ and 1 in the zig-down and zag phases; it accomplishes the line feed when the molecule reaches the
beginning of the tape word at the end of each zag-phase.

The bead-by-bead description of each of these sequences will be given in Section 7.
Each production segment [p;] is split into a sequence of modules: [p;] :m-~ G- Dol - Donn
S D(pi)|l’i|*1 m [Ii where - denotes the concatenation of two bead sequences.

5.2 Bricks

» Definition 8 (Brick). Each module adopts different conformations to accomplish each of its tasks. We call
brick every conformation that a given module adopts when folded in a valid environment.

Figure 7 lists all the bricks that adopts the modules in our design and how they are organized inside
each block. The exact geometry of the bricks will be given together with their beads sequence in Section 7.
Bricks are the lowest design level we will consider in this article before going to the beads level. Figure 8
presents the brick automaton which details how the bricks articulates with eachother. The lemma below
shows that if the modules folds into bricks according to this automaton, then our design simulates indeed
the block automaton and thus the SCTS. We are left with proving that each module folds into the expected
brick for every possible environment to complete the proof of our main theorem.

» Lemma 9. Starting from a wellformed seed (see section 7), the brick automaton in Figure 8 simulates the
Skipping Cyclic Tag System.

Proof sketch. Starting from a wellformed seed, we prove by induction that the brick automaton implements
precisely the block automaton which simulates the SCTS by Lemma 7. <

We are left with designing sequences implementing the bricks. We can forget about the simulation itself
and focus on the local folding of each module in every possible environment.

6 Design Toolbox

In this section, we present several key tools to program Oritatami design and which we believe to be generic
as they allowed us to get a lot of freedom in our design.

6.1 Expanding shapes: Glider and Switchback

In our design we need to store many letters in a very compact space inside the blocks Read», Copy» and
<« Copy, and to expand each of them to the width of a block in the Append & CRX blocks. This is achieved
using the glider/switchback device illustrated in Figure 9. The key in this design is that both shapes use a
small enough number of bonds so that they don’t interfere once the beginning of the molecule is folded in
one way, it keeps folding that way. The design of modules D], E’ and is based on this bonding pattern
(see Section 7). This behavior is best observed in the proof-trees (see Section 8.2 or the companion website
of this paper?).

6.2 Implementing the logic

As in [11], the internal state of our “molecular computing machinery” consists essentially of two parameters:
1) the position inside the primary structure of the part currently folding; and 2) the entry point of molecule
inside the environment. Indeed, depending on the entry point or the position inside the primary structure,
different beads will be in contact with the environment and thus different “functions” will be applied as a

4 https://www.irif.fr/ nschaban /oritatami/prooftrees/

https://www.irif.fr/~nschaban/oritatami/prooftrees/

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki

Zig-Up»

‘ Zig-Down» ‘

Writep <Zag
Append & CR%(u)
Reado» Copy@» < Copy@
/ Read1» Copy1» CarriageReturn&LineFeed&Halt <Copy1 <«CopyLineFeedl
‘ Halt ‘ Read» ‘ Copy» Append & CR% ‘ <Copy ‘<CopyLineFeed
ApZigUp
»/(see Figure 13) Ap-ZigDown
‘ ‘ e BbHalt‘ % Bp-ZigUfsee Figure 14) » BpZigDown + BdZag
R R Cw»ZigDown CpEndof Tape .
(see Figure 15(a))
cl| nA
CpZigUp
(seet Figure 15(b)) b 3 i CdZag
D»ZigDown -
DI NA
D»ZigUp " DwWrite
+/+(see-Figure 17(e)) (see Figure 17) D<Zag
EX%CarriageReturn
N/A (see Figure 20)
EmZigUp - -
see Figure 18) EpZigDown® | e s
F»ZigDown
WA
F»-ZigUp
see Figure 21) F4Zag
GP-Read@ P
GpZigCopy
see Figure 24) G4Zag Copy
WA
g e oae
AN GiLineFeed
GPRead1 see Figure 26)
(see Figure 23)

Figure 7 The bricks inside each block.

XX:18 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

E above

ﬂat
above
A>Zigup BrZigUp CrZigUp DppZigUp EL-|p,»ZigUp F»ZJgUp / W
block READM |
GPReadt

ZIG-DOWN bim b1
.
bump
mou if b = 0 mod n: output
: block COPYo»|q]
\ —

GPZigCopy@
E ab
) above >
B»ZigDown f'at
- —

ZIG-UP G- g+ 1
block HALT
START o E above / bump
from the = above/ 7
seed brick / Y Brale / GPReado block READ@M[g]
=0 —m / —> —» —
4 / ~— v

A»zlgDown c»zlgDown Dpg>ZigDown EL—|pg/>ZigDown F»ZigDown
if b= 0 mod n: output

1o E above block COPY1»[g]

G ZigCopy1
// A»ZigUp
£ .
/ // BhHalt
WRITE . — =
gi=q+1
/ i /
nothing 1/ GdtineFeed / block Carriage Return &
- above Line Feed & Halt[q]
" o [T
L PR »
CrEnd of Tape D Wiite pg EPCarriage Return \ &
T — —
something
PR above
block
» Faz G4Copyl
} % 4Copy Append & Carriage Return(p,)
GLine Feed
(b= 0 mod n) Output
" block 4COPYLineFeed[q|(c) PR
gi—q+ land bim0
ZAG
nothing
above
W~ bump
above
///// G4ZagCopye - - - -«— - - «
if b= n-2 mod n /- . BdZag
co / y 4
if b= 0 mod n: output FaZag EL |p,4Zag Dp,4Zag Cazag AdZag
block 4COPY|g(c)
flat
above
G 4ZagCopy1
if b= n-2 mod
c:=1
q q+1 >

Figure 8 The brick automaton implementing the block automaton. Note that in the Zig Down-phase, each letter
of the word above is copied by the first module @ of the Copy» block and the end of the word is detected by the
first module €| of the block. In the Zag-phase however, each letter of the word above is copied by the penultimate
module @ of the «4Copy block and the beginning of the word is detected by the last @ of the block.

Note that this automaton is presented as a“transducer” producing the block diagram: the variables ¢ and b, which
counts up to n, are introduced only to output the right module at the right time during the zig-down and zag phases
(assuming the seed is wellformed).

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki

Figure 9 The glider/switchback bond pattern. To the left: the @-rule for the F-beads. In the middle: the strong
binding of the F-beads with the B-beads triangular shape imposes the glider shape. To the right: the strong bonding
of the F-beads to the C-beads imposes the switchback pattern forever.

result of their interactions. Similarly, the memory of the system consists of the beads already placed in the
area currently visited (the environment).

At different places, we need the molecule to read information from the environment and trigger the
appropriate folding. This is obtained through different mechanisms.

Default folding. By default, during the zig-up phase, is attracted to the left and folds to the right only
in presence of E above. This allows to continue the folding only if the tape word is not empty or to halt
it otherwise (see Figure 14).

Geometry obstruction. An typical example is illustrated by . During the zig-up phase where the absence
of environment below the block Read» allows @ to fold downward at the beginning (see Figure 22) which
shift the molecule by 7 beads along |RI resulting in to adopt the glider-shape (more details on this
mechanism in the next section). Whereas during the zig-down phase, cannot make this loop because
it is occupied by a previously placed @ This results in a perfect alignment of [G] with |[R whose strong
attraction forces [G] to adopt the switchback shape.

Geometry of the environment. Figure 10 shows how the shape of the environment is used to change the
direction of in glider-shape. This results in modifying the entry point in the environment and allows
the Oritatami system to trim the leading @s in the tape word, switch from zip-up to zig-down phase when
reading a 1 and from zag- to zig-up phase when it has rewind to the beginning of the tape word.

6.3 Easing the design: getting the freedom you need

Several key tools allowed to ease considerably our design, and even in some cases to make it feasible. These
tools are generic enough to be considered as programming paradigms. One main difficulty we had to face
is that the different functions one wants to implement tend to concentrate at the same “hot-spots” in the
molecule. A typical example is the center of which is the place where one wants to implement all the
functions: Read, Copy, Line Feed. The following powerful tools allowed to overcome these difficulties:

Socks work by letting a glider/switchback module fold into a switchback conformation for some time when
it would otherwise fold into a glider. Examples are shown in Figure 11. They are easy to implement,
since the socks naturally adopt the same shape as turn that part of the module has in the switchback
conformation. They offer a lot of freedom in the design, for several reasons:

First, they simplify the design of important switchback part by lifting the need for implementing the
glider conformation for that part, as shown in Figure 11(a).

XX:19

o (W@ DAL (6 G o o

(a) [G] goes straight southwestward in
absence of obstacle.

—~

(b) bounces southeastward in
presence of a bump.

XX:20 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

(c) bounces eastward in presence
of a flat surface.

Figure 10 The interactions of module @ in “glider”-mode with different environments result in heading to different
entry points to the next area of the folding.

=)

Bb
Lol - ' cyciciof]
e e (P IOOOE0E
R]2) A,,,AQ

(a) Easing the design of switchback-
/glider by letting the switchback (in

green) folds in its natural shape at its
extremities even in “glider”-mode.

&% center of the
% module

(b) Module [G]: Realigning a pattern
by slowing its folding down at the end
to compensate speeding it at the be-
ginning.

025) o (e6)-{Er))m(E0)-(es)m(Es)-(E1)m(E0)-+
a0)-639)-{e7) E19) (1) (¢) (&7) E19) (et

NN XXX N X XNy e iy e iy e N aX 2
(c) Module DJ: Preventing unwanted
interactions between the beads out-
lined in red by concealing them on top
of the glider.

Figure 11 Different uses of socks: (a) Easing bond design; (b) Delaying; (c) Preventing unwanted interactions.

= Second, a glider naturally progresses at speed 1/3. Adding a sock allows us to slow its progression
down to speed 1/5 for some time, as in Figure 11(b), and therefore realign them. We used that
feature repeatedly to “shift” some modules, by starting them with an initial speed-1 (i.e. straight line)
progression, as in Figure 11(b), and then compensate for that speed by introducing a socket later on,
and realign the brick with others. This is a key point in the design, as it allowed us to separate the
Read and Copy functions into different parts of module , and therefore to get less constraints on
rule design. In the specific case of module , the Copy-function occurs at the center of the module,
while the Read-function is implemented earlier in module!

- Finally, socks allow to prevent unwanted interactions between beads by concealing potentially armful
beads in unreachable area as in Figure 11(c).

Exponential coloring is a key tool to allow module to fold into different shapes, glider or switchback,
along module , when folding in the Read® configuration. This trick is described in greater detail in
Section 7.10. The problem it solves is that in order for to fold into its switchback shape, we need
strong interactions between and neighboring module , whereas in order for to adopt the glider
shape, we want to avoid those interactions. This is made possible because gliders progress at speed 1/3
while switchbacks progress at speed 1. Using a power-of-3 coloring allows to realise these contradicting
goals altogether (precise construction is analysed in Lemma 15 in Section 8).

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki

7 The Sequences for the Bricks

We now define the primary structure we use to simulate a skipping cyclic tag system. The complete rule &
is given in the appendix in Section C.

7.1 Extra notations for sequences

In order to do so, we need a few extra notations to manipulate sequences: if u and v are finite sequences, we
write their concatenation as v -v. For any two integers 0 < i < j < |u|, we also write uj;. ;) for wsu;q ... u;.
The reverse sequence of u, written as u%, is Upy| =1 W[—2 - - - ULUp-

Finally, given a sequence u, we write u{(a1@iy, . .., axQ@iy)) for the sequence w where for all j € {1,2,...k},
bead i; of u has been replaced by a;:

I if ¢ = 4; for some j
K3 .
u; otherwise

By extension, we write u{{(v@k..l)) for the sequence w where for all ¢ € {k,k + 1,...,1}, the beads at
indices k to [of u have been replaced by the word v (of length | — k + 1):

Vi—k if k& <) < l
w; = .
u; otherwise

For an infinite sequence of (finite) words (u;);>1, we denote by @i>1 u; the infinite word wqug ---u; ...
obtained by containing all the words u, ...

7.2 More constants: k£, A and &

We also define three new constants as helpers for the module sequences:

k= % Note that by the definition of h in Section 4.2, k is even.
A = W/2. By the definition of W in Section 4.2, A\ mod 24 = 0.
k = W/24. By the definition of W in Section 4.2, k is even.

7.3 :Seed for input w.

We first describe the seed , which is essentially an encoding of the input word u to the skipping cyclic
tag system we are simulating. As per the definition of oritatami systems, this is a conformation, thus a
sequence of beads together with positions (i.e. all other sequences have their positions defined by the folding
dynamics). These positions will be encoded incrementally, using the following notation, relative to the axes
define in Figure 6:
0
a s‘ﬁ b means a bead of type a, followed by a bead of type b, such that posb = posa + (1 >
a s\g‘ b means a bead of type a, followed by a bead of type b, such that posb = posa +

at b means a bead of type a, followed by a bead of type b, such that posb = posa +

a y b means a bead of type a, followed by a bead of type b, such that posb = posa +

a g b means a bead of type a, followed by a bead of type b, such that posb = posa + (0 >
a 'y b means a bead of type a, followed by a bead of type b, such that posb = posa + (

XX:21

XX:22 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

<

For example, a sequence such as a § <

T e dy e, starting at (8) is a sequence of five beads: a bead
0
1

of type a at < 8 >,abeadoftypebat < >,abeadoftypecat (1),abead of type d at (;),and

a bead of type e at < (2) >

We are now ready to describe module , built by combining 4 types of conformation segments, see
Figure 12:

24023
SegSeedTerm — (Js 57 s{,) J11% 125 J16 & J17 & J18
SegSeedPrefix — A9 5, A12 5 B0y B1 Y B2 B35 B4 X C4 X A0 (7 AD)" ™' & H8 & H19% H20
H21 & H24 § 115§ 1155 116 4 117 4 119§ 119§ J12 % J16 4 J17 5 J18
SegSeed(@) = L17 § L18 § L47 %, L48 Y L49 | L82 § L83\ A6
SegSeed(1) = L17 § L18 § L48 {/ L82 {, L83 ' L84 | A6

11 k—2
SegSeedLineFeed = K34 % (K45 £ KA0Z (K46 £ K47 s/w) (K57 £ K52 s{,)
k—18 10
(ngs/w Kﬁosﬁ) (Kﬁgs{, K64S/w) K69 5, M20 o M26 &% M27
£ M28 £, M29 2 M30.

k—2

Each letter a € {0,1} is encoded in the seed by the conformation:

SegSeedLetter(a) = (SegSeed(1) |, SegSeedPrefix <\,,_)"_1 SegSeed(a) |, SegSeedPrefix

Then, the module is:

|l

= SegSeedTerm |, @ SegSeedLetter(u|, ;) y | SegSeedLineFeed

i=1

7.4 [N:zig-Init.

The first module, @, is defined as:

[AY = A0..4 - (A5..10)**~! . A5..7 - A6 - A9..10 - A11..12.

The length of m is therefore 5+ 6(3k — 1) + 3+ 1+ 2+ 2 = 3h — 2. The proof trees in Section 8.2 prove
that @ always has height H =2 + 2(3k — 1) + 3 = h, and width 3, and folds as in Figure 13.

7.5 : Empty word detector.

The next module is , whose purpose is to test whether the word is empty, and orient the folding either
into a closed connected component of the place, if the word is empty, or to the outside of that connected
component. This module is defined as = BO0..4, which is of length 5, and its two possible functions are
shown in Figure 14.

7.6 |C: End of word detector.

If does not detect an empty word, the folding goes on to (€|, whose purpose is to detect the end of the
word: if the current position is at the end of the current word, a production segment (encoded by a sequence
of Dg) and Djl) needs to fold into a word appended at the end of the current word. Else, €| folds into a
switchback conformation.

XX:23

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki

(omin|+z)

£ o

& 7/ (eYy)+T

(¢/(gtye)-MInl+z)

(0'Me-+g+m) ye gurod 9TIpg

(T'M2+g-+m) ye yutod o

sowtry T-u Jeodoy

“(n)pess 3priq oY, g1 24nSi4

\\ sour) O
\\\x\w Mas ST-4
Forer
\N\@E; T

GG @ IR E IR D]

1811 01 939] WOIJ T—|n| 03 () = 2 I0J BIBUSIROUO))

XX:24 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

© @ TR0k
@2 [»

Figure 14 The folding of |[B] in the zig phase. The two possible outcomes of the text are shown in this figure: the
one in dashed lines is what happens when the word is empty, i.e. when the two 119 beads are absent, and the one in
full lines when the word is not empty

This module is defined as [€ = (C0..2)?* . (C3..5)* . C3.C7-C8 - (C6..8)*~1 . (C9..14)*~1 . C9..10 -
C15..16 - C13.

The length of |Clis 3h —10 =3 x 2k +3k+3+3(k—1)+6(k—1)+ 5.

Its two possible conformations in the zig phase are shown in Figure 15:

The left-hand side figure shows the conformation at the end of the word. Its height is Heyp = %T—g -2,
and its width is Weyp, = 2.
The right-hand side figure shows the conformation in the other case. Height (upright): H,, = h — 3.
Width (upright): W, = 3.

7.7 D!: Letters

Module D] defines the encoding of the letters in productions of the skipping cyclic tag system. It takes three
parameters:

a letter z € {0,1},

a parameter r € {0, 1,2} to indicate whether this letter is the first letter in the production word (in which
case r = 0), at an odd position in the production word (in which case r = 1), or at an even position in
the production word (in which case r = 2),

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki XX:25

(b) The conformation of [€] when not at the
end of the word.

(a) The conformation of (€ at the end of the
word (before Eﬂ folds into the appended pro-
duction).

