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Abstract

We derive the hydrodynamic limit of a kinetic equation where the interactions
in velocity are modelled by a linear operator (Fokker-Planck or Linear Boltzmann)
and the force in the Vlasov term is a stochastic process with high amplitude and
short-range correlation. In the scales and the regime we consider, the hydrodynamic
equation is a scalar second-order stochastic partial differential equation. Compared
to the deterministic case, we also observe a phenomenon of enhanced diffusion.

Keywords: diffusion-approximation, kinetic equation, hydrodynamic limit

MSC Number: 35Q20 (35R60 60H15 35B40)

Contents

1 Introduction 2

1.1 Kinetic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Mixing force field 7

2.1 Some consequences of the mixing hypothesis . . . . . . . . . . . . . . . . . 9
2.2 Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Some simple examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Unperturbed equation: ergodic properties 12

∗Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France. Email: arnaud.debussche@ens-

rennes.fr, partially supported by the French government thanks to the the “Investissements d’Avenir”

program ANR-11-LABX-0020-01
†UMPA, UMR 5669 CNRS, ENS de Lyon site Monod, 46, alle d’Italie, 69364 Lyon Cedex 07, France.

Email: julien.vovelle@ens-lyon.fr, partially supported by the ANR project STAB and the “Investisse-

ments d’Avenir” program LABEX MILYON ANR-10-LABX-0070

1



4 Resolution of the kinetic equation 17

4.1 Cauchy Problem in the LB case . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Cauchy Problem in the FP case . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Markov property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Diffusion-approximation 23

5.1 Perturbed test-function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1.1 First corrector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1.2 Second corrector and limit generator . . . . . . . . . . . . . . . . . 25
5.1.3 First and second correctors . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Bounds on the moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Tightness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Convergence to the solution of a Martingale problem . . . . . . . . . . . . 35
5.5 Limit SPDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.5.1 Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.5.2 Representation formula . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5.3 Limit equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A Resolution of the unperturbed equation 43

B Martingale property of Markov processes 44

1 Introduction

1.1 Kinetic equations

Let N ∈ N
∗. We denote by T

N the N -dimensional torus. Let ε > 0. We consider the
following kinetic equation

∂tf + εv · ∇xf + Ē(t, x) · ∇vf = Qf, t > 0, x ∈ T
N , v ∈ R

N , (1.1)

which is a perturbation of the equation

∂tf + Ē(t, x) · ∇vf = Qf t > 0, x ∈ T
N , v ∈ R

N . (1.2)

The operator Q is either the linear Boltzmann (LB) operator

QLBf = ρ(f)M − f, ρ(f) =

∫

RN

f(v)dv, M(v) =
1

(2π)N/2
exp

(

−|v|2
2

)

, (1.3)

or the Fokker-Planck (FP) operator

QFPf = divv(∇vf + vf). (1.4)

The force field Ē(t, x) in (1.2) is a Markov, stationary mixing process t 7→ Ē(t) with
state space F = C1(TN ;RN ) (see Section 2 for more details). We show in Section 3 that
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there is a unique, ergodic, invariant measure for (1.2) and that this invariant measure
is the law of an invariant solution (x, v) 7→ ρ(x)M̄t(x, v) parametrized by ρ(x). See
(3.6)-(3.7) for the definition of M̄t. Consider the solution f to (1.1) starting from a state

fin(x, v) ≈ ρin(x)M 0(x, v). (1.5)

Rescale over time intervals of order ε−2:

f ε(t, x, v) = f(ε−2t, x, v). (1.6)

Then f ε is solution to the equation

∂tf
ε +

v

ε
· ∇xf

ε +
1

ε2
Ē(ε−2t, x) · ∇vf

ε =
1

ε2
Qf ε, t > 0, x ∈ T

N , v ∈ R
N . (1.7)

On bounded time intervals [0, T ], we expect

f ε(t, x, v) ≈ ρ(x, t)M ε−2t(x, v), (1.8)

where ρ is solution to a given equation (the hydrodynamic equation) which we would like
to identify. We do not prove (1.8), but find the limit equation satisfied by ρ = limε→0 ρ

ε,
where ρε = ρ(f ε). We show in Theorem 1.1 that ρ satisfies a diffusion equation, where
the drift term is a second order differential operator in divergence form with respect
to the space-variable x. Showing that ρε is close to ρ with ρ a diffusion (in infinite
dimension) is therefore a result of diffusion-approximation (in infinite dimension). See
Theorem 1.1 for the precise statement.

1.2 Trajectories

The phase space associated to (1.1) is T
N × R

N . Consider the following systems of
stochastic differential equations:

dXt = εdVt,

dVt = Ē(t,Xt)dt+ jumps,
(1.9)

and

dXt = εdVt,

dVt = (Ē(t,Xt)− Vt)dt+
√
2dBt.

(1.10)

In (1.9) the second equation describes the following piecewise deterministic Markov
process (PDMP). Consider the Poisson process associated to the times (Tn) and to the
probability measure Mdv: the increments Tn+1 − Tn are i.i.d. with exponential law
of parameter 1. At each time t = Tn, Vt is jumping to a new value VTn+ chosen at
random, according to the probability law Mdv. Between each jump, (Vt) is evolving by
the differential equation

dVt
dt

= E(t,Xt), Tn < t < Tn+1, (1.11)
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which is coupled with the first equation of (1.9). In (1.10), Bt is an N -dimensional
Wiener process. In both the LB case and the FP case, the extra stochastic processes
which we introduce are independent of (Ē(t)). In this context, the equation (1.1) gives
the evolution of the density, with respect to the Lebesgue measure on T

N
x × R

N
v , of the

conditional law of (Xt, Vt): let FE
t = σ((Ēs)0≤s≤t). If the law of (X0, V0) has density fin

with respect to the Lebesgue measure on T
N
x × R

N
v , then

E
[

ϕ(Xt, Vt)|FE
t

]

=

∫∫

TN×RN

ϕ(x, v)ft(x, v)dxdv, (1.12)

for all ϕ ∈ Cb(T
N × R

N ). From (1.12), it follows that

E [ϕ(Xt)] =

∫

TN

ϕ(x)Eρt(x)dx, ρt = ρ(ft), (1.13)

for all ϕ ∈ Cb(T
N ). We are interested in equation (1.7). The associated process is then

(Xε−2t, Vε−2t) and the associated density ρε−2t. Our main result, Theorem 1.1, describes
the limit behavior of ρε−2t.