Figure 15 The folding of €] in the zig phase.

= and a parameter ¢ indicates whether that letter is the last letter of the word (¢t = 1) or not (¢ = 0).

This module therefore comes in twelve different versions, all of the same length 3W +6 x5 =6(A+5) =
6 x (12K + 5).

We first describe four helper sequences, each of length A +5 = 12k + 5:

= SegDO0 = D23..33 - E6..11 - (E0..11)~~L,
= SegD1 = (E12..23)" - D49..45.
= SegD2 = D34..44 - E30..35 - (E24..35)" .

- SegD3 = (E36..47)" - D54..50.

XX:26 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

7.7.1 Encoding of z =1

Then, we define two particular versions of |Djl, from which the other versions are derived by replacing a few
beads:

D120 = SegDO0 - SegD1 - SegD2 - SegD3 - SegDO - SegD1.
Dj10l = SegD2 - SegD3 - SegDO0 - SegD1 - SegD2 - SegD3.

Module |Djgg| is obtained by modifying the 17 first beads of |Dj20):
Dio0) = D120 <<D0..16@0..16>>

Then, for all r € {0, 1,2}, the trailing versions |Dj,1i of |Dj| are obtained by modifying the 8th and 5 last
beads of |Dj,q), as follows:

D = IDYRN(D17Q(3W + 22), D18..22Q(3W + 25)..(3W + 29)))

7.7.2 Encoding of z =0

For all r € {0,1,2} and ¢t € {0,1}, module Dg,; is obtained by replacing most of the beads in the range
3w+ 1..3w + 13 as follows:

Do, = [DY(L17@(3w + 1), L18@(3w + 2), D55..62Q (3w + 6)..(3w + 13)))

7.7.3 Possible conformations

The possible conformations of D) are shown in Figures 16 and 17.

7.7.4 Size and alignment of the module

First note that the height of module D] (i.e. the encoding of a single letter of a production), when folded
into its switchback conformation, is Hyp, = L/6 = W/2 + 5, and its width is Wy, = 6.
We will now prove a small lemma to make the proofs of a claim in Section 8 easier:

» Lemma 10. The segment of Dy encoding the “bump” in the expanded conformation is always adjacent
to the same beads of \C, when both (€| and \Di,; are in their switchback conformation.

Proof. Note that w = 6 mod 12, hence index ¢ = 3w + 1, the first index of the bump, is such that i
mod 12 = 7. This corresponds to index j = (11 —4) +5 =9 mod 12 in the previous column, and hence we
get the following table:

¢ mod 12 j=(11-4)+5 mod 12 Neighboring beed in previous and next columns

Sw+1=7 9 36+9 =E45 /L17 /E21 = 1249
3w+2=38 8 36+8 = E44 - L18 - E20 = 12+ 8
3w+6=0 4 36 +4 = E40 - D55 - E16 = 12+ 4
3Sw+13=7 9 36+9 =E45 - D62 - E21 =12+ 9

This proves the lemma statement.

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki

K — 2 times
in total

First position Odd Positive Last columns of last letter at
(r=0) position even position even or odd position
(r=1) (r=2)

Figure 16 Module DE, during the zig phase, folded in its switchback/upright conformation.

7.8 : Padding with L — a extra blanks for 0 < a < L.

The purpose of module is to make sure that all production segments are of the same length, independently
from the length of production words in the simulated skipping cyclic tag system S. Recall from Section 4.2
that L is the length of the longest production word of S.

This module has two possible conformations: one in switchback, as shown in Figure 18, and one expanded
at the end of the appended production. An outline of the latter conformation is shown in Figure 19.

We will now define the different parts of module E, composed of 4 parts:

= the two first parts are based on the two infinite sequences:

- SegEA = ((F0..11)" - (F12..23)* - (F24..35)" - (F36..47)")™
- SegEB = ((G0..11)" - (G12..23)" - (G24..35)" - (G36..47)")™

= SegEC = HO0..4 - (H5..16)9~! - H5..10 - H17..24 of length 5 + 12(q — 1) + 6 + 8 = 3h — 2, where

h—3
q:TZO mod 3.

XX:27

XX:28 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

- b i
Y O = I @y = = =
5 00 3 Te%0's I a8 1 %
| ®®§ N ®®§ Z N
M T We%e T foa} 7 %ay 7
® 22 ! 8000 S g 2O <
s 950 = 2 @0 5 £ (@p9 — 2(O20
S % B (O T g | g ® |
020 0% £)]e%e £]0%q
E|le®@a = 0L =< ®
pe) @@ [)@ ® ~ — @\./ — @@v
~NOE® | ~ @@ | | ®2G | D~ ®
He@m = Ho@s 2t 508 e\ @&
@0 & 0@ & ®® ®®®\
900~ 900~ . 895 gag T
g T ®® T 5 P (OP-Gy
2 6@m > 3 (EOm S £ E (B £
g @ ¢ qé ®®® < = = @]
floge s £]ode s T 71808
71202 719® . 90
X < @29 3
ay;) Qs):

Vel
g 2O
£(®
£ F®@
N @ X®
46}
| =
<o : ‘
IS ORTN @
@@L = ® | @ ® !
" |] : @n . 0 ;
g 998 < : PO 92 E e
£ e%0: - 209 f(0ge: £ (0993
© T e © ® el Jog® © ®
tli028 © (mgg fesd flm)ece
*l 880 . * oge o F) lege . ¢ loge _
o - =
e &E e @175 ¢ @1%®§: e &é
% / . w
% f“ ®f£ @fﬁ
o9 %o o8 o8
9, 95¢ g 9g¢ 3 96
s 9% g 9P E @p® 5 9o®
g /—\ E / © (059 . © (©e9 .
2 (020 2 o|_Jore® © @
=1 [688 | = 7 E s = [688 | s T|-82d | ¢ T|+1689
= @ 3 = 3 = = | @ 3 = 3 @ : = 3 @/\
=l 6ge | ® z z =l (oge | = o0 |
959 |8 9 2 %2 |z N E
@ L ® o o o Oy 1 o
B, 45} (=) (=) (=] o o - —
= 15 7
< % 3 % 3 i s
N & = = = = = ~
J e) Q s pa Q<
ey, g Q @ g Q
Y = =l = < <
A = = = = =
o o) < < O

Figure 17 Module D], expanded to append the new production word at the end of the current word.

(f) The brick Dgp; -write.

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki XX:29

k — 1 times

(°5,0)

6(L+P)+13,0)

/4

bricks EC-Up and ED-Up

S
=
~
k-4
=)

E‘\ =
5)
) Z2
3 19} fl=s +.3 < a
— = = I =4
z Wz R g =
& R 3T z T:E
] —] T R
4=~ = ~ ° QAT
22T I 3 -
:D —_ S =
v 3 & x M8
% == “F
= < 2}
2 21" -
b3 oy
e i
&
T
©
I
F

(64+6(L+P),0

(3¢-1) mod %

6(L-a+P) columns
Yes1

Junction between bricks EA -Up and EB_-Up

if 6a+[3¢/x] = 0 mod 4, or = 2 mod 4, or = 1 mod 4, or = 3 mod 4

Up

Repeated
bond pattern
inside brick EA -

~Up

(b) Precise description of the E—Zig-Up brick.

Beginning of brick EA

(a) Blueprint of the [E5}-Zig-Up brick.
Figure 18 The [E4}-Zig-Up brick.

XX:30 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

(=2,h~4) Brick EA0 (when a=1)
(0, h
(PN (hoht 1) 2h 1h+1))-\(3h 4,h+1)% 5,h+1))" (5-9.8) \b (85-16,7) (ch)
Brick ED Brick EC Brick EB

(a) The blueprint of the [Ef}-CarriageReturn Brick, made of four bricks EAO, EB, EC and ED.
Brick EA1 (if L—a is odd) or EA2 (if L—a is even and a<L)

mmmmmmmm

(0,h-1)
M) h-9,h =
2R\ (bt 1) 2h 1,11 (3h4 hi1) (4h—5,h+1)» (5-9,8) (=) (e,h)
Brick ED Brick EC Brick EB
(b) The blueprint of the m-CarriageReturn Brick, made of bricks EA1/2, EB, EC and ED.

Figure 19 Outline of the four different parts of module E, when folded at the end of the appended production
word. See Figure 20 for the detailed beads of each part.

= the last part is composed of five sequences:
- SegED, = 115 -11..5- (10..5)*=1 .10 - 11 - 118 of length 6 + 6(k — 1) +3 =h
- SegED, =119 -17-18 - (16..8)2*=1 .16 - 17 - 115 - 116 of length 3 +3(2k — 1) +4=h + 1
- SegED, = 117 -110 - 111 - (19..11)%*~119 . 110 - 119 of length 3 + 3(2k — 1) +3 =h
- SegED; = 118113114 - (112..14)?*=1 . 112 - 113.119 of length 3+ 3(2k — 1) +3 ="h
- and SegED, = 119 -11-12- (10..2)2* of length 3 +3 x 2k = h

We may now define the sequence for the module for 0 < a < L by letting K = 3W(L — a + P), and:

= HeadE, = (SegEA)[y13.—2) - F51 - (SegEB)[p13.. 44 k2], of length K — 1, where b = 0 if a is even, and
b=2\if ais odd.
= TailE = SegEC - SegED,, - SegED, - SegED, - SegED, - SegED,.

Then the module is:

- = (HeadE)((F48..49@0..1, F50Q11)) - G48 - TailE
= and for a > 0: [E}] = (HeadE,) - G48 - TailE.

The length of module is:

EY = K+8h—1=6AL—a+P)+8h—1
= 6x12kx(L—a+P)+ Sh -1
=0 mod (3x48) =24 mod (2x48)

Therefore, for any word a, |[ER| mod 48 = 23.
We will now prove a lemma, used later in Section 8 to prove that the two conformations (switchback and
expanded) can be obtained at the same time:

» Lemma 11. When folded in the switchback conformation (i.e. as in Figure 18), all beads of SegEC are
far enough from SegEA to be attracted by them.

Hence, the attractions between these two parts can be freely chosen to “force” SegEC to fold into a straight
line instead of a glider in the expanded conformation.

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki

_ e -15 _ . .
Proof. Let ¢ = ———— and note that ¢ mod 12 = 2. Now, the width of SegEB, when folded in the

switchback conformation is K — (3¢ — 1). Moreover, 3¢ — 1 =5 mod 36. Therefore, for any padding length
a:

6 3
K—(30—1)ZZA(L—a—l—P)—Gh—I—l?):5A(L—a+P)—12)\+6(w+3)+13
3P
>)\<2 —12) > 4.5\, since P > 11.

Therefore, the width of SegEB is at least 5 columns, and since the delay of our simulation is 3, no bead of
SegEC can ever be attracted to a bead of SegEA in the switchback conformation. <

» Lemma 12. Bead F51 is never on an edge of brick —Carm'ageReturn.

Therefore, that bead is not involved in a turn in that brick, which means that the attraction rule can
be decided mostly based on its EAQ brick, to initiate the turn at the end of the padding, in the expanded
conformation of[E.

Proof. That bead is at index 3c — 1 from the beginning of the module, and moreover between the SegEA
and SegEB segments, which are both folded into switchbacks of height A in that brick. Now, note that A
mod 12 = 0, and that ¢ mod 12 = 2. Therefore, (3¢ — 1) mod 12 = 5, which means that bead F51 cannot
be on the edge of the switchback. |

XX:31

XX:32 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

< (=2,h-1) x—1 times £—1 times £—1 times here, i = 12\ (|3¢] mod 4)
‘ L u)
@) D QOO DO E ® &) -EnC)- @)\ @
* o7e) o)e]m Ja)o)eic)c)e))c)e m]u, 9)o)e)c)e 4].3 g30)o))c)c)e)e)s
@ Q} @) I EIE)) EIME) (GG EIE) - @) A EIE o ofcoloofoe (c,h)
0 h— 1) «... — : : rete
o 48K (=4))-beads long sequence repeated infinitely
(2:h) but truncated to the first 3¢-24 beads
(a) The subbrick EAQ, when a = L.
1 ti 1 ti 1 ti here,
K— K— K— . 3
O imes imes Imes ;0\ 19 » (24 13¢] mod 4)
66 Lf@me) .) @ Q) PO PR PO, P QL AEC
@O @ - F40)) (F4d) FAE‘-) (Fo) (7) F9) (F1) (Fa) () F19-(F13) Fr1e) (F19) (F2) (F13) (Fre) (Fi9) (FR)HGTo) (it
, 6174623 70)-{F5)(Fs)--E1m(Fo) --(Fo (s)13) F18)-E2am(i)-
= —— s c CD)
(0,h—1 48K (=4))-beads long sequence repeated infinitely
but truncated to the first 3¢—6 beads
(b) The subbrick EA1l, when L — a is odd
. r—1 times K1 times k—1 times hex&, i=12x ([3¢] mod 4)
oy L = T)
@& & (@ g QAE ‘% & O EHC) Q) B NP
G)\{D 2 -b b blm :@r‘r“e]b 22‘-:29 er"mr‘m ? D ra\r‘:@- 7)) (Fa0) (Fa3) (Fao) Fa]m 43) (Fao))Gin) G
D O, CACLCAT, DEC CRC, CAC.RRC, C5C, CIT @) (c,h)
i ot ’

48K (=4)\)-beads long sequence repeated infinitely
but truncated to the first 3¢-6 beads
(c) The subbrick EA2, when L — a is even and a < L.

here, i = 12 x (Lb*;‘] mod 4)
Here, each j can take any of the values 0, 12, 24, or 36 -@Q
o of: el o el tol: fefe fofe ol ol fufe fofi tele fo L fufe Tofi Tele fof teft tofu Jelt Jokt (eit todt el so8t 1o 0 tORNOS
S S S S S S S S S S S S s i s
(8h-16,h) ‘ £ times k times K times £ times ‘ 3W(a+P +8h-3¢-16,h)
“(eh)

4\-beads long sequence repeated 1+3(a+ P) times and
truncated to indices in the interval [b + 3¢ + 3... b + 3W(a + P) - 3] from right to left
where b = 0 if L-a is even and b = 2\ if L-a is odd |

(d) The subbrick EB.

here, each 7 can take any value with suitable parity
in {a+b:ae{056,11} and b € {0,12,24,36}}

h—3 (8h-16,h)
—— — 1 times '
4 here, 7 = 0, 12, 24, or 36
(e) The subbrick EC.
here, j is either 5 or 29; and each ¢ can take any value in {a+b: a € {0,5,6,11} and b € {0,12,24,36}}

(1h-1) \@fd@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@OOOO
(2,h) > e e)

(@R I@nE) (@A ()
o === = $ ~— —_—
2k — 1 times 2k — 1 times k— 1 times OO 2

(h,h1) (2h-1,h+1)tmeS (3),°y .y q)times (4h-5,h+1) (5h-9,h)
(f) The subbrick ED.

Figure 20 The -carriageReturn bricks.

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki XX:33

7.9 : Zag-Init.

Finally, after the end of the padding, module [E is used to start the copying phase. Module [ﬁ has the some
conformation in the zig and zag phases, up to a rotations of 180 degrees. The conformation of E in the zig
phase is shown in Figure 21.

@d @@
(w-4,1-h) ooo Se
TP ORI (1-1,1-h)
(’LU*4,5*) /“‘

0.0 @ (U}*l,*35732j+1) Truncate this
; infinite sequence

to height h—50

Concatenate
for j=1
to o0

B o e
(w-4,0) (w-1,0)

Figure 21

Module [R1 is composed of three parts. The beginning is HeadF and the end is TailF, defined as:

= HeadF = J0..4 - (J5..10)3*~1 . J5..7 - J11..23 of length 5+ 6(3k — 1) + 3+ 13 =3h + 6
= TailF = J48 - (J51..48)° - J51 - J52 - J49..48 of length 1 +4 x 10 = 41

The middle part is made of the following “exponential” sequence:

m for even i > 2, let SegExp(i) = J24..29 - (J30..35)3i*1_1 of length 6 - 37 1;

XX:34 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

and for odd i >3 , let SegExp(i) = J36..41 - (J42..47)3" ~1 of length 6 - 3~ 1;
so as to define the following infinite sequence, which is the concatenation of SegExp(2), SegExp(3),
SegExp(4)...:

SegExpF = @ SegExp(i)

i>2

Finally, the beads sequence for [H is:

[& = HeadF - (J39..41 - SegExpF|_,_s;y)) " - TailF.

Therefore, the length of module [E is 3h + 6 + (h — 50) + 3 + 41 = 4h.
We claim that for all i, the pattern SegExp(i) starts at index 3¢ — 9 of SegExpF. Indeed:

i—1 i

) 3 _9)
> 6.3 =2. =3"-9
ot 3-1

Finally, notice ’SegEpr[Ou(hﬂ%l)]‘ mod 12 = (h — 50) mod 12 = 1.

7.10 : Read-Copy-Line Feed module.

Module is the last module, and the one in charge of reading and copying the information around. This
module can fold into a seven different conformations:

Figures 22 and 23 show the module reading the encodings of @ and 1, respectively. These conformations
only happen during the zig phase.

Figures 24 and 25 show the module copying the encodings of @ and 1, respectively. These conformations
are shown on these figures in the zig phase, but are the same in the zag phase, rotated by 180 degrees.
Figures 26 only happens at the end of the zag phase, after copying the word, and before starting the next
step.

Module is of length exactly 6h — 1, and consists of six parts, each of length approximately h. We
described these parts now:

The first part is the most sophisticated since it can be folded either in a straight line, and hence “progress
at speed 1 (i.e. one row per bead), or in a glider, which progresses vertically at speed 1/3 (i.e.
two rows every six beads).

The other parts just contains a small delay loop (a sock) that allow to separate crucial sensing function

”

vertically

from basic geometry, as explained in Section 6.3. For the rest of this section, let k = b 0 mod 2.

Part 1: As for Module [ﬁ we define the following exponential pattern:

for even i > 2, let SegExp’(i) = K4..9 - (K10..15)3 ' 1 of length 6 - 31
and for odd i > 3 , let SegExp’(i) = K16..21 - (K22..27)3" 'L of length 6 - 31
so as to define the infinite sequence:

SegExpG = @ SegExp’(7)

i>2
As for SegExpF, the pattern SegExp’(i) starts at index 3¢ — 9 exactly in SegExpG.
The first part of @ is:

SegGl = L0..6 - K3 (K0..3)° - K0..2- L7..10 - SegExpGs_, 3]

of length 7+1+9x4+34+4+h—-51—-7=h—"7. Note that h —51 =0 mod 12 and thus the index of
the last bead of the exponential part is a multiple of 12.

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki XX:35

(4,2-h)
(1,1-h) OO(N r)()oooom*

(e
¢ (w+26,23-h)

elo)e!
@RE (wt2,-26-4k)
OB

,@@9 (w12,-23-4k) k 7t1mes 9

@
»9 /? k-3 times

Q)
Sot (“”21’26’2]") BEHE
Q o
GQO QEW @y (wi22+2k16-4k)
(D) ©)]
a3 (w12,-21-2k) ‘Q%'@%%
5q QP 48
&0, @
w }3# k-7 times [T
@ times 9 S, @
(w+2 ~34-371) Truncate this &G
Concatenate infinite pattern &6 € (e
for j = to h-68 beads chciefeag)

(w+9+4k,7-2k) r@_@

to oo 3
@ @ (w+18-+4k,12-2k)
@ @

(@) (2)
(wih-37,-36)” QYRS
QE @ e

5 times

P (wthi2,0)
= (W-1,0)

ot o} : V=0
@uOn() ()
R w11)

Figure 22 The brick [G]—read@.

XX:36 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

(w+2-+h,2-h)
(w+24,1-h) (wt2042k1-h) (w+10+4k1-h) (w+16+4k1-h) (w-18+6k1-h) L 7‘(‘W 12]f)

>HHEHL LRI R TS YOOLLLLEEHLLE L EL LR LR LR E b o00
120070 0 2l 0 0 0 ol fole ol 1500 700 ol ol "o o e o I 72 0L # o7 o MM&@@
=~ 56 ~— 83 ~ S
T @ 3 T @ S k26 e @ 7 times

imes times
(w14+2k5-h) (w+11+4k5-h) (w-32+6k5-h)

Figure 23 The brick [G]-read1.

Part 2: SegG2 = K32 - K33 (K28..33)*2 . K28..32 of length 2+ 6(k —3) +5=h — 14 =1 mod 12.

Part 3: SegG3 = K35..39 - (K34..39)k*14 - K34 - K35 - - K45 - (K40..45)10 . K40 - K41 of length
546(k—14)+6+10x6+2=h—14=1 mod 12.

Part 4: SegG4 = Kb50..51 - (K46..51)k*3 - K46..48 of length 24+ 6(k—3)+3=h—-13-3=h—-16=5
mod 6.

Part 5: SegGb = Kb55..57 - (K52..57)”“_6 -K52..53 - L74 - L75 - K56..57 - (K52..57)? - K52..53 of length
34+6(k—6)+2+2+242x6+2=h—16=5 mod 6.

Part 6: SegGb = K63-(K58..63)’“_19 -K58..61-191..99 - M0..19-K67..69 - (K64..69)'° - M20..30 of length
14+6(k—19)4+44+9+20+3+60+11=h—9=6 mod 12.

Finally,

= SegG1-L11..24 - SegG2 - 1.25..38 - SegG3 - L42..55 - SegG4 - L56..73
-SegG5 - L76..90 - SegG6

of total length =h —-7+14+h—-14+14+h—-144+14+h—-16+184+h —-16+15+h -9 =6h — 1.

8 Correctness of the folding

We will now resume and expand the explanation give in Section 3. Here is how we proceeded to ensure the
correctness of our design:

1. Enumerate all the surrounding for each brick of each module

2. Enumerate all possible modules following the module

3. Generate automatically human-readable certificate of the correctness of the folding for each possibility,
in the form of proof trees.

4. In the few cases where the surrounding may vary, prove that it has no incidence on the folding of the
brick. This happens only for three bricks exactly: when the brick G»Read zig-folds along F»ZigUp,
when the top of the brick G»Read1 folds, and when the zag-bricks folds under D»Write.

:37

XX

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki

w+1,1-h)
1D

82)- fin)
Il

4
)

§;

@G

(w+15,12-h)

)-2)-

(w+79,76-h)

o
o
S
Rt
S
o

The various bond patterns repeated
inside each part of this brick

0)-)-E) &)

(w+39,42—h)/ ‘

h)

(w+59,61-

(w+107,104-h)

Concatenate

for j =1 to o

—
—
¥
=
T
~
s
3
=

Truncate this

infinite sequence

o

to height h-68

o e
R
o

(w+h-22,-24)

(w+h-8,-6)

(w-+h+3,0)

(wﬁfﬁ%fl,l

Figure 24 The brick .—copy@.

38 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

XX

-Gy
-{8)-

)

0)-{) 4=

3

I

(w-1,1-h)

olcie)

Q

(w+15,12-h)

The various bond patterns repeated
inside each part of this brick

(w+79,76-h)

»

o) 1

(w+107,104-h)

Concatenate
Truncate this
infinite sequence

to height h-68

(wth-22,-24)

Figure 25 The brick @-copyi.

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki XX:39

(-w-2,34+3%)—4
) KOS O
3% -2 times /Tom@ -
b
(-w-2,34+3%1) H
ot

Truncate this
infinite sequence
to h—68 beads

Concatenate
for j = 1 to o

341 2 times @q\,};’
§3
olesD)
(-w-2,21+2k) -4
©
@3 Gy
(~w-2,26+ 2k)
@

k-3 times

(~w-2,23+4k) @ ¢

@
(~w-2,26+4k) @%%9
8
k15 timesﬂ
@&w

o\a 6

@®
(Cw2,h1) ®o®@ 0. 0204020,
o\ee)

@ T
u@@

(~w-4,h+14) : akf@ 6 times
662 @@
@ @@ @
©)] @ @ B0

03
86
6

Q'@ @ @ @
@
(- kom)
& (~wh+22)

® o @\,@ k=T times

Figure 26 The brick -lineFeed.

XX:40 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

The lemmas in Section 7 have proved that the bead alignment in each brick does not change when n and
L vary. This implies that the figures of the bricks are indeed generic. It follows that with the exception of
the three cases listed in point 4 above, and handled in Section 8.1, it is enough to prove the folding of each
brick only once. And as most of them are made of repeating patterns, only a finite number of environments
have to be considered. That last case will be treated in Section 8.2 using an automatic procedure which
produces human-readable certificates called proof-trees.

8.1 The three bricks with varying environments

The following lemma show that it is enough to proof one folding of the bricks under a D»Write, all the other
are the same since there are no interaction between the D-write brick and any brick folding immediately
below it.

» Lemma 13 (Zag-folding under D»Write). The modules ZAG-folding under the bricks D»Write have no
interaction with D»Write, with the only exceptions of:

the beads AQ and Al of module [AY which have bonds with beads E(2+12i) and L17 for AO, and E(9+12i)
for A1, for all 0 < i< 3.

the beads L17,L18, D57, D58 (the bump in module Dg) which bond with the beads L65,L64,L31 so that
the corresponding module folds into the expected brick G4ZagCopy Q.

Proof. Figure 27 lists all the possible @-interactions between the beads accessible from below the D»Write
bricks (to the left) with the beads at the top the modules zag-folding below it that can interact with them
(to the right).

The only possible bonds are thus:

with beads D17 and D22: (in green on Figure 27) these are only present at the junction between the bricks
DpWrite and E§Carriage Return, at the end of the rightmost D»Writebrick. The correctness of the
zag-folding of the F4Zag brick below is given next in the proof-trees section.

with beads L17, L18, D56, D57, D58, D62: (in blue on Figure 27) these beads are only present in the
spike encoding a @ in the brick D»Write, and these interactions are the one expected to ensure the copy
of the encoding of @ by the module that will Zag-fold below.

and finally between beads A0 and A1, and 4 groups of beads: E2, E3, E8, E9, then E14, E15, E20, E21,
then E26, E27, E32, E33, and finally E38, E39, E44, E45 (in red on Figure 27). As the width of a zag-
folded production segment is w+ 6 = 0 mod 12, the beads A0 and Al are always aligned with the same
beads within each of these groups (see Figure 17), namely AQ with E2, E14, E26 and E38, and Al with
E9, E21, E33 and E45. Furthermore as the interactions of AQ and Al are the same with each of them,
it is enough to prove that the module @ zag-folds correctly between one of these groups only, which is
done next in the proof-trees section.

It follows that outside these three cases (each handled by a proof-tree, see later), no interactions are
possible and the modules will zag-fold below the D»Write bricks independently of the exact beads that are
present inside. It is thus enough to show that each module zag-folds correctly at any location to ensure that
it zag-folds correctly anywhere below the D»Write brick. <

» Lemma 14 (Top of G»Read1). During the folding of the brick G»Read 1, no bead in [G] interacts with the
row above but at its two extremeties, i.e. the 82 top-leftmost beads and the 11 last (K34..L55 and M20..M30
resp. in Figure 23).

Proof. Figure 28(a) lists the only beads exposed and accessible from below above G»Read1. And Fig-
ure 28(b) lists all the possible @-interactions between them (to the left) and the beads of the brick G»Read 1
zig-folding below (to the right).

According to the rule in Figure 28(b), besides the interactions at the 82 first beads at the very top-
leftmost part of G»Read1 (K34..L55 in Figure 23, interactions in green in Figure 28(b)) and the 11 beads

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki XX:41

L6859 L70

7

Figure 27 The @-rule between the beads accessible from below of brick D»Write and the beads that will get in
touch with them from all the modules Zag-folding below.

XX:42 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

ofofotcofcfefofcfefcfofotc cfofcfofofofote o
°®®®®®@@@@®©@®@\QQQ®
& @ @)0 O f)QO,Q@$

(b) The @-rule for the beads accessible by the beads in G»Read1 as it zig-folds.

Jeiolotc.cf fefsfcfefefofotc.ofolciofofolatc.off
o \c el forcfofofale: cYofofofofofo\c RIRIRER
- ELBB LGP BARIIIIII I - - - -
L DOE - - OO0 OO GO O OGO - - - - o -
5 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

°Qo o o @@@@@@@ ° o
" GGG -

o o

(c) The closest bead L74 in brick G»-Read1 can get from one bead L82 above (case n =1 mod 3).

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki

Figure 29 #-rule between the two exponential segments in E and . Note that each bead makes exactly one
bond, with a bead of the same shade, red, blue, yellow or green (see Figure 22 and 23) and of the same rank within
the shade.

at the very end of G»Read1 (M20..M30 in Figure 23, interactions in blue in Figure 28(b)), the only possible
interaction between G»Read1 and the already present beads above it is: L82@#L74. But L74 appears only
once in G»Read 1, at coordinates (w + 10 + 4k, 1 — h) (see Figure 23), while L82 appears above G»Read 1
at coordinates (w + 1 4 i(w + 6),2 — h) for i = 0..n. The minimal a-distance between L82 and L74 is thus
min;—o..p, |9+4k—i(w+6)|. But 9+4k—i(w+6) = 9+4(n—1)(w+6)/6—i(w+6) = 9+2(n—1-3i)(2(L+P)+38).
It follows that the minimum difference in z-coordinate between L82 and L74 is:

17+ 2(L+ P) > 41, if n =0 mod 3;
9,if n =1 mod 3; and
1-2(L+P)<—23,ifn=2 mod 3.

As a consequence, L74 never gets close enough to interact with L82 above (see Figure28(c) for the closest
situation). It follows that one only need to take into account the environnement for the folding of the top-
leftmost and top-rightmost part of brick G»Read 1 (which is done next using proof-trees), the glider between
them, zig-folds regardless of the beads above in the environment. <

» Lemma 15 (G»Read1 along F»ZigUp). When [G] folds into the brick G»Read, no bead in SegExpG can
make bonds with the beads in F»ZigUp nearby and thus folds regardless of the beads nearby (as a glider).

Proof. Figure 29 lists the interactions between the beads in SegExpG and the beads in SegExpF: these
are exactly K(4 + ¢)@#J(24 + i) for ¢ = 0..23; in particular red-shaded beads K4..K9 in (resp. yellow,
K10..K15; blue, K16..K21; and green, K22..K27) can only bond with beads of the same shade J24..J29 in
[& (resp. J30..J35; J36..J41; J42..147).

As shown on Figure 21 and 22 the y-coordinates explored by these beads are as follows when [G] zig-folds
into G»Read @ or G»Read1:

Red : the y-coordinates of beads J24..J29 in [E belong to {—40 — 3% ..., —35 — 3%/} for j > 1, while the
corresponding beads K4..K9 in [G] explore y-coordinates in {—38 — 32'+1 | —34 — 3%'+1} for j/ > 1.

Yellow : the y-coordinates of beads J30..J35 in [B] belong to {—34 — 3%+ ... —41 — 3%} for j > 1, while
the corresponding beads K10..K15 in [G] explore y-coordinates in {—36 — 32'+2 ... —36 — 3%'+1} for
J>1

Blue : the y-coordinates of beads J36..J41 in [E belong to {—40 — 3%+ .. 35— 3%*1} for j > 1, while

the corresponding beads K16..K21 in [G] explore y-coordinates in {—38 — 3% ... —34 — 321"} for j' > 1.

XX:43

XX:44 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

Green : the y-coordinates of beads J42..J47 in [E belong to {—34 — 3%%2 .. —41 —3%7+1} for j > 1,
while the corresponding beads K2..K27 in [G] explore y-coordinates in {—36 — 3%'+1 .. —36 — 327"} for
i > 1.

Now, as for all j > 1 (with the notation, a < b iff a < b—2)

—35 —3%12 <« 38 — 39Tl <« 34 — 3% < 40— 3%
and —36 — 3% <« —34 — 3¥ ! <« 41 — 3% < 36 — 3%
and —34 —3%T2 < 40 - 3% <« —35 - 3%l <« 38 — 3%
and —41 — 3% « 36 - 3% <« —36 —3% <« —34 — 3%

none of the (same-shade) interacting beads ever get close enough to each other and the beads in the segment
SegExpG folds without making any bond (into a glider), regardless of the beads next to them in F»ZigUp
when zig-folds into brick G»Read. <

8.2 Proof-trees

A proof-tree is a compact representation of the enumeration of all the possible paths the molecule explores
as it folds. Figure 30 presents the proof-tree for the folding of when bouncing on a bump encoding a
0 in G»Read@. For the sake of readability, several paths are drawn in the same ball when they share the
same beginning up to their last bond with the environment; then, as a sanity check, the grey number at the
bottom left of the ball indicates how many paths are drawn in this ball. The black number in the top right
corner of each ball indicates how many bonds are made by the paths with the environment. The ball(s) with
the maximum number of bonds is(are) highlighted in black and go to the next round, together with the balls
that place the first bead at the same position.

These proof-trees are automatically generated as the molecule folds. Each environment (surrouding + the
three beads currently folding) is given a number (written #xxxx). When an already studied environment is
encountered, the proof-tree is stopped, and the next (already encountered) environment number is written,
allowing easy navigation in the proof — note that Figure 30 is an excerpt from a larger proof-tree and does
not show its beginning nor its end, this is why the navigation tag cannot be observed in this figure.

The complete proof certificates may be found on the website:

https://www.irif. fr/~nschaban/oritatami/prooftrees/

—— References

1 R. Agarwala, S. Batzoglou, V. Dangik, S. E. Decatur, S. Hannenhalli, M. Farach, S. Muthukrishnan, and
S. Skiena. Local rules for protein folding on a triangular lattice and generalized hydrophobicity in the hp
model. Journal of Computational Biology, 4(3):275-296, 1997.

2 J. Atkins and W. E. Hart. On the intractability of protein folding with a finite alphabet of amino acids.
Algorithmica, 25(2-3):279-294, 1999.

3 Bonnie Berger and Tom Leighton. Protein folding in the hydrophobic-hydrophilic (HP) model is NP-
complete. Journal of Computational Biology, 5(1):27-40, 1998.

4 Matthew Cook. Universality in elementary cellular automata. Complex Systems, 15:1-40, 2004.

5 Pierluigi Crescenzi, Deborah Goldman, Christos Papadimitriou, Antonio Piccolboni, and Mihalis Yan-
nakakis. On the complexity of protein folding. Journal of computational biology, 5(3):423-465, 1998.

6 K.A. Dill. Theory for the folding and stability of globular proteins. Biochemistry, 24(6):1501-1509, 1985.

7 Kirsten L. Frieda and Steven M. Block. Direct observation of cotranscriptional folding in an adenine ri-
boswitch. Science, 338(6105):397-400, 2012.