1.3 Main result

Notations. The three first moments of a function f ∈ L1(RN , |v|2dv) are written

ρ(f) =

∫

RN

f(v)dv, J(f) =

∫

RN

vf(v)dv, K(f) =

∫

RN

v ⊗ vf(v)dv, (1.14)

where a⊗ b is the N ×N rank-one matrix built on a, b ∈ R
N with ij-th elements aibj.

We use the notation

a
sym

⊗ b = a⊗ b+ b⊗ a (1.15)

to denote the symmetric version of a ⊗ b. We denote by K the second moment of M
(because M is a Maxwellian, this is simply the identity matrix of size N ×N here):

K = K(M) =

∫

RN

v ⊗ vM(v)dv = IdN . (1.16)

For m ∈ N, we denote by J̄m(f) the total m-th moment of f :

J̄m(f) =

∫∫

TN×RN

|v|mf(x, v)dxdv. (1.17)

Let us also introduce the Banach space

Gm =
{

f ∈ L1(TN × R
N); J̄0(f) + J̄m(f) < +∞

}

, (1.18)

with norm ‖f‖Gm = J̄0(f) + J̄m(f). Eventually, we define the diffusion matrix K♯ and
the vector field Θ of the limit equation (1.24) by the formula

K♯ = K +
1

2
E

[

Ē(0)
sym

⊗ [R0(Ē(0)) + (b− 1)R1(Ē(0))]

]

, (1.19)
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and

Θ =
b

2
divxE

[

R1(Ē(0))
sym

⊗ Ē(0)

]

+ E
[

R1R0(Ē(0))divx(Ē(0))
]

, (1.20)

where bLB = 2 in the case Q = QLB and bFP = 1 in the case Q = QFP, and where the
resolvent Rλ is defined by (2.15). For i, j ∈ {1, . . . , N}, x, y ∈ T

N , we set

H(i, x, j, y) =
1

2
E

(

[

R0(Ē0(x))
]

i

[

Ē0(y)
]

j
+
[

R0(Ē0(y))
]

j

[

Ē0(x)
]

i

)

. (1.21)

The function H is a kernel on the space L2(TN ;RN ). The associated operator is denoted
by S:

Sρi(x) =
N
∑

j=1

∫

TN

H(i, x, j, y)ρj (y)dy. (1.22)

We show in Proposition 5.9 that S is symmetric, non-negative and trace-class. Our main
result of diffusion-approximation for ρε is the following one.

Theorem 1.1. Let K♯ and Θ be defined by (1.19) and (1.20) respectively. Let f εin ∈ G3 be
non-negative. Let (Ēt) be a mixing force field on H σ̄(TN ;RN ) according to Definition 2.1.
Let f ε ∈ C([0, T ];L1(TN × R

N )) be the mild solution to (1.7) with initial condition f εin,
in the sense of Definition 4.1 or 4.2, depending on the nature of the collision operator
Q. Let ρε = ρ(f ε). Assume the convergence

ρ(f εin) → ρin in L2(TN ). (1.23)

Let K♯ and Θ be defined by (1.19) and (1.20) respectively. Then (ρε) converges in law on
C([0, T ];H−1(TN )) to ρ, the weak-L1 martingale solution in the sense of Definition 5.1
of the stochastic equation

dρ = divx(K♯∇xρ+Θρ)dt+
√
2divx(ρS

1/2dW (t)), (1.24)

with initial condition
ρ(0) = ρin. (1.25)

In (1.24), W (t) is a cylindrical Wiener process on L2(TN ;RN ), and S is defined by
(1.22).

Remark 1.1 (Enhanced diffusion). Lemma 5.3 below and (1.19) show that K♯ ≥ K. It
is a remarkable fact that the stochastic forcing term Ēt has an influence on the diffusion
matrix at the limit, and that it increases the diffusion effects. Note that the influence
of stochastic mixing forcing terms in kinetic equations has also been investigated in
[15, 8]. The context and the results in these two papers are different from the present
one however. Indeed,

1. the starting kinetic equations in [15, 8] are not collisional,
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2. In [15, 8], in the scaling that is considered, a collisional kinetic equation is obtained
at the limit. The collision operator (an operator acting on functions of the variable
v thus) is a diffusion operator. At the level of trajectories, the apparition of this
operator is explained by the convergence of the velocity Vt of particles to a diffusion
like the one solving equation (1.10) with E = 0.

The Stratonovitch formulation of (1.24) is

dρ = divx(K̃♯∇xρ+ Θ̃ρ)dt+
√
2divx(ρ ◦ S1/2dW (t)), (1.26)

where

K̃♯ = K +
1

2
(b− 1)E

[

R1(Ē(0))
sym

⊗ Ē(0)

]

,

with bLB = 2, bFP = 1. Note that, in the Fokker-Planck case, no additional diffusion
appears when one uses the Stratonovitch form of the limit equation, since K̃♯ = K.
However, the average r := E[ρ], which is solution to the equation

∂tr − divx(K♯∇xr) = 0, (1.27)

does satisfy a diffusion equation with enhanced diffusion in any case.