8 Peter Gédcs. Reliable cellular automata with self-organization. In Foundations of Computer Science, 1997.
Proceedings., 38th Annual Symposium on, pages 90-99. IEEE, 1997.

https://www.irif.fr/~nschaban/oritatami/prooftrees/

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki XX:45

#1088
G: RCLF
Bead K36

#1089
G: RCLF
Bead K37

#1090
G: RCLF
Bead K38

#1091
G: RCLF
Bead K39

#1092
G: RCLF
Bead K34

#1093
G: RCLF
Bead K35

#1094
G: RCLF
Bead L39

#1095
G: RCLF
Bead L40

#1096
G: RCLF
Bead L41

#1097
G: RCLF
Bead K45

#1098
G: RCLF
Bead K40

#1099
G: RCLF
Bead K41

#1100
G: RCLF
Bead K42

#1101
G: RCLF
Bead K43

Figure 30 Excerpt from the proof-tree certificate for the folding of into G»Read® when bouncing on a spike
encoding a @.

XX:46 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

10

11

12

13

14

15

16

17

18

19

20

21
22

Cody Geary, Pierre-Etienne Meunier, Nicolas Schabanel, and Shinnosuke Seki. Programming biomolecules
that fold greedily during transcription. In Proc. 41st International Symposium on Mathematical Foundations
of Computer Science (MFCS 2016), volume 58 of Leibniz International Proceedings in Informatics, pages
43:1-43:14, 2016.

Cody Geary, Paul W. K. Rothemund, and Ebbe S. Andersen. A single-stranded architecture for cotranscrip-
tional folding of RNA nanostructures. Science, 345:799-804, 2014.

Cody W. Geary, Pierre-Etienne Meunier, Nicolas Schabanel, and Shinnosuke Seki. Programming
biomolecules that fold greedily during transcription. In Piotr Faliszewski, Anca Muscholl, and Rolf Nie-
dermeier, editors, /1st International Symposium on Mathematical Foundations of Computer Science, MFCS
2016, August 22-26, 2016 - Krakow, Poland, volume 58 of LIPIcs, pages 43:1-43:14. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016.

Boyle J, Robillard G, and Kim S. Sequential folding of transfer RNA. a nuclear magnetic resonance study
of successively longer tRNA fragments with a common 5’ end. J Mol Biol, 139:601-625, 1980.

Lila Kari, Steffen Kopecki, Pierre-Etienne Meunier, Matthew J. Patitz, and Shinnosuke Seki. Binary pattern
tile set synthesis is np-hard. In Magnis M. Halld6rsson, Kazuo Iwama, Naoki Kobayashi, and Bettina
Speckmann, editors, Automata, Languages, and Programming - 42nd International Colloguium, ICALP
2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, volume 9134 of Lecture Notes in Computer Science,
pages 1022-1034. Springer, 2015.

Turlough Neary. Small universal Turing machines. PhD thesis, NUI, Maynooth, 2008.

Turlough Neary and Damien Woods. P-completeness of cellular automaton rule 110. In Proc. 33rd Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP2006), LNCS 4051, pages 132-143.
Springer, 2006.

A. Newman. A new algorithm for protein folding in the HP model. In Proceedings of 13th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 867-884, 2002.

M. Paterson and T. Przytycka. On the complexity of string folding. In F. Meyer and B. Monien, editors,
ICALP 1996, volume 1099 of LNCS, pages 658-669. Springer Berlin Heidelberg, 1996.

Paul W. K. Rothemund and Erik Winfree. The program-size complexity of self-assembled squares (extended
abstract). In STOC, pages 459-468, Portland, Oregon, United States, 2000. ACM.

Marcel Schmidt Am Busch, Anne Lopes, David Mignon, Thomas Gaillard, and Thomas Simonson. The
inverse protein folding problem: protein design and structure prediction in the genomic era. In H. Treut-
lein J. Zeng, R. Zhang, editor, Quantum Simulations of Materials and Biological Systems, pages 121-140.
Springer, 2012.

R. Unger and J. Moult. Finding the lowest free energy conformation of a protein is an NP-hard problem:
proof and implications. Bulletin of Mathematical Biology, 55(6):1183-1198, 1993.

Erik Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, Caltech, June 1998.

Damien Woods and Turlough Neary. On the time complexity of 2-tag systems and small universal Turing
machines. In Proc. 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pages
439-448, 2006.

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki

A Types of blocks

Seed (Js|x1)

v
ity
Copy@» (1x1) Copy1p (1x1)
- '49 a >
i / W
N\ i/
< Copy0 (1x1) <Copy1 (1x1)

<«CopyLineFeedd (1x2) 4CopyLineFeedl (1x2)

XX:47

ATy
o5)
[l ()
A~ gV v

Reado» (1x1)

Readi» (1x1) Halt (0x1)

APREND PRODUCTION |q|:lr“
L WRITE

CarriageReturn&LineFeed&Halt (0x3)

Figure 31 The different type of blocks. The orange circles locate their anchors on the underlying triangle grid.
The orange chevrons shows where they plug into each other. The current row of each block is shaded in white while
the previous and the next rows are shaded in blue in the underlying triangular grid.

B Geometry of the blocks

The following figures 32-39 describe the geometry of each block (except for the Readw blocks presented in
Figure 5). Note that they display an idealized version of the real path inside them, omitting details (mainly,
socks) that are vital for computing but irrelevant to the block general geometry — see Section 7 for the exact

geometry of each brick inside each block.

48 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

XX

(y‘1-)

(0'mls|+2)

(0'mer+g+m) ye

(¢/(g+ue)-"Mmls[+2)

a33s 3HL

*MO0I1-81Z 1S1Y o1} SUIP[O] 4Ie)s [[IM d[Noe[oW oY) aIoym ((‘Q) uorysod o1} e spuo jIed jsourijol 1] "pPlom
(renyur) oty Jo pue oY) JUI[[RUSIS JUOWIZSS PUNOY-ISBIYIIOU © UL $9sISU0D Jaed 1s0WIYILT §9] ‘suoIsod 91LIA Pa1dedxe oY) 1B 19199] JUaIsIp o1} Suroeld Jo sISISU0D
1] "weIsAs Se) Surpuodsariod oY) Alredoid sejR[NUIIS WI9YSAS [WIRIRILIO 97} 1R} OS PIOM [RIIIUL S} SOPOOUL YOO[(SIY], "}20|q paeS ayl jo Aijawoar) g¢ ainsi4

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki

Figure 33 Geometry of the Copy» blocks. The Copy@» and Copy1» blocks have both the shape of a parallelogram
with horizontal side length W and vertical side length h. For both, the next block will start folding at the top right
corner, at (W,0). Note that the Copy@» and Copy1» blocks have identical internal structure apart from the line
joining the two red areas at (w + 3,0) and (h + w + 2, h). Indeed, when folding, the part of the molecule located in
the red area, either: (1) detects a spike on top (encoding a @) and then folds into a dent on top which induces spike
at the bottom (copying the @ below, the block Copy@m); or (2) folds flat (encoding a 1) on top which induces a flat
folding at the bottom, copying the 1 from the top to the bottom of the Zig-row (the block Copy1p).

(-1,1-h) S Read position at (w+2,1-h) (W-1,1-h) i

COPRY/0l2

a

(h-2,0)

Write position at (h+w+1,1) (W+h-3,0)
(a) The Copy@» block has a dent (an empty position) located at (w+3,0) (w.r.t. to its origin at the top left corner),
in which plugs the spike of the block from the row above it, and which induces (when folding) a spike at the bottom
at (h +w + 2, h), copying the letter @ from the top to the bottom of the Zig-row.

(-1,1-h) 5 Read position at (w+2,1-h) (W—l,l—h)

COPRY/11>]

(1)

(h-2,0)

Write position at (h+w,0) (W+h-3,0)
(b) The Copy1» block is flat at (w4 3,0) (w.r.t. to its origin at the top left corner), which, aligned with a flat block
above (encoding a 1), induces (when folding) a flat bottom at (h + w + 1, h — 1), copying the letter 1 from the top
to the bottom of the Zig-row.

XX:49

XX:50 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

Figure 34 Geometry of the €« Copy blocks. The €«Copy® and € Copy1 blocks are the horizontal mirror images of
the Copy@» and Copy1» blocks (see Figure 33).

(-W-8,1) Read position at (- W+w+1,1) (-8,1)

< COPY/0]

a

rite position at (~ W+w+2,1+h) (-8,h)

(a) The «4Copy® block is the horizontal mirror image of the Copy@» block (see Figure 33(a)).

(-W-8,1) Read position at (-~W-+w+1,1)(~8,1) <

< COPY 1
lal:p,

(- W-T,h) o 4
Write point at (-W-+w+2,k) (-8,h)

(b) The «4Copy1 block is the horizontal mirror image of the Copy1» block (see Figure 33(b))

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki

Figure 35 Geometry of the €«CopyLineFeed blocks. These blocks adopt the shape of a (W — 6) x h-parallelogram
prolongated by an southwestbound "arm" hoping to the beginning of the next zig-row. Folding from right to left, the
< CopyLineFeed blocks are identical to the €4Copy blocks until position (=W + 6,0) where it detects that there are
no more blocks (encoding letter) in the row above (the detection of the absence of a block on top is made possible
by the A = 7 horizontal offset between the zig- and zag-rows). Then, instead of completing a parallelogram, the end
of the €CopyLineFeed blocks is attracted upwards and then folds into a southwestbound glider pattern to reach the
opening position of the next zig-row. The next block will start folding at (=W + 8,2h — 1).

(-W-2,0) _Read position at (-W+w+1,1) (~8,1)

(~-W-6,-2)

<781h>

Write position at (- W+w+2,1+h)

SICORY(0]
EINE|FEED,

Eﬂ@q‘

(_szh)

(a) The «4CopyLineFeedd block proceeds as €4Copy@ to copy the spike encoding a @ from the row above to the row
below. It has a dent (an empty position) at (=W + w + 9,0) in which plugs the spike (encoding a @) of the block
above. When folding, this dent induces a spike at the bottom at position (=W +w + 10, h) w.r.t. to the origin of the
block. Note that the spike below is at position (w + 2, —h + 1) w.r.t. to the beginning of the following block, which
is consistent with the position of the dent in the Read@» block (see Figure 5(a)).

(-W-2,0) Read position at (-W+w+1,1) (-8,1)

(- W6,2)

(-8,

Write position at (- W+w+2,h)

i

-/

\/

(b) The «CopyLineFeed1 block.

<CORY/1! f’j

g(—wgh)

XX:51

52 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

XX

YLy n])

(0'T+y+M (T-]n]) (0T+y+41) (1°T+y+m) ye uonsod o3t

(0‘T+y+m [n]) I . o

"d:[p] NOILONAOYd ANIddY

AV/AY,

N7

(YL =Y+ mnl) ye yress [porq
1xou oy], ‘moI-3ez Surwoodn oy jo 1ouwrod 31 doj o1y 1e ‘(y ‘8 — y + Aq|n|) uoryisod oy ye pue 0} moI-Sez)xou o1} Suruedo ULIR PUNOQISOMINOS YSIY Speaq-1y
opIM Spraq-(] ® SmoI3 pue UISLIO s)1 03 Peq 03 pue — yg + (4 + 7| — 7) \Sm =0 amym (T —y ‘T —2) uoryisod ojdn pepuedxe usyy 9] *(exids Jo souasqe oY)
Aq pepoous are s1) (Y ‘g + Yy + m + ML) uorysod ye g = ‘n yoes 10y (doy wo uep e pur ‘moraq) oxids ® surejnod yred oY) N JO 19119] YRS SUTPOIUS PUR MOI-S1Z
JU81IND 9Y) Jo w0})0q oY) Suore Suro yyed IepI[S punoqjses SUO SPeI]- 44|n| SPIM Spea]-¢ U Ul SISISU0D D0[q 8Y} ‘USYJ, ‘MOI-3IZ JUSIIND dY) JO U0Y}0q Y} I8
Surddo)s uire opim Speaq- PUNOQISBIYITIOS © USY[) dAOGR MOI) UI }D0[(dY) JO OPIS)sed oY) Juoe SUIQUIID UWLIR OPIM SPBI]-g PUNOG)SedT[)I0U 9Uo sey] 9] "(pPIom
1]} JO pud oY) SUIYRIIPUI) SAOQR MOI Ul JO[(® JO 9dUdsqe 9} A PoIo83L1) ST YoO[q SIY) ojul 3uIp[o] oY T, *s}20]q (1)5y0 3 pueddy ay1 jo A1jowoan g¢ ainSi4

:53

XX

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki

Y G YT tv/(d+1)IME)

"A11ed 10 UOAIS ST 3] 2 = n 2Ioym 9¢ oINS, Jo osed [erads oY) ST }20[q SIY, “3420|q (3)%¥D 3 pusddy aya jo A1pwoan J¢ 24nSi4

54 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

XX

(0°9-4g+¥/(d+T)M€)

R(114) I

(7 — 4 “y) e PosO[q $308 pue Js) opIsur
pajorIYE ST)T ‘9A0(® MOI-3RZ 1) UO ¥DO[(OU dIe dIeY) se puy (T +yg ‘e +) 01 dn se08 ueyy 91 (T — yg ‘T + Y) 18 M01-81z mou ® wado 0} (Gg 2SI 90s) SYI0[q
poajaut]Ado) » o1} jo jred jsour))yol o) se spoj uety 3] ‘Ajduro SI pIom JUOLIND O} JRY) SOIRITPUI UDIYM SAO(R YD0[] © JO 9OUdS(R 9} §10990P 1 ‘SUIP[O] ‘UM
‘way T, “(y ‘y) uoryisod sayoeal 31 [1un o[q (2)%y0 3 puaddy oY) 09 [eIIIUSPI ST D0[] ST, *}20]q FTEH 3 Poo4ouTguInjaysber.rre) ayl jo K119woa9 g¢ 24nSi4

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki

Figure 39 Geometry of the Halt block. This block appears at the end of the computation. It starts as a Read»
block with a 3-beads wide h-beads high southeastbound glider until it reaches position (2,1 — h). But, as there are
no block in the zag-row above, the next beads are attracted to the left and the construction stops there.

(ALY
]
)
2y

gy

7

C The complete rule

We first gives

AQQ
AQQ
AQQ
AQQ
AQQ
AQQ
AQQ
AQQ
AQQ
AQQ
AQQ
A1
A1l
A1
A1
A1
A1
A1
A1
A1
A1
A1
AQ2
AQ2
AQ2
AQ3
AQ4
Ad4
AQ5
AQS
AR5
AQ5
AQT
AQT
AQT
AQT
AQ8
A8
A9
A9
A10
A10
A1l

@ A02
E02
P E08
@ E14
@ E20
P E26
@ E32
P E38
P E44
@ J18
P L7
@ A3
@ A04
P E03
9 EQQ
@ E15
P E21
@ E27
P E33
9 E39
@ E45
P 18
P AQQ
@ AQT
P M26
@ A1
@ A1
P Co2
@ A10
¥ Coo
9 Cco1
¥ Co2
P A02
P A8
@ Lo2
P Lo3
@ AQ7
@ Lo3
P A1l
@ A12
@ AR5
P BO4
@ AQ9

A1l
Al1
Al1
A12
A12

BoO
Boo
Boo
Bo1
BoO1
Bo1
Bo1
Bo1
Bo1
BO2
BO2
B02
BO2
B2
B02
B@3
B@3
Bo3
B@3
B@3
Bo4
Bo4
Bo4
Bo4
Bo4
Bo4
Bo4

Coo
Coo
Coo
Coo
Coo
Coo
co1l
Cco1

the rule in
@ Boo Cot
¥ Bo3 Co2
@ Bo4 Co2
@ A0 Co2
@ U7 ce2

o3
Co3

o3
@ ag %
@ Bo3 %
@ g7 9
@ B0z %
@ pos <%
@ Fos 0%
@ Joo 004
@ Jo1 ces
@ yg 095
@ D03 C%
@ poa P
@ roz %
@ roa %
@7 o7
@ 119 o7
@ a1 CO8
@ oo 098
@ B0t C08
@ poz %
@ Fon 098
@ ato C08
@ a1 %0
@ cos 0%
@ poo %
@ poz 0%
P Foz ggg
@®Fas

C09
C c10

c1o
P A5 10
G Co5 Cc10
W cov Cc10
®Co8 10
C10 c10
@ C13 10
W A5 10
C10 c11

text.

W C13
P A04
@ A0S
¥ Co5
¥ Cos
@ C10
P C11
@ C13
@ C14
C15
@ Jos
@ J12
¥ Cos
@ Jos
@ J11
¥ Coo
® Co2
@ CoT
@ Jo7
@ Cc11
P C14
¥ Coo
¥ Co5
Bo4
% Coo
@# Co2
P Co4
@ C11
¥ C14
% DO3
% D15
D58
% D59
¥ E05
P E11
3 Fo3
¥ FO9
¥ Coo
@ Cot
¥ Co3
¥ D02
% Do8
W D57
% D58
¥ FO2
Fos
¥ Co3

(0,0

Fig. 40 displays it as a matrix.