Note the weak mode of convergence of ρε in Theorem 1.1. It is weak in the probabilistic
sense (convergence in law). This is inherent to the limit theorems (like the Donsker
theorem) which lay the bases of diffusion-approximation results. The convergence is
weak with respect to the space-variable also. We obtain below a bound in G3 on f ε thus
by interpolation a better convergence than convergence in C([0, T ];H−1(TN )) holds.
But this is still in a space with negative regularity with respect to x. We intend to
improve this point, and to consider non-linear equations in a similar regime, in a future
work. Nevertheless, note that, in the very special case where Ē is independent on the
space variable, strong convergence can be established. Indeed, the spatial derivatives of
f ε then satisfy the same equation as f ε. Bounds in L1 on the derivatives of f ε can be
obtained in this way, by using the estimate (4.4).

An other standard tool in the study of kinetic equations are entropy estimates. In our
context, we are not able do establish such estimates. This may be due, in part, to the
fact that f in (1.1) is not a probability density function (one has to use conditioning with
respect to the process E to obtain a probability density function, see (1.12)). The lack
of entropy estimates has several consequences. One of those is that we do not have any
L2-bound in space on ρε. We have some uniform bounds in L1 however, and this is why
we consider solutions to the limit SPDE (1.24) taking values in L1 (see Definition 5.1).
For such weak solutions, proving uniqueness for the limit problem is problematic at
first sight. We use a duality method, using a backward SPDE, to establish pathwise
uniqueness: see Theorem 5.14.

The plan of the paper is the following one. In Section 2 we describe the type of forcing
field Ē(t) which we consider. In Section 3, we prove some mixing properties and compute
the invariant measures for the unperturbed equation (1.2). In Section 4, we solve the
Cauchy Problem for the kinetic equation (1.1). In Section 5, we establish our main result
of diffusion-approximation, Theorem 1.1.
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2 Mixing force field

Let m > N +1 be a given integer and let F = H2m(TN ;RN ) be endowed with the norm

‖e‖F =





∑

|α|≤2m

N
∑

i=1

‖∂αei‖2L2(TN )





1/2

. (2.1)

where the first sum in (2.1) is over all multi-indices α ∈ N
N of length |α| = α1+ · · ·+αN

less than 2m. The space F will be the state space for the mixing force field Ē: we assume
that we are given (Ēt)t≥0, a stationary, homogeneous Markov process of generator A
over F (the generator is defined according to the theory developed in Appendix B). Let
P (t, e, B) be a transition function for (Ēt) associated to the filtration generated by (Ēt)
(see, e.g., [7, p. 156] for the definition), satisfying the Chapman-Kolmogorov relation

P (t+ s, e, B) =

∫

F
P (s, e1, B)dP (t, e, de1), (2.2)

for all s, t ≥ 0, e ∈ F , B Borel subset of F . It will be helpful (and it is often more
natural) to see (Ēt) as the particular evolution (Et(e)) of a process starting from e,
when e is drawn according to the equilibrium measure. Let us give the details of this
procedure: let P(F ) be the set of Borel probability measures on F . By [7, p. 157], up to
a modification of the probability space (Ω,F), say into a probability space (Ω̃, F̃), there
exists a collection {Pµ;µ ∈ P(F )} of probability measures and some Markov processes
(E(t, s))t≥s with transition function P such that, Pµ(E(s, s) ∈ D0) = µ(D0) for all
Borel subset D0 of F . When µ is the Dirac mass µ = δe, we use the shorter notation
Pe instead of Pδe. By [7, p. 157] additionally, for all D ∈ F , e 7→ Pe(D) is Borel
measurable. Let e0 be a random variable on F of law µ. We do a slight abuse of
notation and denote by (E(t, s; e0),P) the couple (E(t, s),Pµ). This means that the
finite-dimensional distribution of both processes are the same, i.e.

P(E(t1, s; e0) ∈ D1, . . . , E(tn, s; e0) ∈ Dn) = Pµ(E(t1, s) ∈ D1, . . . , E(tn, s) ∈ Dn),
(2.3)

for all s ≤ t1 ≤ · · · ≤ tn, and D1, . . . ,Dn Borel subsets of F . For simplicity, we also use
the notation E(t; e), or Et(e), instead of E(t, 0; e). Note that, by iteration of (2.2), we
have

P(Ē(0) ∈ D0, Ē(t1) ∈ D1, . . . , Ē(tn) ∈ Dn)

=

∫

D0

· · ·
∫

Dn−1

P (tn−tn−1, en−1,Dn)P (tn−1−tn−2, en−2, den−1) · · ·P (t1, e0, de1)dν(e0)

= Pν(E(t1, 0) ∈ D1, . . . , E(tn, 0) ∈ Dn), (2.4)

where ν is the law of Ē(0). Therefore Ēt and Et(Ē0) have the same finite-dimensional
distributions: Ēt is a version Et(Ē0). The probability space Ω̃ used in [7, p. 157] to
define the probability measures Pe is the path-space F [0,+∞) (the σ-algebra F̃ is the
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product σ-algebra). Assume in addition that (Ēt) is càdlàg. Then it is clear that we
can take the Skorohod space D([0,+∞);F ) as a path space to define Pe. The σ-algebra
F̃ is then the trace of the product σ-algebra, which coincide with the Borel σ-algebra
when the Skorohod topology is considered on D([0,+∞);F ). In this context, it holds
true that e 7→ Pe(D) is Borel measurable for all D ∈ F̃ (see the proof of Proposition 1.2
p. 158 in [7]). To sum up (see [18, Section I-3]), if (Ēt) is càdlàg, we can assume that
t 7→ E(t, s; e) is càdlàg, for all s ∈ R and e ∈ F . As a last remark, note that it is always
possible, using the Kolmogorov extension theorem, to build a càdlàg stationary process
(Ě(t))t∈R indexed by t ∈ R with the finite-dimensional distributions