C11
C11
C11
C11
C11
C11
C11
C11
C11
C11
C11
C11
C12
C12
Cc12
C12
C12
Cc12
C12
C12
C12
C12
C12
C13
C13
C13
C13
C13
C13
C13
C13
C13
C14
C14
C14
C14
C14
C14
C14
C14
C14
C14
C14
C14
C15
C15
C94

¥ Co6
¥ Cos
@ DoT
% D13
¥ D56
@ D57
¥ D62
¥ E02
P E08
¥ Fo1
¥ FoT
@ L17
@ D12
@ D13
@ D55
¥ D56
¥ D61
¥ D62
¥ E02
P E08
¥ F0Oo
¥ FO6
@ L17
¥ Coo
¥ Co1
¥ Cco3
@ D11
@ D55
¥ D60O
¥ D61
P FO5
@ F11
@ Co3
¥ Co6
¥ Cos
¥ Do4
@ D10
¥ D16
@ D59
¥ D60O
@ EO5
@ EN
¥ Fo4
¥ F10
¥ Co3
@ Do1
¥ Co4

Co4

Do
Do
Do
Do
Do1
Do1
Do2
D2
Do2
Do2
Do3
D@3
Do3
Do3
Do4
Do4
Do4
D5
Do6
Do7
Do7
D7
Do7
Do7
Do8
Do8
Do8
Do9
D10
D10
D10
D11

D11
D12
D12
D13
D13
D13
D13
D14
D15

P Co4

2)

P Bo4
¥ D02
P D11
@ D45
P C15
@ D45
¥ Bo3
P Bo4
¥ C10
¥ D00
P B0O2
¥ Co9
¥ Do8
P D48
¥ Bo2
P C14
@ D48
¥ BO1
P E22
@ Cc11
P E00
P EO1
P E02
P E22
P C10
¥ DO3
¥ D16
P E19
¥ Cl14
P D14
® E19
C13
¥ DoO
% D13
P C12
P E16
@ C11
P C12
P D11
® E16
¥ D10
P Co9

D15
D16
D16
D16
D17
D18
D18
D18
D18
D18
D18
D19
D19
D19
D19
D19
D19
D20
D20
D21
D21
D21
D21
D22
D22
D22
D22
D22
D23
D23
D23
D24
D24
D25
D26
D26
D26
D27
D27
D27
D28
D28
D29
D29
D30
D30
D30

¥ E13
P C14
¥ Do8
@ E13
P D22
@ D27
¥ D38
P E18
P E42
P Fo3
P F27
¥ D26
3 D27
@ D37
D38
P E23
P EAT
P FO2
P F26
P Foo
P Fo1
P F24
@ F25
P D17
% D23
@ D24
¥ D34
% D35
@ D22
P D45
@ D51
P D22
@ D45
@ D53
¥ D19
P D48
P D54
¥ D18
¥ D19
% D48
P E46
P EAT
@ E22
P E46
D32
% D33
P E22

D34

D35

D37
D37
D37
D38
D38
D38
D39
D39

D40

E43

E45
D30
EQ8
E19
E42

D30
EQT

EQ8
E19

E18

E18

CEELCEEEECEEEEeEEEEeEEeiEseCeEEeedEeseceqeEeseqqess
=}
=
©

D45
D46
D47
D48
D48
D48
D48
D48
D49
D50
D50
D50
D51
D52
D53
D53
D53
D54
D55
D35
D55
D55
D35
D55
D55
D35
D56
D56
D56
D56
D56
D56
D56
D56
D57
D57
D57
D57
D57
D57
D57
D57
D38
D58
D58
D58
D58

(2,1-h)

@ E18
P D34
@ E12
Do3
P D04
@ D26
@ D27
% D36
@ D37
P D34
% D35
@ E42
¥ D23
® E36
@ D25
% D37
% D38
@ D26
@ C12
@ C13
% D58
% D59
@ E15
P E16
% E39
9 E40
@ C11
@ C12
G D58
P E14
@ E15
P E38
9 E39
@ L18
P C10
@ C11
@ E13
P E14
9% E37
@ E38
P L3
P L64
W Co9
¥ C10
@ D55
P D56
@ D62

D58
D58
D58
D58
D58
D59
D59
D59
D59
D59
D59
D59
D59
D59
D6
D60
D60
D60
D60
D60
D60
D60
D61
D61
D61
D61
D61
D61
D61
D62
D62
D62
D62
D62
D62
D62
D62
EQQ
EQQ
EQO
EQQ
E01
EOQ1
E01
EQ2
EQ2
EQ2

@ E12
E13
% E36
W E37
P L31
@ Co9
P C14
3 D55
@ D61
¥ D62
@ E11
@ E12
E35
% E36
W C13
P C14
% E05
@ E22
% E23
% E29
E46
P EAT
@ C12
C13
% D59
@ E21
P E22
% E45
E46
@ C11
@ C12
% D58
% D59
@ E20
P E21
P E44
@ E45
3 DO7
% E05
@ E23
P E46
3 DO7
@ E22
P E46
¥ AQQ
@ C11
@ C12

EQ2
EQ2
EQ2
EQ3
EQ3
EQ3
E04
E04
E@S
E@5
EQ5
E@5
EQ5
EQ6
EQ6
EQT
EQT
EQT
EQT
E@8
EQ8
EQ8
EQ8
EQ8
E08
EQ8
EQ8
EQ8
EQ9
EQ9
EQ9
EQ@9
E10
E10
E10

E11
E12
E12
E12
E12
E12
E12
E13

¥ Do7
¥ E09
P E45
¥ A01
P E08
P E20
E19
P E42
¥ Co9
P C14
¥ D60
¥ E00
P E42
P E11
@ E17
% D33
P E16
E39
P E40
¥ AQO
P C11
P C12
W D32
D33
% E03
E15
E38
% E39
¥ A0l
P E02
P E14
P L17
P E13
P E14
E36
@ Co9
@ C14
¥ D59
® E06
¥ E36
P DAT
% D58
D59
P E17
P E34
E35
% D15

XX:55

XX:56 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

E13
E13
E13
E13
E13
E13
E14
E14
E14
E14
E14
E14
E14
E15
E15
E15
E15
E15
E15
E15
E16
E16
E16
E16
E16
E16
E16
E17
E17
E18
E18
E18
E18
E18
E18
E18
E19
E19
E19
E19
E19
E19
E19
E19
E19
E20
E20
E20
E20
E20
E21
E21
E21
E21
E21
E21
E22
E22
E22
E22
E22
E22
E22
E22
E22
E22
E22
E22
E22
E23
E23
E23

o O O
g a1 =
w 3 O

E10

m M
NN
= O

AQQ
D56

o
a1
3

EQ9
E10

m m
w N
N =

A1

v lw)
a o
o O

EQ8
E20

O oOoomm
O~ =~ W Ww
O W N N =

EQ7

m T om
W N W
O =

EQ6

oo m
N
[ARCES)

mmmo9o
NN NS
© 0 w a

D9

el eNeNeNe}
P S =
SR SRANNRS)

E04

il
W W
AN

AQQ

o
o]
N

EQ3

~m
(RN
w

Aol

mmo9o oo
N = OO B
O BN PN

Do6
D7

O O
w N
S ©

D39

CL4L 4L 4L 4L 4L 4L EE4E4E4E4EE4ECECEECESIECSERCECECBERCEBERBERBERERBRERBERERERER
o
=
S

E23 & E0O
E23 @ E18
E24 9 E22
E24 & E29
E24 G E4T
E25 4 E22
E25 & E46
E26 G A0Q
E26 9 E21
E26 @ E33
E27 G A0l
E27 9 E32
E27 @ E44
E28 4 E18
E28 @ E43
E29 4 D60
E29 4 E18
E29 90 E24
E30 4 E35
E30 9 E41
E31 4 D44
E31 4 E15
E31 4 E16
E31 @ E40
E32 4 A0Q
E32 & D43
E32 @ D44
E32 4 E14
E32 @ E15
E32 4 E27
E32 4 E39
E33 @ Aol
E33 4 E26
E33 4 E38
E33 & L17
E34 4 E12
E34 ¢ E37
E34 @ E38
E35 4 D59
E35 4 E12
E35 4 E30
E36 4 D52
E36 @ D58
E36 4 D59
E36 9 E10
E36 @ E11
E36 G E41
E37 4 D57
E37 @ D58
E37 4 E34
E37 @ FO2
E37 @ Fo3
E38 4 A0O
E38 @ D56
E38 4 D57
E38 4 EO8
E38 @ E33
E38 4 E34
E38 ¢ E45
E39 @ Aol
E39 4 D55
E39 4 D56
E39 @ EOT
E39 4 EO8
E39 & E32
E39 4 E44
E40 9 D55
E40 @ EOT
E40 G E31
E40 9 FoO
E40 9 F11
E41 4 E30

E41
E42
E42
E42
E42
E42
E42
E42
E43
E43
E43
E43
E43
E43
E43
E44
E44
E44
E44
E44
E45
E45
E45
E45
E45
E45
E46
E46
E46
E46
E46
E46
E46
E46
E46
E46
E46
E4T
E4T
E4T
E4T
E4T

Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo

¥ E36
¥ D18
% D32
% D33
D50
P E04
¥ E05
P EAT
% D31
¥ D32
D43
@ D44
¥ E28
Fos
¥ Fo9
A00
¥ D62
@ E27
E39
P L18
@ Aol
D31
% D61
¥ D62
P E02
P E38
¥ D28
% D29
% D40
D41
¥ D60
¥ D61
E00
P EO1
@ E25
Fo5
Fo6
¥ D19
% D28
¥ D60
P E24
P E42

@ C12
@ D21
P E40
@ FO5
@ F23
P F46
P F51
¥ Goo
P Go4
¥ Gos
@ G12
P G16
P G20
¥ G23
P G24
@ G28
@ G32
P G36
P G40
P G44
@ Ho3
P Hod
@ HoT
@ H11
@ H15
@ H1T

Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Foo
Fo1
Fo1
Fo1
Fo1
Fo1
Fo1
Fo1
Fo1
Fo1
Fo1
Fo1
Fo1
Fo1
Fo1
Fo1
Fo1
Fo1
Fo1
Fo1
Fo1
Fo2
Fo2
Fo2
Fo2
Fo2
Fo2
Fo2
Fo2
Fo2
Fo2
Fo2
Fo2
Fo2
Fo2
Fo2
Fo2
Fo2
Fo2
Fo2
Fo2
Fo2
Fo2
Fo2
Fo3
Fo3
Fo3
Fo3
Fo3
Fo3
Fo3
Fo3
Fo3
Fo3

Fo3

S ECRECRERIERERVERIERIERERVERIERCERETVIERIERERERNBIECSERETVERUECSERETBUERETBSERBEBUERERERdEReiEeueEeEneEn

100
101
102
103
104
105

Io7
108
109
110
111
112
113
114
Joo
Jo1
C11
D21
F22
F46
G22
100
101
102
103
104
105

Io7
108
109
110
111
112
113
114
B@3
Bo4
Cc10
D20
E37
Fo9
F45
G21
100
101
102
103
104
105
106
Io7
108
109
110
111
112
113
114
B2
Cco9
D18
E37
Fo8
F20

Fa44
G20
100
101
102

Fo3
Fo3
Fo3
Fo3
Fo3
Fo3
Fo3
Fo3
Fo3
Fo3
Fo3
Fo3
Fo4
Fo4
Fo4
Fo4
Fo4
Fo4
Fo4
Fo4
Fo4
Fo4
Fo4
Fo4
Fo4
Fo4
Fo4
Fo4
Fo4
Fo4
Fo4
Fo4
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo5
Fo6
Fo6
Fo6

103
104
105
106
107
108
109
110
I11
112
113

CLEEBCCUEERCECEERECEEERECEUERBECCUEEBREUEEECEEUEEECEEERBECEEUEEBECCUEBECeEUEERBEeEEEREREsn
m
o
o

Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
Fo6
FoT
FoT
FoT
FoT
FoT
FoT
FoT
FoT
Fo7
FoT
FoT
FoT
FoT
FoT
FoT
FoT
FoT
FoT
FoT
FoT
Fo8
Fo8
Fo8
Fo8
Fos
Fo8
Fo8
Fo8
Fo8
Fo8
Fo8
Fo8

CREREEERIERERERIERIERCERCRETCUERUEEEEeUECUEUeeeeqdeqdeqeqeqnes

112
113
114
C11
F16
F39
F51
G16
100
101
102
103
104
105
106
107
108
109
110
I11
112
113
114
C10
E43
Fo3
F15
F39
G15
100
101
102
103
104
105

Fo8
Fo8
Fo8
Fo8
Fo8
Fo8
Fo8
Fo8
Fo8
Fo9
Fo9
Fo9
Fo9
Fo9
Fo9
Fo9
Fo9
Fo9
Fo9
Fo9
Fo9
Fo9
Fo9
Fo9
Fo9
Fo9
Fo9
Fo9
Fo9
F10
F10
F10
F10
F10
F10
F10
F10
F10
F10
F10
F10
F10
F10
F10
F10
F10
F10
F10
F10
F11
F11
F11
F11
F11
F11
F11
F11
F11
F11
F11
F11
F11
F11
F11
F11
F11
F11
F11
F11
F11
F11
F11

106
107
108
109
110
111
112
113
114
Co9
E43
Fo2
F14

100
101
102
103
104
105
106
Io7
108
109
110
111
112
113
114
C14
F13
F14
F36

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
P C13
9 E40
P FO6
P F36
¥ Goo
P Go4
¥ Go8
@ G12
P G16
P G20
@ G24
P 628
9 G32
¥ G36
P G40
P G44
P Hoo
P Ho4
¥ Hos
P H12
P H16
@ H18
P 100

€4 dEde4ededeeteeededteete4dedeEde4de4dedegdeqdeqdeqeqeqes

F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F12
F13
F13
F13
F13
F13
F13
F13
F13
F13
F13
F13
F13
F13
F13
F13
F13
F13
F14
F14

101
102
103
104
105
106
107
Io8
109
110
111
112
113
114
F17
F34
F35
F51
Goo
Go4
Go8
G12
G16
G20
G24
G28
G32
G34
G35
G36
G40
G44
Ho3
Ho4
HOT
H11
H15
H17
100
101
102
103
104
105
106
107
Io8
109
110
111
112
113
114
F10
G33
100
101
102
103
104
105
106
107
Io8
109
110
111
112
113
114
@ FO9
¥ F10

4 4SEeCideietietidcitcetidtidtietetietdtidteteedte e dedediedieqdediegdieqdieqdiEeqgeqseqRegenene

F14
F14
F14
F14
F14
F14
F14
F14
F14
F14
F14
F14
F14
F14
F14
F14
F14
F15
F15
F15
F15
F15
F15
F15
F15
F15
F15
F15
F15
F15
F15
F15
F15
F15
F15
F15
F15
F16
F16
F16
F16
F16
F16
F16
F16
F16
F16
F16
F16
F16
F16
F16
F16
F16
F17
F17
F17
F17
F17
F17
F17
F17
F17
F17
F17
F17
F17
F17
F17
F17
F17
F17

@ F21
¥ G32
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
Fos
F20
F31
F32
G31
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
Fo7
G30
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
Fo6
P F12
@ F51
P Go2
Go6
¥ G10
P G14
@ G18
¥ G22
P G26
¥ G29
G30
P G34
W G38
P G42
P G46
¥ Ho2
Hoo

PR R R R R R R R R R R R R R R R R R EEEEEEEEEEEEEEEEE R EEEEE R R

F17 4 H10
F17 @ H14
F17 4 100
F17 & 101
F17 & 102
F17 4 103
F17 & 104
F17 & 105
F17 4 106
F17 @ 107
F17 & 108
F17 & 109
F17 % 110
F17 & 111
F17 G 112
F17 & 113
F17 & 114
F18 & F23
F18 @ F28
F18 4 F29
F18 & F51
F18 & Go1
F18 4 GO2
F18 @ Go6
F18 @ G10
F18 & G13
Fi18 @ G14
F18 & G18
F18 & G22
F18 @ G25
F18 @ G26
F18 & G28
F18 @ G30
F18 4 G34
F18 @ G37
F18 @ G38
F18 G G42
F18 @ G46
F18 4 Ho1l
F18 & Ho5
F18 & Hoo
F18 & H13
F18 & H19
F18 @ 100
F18 4 101
F18 & 102
F18 & 103
F18 4 104
F18 @ 105
F18 @ 106
F18 @ 107
F18 @ 108
F18 4 109
F18 & 110
F18 & I11
F18 4 112
F18 & 113
F18 & 114
F19 4 Fo4
F19 & F27
F19 @ G27
F19 4 100
F19 @ Io1
F19 4 102
F19 & 103
F19 & 104
F19 4 105
F19 & 106
F19 @ 107
F19 4 108
F19 & 109
F19 @ I10

C. Geary, P.-E. Meunier,

F19
F19

F19
F20
F20
F20
F20
F20
F20
F20
F20
F20

F20
F20
F20
F20
F20
F20
F20
F20
F20
F21

F21
F21
F21
F21
F21
F21
F21
F21
F21
F21

F21
F21
F21
F21
F21
F22
F22
F22
F22
F22

F22
F22
F22
F22
F22
F22
F22
F22
F22
F22

F22
F22
F22
F23
F23
F23
F23
F23
F23
F23
F23
F23
F23
F23

111
112
113
114
Fo3
F15
F27
G26
100
101
102
103
104
105
106
Io7
108
109
110
111
112
113
114
F14
F26
G25
100
101
102
103
104
105
106
Io7
108
109
110
111
112
113
114
Fo1
F24
F25
F49
G24
100
101
102
103
104
105
106
107
108
109
110

€4 EEECiECiEediediCiecieciciEcieciEeciciteetiecidtcdeeteceteeeeeq4deqdeqeqeqes

¥ Foo

@ G32
¥ G36
W G40
@ G44
W Hoo
W Ho4
@ Hos
@ H12
W H16
H18
100
Io1
102
103
104
105
106
107
Io8
109
110
111
112
113
114
D21
E16
F22
F29
FaT
F51
Goo
Go4
Go8
G12

G20
G24
G28

G36
G40
G44
G4T
Ho3
Ho4
HoT
H11

H17
100
101
102
103
104
105
106
IoT
Io8
109
110

4SS dtedtidtidtcietietidcitcietietidtdtdtdedtetdcdedededeqdeqeeqeqe

F25
F25
F25
F25
F25
F25
F25
F25
F25
F25
F25
F25
F25
F25
F26
F26
F26
F26
F26
F26
F26
F26
F26
F26
F26
F26
F26
F26
F26
F26
F26
F26
F26
F26
F27
Fa27
F27
F27
Fa27
F27
F27
F27
F27
Fa7
F27
F27
Fa27
F27
F27
Fa27
F27
F27
F27
F27
Fa7
F27
F28
F28
F28
F28
F28
F28
F28
F28
F28
F28
F28
F28
F28
F28
F28
F28