P(Ě(s) ∈ D0, Ě(s+ t1) ∈ D1, . . . , Ě(s+ tn) ∈ Dn)

= P(Ē(0) ∈ D0, Ē(t1) ∈ D1, . . . , Ē(tn) ∈ Dn), (2.5)

for all s ∈ R, 0 ≤ t1, . . . , tn. Instead of adding a new notation (Ě(t))t∈R, we simply
denote this process by (Ē(t))t∈R. We also denote by (GE

t ) the usual augmentation (cf.
[18, Definition (4.13), Section I-4]) of the canonical filtration (Ft) on D([0,+∞);F ) with
respect to the family (Pe)e∈F . In successive order, (Ft) is the filtration generated by the
evaluation maps (πt), πt(ω) = ω(t); F∗

t is the intersection over e ∈ F of the σ-algebras
FPe

t obtained by completing Ft with Pe-negligible sets; and Gt is F∗
t+:

Gt =
⋂

s>t

F∗
s . (2.6)

Definition 2.1 (Mixing force field). Let (Ēt)t≥0 be a càdlàg, stationary, homogeneous
Markov process of generator A, in the sense of Appendix B, over F . We say that
(Ēt)t≥0 is a mixing force field if the conditions (2.7), (2.8), (2.10), (2.14), (2.17) below
are satisfied.

Our first hypothesis is that there exists a stable ball: there exists R ≥ 0 such that:
almost-surely, for all e with ‖e‖F ≤ R, for all t ≥ 0,

‖E(t; e)‖F ≤ R. (2.7)

Our second hypothesis is about the law ν of Ēt. We assume that it is supported in the
ball B̄R of F (therefore, it has moments of all orders) and that it is centred:

∫

F
e dν(e) = E

[

Ēt

]

= 0, (2.8)

for all t ≥ 0. Note that a consequence of this hypothesis is that: almost-surely, for all
t ≥ 0,

‖Ēt‖F ≤ R. (2.9)

Our third hypothesis is a mixing hypothesis: we assume that there exists a continu-
ous, non-increasing, positive and integrable function γmix ∈ L1(R+) such that, for all
probability measures µ, µ′ on F , for all random variables e0, e

′
0 on F of law µ and µ′
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respectively, there is a coupling ((E∗
t (e0))t≥0, (E

∗
t (e

′
0))t≥0) of ((Et(e0))t≥0, (Et(e

′
0))t≥0)

such that
E‖E∗

t (e0)− E∗
t (e

′
0)‖F ≤ Rγmix(t), (2.10)

for all t ≥ 0. Typically, we expect γmix to be of the form γmix(t) = Cmixe
−βmixt, βmix > 0

(see the example treated in Section 2.3 for instance).

2.1 Some consequences of the mixing hypothesis

Let ϕ be a Lipschitz continuous function on F . We have

Eϕ(E∗
t (e0)) = 〈etAϕ, µ〉

(where etA denote the semi-group associated to A: Eeϕ(Et) = etAϕ(e)). From (2.10), it
follows that

∣

∣〈etAϕ, µ〉 − 〈etAϕ, µ′〉
∣

∣ ≤ ‖ϕ‖LipRγmix(t), (2.11)

for all t ≥ 0. Let ν denote the law of (Ē(t)) and let e ∈ B̄R. We will use (2.11) in
particular when e0 = e a.s. and e′0 has law ν. Then (2.11) gives the following mixing
estimate:

‖etAϕ(e)− 〈ϕ, ν〉‖F ≤ R‖ϕ‖Lipγmix(t), (2.12)

for all t ≥ 0, for all e ∈ B̄R. The estimate (2.12) has an extension to quadratic functionals:
for all linear and continuous Λ: F → R, for all bi-linear and continuous q : F × F → R,
we have, for all e ∈ B̄R,

‖etA[Λ + q](e)− 〈Λ + q, ν〉‖F ≤ R

(

‖Λ‖B(F ) + 2R‖q‖B(F×F )

)

γmix(t), (2.13)

where ‖Λ‖B(F ) is the norm of the linear form of Λ and ‖q‖B(F×F ) is the norm of the
bi-linear form of q. Note that, actually, 〈Λ, ν〉 = 0 by (2.8). The factor R in front of
‖q‖B(F×F ) in (2.13) is due to the decomposition (recall that e0 = e a.s. and e′0 has law
ν)

etAq(e)− 〈q, ν〉 = E
[

q(E∗
t (e0), E

∗
t (e0))− q(E∗

t (e0),E
∗
t (e

′
0))
]

+ E
[

q(E∗
t (e0), E

∗
t (e

′
0))− q(E∗

t (e
′
0), E

∗
t (e

′
0))
]

.

We have indeed

|etAq(e)− 〈q, ν〉| ≤ ‖q‖B(F×F )E
[

(‖E∗
t (e0)‖F + ‖E∗

t (e
′
0)‖F )‖E∗

t (e0)− E∗
t (e

′
0)‖F

]

≤ 2R‖q‖B(F×F )E‖E∗
t (e0)− E∗

t (e
′
0)‖F by (2.7),

≤ 2R2‖q‖B(F×F )γmix(t) by (2.10).

Without loss of generality (as we can rescale γmix if we rescale R), we assume

‖γmix‖L1(R+) = 1. (2.14)
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Using (2.12), the resolvent

Rλϕ(e) :=

∫ ∞

0
e−λt

(

etAϕ
)

(e)dt, (2.15)

is well defined for all λ ≥ 0, e ∈ B̄R and all ϕ : F → R which is Lipschitz continuous
and satisfies the cancellation condition 〈ϕ, ν〉 = 0. Using (2.8), we can therefore define
Rλϕh(e) for λ ≥ 0, where ϕh(e) = 〈e, h〉L2(TN ). Moreover by (2.12), there exists Tλ : F →
F such that Rλϕh(e) = 〈Tλ(e), h〉L2(TN ). By a slight abuse of notation, we write Rλ(e) =
Tλ(e). By (2.10) (with e0 = e a.s. and e′0 ∼ ν) and (2.14), we have

‖R0(e)‖F ≤ R, (2.16)

for all e with ‖e‖F ≤ R. Eventually, let Λ: F → R be a linear functional. Then, with
the notations above, ϕΛ := Λ ◦R0 is a map F → R. The generator A acts on ϕΛ and on
the square of ϕΛ and we will assume that there exists a constant C0

R ≥ 0 such that the
following bounds are satisfied:

|[A|ϕΛ|2](e)| ≤ C0
R‖Λ‖2B(F ), |[AϕΛ](e)| ≤ C0

R‖Λ‖B(F ), (2.17)

for all e with ‖e‖F ≤ R.

2.2 Covariance

Our mixing hypothesis has the following consequence on the covariances of (Et) and
(Ēt): let

Γe(s, t) = E [Es(e)⊗ Et(e)] , Γ̄(t) = E
[

Ē(t)⊗ Ē(0)
]

. (2.18)

Let t ≥ s ≥ r ≥ 0. Conditioning on GE
t−s, we have

Γe(t− r, t− s) = e(t−s)A(e(s−r)Aθ ⊗ θ)(e), θ(e) = e

It follows from (2.13) that, for all e with ‖e‖F ≤ R,

‖Γe(t− r, t− s)− Γ̄(s− r)‖F ≤ 2R2γmix(t− s). (2.19)

Note also that Γ̄(−t) = E
[

Ē(0) ⊗ Ē(t)
]

so that, using the notation (1.15), we have

Γ̄(t) + Γ̄(−t) = E

[

Ē(t)
sym

⊗ Ē(0)

]

. (2.20)

2.3 Some simple examples

Let (En(e))n≥0 be a Markov chain on F with E0(e) = e, and let (Nt)t≥0 be a Poisson
process of rate 1 (N0 = 0) independent on (En). We assume that the ball B̄R of F is
stable by (En), that (En(e))n≥0 has the invariant measure ν and the mixing property

E‖E∗
n(e0)− E∗

n(e
′
0)‖ ≤ CRγn, (2.21)

10



where γ < 1 for a coupling (E∗
n(e0), E

∗
n(e

′
0)) of (En(e0), En(e

′
0)). Let

E(t, s; e0) = ENt−s
(e0) (2.22)

and let Ēt = E(t, 0; ē0), where ē0 is a random variable of law ν independent on (En)n≥0

and (Nt)t≥0. Then (Ēt) is a stationary process (it is a time-homogeneous Markov process
and is initially at equilibrium). It is càdlàg, it satisfies (2.7), (2.8) if ν is centred, and
also (2.10) since

E‖E∗
t (e0)− E∗

t (e
′
0)‖F =

∞
∑

n=0

P(Nt = n)E‖E∗
n(e0)− E∗

n(e
′
0)‖F

≤ CR
∞
∑

n=0

e−t t
n

n!
γn = CRe−(1−γ)t =: Rγmix(t).

Let us simplify still by considering the situation where En+1(e) is drawn independently
on En(e), with law ν. We can then consider the synchronous coupling (E∗

n(e0), E
∗
n(e

′
0))

of (En(e0), En(e
′
0)) which is such that E∗

n(e0) = E∗
n(e

′
0) for all n ≥ 1. It gives us

E‖E∗
t (e0)− E∗

t (e
′
0)‖F ≤ 2RP(Nt = 0) = 2Re−t.

In addition, the semi-group, generator and resolvent R0 have the explicit forms

etAϕ(e) = e−tϕ(e) + (1− e−t)〈ϕ, ν〉,

and
Aϕ(e) = 〈ϕ, ν〉 − ϕ(e), R0ϕ(e) = e.

From these formula, we deduce the second inequality in (2.17) with C0
R ≥ R. The first

inequality in (2.17) is obtained with any C0
R ≥ 2R2.

An other instance of mixing force field is a function η(Xt), η : R
m → F , of an Ornstein-

Uhlenbeck process (Xt) on R
m:

dXt = −Xtdt+
√
2dBt, (2.23)

where (Bt) is a Wiener process on R
m. We choose η Lipschitz and taking values in the

ball B̄R of F . We will not develop that example much, but simply check that the mixing
condition (2.10) is also satisfied here. Since η is Lipschitz, it is sufficient to check it
directly on (Xt). We use once again a synchronous coupling: let

X∗(t;X0) = e−tX0 +
√
2

∫ t

0
e−(t−s)dBs, X∗(t;X ′

0) = e−tX ′
0 +

√
2

∫ t

0
e−(t−s)dBs

and let γmix(t) = Cmixe
−t, where Cmix is a constant. Then

et|X∗(t;X0)−X∗(t;X ′
0)| ≤ |X0|+ |X ′

0|,

hence (2.10) is satisfied provided we limit ourselves to initial laws µ and µ′ with first
moment below a given threshold. This is not a limitation since the invariant measure
associated to (2.23), which is Gaussian, has a finite first moment.
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3 Unperturbed equation: ergodic properties

We consider first the equation

∂tft + Ē(t) · ∇vft = Qft t > 0, v ∈ R
N , (3.1)

where Q = QLB or Q = QFP. In (3.1), Ē(t) stands for Ē(x, t), where (Ē(t)) is a mixing
force field. We will not indicate the dependence with respect to x, which is a simple
parameter here.