CLEECLLCELRLLEEEELEEEELLELEEEeELEEEESEeEEqdEeCiUEEiEeCEeeEeeei4eeeeiUueeeedeeeqeeqeeeqeeauesse

N. Schabanel, S. Seki

101
102
103
104
105
106
Io7
108
109
110
111
112
113
114
D20
E13
F21

G45
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
D18
E13
F19
F20
F32
Fa4
G44
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
F18
Fa3
G43
100
101
102
103
104
105
106
Io7
108
109
110
111
112

F28
F28
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29
F29
F30
F30
F30
F30
F30
F30
F30
F30
F30
F30
F30
F30
F30
F30
F30
F30
F30
F30
F30
F30
F30
F30
F30
F30
F30
F30
F30
F30
F30
F30
F30
F30
F30
F30
F30

S ERERERIERSERVERIRIECSERNETNIERERBERUETERERERUETEeEREeEREeEnReEss

104

106
Io7
108
109
110
111
112
1183
114
Joo
E22
F35
F41
F51
Go1
Go2
Go6
G10
G13
G14
G18
G22
G25
G26
G30
G34
G37
G38
G41
G42
G46
Ho1

HO9
H13
H19
100
101
102

104
105
106
Io7
108

CEERECRERIERERNERIRIERERNIERIERIERERIERIERERIERNIERERERIECUERERBRETCEUIRUEBERBRUEBUEREBEBRERERBRERESR

109
110
I11
112
113
114
F15
F40
F51
G40
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
E19
F15
F27
F39
G39
100
101
102
103
104
105
106
107
108
109
110
I11
112
113
114
E19
F26
F38
G38
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
F12
F37
F38
G37
100
101
102
103

F36

F36
F36
F36
F36
F36
F36
F36
F36
F36
F36
F36
F36
F36
F36
F36
F36
F36
F36
F36
F36
F36
F36

104
105
106
107
108
109
110
I11
112
113
114
E16
F12
F30
Goo
Go4
Go8
G12
G16
G20
G24
G28
G32
G36
G40
G44
Hoo
Ho4
Ho8
H12
H16
H18
100
101
102
103
104
105
106
107
108
109

R ERERERIERCECERIERIERCSERCETCIERUEREERUEeUEeUeeeeqedeqdeqeqeqes

F36
F36
F36
F36
F36
F36

F36
F36

F36

F38

F38
F38
F38

F38
F38
F38
F38
F38
F38
F38
F38
F38
F38
F39
F39
F39
F39
F39
F39
F39
F39
F39

F39
F39
F39
F39
F39
F39
F39
F39
F39
F39
F40
F40

101
102
103
104
105
106
107
108
109
110
111
112
113
114
F34
Go9
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
F33
F34

Go8
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
FoT
Fo8
F32

GoT
100
101
102
103
104
105
106
107
108
109
110

4 4CECECiEeCiEeCiCiCEeCicitCiUtCEtieciEtieteee4ediediedeqdEediedieqdieqcdiecdiEeqdieqdiEeqceqseqseqsenese

F40
F40
F40
F40
F40
F40
F40
F40
F40
F40
F40
F40
F40
F40
F40
F41
F41
F41
F41
F41
F41
F41
F41
F41
F41
F41
F41
F41
F41
F41
F41
F41
F41
F41
F41
F41
F41
F41
F41
F41
F41
F41
F41
F41
F41
F41
F41
F41
F41
F41
F42
F42
F42
F42
F42
F42
F42
F42
F42
F42
F42
F42
F42
F42
F42
F42
F42
F42
F42
F42
F42
F42

100
101
102
103
104
105
106
IoT
108
109
110
111
112
113
114
F30
F36
F51
Go2
G5
Go6
G10
G14
G18
G22
G26
G30
G34
G38
G42
G46
HO2
Ho6
H10
H14
100
101
102
103
104
105
106
Io7
108
109
110

¢4 EEECEdEediEdiCiEediedicidiecieCiCiecEecieciEcEecEecdEeeiEeeeaeens

P Fav
@ F51
P Go1
@ Go2
@ Go4
P Go6
@ G10
@ G13
P Gl4
@ 618
@ G22
P 625
626
P G30
P G34
@ G37
P 638
P G42
@ G46
P Hot

F42
F42
F42
F42
Fa2
F42
F42
F42
F42
F42
F42
F42
F42
F42
F42
F42
F42
F42
F42
Fa3
F43
Fa3
Fa3
F43
Fa3
Fa3
F43
Fa3
Fa3
Fa3
Fa3
F43
Fa3
Fa3
Fa3
Fa3
F43
Fa4
Fa4
Fa4
Fa4
Fa4
Fa4
Fa4
Fa4
Fa4
Fa4
Fa4
Fa4
Fa4
Fa4
Fa4
Fa4
Fa4
Fa4
Fa4
F45
F45
F45
F45
F45
F45
Fa5
F45
F45
F45
F45
F45
F45
F45
F45
F45

@ HOS
@ Ho9
@ H13
@ H19
100
Io1
102
103
104
105
106
Io7
108
109
110
111
112
1183
114
Fo3
F28
Go3
100
101
102
103
104
105
106
Io7
Io8
109
110
111
112
113
114
Fo3
Fa7
F39
Go2
100
101
102
103
104
105
106

108
109
110
111
112
113
114
Fo2
F38
Go1
100
101
102
103
104
105
106

108
109
110
111
112

LR EEEE R EEEE R EEEE R EEE R R R

F45
F45
F46
F46
F46
F46
F46
F46
F46
F46
F46

F51
F51
F51
F51
F51
F51
F51
F51
F51
F51

@ 113
@ 114
P Foo
@ Fo1
@ F25
P Goo
100
101
102
103
104
105
106
Io7
108
109
110
111
112
113
114
F24
F42
Goo
Go4
Go8
G12
G16
G20
G24
G28
G32
G36
G40
G44
HoQ
Ho4
Ho8
H12
H16
H18
100
101
102
103
104
105
106
107
108
109
110
111
112

LR R R R R R R R R R R R R R R R EE R R R EEE R R EEE R EEEE R R EEE X EEE R

<
w —~
SIS
B

P F22
P F23
@ Fo6
P Foo
P FO6
@ For
P F12
@ F17
@ F18
P F24
P F30
@ F3
P F36
P F4
P F42

XX:57

XX:58 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

Goo
Goo
Goo
Goo
Goo
Goo
Goo
Goo
Goo
Goo
Goo
Goo
Go1
Go1
Go1
Go1
Go1
Go1
Go2
Go2
Go2
Go2
Go2
Go2
Go2
Go2
Go2
Go2
Go2
Go3
Go4
Go4
Go4
Go4
Go4
Go4
Go4
Go4
Go4
Go4
Go4
G5
Go6
Go6
Go6
Go6
Go6
Go6
Go6
Go6
Go6
Go6
Go6
Ga7
Go7
Gos
Gos
Gos
Gos
Gos
Gos
Gos
Gos
Gos
Gos
Gos
Go9
Go9

@ Go7
@ 619
¥ G31
@ 643
¥ Foo
@ F11
@ F12
P F23
@ F24
F35
F36
F46
FaT
G23
G46
G48
Fo6
F18
F30
Fa2
F45
G46
Fo5
Fo6
F17
F18
F29
F30
Fa1
Fa2
Fa4
G21
G44
Fa3
Foo
F11
F12
F23
F24

F36
Fa2
FaT
G19
G42
Fa1
Fo5
Fo6
F17
F18
F29
F30
F40
Fa1
Fa2
G17
G40
F39
F51
Foo

||
N
N

CEE4LCEESECEEEEeCEe4EeEEeE4EeEEegEeeiiEetseciUEeeedeceqeeeeeqeqeese
m
o
N

||
N
w

888
m oo
©W W N
& G S

P F38
@ Fa7
P G15
W 638
@ F37
P Gl4

G10
G10
G10
G10
G10
G10
G10
G10
G10
G10
G1o

G11
G11
G12
G12
G12

G12

G13
G13
G13
G13
G13
G13
G13
G14
G14
G14
G14
G14
G14
G14
G14
G14
G14
G14
G15
G15
G16
G16
G16
G16
G16
G16
G16
G16
G16
G16
G17
G17
G18
G18
G18
G18
G18
G18
G18
G18
G18
G19
G19
G19
G20
G20
G20
G20

@ FO5
¥ Fo6
@ F17
@ F18
P F29
P F30
F36
P Fal
@ F42
@ G13
P G36
@ F36
@ G13
P G36
¥ Foo
P F11
P F12
@ F23
P F24
@ F35
F36
P Fav
@ G34
G35
P FO6
@ F10
@ F18
P F30
@ F42
P G10
@ G11
W FO5
P FO6
@ Fo9
@ F17
P F18
@ F29
W F30
P Fal
@ F42
P Go9
P 632
@ Fos
P Gos
@ Foo
@ Fo7
P F11
@ F12
@ F23
P F24
@ F35
F36
P Fav
G30
P FO6
P Go6
W FO5
P FO6
@ F17
@ F18
P F29
@ F30
@ F41
P F42
628
P FO4
P F51
¥ Go4
P FOO
@ FO3
@ F11
P F12

G20
G20
G20
G20
G20
G20
G21
G21
G21
G22
G22
G22
G22
G22
G22
G22
G22
G22
G22
G22
G23
G23
G24
G24
G24
G24
G24
G24
G24
G24
G24
G24
G24
G24
G25
G25
G25
G25
G25
G25
G26
G26
G26
G26
G26
G26
G26
G26
G26
G26
G26
G27
G28
G28
G28
G28
G28
G28
G28
G28
G28
G28
G28
G29
G30
G3o
G30
G30
G30
G30
G30
G3o

F23

m T m
W W N
O O W

FaT
G26
Fo2
Go2
HO2
Fo1
Fo5
Fo6
F17

||
iy
[oe]

F29

||
w
S

Fa1
Fa2
G24
G25
Foo
Goo
Foo

oo
ENEN
[SR

F22
F23
F24

m M
W W
o g

FaT
G22
G47
G48
Fo6

||
-
[od]

F21

||
w
S

Fa2
G22
Fo5
Fo6
F17

||
-
[od]

F20
F29

||
W
[S]

Fa1
F42
G20
G45
F19
Foo

m T
(SN
0 N o=

F23
F24

LR E R EE R EEE R EEEEEEEE R EEEE R R
m
W
a

||
w
[e)}

< 4
Q T
o
o 3

P 643
@ F17
@ Fo5
P FO6
P F16
@ F17
P F18
P F29
@ F30
P FH

G30
G30
G30
G31
G31
G32
G32
G32
G32
G32
G32
G32
G32
G32
G32
G32
G33
G33
G34
G34
G34
G34
G34
G34
G34
G34
G34
G34
G34
G35
G35
G35
G36
G36
G36
G36
G36
G36
G36
G36
G36
G36
G37
G37
G37
G37
G37
G37
G37
G38
G38
G38
G38
G38
G38
G38
G38
G38
G38
G38
G39
G39
G40
G40
G40
G40
G40
G40
G40
G40
G40
G40

P F42
G16
P G4l
@ F15
P F51
P Foo
P F11
P F12
P F14
@ F23
P F24
% F35
F36
P Fa7
¥ G14
¥ 639
P F13
¥ G38
¥ Fo5
P Fo6
P F12
P F17
P F18
F29
P F30
P Fa1l
¥ F42
P G12
@ G37
P F12
P G12
¥ G37
¥ Foo
P F11
P F12
P F23
P F24
¥ F35
P F36
P Fa7
G10
P G11
¥ Fo6
P F18
P F30
P F34
P F42
P G34
G35
¥ Fo5
P Fo6
W F17
P F18
@ F29
¥ F30
% F33
P Fa1
P F42
P Gos
¥ G33
P F32
P G32
Foo
P F11
P F12
P F23
P F24
W F31
F35
F36
P Fa7
¥ Go6

G41
G41
G42
G42
G42
G42
G42
G42
G42
G42
G42
G43
G43
G43
G44
G44
G44
G44
G44
G44
G44
G44
G44
G44
G45
G45
G45
G46
G46
G46
G46
G46
G46
G46
G46
G46
G46
G46
G47
G47
G48
G48
Hoo
HoQ
Hoo
Hoo
HoQ
Ho1
Ho1
Ho1
Ho1
Ho1
Ho1
Ho2
Ho2
Ho2
Ho2
Ho2
HO2
HO2
Ho2
HO3
Ho3
Ho3
Ho3
HO3
Ho4
Ho4
Ho4
Ho4
Ho4
Ho4

P F30
¥ G30
¥ FO5
P FO6
@ F17
¥ F18
@ F29
¥ F30
P F4
@ F42
¥ Go4
@ F28
¥ F51
¥ G28
P FoO
@ F11
P F12
@ F23
P F24
@ F27
P F35
¥ F36
@ F4T7
¥ Go2
¥ F26
P G26
¥ Ho2
¥ FO5
P FO6
@ F17
@ F18
@ F25
@ F29
P F30
@ F41
P F42
¥ Goo
¥ Gl
P F24
P G24
¥ Goo
P G24
@ F11
@ F23
@ F35
@ F4T7
¥ Ho2
P FO6
¥ F18
¥ F30
P F42
¥ He3
¥ Ho4
P FO5
@ F17
¥ F29
P F4
¥ G21
P G45
¥ Hoo
¥ HoT
P Foo
P# F12
P F24
P F36
¥ Hol
¥ Foo
@ F11
¥ F12
@ F23
@ F24
@ F35

Ho4
Ho4
Ho4
Ho4
HO5
HO5
Ho5
HO5
HO5
Ho5
HO5
HO5
Ho6
Ho6
Ho6
HO6
HoT
HoT
HoT
HoT
HoOT
HoT
Ho8
Ho8
Ho8
Ho8
Ho8
Ho8
Ho9
HO9
HO9
Ho9
H10
H10
H10
H10

H10

H12

H13
H13
H13
H13
H13
H14
H14
H14
H14
H14
H15
H15
H15
H15
H16
H16
H16
H16
H16
H16

P F36
P Fa7
P Hot
@ 118
P FO6
P F18
P F30
P F42
P H10
@ 101
P 103
@ 105
P FO5
P F17
@ F29
P Fal
P FOO
P F12
P F24
P F36
P Ho2
P H14
P F11
P F23
P F35
P Fav
P H13
P H19
P FO6
P F18
P F30
P F42
P FO5
P F17
@ F29
P Fal
P HO5
¥ 100
P 102
P 104
P FOO
P F12
P F24
P F36
P H16
P I
P 103
P 105
P F11
P F23
@ F35
P Fa7
P FO6
@ F18
P F30
P F42
@ Hes
P FO5
P F17
@ F29
P Fal
@ HOT
P FoO
P F12
P F24
P F36
P F11
@ F23
P F35
P Fav
@ H11
P 100

H16
H16
H17
H17
H17
H17
H17
H17
H18
H18
H18
H18
H18
H18
H19
H19
H19
H19
H19
H20
H21
H21
H21
H22

H23
H24
100

100
100
100
100
100
100
100
100
100
100

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

100
100
100
100
100
100
100
100
100
100
100
100

m T T o =
NP
BN O BN

F36

I
N
N

103

M
-
-

F23

F42

H21

F13
F14

'|'|
-
o

F16

bl
-
-3

F18

||
-
©

F20

m M
N N
N

F23
F24
F25

||
[\e]
o

Fa7

||
N
(00}

F29

m M
W W
[\

F32

100 @ F45
100 9 F46
100 @ F47
100 ¥ H10
100 @ H16
100 ¥ Io7
100 % 108
101 % FOO
101 @ Fo1
101 9 FO2
101 % FO3
101 % Fo4
101 4 FO5
101 % FO6
I01 @ FO7
101 % Fo8
101 @ FO9
101 % F10
101 % F11
Io1 @ F12
101 % F13
101 @ F14
101 @ F15
101 9 F16
101 @ F17
101 % F18
101 4 F19
101 % F20
101 @ F21
101 @ F22
Io1 @ F23
101 @ F24
101 @ F25
101 % F26
101 9 F27
101 @ F28
101 @ F29
101 4 F30
101 @ F31
101 % F32
101 % F33
101 % F34
101 % F35
101 % F36
Io1 @ F37
101 % F38
101 @ F39
101 % F40
101 9 F41
101 @ F42
101 % F43
101 9 F44
101 @ F45
101 % F46
101 @ F47
101 @ HoS
101 @ H11
101 @ Io7
Io1 @ I13
101 4 I15
101 @ I16
Io1 @ I19
101 4 Joo
101 @ Jo2
102 % FOO
102 % Fo1
102 ¥ FO2
102 % FO3
102 ¥ FO4
102 % FO5
102 % FO6
102 @ FoOT

102 % Fo8
102 % Fo9
102 @ F10
102 @ F11
102 @ F12
102 @ F13
102 W F14
102 @ F15
102 @ F16
102 @ F17
102 @ F18
102 @ F19
102 % F20
102 @ F21
102 @ F22
102 @ F23
102 @ F24
102 4 F25
102 @ F26
102 @ F27
102 4 F28
102 @ F29
102 % F30
102 % F31
102 @ F32
102 % F33
102 % F34
102 @ F35
102 % F36
102 @ F37
102 % F38
102 @ F39
102 @ F40
102 @ F41
102 G F42
102 @ F43
102 W F44
102 % F45
102 @ F46
102 @ F47
102 @ H10
102 @ H16
102 @ H22
102 @ I12
102 @ I13
102 4 118
103 @ Foo
103 @ Fo1
103 % FO2
103 @ FO3
103 @ Fo4
103 & FO5
103 @ Fo6
103 @ Fo7
103 @ Fo8
103 @ FO9
103 @ F10
103 @ F11
103 @ F12
103 & F13
103 @ F14
103 @ F15
103 @ F16
103 @ F17
103 @ F18
103 @ F19
103 @ F20
103 @ F21
103 @ F22
103 @ F23
103 @ F24
103 @ F25