To find the invariant measure for (3.1), we solve the equation starting from a given time
s ∈ R, and then let s → −∞. More precisely, given e ∈ R

N , we consider the following
evolution equation:

∂tft + E(t, s; e) · ∇vft = Qft t > s, v ∈ R
N . (3.2)

Let f ∈ L1(RN ) and s ∈ R. The solution to (3.2) with initial condition ft=s = f is

fLBs,t (v) = e−(t−s)f

(

v −
∫ t

s
E(r, s; e)dr

)

+ ρ(f)

∫ t

s
e−(t−σ)

[

M

(

v −
∫ t

σ
E(r, s; e)dr

)]

dσ, (3.3)

when Q = QLB, and

fFPs,t (v) = eN(t−s)

∫

RN

f

(

e(t−s)v −
∫ t

s
e−(s−σ)E(σ, s, e)dσ +

√

e2(t−s) − 1w

)

M(w)dw,

(3.4)

when Q = QFP. A brief explanation to (3.3) and (3.4) is given in Appendix A. By the
term “solution to (3.2)”, we mean weak solutions, i.e. functions f ∈ C([s,+∞);L1(RN ))
satisfying the identity

〈ft, ϕ〉 = 〈f, ϕ〉 +
∫ t

s
〈fσ, E(σ, t; e) · ∇vϕ〉+ 〈fσ, Q∗ϕ〉dσ,

almost-surely, for all ϕ ∈ C∞
c (RN ), for all t ≥ s. We may also consider mild solutions

(this is equivalent, actually), as we do in Section 4. We do not need to be very specific on
that point here. All that matters to us is to understand the limit behaviour of fs,t defined
by (3.3)-(3.4) when s→ −∞. This is the content of the following result, Theorem 3.1.

Theorem 3.1 (Invariant solutions). Let (Ē(t)) be a mixing force field in the sense of
Definition 2.1. Let fLBs,t and fFPs,t be defined by (3.3) and (3.4) respectively, with e ∈ B̄R.
Then

(fLBs,t , E(t, s; e)) → (ρ(f)M̄LB
t , Ēt) and (fFPs,t , E(t, s; e)) → (ρ(f)M̄FP

t , Ēt) (3.5)

12



in law on L1(RN )× R
N when s→ −∞, where M̄LB

t and M̄FP
t are defined by

M̄LB
t =

∫ t

−∞
e−(t−σ)

[

M

(

v −
∫ t

σ
Ē(r)dr

)]

dσ, (3.6)

and

M̄FP
t =M

(

v −
∫ t

−∞
e−(t−r)Ē(r)dr

)

, (3.7)

respectively.

We denote by µρ the invariant measure (parametrized by ρ) defined by

〈ϕ, µρ〉 = Eϕ(ρM̄t, Ēt), (3.8)

for all continuous and bounded function ϕ on L1(RN )× R
N .

Remark 3.1. We will call M̄LB
t and M̄FP

t the “invariant solutions”, since their laws are
the invariant measure for (3.1). Note that (Ē(r)) in (3.6) and (3.7) is defined for all
r ∈ R (see the discussion and convention of notations around (2.5)).

Remark 3.2. Let ϕ be a bounded continuous function on R
N ×R

N . Similarly to (1.12),
we have, by conditioning on the natural filtration (FE

t ) of (Et):

E [ϕ(Vs,t, E(t, s; e))] = E

∫

RN

fs,t(v)ϕ(v,E(t, s; e))dv, (3.9)

where Vs,t is the solution to (1.9) or (1.10) (with Ē(t) instead of Ē(t,Xt)) starting from
Vs at time t = s, where Vs follows the law of density f with respect to the Lebesgue
measure on R

N . Since

Φ: (f, e) 7→
∫

RN

f(v)ϕ(v, e)dv

is continuous and bounded on L1(RN )× R
N , we deduce from Theorem 3.1 that

lim
s→−∞

E [ϕ(Vs,t, E(t, s; e))] = 〈µρ, ϕ〉 := ρE

∫

RN

M̄t(v)ϕ(v, Ēt)dv, (3.10)

where ρ = ρ(f).

The proof of Theorem 3.1 uses the estimates (3.13) and (3.14) in the following lemma.

Lemma 3.2. For w, z ∈ R
N , we have the estimates and identities

‖M(· − w)‖2L2(M−1) = e|w|2 , (3.11)

‖M(· − w)−M(· − z)‖2L2(M−1) = e|w|2 + e|z|
2 − 2ew·z, (3.12)

in L2(M−1), and

‖M(· − w)‖L1(RN ) = 1, (3.13)

‖M(· − w)−M(· − z)‖L1(RN ) ≤ 2 ∧
[ |w − z|
(1− |w − z|)+

]1/2

(3.14)

in L1(RN ).
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Proof of Lemma 3.2. Standard manipulations and identities for Gaussian densities give
(3.11), (3.12) and (3.13) (one can also use (3.15) below to prove (3.11) and (3.12)). By
(3.13) and the triangular inequality, we have the bound by 2 in (3.14). To obtain the
second estimate, we use the identity

‖M(· − w)−M(· − z)‖L1(RN ) = ‖M(· − w + z)−M‖L1(RN ),

and the expansion

M(v − w) =
1

(2π)N/2
e−

|v−w|2

2 =M(w)
∑

n∈NN

Hn(v)w
n, (3.15)

where Hn is the n-th Hermite polynomial (see [13, Section 1.1.1]). This yields the
inequality

‖M(· − w)−M‖L1(RN ) ≤M(w)
∑

n∈NN \{0}
‖Hn‖L1(RN )|w|n.

Since ‖Hn‖L1(RN ) ≤ ‖Hn‖L2(M−1) =
1√
n!

(cf. [13, Lemma 1.1.1]), the Cauchy-Schwarz

inequality yields, for |w| < 1,

‖M(· − w)−M‖L1(RN ) ≤M(w)

[

e|w||w|
1− |w|

]1/2

≤
[ |w|
1− |w|

]1/2

.

Indeed, setting a = |w|, we have a ∈ [0, 1] and

M(w)e|w|/2 =

[

1

(2π)N
ea−a2

]1/2

≤
[

1

(2π)N
e1/4

]1/2

≤ 1

since e1/4 ≤ 2π.

Proof of Theorem 3.1. Let e ∈ B̄R t ∈ R, let Φ: L1(RN ) × F → R be a bounded and
uniformly continuous function and let ε > 0. Our aim is to show that

|EΦ(fs,t(v), E(t, s; e)) − EΦ(ρM̄t, Ēt)| < Kε, (3.16)

for s < min(0, t), |s| large enough, where K is a finite constant (it will turn out that
K = 5, but this does not matter). Note that it is sufficient to consider uniformly
continuous functions in (3.16), cf. Proposition I-2.4 in [10]. We denote by η a modulus
of uniform continuity of Φ associated to ε.

Step 1. Reduction to the case f ∈ L2(M−1). The maps f 7→ fs,t, f 7→ ρ(f)M̄t are
continuous on L1, uniformly in s ≤ t:

‖fs,t‖L1(RN ), ‖ρ(f)M̄LB
t ‖L1(RN ) ≤ ‖f‖L1(RN ).
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Using the uniform continuity of Φ on K, we have

|EΦ(fs,t(v), E(t, s; e)) − EΦ(ρM̄t, Ēt)| < 2ε+ |EΦ((f̃)s,t, E(t, s; e)) − EΦ(ρ(f̃)M̄t, Ēt)|

if ‖f − f̃‖L1(RN ) < η. Therefore, to prove (3.16), we turn to the case f ∈ L2(M−1).

Step 2. Cut-off after time s. For s ≤ t, introduce

M̄LB
s,t =

∫ t

s
e−(t−σ)

[

M

(

v −
∫ t

σ
Ē(r)dr

)]

dσ, (3.17)

and

M̄FP
s,t =M

(

v −
∫ t

s
e−(t−r)Ē(r)dr

)

. (3.18)

We have ‖M̄LB
s,t − M̄LB

t ‖L1(RN ) ≤ e−(t−s) by a direct computation and

‖M̄FP
s,t − M̄FP

t ‖L1(RN ) ≤ b

(
∫ s

−∞
e−(t−r)Ē(r)dr

)

where b(|w − z|) is the right-hand side of (3.14). We use the bound

b(r) ≤
√
5

2
r1/2 (3.19)

and (2.7) to obtain, almost-surely, ‖M̄FP
s,t − M̄FP

t ‖L1(RN ) ≤
√
5
2 R

1/2e−
1

2
(t−s). To sum up,

in both the LB and FP case, we have a bound almost-sure on ‖M̄s,t − M̄t‖L1(RN ) by a
deterministic quantity which tends to 0 when t−s→ +∞. It follows that, for t−s large
enough,

|EΦ(ρ(f)M̄t)− EΦ(ρ(f)M̄s,t, Ēt)| < ε.

In the next step we prove that

|EΦ(fs,t, E(t, s; e)) − EΦ(ρ(f)M̄s,t)| < 2ε, (3.20)

for t− s large enough.

Step 3. Convergence in law. Let e ∈ B̄R. Let e0 = e a.s. and e′0 = Ēs. Since
E(s, t; e) has the same law as Et−s(e0) and Ē(t) has the same law as Et−s(e

′
0), (2.10)

gives a coupling
(E(s, t; e), Ē(t))t≥s → (E∗(s, t; e), Ē∗

t )t≥s

such that
E‖E∗(t, s; e)− Ē∗

t ‖F ≤ Rγmix(t− s), (3.21)

for all t ≥ s. We have

EΦ(fs,t, E(t, s; e))−EΦ(ρ(f)M̄s,t, Ēt) = EΦ(f∗s,t, E
∗(s, t; e))−EΦ(ρ(f)M̄∗

s,t, Ē
∗
t ), (3.22)
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where the superscript star in fs,t and M̄s,t indicates that E(s, t; e) has been replaced by
E∗(s, t; e) and Ē(t) by Ē∗

t . Since

|EΦ(f∗s,t, E∗(s, t; e))− EΦ(ρ(f)M̄∗
s,t, Ē

∗
t )|

≤ ε+ ‖Φ‖BC

[

P(‖f∗s,t − ρ(f)M̄∗
s,t‖L1(RN ) > η) + P(‖E∗(s, t; e)− Ē∗

t ‖F > η)
]

,

it is sufficient to prove that f∗s,t − ρ(f)M̄∗
s,t → 0 and E∗(s, t; e) − Ē∗

t → 0 in probability

on L1(RN ) and F respectively. We show the strongest (strongest, as is proved classically
by means of the Markov inequality) property

lim
s→−∞

E‖f∗s,t − ρ(f)M̄∗
s,t‖L1(RN ) = 0, lim

s→−∞
E‖E∗(s, t; e)− Ē∗

t ‖F = 0. (3.23)

The second limit in (3.23) is a consequence of (3.21). Let us prove the first limit.
Consider first the LB case. Using (3.13) and the estimate |ρ(f)| ≤ ‖f‖L1(RN ), we have

E‖fLB,∗
s,t − ρ(f)M̄LB,∗

s,t ‖L1(RN ) ≤ ‖f‖L1(RN )e
−(t−s)

+ ‖f‖L1(RN )E

∫ t

s
e−(t−σ)b

(∫ t

σ
|E∗(r, s, e) − Ē∗(r)|dr

)

dσ,

where, as in (3.19), we denote by b(|w − z|) the right-hand side of (3.14). From (3.19)
follows

2b(r) ≤ ε+
5

4ε
r.

We deduce the estimate

E‖fLB,∗
s,t − ρ(f)M̄LB,∗

s,t ‖L1(RN ) ≤ ‖f‖L1(RN )(e
−(t−s) + ε)

+
5

4ε
‖f‖L1(RN )

∫ t

s
e−(t−r)

E|E∗(r, s, e)− Ē∗(r)|dr.