103 ¥ F26
103 & F27
103 @ F28
103 % F29
103 % F30
103 @ F31
103 @ F32
103 @ F33
103 @ F34
103 % F35
103 @ F36
103 @ F37
103 % F38
103 @ F39
103 % F40
103 @ F41
103 @ F42
103 @ F43
103 @ F44
103 @ F45
103 @ F46
103 @ F47
103 @ Ho5
103 & H11
103 @ H17
103 @ I07
103 & 108
104 @ Foo
104 % Fo1
104 @ FO2
104 @ FO3
104 % Fo4
104 @ FO5
104 @ FO6
104 % FO7
104 @ FO8
104 @ FO9
104 % F10
104 @ F11
104 % F12
104 % F13
104 @ F14
104 % F15
104 ¥ F16
104 @ F17
104 & F18
104 @ F19
104 ¥ F20
104 % F21
104 @ F22
104 % F23
104 9 F24
104 @ F25
104 % F26
104 @ F27
104 @ F28
104 % F29
104 @ F30
104 @ F31
104 % F32
104 @ F33
104 ¥ F34
104 % F35
104 ® F36
104 @ F37
104 % F38
104 @ F39
104 % F40
104 @ F41
104 @ F42
104 G F43
104 @ F44

C. Geary, P.-E. Meunier,

104
104
104
104
104
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
105
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106

||
N
o

F46

||
i
3

H10

T
=y
)]

Foo
Fo1
Fo2
Fo3
Fo4
Fo5
Fo6
FoT
Fos
Fo9

m T T T T
I
a s WwNh=ro

F16

- T
R
© 0

F20

m T M T T
NN DN NN
O & W N =

m T T oM M T T T Tl
W W W wwwnNnNN
adH WP, O

F36

m T om
W W W
© 00

F40

m m m m M
BB D D
[AR SN

F46

||
N
3

H11

§L€4L4EE4EL4E4ELEdLEEE4EeCdEeCEedEeqdiEeCdiEediEeqdiEqdiECiERiEecdiEqdiECiEeciEeciEciEcEecEecEeaEecendeaes
m
[N~}
()}

106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
106
107
107
107
107
107
107
107
107
107
107
107
107
107
107
107
107
107
107
107
Io7
107
107
107
107
107
107
107
107
107
107
Io7
107
107
107
107
107
107
107
107

P F17
@ F18
P F19
P F20
P F21
P F22
@ F23
P F24
P F25
P F26
P F27
P F28
@ F29
P F30
@ F31
P F32
P F33
@ F34
P F35
P F36
@ F37
P F38
P F39
@ F40
P F4
P F42
@ F43
P Fa4
@ F45
P F46
P FaT
@ 111
P 115
P FoO
@ Fo1
P FO2
P Fo3
P Fo4
P FO5
P Fo6
P FoT
P Fo8
@ FO9
P F10
P F11
@ F12
P F13
P F14
@ F15
P F16
P F17
@ F18
P F19
P F20
P F2
P F22
@ F23
P F24
P F25
P F26
P F27
P F28
@ F29
P F30
@ F31
P F32
P F33
@ F34
P F35
P F36
@ F37
P F38

107
107
Io7
107
Io7
Io7
107
Io7
Io7
107
Io7
Io7
107
Io7
107
Io7
Io8
108
Io8
108
108
Io8
108
108
108
108
108
108
108
108
108
108
108
Ie8
108
108
108
108
108
108
108
108
108
108
108
108
Io8
108
108
108
108
108
108
108
Io8
108
108
108
108
108
108
108
108
108
108
108
109
109
109
109
109
109

F39
F40
Fa1
Fa2
Fa3
Fa4
F45
F46
FaT
100
101
103
110
111
116
119
Foo
Fo1
Fo2
Fo3
Fo4
Fo5
Fo6
Fo7
Fos
Fo9
F10
F11
F12
F13
F14
F15
F16
F17
F18
F19
F20
F21
F22
F23
F24
F25
F26
Fa7
F28
F29
F30
F31
F32
F33
F34
F35
F36
F37
F38
F39
F40
Fa1
Fa2
F43
Fa4
F45
F46

R EEEEEEEEEEEEEEEEEEE X EEE"

< %
— T
IS
S

@ 103
P Foo
@ Fo1
P FO2
@ Fo3
P Fo4
P FO5

109
109
109
109
109
109

109
109
109
109
109
109
109
109
109
109

109
109
109
109
109
109
109
109
109
109

109
109
109
109
109
109
109
109
109
109

109
109
109
109
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110

P Fo6
¥ Fo7
P Fos
¥ Fo9
¥ F10
P F11
P F12
P F13
P F14
F15
P F16
P F17
¥ F18
P F19
P F20
P F21
P F22
¥ F23
P F24
P F25
P F26
P F27
P F28
F29
P F30
¥ F31
¥ F32
P F33
¥ F34
F35
P F36
@ F37
¥ F38
P F39
P F40
P Fa1
P F42
¥ F43
P Fa4
P F45
P F46
P FaT
@ 113
P 114
P Foo
P Fo1
P FO2
% Fo3
P Fo4
¥ Fo5
P Fo6
¥ Fo7
P Fos
¥ Fo9
F10
P F11
P F12
P F13
P F14
F15
P F16
P F17
¥ F18
P F19
P F20
P F21
P F22
@ F23
P F24
P F25
P F26
P F27

110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
I11
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
I11
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111

N. Schabanel, S. Seki

P F28
¥ F29
P F30
¥ F31
P F32
P F33
P F34
P F35
P F36
¥ F37
P F38
P F39
¥ F40
P Fa1
P F42
P F43
P Fa4
P F45
P F46
P FaT
@ 107
P 113
P 116
P 118
P Foo
P FO1
P FO2
P Fo3
P Fo4
P Fo5
P Fo6
P For
P Fos
P FO9
P F10
P F11
P F12
¥ F13
P F14
P F15
P F16
P F17
P F18
P F19
P F20
P F21
P F22
P F23
P F24
P F25
P F26
@ F27
P F28
P F29
P F30
P F31
P F32
F33
P F34
¥ F35
P F36
P F37
¥ F38
P F39
P F40
P Fa1
P F42
P F43
P Fa4
P F45
P F46
P Fa7

111
111
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
113
113
1183
113
113
113
113
113
1183
113
1183
113
113
1183
113
113
1183
113
113
1183
113

@ 106
@ Io7
P FOO
P Fo1
P FO2
P FO3
P Fo4
P FO5
P FO6
P FoT
P Fo8
@ FO9
P F10
P F11
P F12
P F13
P Fl4
P F15
P F16
P F17
@ F18
P F19
P F20
P F21
P F22
@ F23
P F24
P F25
P F26
P F27
P F28
@ F29
P F30
P F31
P F32
P F33
P F34
@# F35
P F36
@ F37
P F38
@ F39
P F40
P Faul
P F42
P F43
P Fa4
P F45
P F46
P Fav
@ 102
P FoO
P Fo1
P FO2
P FO3
P FO4
P FO5
P FO6
@ FO7
@ Fos8
P FO9
P F10
P F11
P F12
P F13
P Fl14
P F15
P F16
P F17
P F18
@ F19
P F20

113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
113
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114
114

F30
F31

Fa1
Fa2

F10
F11

F16

F22

114
114
114
114
114
114
114
114
114
115
115
115
115
116
116
116
17
17
17
118
118
118
119
119
119
119
119
119
119

Joo
Joo
Joo
Joo
Joo
Joo
Joo
Joo
Jo1
Jo1
Jo1
Jo1
Jo1
Jo1
Jo2
Jo2
Jo2
Jo3
Jo4
Jo4
Jo4
Jos
Jos
Jos
Jos
Jos
Jos
Jos
Jos
Jos
Jos
Jos
Jos
Jos
Jos
Jos
Jos
Jos
Jos

W F40
@ F41
W F42
W F43
P F44
W F45
W F46
@ Far
109
101
106
115
115
101
Io7

€4 d4edededeeedeeeqgeqes
=
©

<)

@ Bo1
P Foo
P FO5
P F24
P F29
P 101
@ Jo2
P L2
@ BO1
P Foo
P F24
@ Jo3
P Jod
P Lot
@ 101
P Joo
@ JoT
@ Jo1
P Jo1
P 48
@ Loo
P J10
@ J14
P U211
P J23
@ J25
P J27
P J29
@ J31
P J33
@ J35
@ J37
P J39
@ J41
@ J43
P J45
@ Ja7
P J48
@ J49

Jos
Jooé
Jor
Jor
Jor
Josg
Jos
Josg
J1o
J10
J1o
Jio
J10
Jio
J10
Jio
Jio
J10
J1o
Jio
J10
Jio
Jio
J10
Jio
J10
J11
J11
J11
J12
J12
J12
J13
J14
J14
J15
J15
J16
J17
J17
J17
J17
J18
J18
J18
J18
J18
J19
J19
J19
J20
J20
J21
J21
J22
J22
J23
J23
J24
J24
J24
J25
J25
J25
J26
J26
J26
Ja27
Ja7
Ja7
J28
J28

@ J51
@ J11
3 Co5
@ Jo2
¥ Jos
% Co3
@ Co4
@ Jo7
@ Jo5
¥ J22
P J24
@# J26
¥ J28
@ J30
W J32
P J34
@ J36
¥ J38
P J40
P J42
@ J44
P J4a6
P J48
¥ J49
@ J50
@ J52
¥ Co4
@ Joo
W J13
% Co3
@ 119
¥ J16
P J11
@ Jo5
¥ J20
P J17
@ J19
¥ J12
P A12
¥ Boo
P J15
@ J19
¥ AQQ
P A01
% BO1
@# L16
P L17
@ J15
W J17
@ L15
¥ J14
¥ L14
@ Jo5
@ L16
¥ J10
P L12
¥ Jo5
P L11
@ J10
Ko3
P Ko4
@ Jo5
Koo
P K05
¥ J10
P Kol
P Koo
¥ Jo5
P K02
@ Ko7
¥ J10
Kos

J28 @ Lo7
J29 @ Jo5
J29 @ Ko9
J29 @ Les8
J30 @ J10
J30 @ K10
J30 @ LO9
J31 @ Jos
J31 @ K11
J31 @ L10
J32 @ J10
J32 @ K12
J33 @ Jo5
J33 @ K13
J34 @ J10
J34 @ K14
J35 @ Jo5
J35 @ K15
J36 @ J10
J36 @ K16
J37 @ Jes
J3T @ K17
J38 @ J10
J38 @ K18
J39 @ Jos
J39 @ Koo
J39 @ K19
J4o @ J10
J40 @ Ko1
J40 ¥ K20
Ja1 @ Jos
Ja1 G K2
Ja1 @ K21
Ja2 @ J10
J42 @ K22
J43 @ Jos
J43 @ K23
J44 @ J10
Ja4 @ K24
J45 @ Jo5
J45 @ K25
Ja6 @ J10
J46 @ K26
J47 @ Jos5
JaT @ K27
J48 @ Jo4
J48 @ Jo5
J48 @ J10
J48 @ Ko3
J48 @ LO3
J48 @ LO6
J48 @ Lo8
J49 @ Jos
J49 @ J10
J49 @ Koo
J49 @ Loo
J49 @ Lo4
J50 @ J10
J50 @ Kot
J50 @ LO5
J51 @ Jo5
J51 @ K02
J51 @ LO2
J51 @ LO6
J52 @ J10
J52 @ Ko1
Koo @ J25
Koo 4 J39

XX:59

XX:60 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

Koo
Koo
Koo
Koo
Ko1
Ko1
Ko1
Ko1
Ko1
Ko1
Ko1
Ko2
Ko2
K02
Ko2
Ko2
Ko2
Ko3
Ko3
Ko3
Ko3
Ko3
Ko4
Ko4
K5
K5
Ko5
K5
K5
K5
Ko6
Ko6
Ko6
Ko6
Ko6
Ko6
Ko6
Ko7
Ko7
Ko8
Ko8
Ko8
Ko8
Ko8
Ko8
Ko9
Ko9
K@9
K@9
K@9
K@9
K@9
K10
K10
K11
K11
K11
K11
K11
K11
K12
K12
K12
K12
K12
K12
K12
K13
K13
K14
K14
K14

@ J49
@ K29
P K31
@ K33
¥ J26
¥ J40
¥ J50
@ J52
¥ K28
W K30
P K32
@ J27
kNS
@ J51
@ K29
P K31
W K33
@ J24
P J48
¥ K28
P K30
P K32
@ J24
P K32
@ J25
P Kob
P K12
P K18
P K24
P K31
¥ J26
@ Ko5
P K11
@ K17
G K23
¥ K30
@ L11
@ J27
P K29
@ J28
P Ko9
W K15
@ K21
@ K27
¥ K28
@ J29
P Kos
P K14
¥ K20
P K26
@ K33
P L14
¥ J30
@ K32
@ J31
P Kob
@ K12
P K18
P K24
W K31
¥ J32
W Ko5
P K11
@ K17
¥ K28
P K30
@ L1
@ J33
P K29
@ J34
@ K09
P K15

K14
K14
K14
K14
K15
K15
K15
K15
K15
K15
K15
K16
K16
K17
K17
K17
K17
K17
K17
K18
K18
K18
K18
K18
K18
K18
K19
K19
K20
K20
K20
K20
K20
K20

K23
K23
K23
K23
K23
K23
K24
K24
K24
K24
K24
K24
K24
K25
K25
K26
K26
K26
K26
K26
K26
K27
K27
K27
K27
K27
K27
K27
K28

@ K21
@ K27
P K28
@ Los
@ J35
P Kos
@ K14
P K20
P K26
K33
P L14
@ J36
@ K32
@ J37
P Koo
P K12
P K18
@ K24
P K31
@ J38
@ K05
P K11
@ K17
@ K23
P K30
@ L1
@ J39
P K29
@ J40
P Ko9
@ K15
@ K21
P K27
@ K28
@ J41
P Kos
@ K14
@ K20
P K26
@ K33
P L14
@ J42
@ K32
P J43
P K06
@ K12
P K18
@ K24
@ K31
P Jaa
@ K5
@ K11
P K17
@ K23
P K30
@ L1
@ J45
P K29
P J46
@ Koo
P K15
@ K21
@ K27
P K28
@ Ja7
P Kos
P K14
@ K20
P K26
@ K33
@ L14
P Kot

K28
K28
K28
K28
K28
K28
K28
K28
K28
K28
K28
K28
K29
K29
K29
K29
K29
K29
K29
K29
K29
K29
K29
K30
K30
K30
K30
K30
K30
K30
K30
K30
K30
K30
K30
K31
K31
K31
K31
K31
K31
K31
K31
K31
K31
K31
K31
K32
K32
K32
K32
K32
K32
K32
K32
K32
K32
K33
K33
K33
K33
K33
K33
K33
K33
K33
K33
K33
K33
K34
K34
K34

Ko3

X X
= o
w00

K20
K26

x X
W W
® W

K44
Lo7
L25
L40
L41
Koo
Ko2
Ko7

= =
[N
O w

K25

~
w
3

K43

'_
W
©

L40
L41
Ko1
Ko3
Ko6

= =
O
o N

K24

X X
w W
o =

K42
L24

'_
W
©

L40
Koo
Ko2
Ko5

[N
-

K17
K23

x X
W W
[T

K41

'_
~
[\

L28

'_
W
[(e]

Ko1
Ko3
Ko4

= =
INEN
o o

K22

=
&)
=

K40
L@9

'_
W
[e¢}

Koo
Ko2
Ko9

=
[N
[¢)]

K21
K27

R EEEEEEEEEEEEEEEEEEE X EEE"

%88
< X X
AR
a0 ®

P Lo8
@ L2
P L4
P K32
@ K39
@ K45

K34
K35
K35
K35
K35
K35

K35
K35
K36
K36
K36

K40
K40
K40
K40
K41
K41
K41
K41
K41
K41
K41
K41
K42
K42
K42
K42
K42
K42
K43
K43
K43
K43
K43
K43
K43
K44
K44
K44
K44
K45
K45
K45
K45
K45
K45
K46
K46
K46
K46
K46
K46

P K50
¥ K31
@ K45
P K49
¥ K50
¥ L40
P L4
¥ L56
@ L57
¥ K30
@ K37
@ L35
¥ K29
¥ K36
P K47
¥ L39
¥ L40
P K28
¥ K46
P K47
@ 139
@ K33
P K34
¥ 138
¥ K32
P K45
¥ K46
¥ K50
P K31
¥ K44
P K49
P K50
¥ K51
P L24
@ L4
@ L55
P K30
¥ K43
¥ L40
P L44
@ L46
@ L48
@ K29
P K42
P K47
P L42
@ L43
@ L45
@ L4
¥ K28
P K41
¥ K46
@ K47
P K33
¥ K34
@ K35
P K40
@ L7
P L82
@ K38
¥ K40
P K44
¥ K4T
¥ K56
P L4
@ K37
¥ K38
P K43
¥ K44
P K46
P K55
@ K57

K47
K47
KaT
K48
K48
K48
K48
K48
K48
K49
K49
K49
K49
K49
K49
K49
K49
K50
K50
K50
K50
K50
K50
K50
K50
K50
K50
K50
K51
K51
K51
K52
K52
K52
K52
K52
K52
K52
K52
K52
K52
K53
K53
K53
K53
K53
K53
K53
K53
K53
K53
K53
K53
K53
K53
K53
K53
K53
K53
K53
K54
K54
K54
K54
K54
K55
K55
K55
K55
K55
K55
K55

P L40
¥ L4
@ L75
P K51
P K54
P K56
@ L72
@ L73
P L74
@ K35
P K4
P K50
¥ K53
@ L58
P L60
¥ L62
P L64
P K34
@ K35
P K40
P K41
P K49
P K52
P L56
@ L57
@ L59
¥ L6l
@ L63
P K41
P K48
@ K57
P K50
@ K57
P K59
P K63
P K69
@ L92
¥ 198
¥ Mo4
P M10
¥ M16
P K49
P K56
P K58
P K62
P K63
P K68
P K69
¥ L55
¥ L90
P LA
¥ L92
@ Lo7
P 198
¥ Mo3
¥ Mo4
@ Mo9
¥ M10
@ M15
¥ M16
P K48
P K55
LTS
P L78
P L8o
@ K47
P K54
P K60
P K66
P L74
P LT6
@ L77

K55
K55
K55
K55
K55
K55
K55
K56
K56
K56
K56
K56
K56
K56
K56
K56
K56
K56
K56
K56
K56
K56
K56
K56
K56
K56
K37
KST
K&7
K57
K58
K58
K59
K59
K59
K60
K60
K60
K60
K60
K61
K61
K62
K62
K62
K62
K62
K62
K62
K62
K63
K63
K63
K63
K63
K63
K63
K63
K63
K63
K63
K64
K65
K65
K66
K66
K66
K67
K67
K68
K68
K68

P L79
@ L95
P Mot
P MOT
P M13
P M19
P M22
P K46
P K48
P K53
P K59
P K60
P K65
P K66
P L94
P L5
P Moo
P MO1
P Mo6
P MoT
P M12
P M13
P M18
P M19
P M21
P M22
P K47
P K51
P K52
P Mo5
P K53
P K61
P K52
P K56
P K60
P K55
P K56
P K59
P K69
P L75
P K58
P K68
P K53
P K63
@ L93
@ L95
P L9T7
P L99
P Mol
P Mo3
P K52
P K53
P K62
@ Lo
P L92
P L94
P L96
P L98
P Moo
P MO2
P Mo4
P K69
P K56
P K68
P K55
P K56
P K67
P K66
P M22
P K53
P K61
P K65

K68
K69
K69
K69
K69
Loo
Loo
Loo
Loo
Loo
Lo1
Lo1
Lo2

Lo2
Lo2
Lo2
Lo2
LO3
L3
Lo3
LO3
Lo4
Lo4
Lo4
L5
LO5
L5
Lo6
Lo6
Lo6
Lo6
Lo7
Lo7
Lo7
Lo7
Lo8
Lo8
Lo8
Lo8
LO9
L@9
Lo9
L10
L10
L10
L11
L11
L11
L11
L11
L12
L12
L12
L13
L14
L14
L14
L14
L14
L15
L15
L16
L16
L16
L16
L17
L17
L17
L17
L17
L17

9 M21
P K52
P K53
P K60
P K64
P Jo4
¥ J49
P L0o4
P Lo5
P L3
P Jo1
9 L30
@ AQT
P Joo
@ J51
P LO5
P L06
@ 129
P AQT
@ A8
¥ J48
P 128
@ J49
P Loo
@ L27
¥ J50
¥ Loo
P L2
@ J48
@ J51
@ L2
@ 125
P J28
P K28
@ L9
P L10
@ J29
P J48
P K14
@ K33
P J30
P K32
@ Lo7
P J31
9 K31
@ Lo7
P J23
P K6
P K12
P K18
P K24
@ J22
@ L7
@ 123
P 122
@ J20
@ Koo
P K15
P K21
@ K27
P J19
@ 120
P J18
@ J21
@ L19
P L20
P AQQ
@ C11
P C12
% E0Q
@ E33
P J18

L17 G K45
L17 @ L12
L17 9 L65
L18 4 D56
L18 & E20
L18 @ E44
L18 G L23
L18 & L41
L18 @ L47
L18 @ L64
L18 @ L65
L18 @ M22
L19 @ L16
L19 @ L46
L20 4 L15
L20 @ L16
L20 @ L45
L21 G K33
L21 @ L44
L22 9 L13
L22 G L43
L23 @ L12
L23 @ L18
L23 @ L42
L24 @ K30
L24 9 K41
L25 @ K28
L25 @ LO6
L25 G L37
L26 @ L31
L26 @ L36
L27 9 LO4
L27 & L31
L27 @ L35
L28 @ K31
L28 @ LO3
L28 @ L33
L28 @ L34
L29 @ LO2
L29 G L33
L29 @ L34
L30 @ Lo1
L30 4 L32
L30 @ L33
L31 @ D57
L31 & D58
L31 @ Lo
L31 @ L26
L31 @ L27
L31 @ L48
L31 4 L49
L32 ¥ L30
L32 @ L37
L32 4 L63
L32 4 L83
L33 @ L28
L33 4 L29
L33 @ L30
L33 @ L62
L33 @ L63
L34 9 L28
L34 @ L29
L35 @ K36
L35 @ L27
L35 4 L60
L36 @ L26
L36 @ L59
L36 4 L60
L37 @ L25
L37 @ L32
L38 4 K32
L38 @ K39

L38 @ L57
L39 @ K29
L39 4 K30
L39 & K31
L39 4 K37
L39 4 K38
L39 ¢ L41
L40 G K28
L40 9 K29
L40 @ K30
L40 G K35
L40 9 K37
L40 @ K42
L40 ¢ K47
L41 G K28
L41 4 K29
L41 ¢ K33
L41 & K35
L41 G0 K41
L41 9 K46
L41 0 K47
L41 4 L18
L41 9 L39
L41 @ L47
L42 G0 K43
L42 & L23
L42 @ L55
L43 ¢ K43
L43 4 L22
L43 4 L53
L44 9 K42
L44 9 L21
L44 4 L52
L44 9 L53
L45 @ K43
L45 4 L20
L46 G K42
L46 @ L19
L46 4 L50
L46 @ L51
L47 G K43
L47 G L18
L47 G L41
L47 G L49
L47 9 L50
L48 9 K42
L48 ¢ L31
L48 4 L64
L48 @ L82
L48 ¢ M21
L48 G M22
L49 @ L31
L49 ¢ L47
L49 & L81
L49 4 182
L50 9 L46
LS50 G L47
L50 4 L80
L51 ¢ L46
L51 @ L79
L52 40 L44
L52 & L78
L53 @ L43
L53 ¢ L44
L53 4 L77
L54 4 L76
L55 ¢ K41
L55 & K53
L55 4 L42
L56 9 K35
L56 @ K50
L56 G L72

L56 & L73
L57 @ K35
L57 @ K50
L57 & L38
L57 & LT71
L58 4 K49
L58 @ L70
L59 @ K50
L59 4 L36
L59 @ L69
L6O G K49
L6O G L35
L6@ @ L36
L6O G L68
L61 & K50
L61 G L67
L62 G K49
L62 & L33
L62 @ L66
L63 G K50
L63 & L32
L63 G L33
L64 G D57
L64 @ K49
L64 G L18
L64 G L48
L65 @ L17
L65 G L18
L65 & M30
L66 @ L62
L66 G M30
L67 & L61
L67 G M29
L68 @ L6O
L68 G M28
L69 @ L59
L69 G M27
L69 @ M28
L70 4 L58
L70 o M27
L71 & L57
L71 G M25
L72 G K48
L72 @ L56
L72 G M24
L72 G M25
L73 G K48
L73 4 L56
L74 @ K48
L74 4 K55
L74 G L82
L75 @ K47
L75 G K54
L75 & K60
L75 & L81
L76 4 K55
L76 & L54
L76 @ L9
L77 4 K55
L77 @ L53
L77 G L88
L78 G K54
L78 @ L52
L78 G L87
L78 G L88
L79 @ K55
L79 4 L51
L80 & K54
L80 @ L50
L80 @ L85
L81 & L49
L81 @ L75

C. Geary, P.-E. Meunier, N. Schabanel, S.

L81
L81
L81
L82
L82
L82
L82
L82
L82
L82
L83
L83
L83
L84

D

@ L83
P L84
W L85
W K45
@ L48
@ L49
@ L74
P L84
¥ M20
@ M21
@ L32
@ L81
@ M20
@ L8l

Enumeration of the environments together with their

L84
L85
L85
L87
L88
L88
L90
[Rel]
Lo1
Lo1
L91
L92
L92
L92

@ L82
@ L8o
@ L8l
@ L78
@ L77
@ L78
@ K53
P L76
W K583
W K63
@ M19
W K52
@ K53
P K63

L92
L93
L93
L94
L94
L94
L95
L95
L95
L95
L96
L96
Lo7
Lo7

@ M7
P K62
P M16
P K56
P K63
@ M15
@ K55
P K56
P K62
@ M14
P K63
@ M13
¥ K53
P K62

LO7 G M12
L98 @ K52
L98 @ K53
L98 & K63
L98 @ M11
L99 @ K62
L99 & M10
Moo @ K56
MoO G K63
Moo @ Moo
Mo1 @ K55
Mo1 G K56
Mo1 @ K62
Mo1 G Ma8

Mo2
Mo2
Mo3
Ma3
Mo3
Mo4
Mo4
Mo4
Mo4
Mo5
Mo6
Mo6
Mo6
MoT

Seki

P K63
¥ MoT
@ K53
P K62
¥ Mo6
P K52
P K53
P K63
¥ Mo6
@ K57
P K56
P Mo3
¥ Mo4
@ K55

MoT G K56
MoT @ Mo2
MO8 @ Mol
Mo9 G K53
Mo9 @ Moo
M10 @ K52
M10 G K53
M10 @ L99
M11 G L98
M12 @ K56
M12 @ L97
M13 @ K55
M13 @ K56
M13 @ L96

The following tables refer to the proof-trees on the website:

proving the correctness of the folding of our design in every possible surroundings.

M14
M15
M15
M16
M16
M16
M7
M18
M19
M19
M19
M20
M20
M20

P L95
@ K53
P L94
P K52
@ K53
@ L93
P L92
P K56
W K55
P K56
P LA
P L82
¥ L83
¥ M25

M22

M23
M24
M24

@ K56
¥ K68
W L48
@ L82
P M24
W K55
P K56
P K67
@ L18
G 148
P M28
@ M29
P LT2
@ M21

https://www.irif. fr/~nschaban/oritatami/prooftrees/

Z1G-UP

#4998-5000

C
#104-159
#1314-1315
&)
&
D)) /g V.74
#160-339 #340-384
& &
B ml ,

#385-749

#750-856

A
5

#1393-1401

#857-1285

#1402-1853

M24
M25
M25
M25
M25
M25
M26
M27
M27
M27
M27
M28
M28
M28

proof-trees

@ M28
P LT
P L72
@ M20
@ M27
P M28
P A2
P L69
P L70
@ M25
¥ M30
P L68
¥ L69
@ M23

M28
M28
M28
M29
M29
M30
M30
M30
M30

@ M24
@ M25
P M30
@ Le7
@ M23
P L65
P L66
@ M27
@ M28

XX:61

https://www.irif.fr/~nschaban/oritatami/prooftrees/

‘GV#hOVY 10U INQ ZVghy 9ARY 9M ‘90UR)SUI 10 | q WOIJ pue
Q WOIJ SUIWOD SAUI] OM} 9} dUO JO UOI}IISIIUI 91 J© @ 19[[N] ® ST 8I0Y) JI ,q dk q 9ARY oM ‘TIRISRIP ST} UI :WIISAS [WeIel) S1 DS 2Y3 JO 4k 3|nJ 3y Qp 4nSiy4

6TNgZ N 5 O
BN L EN G I G

veleew TN s

SINBIN I

s .
! : S
4 SN \
’ RIS
Y . . =

zL KR &ofu&&&&&»ﬂw@w&&ﬁ%\\% \ -
o uw%/ wwwuwuw&»m%ww»%ﬂ&%&%ww@@wf % I
o 297w, @V . S 4 .ﬁ#v&b»@ﬂ.ﬂ&ow%ﬁtso@%v]
LR} g T ¢ IRERK LN
097 2 SN RO GO OO G ot
(9T geTag RS % AR R RS
95754 R g S SBBEIERIRS

BT BT
SRR SRR [R-E]
G fmwmm% o5
%

s
X SRS S 8y4674
g@ﬁ&% f/ e ST T
% GRS 84z
. <5 / RIS - €vd

OGO

i I 3576€4
07 TeeT S o&ﬂ&o@,ﬂ@@q ogLe4 884
G LN
SeTven, N R 4 e
Sy ps BETAPTEE SN 08 it
LET - % "0’0060 8¢4
(OAPTArr=: % S
e 9¢Tgz1y, Y

ARy %
— 7
IOl g &0&0&\
e
L9M OB 0’&//&0@%&\&@
99593, 9y ,&/%% SISO
eogsia I eI SR
09X 2 SRREE
69Ag5y % NN
L5795y < SR
EER ey %
L gy TN EG w%&\. S
L Omxmvx VV_MNQQ
ki T
LT

BEALHR
LEHOEN gy b9

Ll K IIAIHN
Sr L LESEEEES
e

SOREEE
0Eras ~E LB RIS 25
62l e 2p ‘ooowowo.w%///
. LM 7P
SZMyzras Miw&%//
SRR

XX:62 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki

ZI1G-DOWN

e p-
Ay

m

7#1854-1874 #4745-4752 #2382-2578 #2745-2755 #2790-2797
Ny W

#1875-1878 #2756-

#1879-1889 #2798-2838

#2757-2758 #4701-4702

ANt i

D3 , RN -

#1890-1913 #1914-1932 same as previous ones

#2581-2599

#2600-2602

S 44 & Y/ 4S 65
#1933-2011 #2603-2632 #2759-2789
///,
#2012-2041
D)/
7#2042-2381 #2644-2744
WRITE

#3000-3749
#4787-4945

f; -
#3750-3781 #4734-4744

#4946-4959

XX:63

XX:64 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

ZAG-WRITE
#4994- #3806-3816 , #4059-4069 , #4215-4225
#4310-4320
#3817-3827 , #4070-4080 , #4226-4236
#4321-4331 , #4459-4460 , #4475-4476
#4550-4551 , #4605-4606
Da VET
#3828-3851 #3039-3041 , #4434-4430 | #4525-4527
#4237-4263 #4571-4573 , #4587-4589 , #4595-4597
#4332-4355 #4618-4620
s T
[E] S & WG
#4081-4176 , #4461-4474 #3852-3024 , #3942-4020 , #4264-4271
#4552-4570 , #4607-4617 #4356-4428 , #4440-4458 , #4504-4519

#4528-4549 | #4574-4581 , #4590-4504
#4508-4604 | #4621-4644

4
#3025-3038 , #4021-4034 , #4177-4190

#4272-4285 , #4420-4433 | #4520-4524
#4582-4586

#4960-4967

#4968-4993 #3782-3805 , #4035-4058 , #4191-4214
#4286-4309

C. Geary, P.-E. Meunier, N. Schabanel, S. Seki

see Zig-Down

7)
1)

see Zig-Down

see Zig-Down

see Zig-Down

see Zig-Down

see Zig-Down

see Zig-Down

see Zig-Down

#4654-4700

see Zig-Down

see Zig-Down

XX:65

	Introduction
	Brief overview of the model
	Main results
	Proving our designs
	Design challenges
	Relationship to other work

	Definitions and Preliminary Results
	Oritatami Systems
	Skipping Cyclic Tag systems

	Proof structure
	Simulating Tag Systems with Blocks
	The Blocks
	Overview
	Types of blocks
	The block automaton
	Simulating tag systems with blocks

	General geometry of the Blocks
	Production segments: encoding the production index

	The Structure of the Sequence: the Modules and the Bricks
	Modules
	Bricks

	Design Toolbox
	Expanding shapes: Glider and Switchback
	Implementing the logic
	Easing the design: getting the freedom you need

	The Sequences for the Bricks
	Extra notations for sequences
	More constants: k, and
	whiteSeedu 1ex [][c][0ex][c][2ex]2.9ex[0ex][c]whiteSeedu:Seed for input u.
	whiteA 1ex [][c][0ex][c][2ex]2.9ex[0ex][c]whiteA:Zig-Init.
	whiteB 1ex [][c][0ex][c][2ex]2.9ex[0ex][c]whiteB: Empty word detector.
	whiteC 1ex [][c][0ex][c][2ex]2.9ex[0ex][c]whiteC: End of word detector.
	whiteD 1ex / 2 [][c][0ex][c][2ex]2.9ex2.9ex[0ex][c]whiteD: Letters
	Encoding of x = 1
	Encoding of x = 0
	Possible conformations
	Size and alignment of the module

	whiteEa 1ex [][c][0ex][c][2ex]2.9ex[0ex][c]whiteEa: Padding with L-a extra blanks for 0a L.
	whiteF 1ex [][c][0ex][c][2ex]2.9ex[0ex][c]whiteF: Zag-Init.
	whiteG 1ex [][c][0ex][c][2ex]2.9ex[0ex][c]whiteG: Read-Copy-Line Feed module.

	Correctness of the folding
	The three bricks with varying environments
	Proof-trees

	Types of blocks
	Geometry of the blocks
	The complete rule
	Enumeration of the environments together with their proof-trees