By (3.21), this yields the following estimate:

E‖fLB,∗
s,t − ρ(f)M̄LB,∗

s,t ‖L1(RN ) ≤ ‖f‖L1(RN )

(

e−(t−s) + ε+
5R

4ε

∫ t

s
e−(t−r)γmix(t− r)dr

)

= ‖f‖L1(RN )

(

e−(t−s) + ε+
5R

4ε

∫ t−s

0
er−(t−s)γmix(r)dr

)

.

(3.24)

We fix r1 such that 5
4R
∫∞
r1
γmix(r)dr < ε2. Then

5

4
R

∫ t−s

0
er−(t−s)γmix(r)dr ≤ ε2 +

5

4
R

∫ r1

0
γmix(r)dr e

r1−(t−s) < 2ε2

for t− s large enough and (3.23) follows from (3.24). In the FP case, we start first from
the exponential estimate

‖fFPs,t |E≡0 − ρ(f)M‖L2(M−1) ≤ es−t‖f‖L2(M−1). (3.25)
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In (3.25), fFPs,t |E≡0 denote the function (3.4) obtained when E ≡ 0. The estimate (3.25) is
a consequence of the dual estimate in L2(M) for functions h such that 〈h,M〉L2(RN ) = 0,
cf. [1, p. 179]. It implies

‖fFPs,t |E≡0 − ρ(f)M‖L1(RN ) ≤ es−t‖f‖L2(M−1). (3.26)

The translations

v 7→ v −
∫ t

s
e−(t−σ)Ẽ(σ, s, e)dσ, v 7→ v −

∫ t

s
e−(t−σ)Ẽ∗

s (σ)dσ,

leave invariant the L1-norm. Therefore (3.26) yields

E‖fFP,∗s,t − ρ(f)M̄FP,∗
t ‖L1(RN ) ≤ es−t‖f‖L2(M−1)

+ |ρ(f)|E
∥

∥

∥

∥

M

(

· −
∫ t

s
e−(t−σ)Ē∗(σ)dσ

)

−M

(

· −
∫ t

s
e−(t−σ)E∗(σ, s, e)dσ

)∥

∥

∥

∥

L1(RN )

.

We conclude as in the case Q = QLB by means of (3.14).

4 Resolution of the kinetic equation

We consider the resolution of the Cauchy problem of (1.1) or (1.7) at fixed ε > 0. We
set ε = 1 for simplicity. Then (1.1) and (1.7) are the same equation

∂tf + v · ∇xf + Ē(t, x) · ∇vf = Qf. (4.1)

What is relevant actually is the dynamics given by (f, e) 7→ (ft, Et(e)), where ft is the
solution to the equation

∂tf + v · ∇xf + E(t, x) · ∇vf = Qf, (4.2)

with E(t, x) = Et(e(x)). Therefore, this is (4.2) which we solve. We simply assume that
t 7→ E(t, ·) is a càdlàg function with values in F (see Section 2 for the definition of the
state space F ). In the particular case E(t, x) = Et(e(x)), we define in this way pathwise
solutions. We solve the Cauchy Problem for (4.2) in the LB-case and in the FP-case in
Section 4.1 and Section 4.2 respectively. Then, in Section 4.3, we establish the Markov
property of the process (ft, Et(e)), where the first component ft is the solution to (4.2)
with the forcing E(t, x) = Et(e(x)).

4.1 Cauchy Problem in the LB case

Let t 7→ E(t, ·) be a càdlàg function with values in F . Let Φt(x, v) = (Xt(x, v), Vt(x, v))
denote the flow associated to the field (v,E(t, x)):

Ẋt =Vt, X0 = x,

V̇t =E(t,Xt), V0 = v.
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The partial map (x, v) 7→ Φt(x, v) is a C1-diffeomorphism of TN × R
N . We denote by

Φt the inverse application: Φt ◦ Φt = Id. Note that Φt and Φt preserve the Lebesgue
measure on T

N × R
N .

Definition 4.1 (Mild solution, LB case). Let fin ∈ L1(TN × R
N ). Assume Q = QLB.

A continuous function from [0, T ] to L1(TN ×R
N ) is said to be a mild solution to (4.2)

with initial datum fin if

f(t) = e−tfin ◦Φt +

∫ t

0
e−(t−s)[ρ(f(s))M ] ◦ Φt−sds, (4.3)

for all t ∈ [0, T ].

Proposition 4.1 (The Cauchy Problem, LB case). Let fin ∈ L1(TN × R
N). Assume

(2.7). There exists a unique mild solution to (4.2) in C([0, T ];L1(TN ×R
N)) with initial

datum fin. It satisfies

‖f(t)‖L1(TN×RN ) ≤ ‖fin‖L1(TN×RN ) for all t ∈ [0, T ]. (4.4)

If fin ≥ 0, then f(t) ≥ 0 for all t ∈ [0, T ] and (4.4) is an identity. In addition, if
fin ∈W k,1(TN × R

N ) with k ≤ 2, then

‖f‖L∞(0,T ;W k,1(TN×RN )) ≤ C(k, T, fin), (4.5)

where the constant C(k, T, fin) depends on k, T , N , and on the norms

sup
t∈[0,T ]

‖E(t, ·)‖F and ‖fin‖W k,1(TN×RN )

only. Eventually, if fin ∈ Gm, then f(t) ∈ Gm for all t ∈ [0, T ].

Proof of Proposition 4.1. Let XT denote the space of continuous functions from [0, T ]
to L1(TN × R

N ). We use the norm

‖f‖XT
= sup

t∈[0,T ]
‖f(t)‖L1(TN×RN )

on XT . Note that
‖ρ(f)‖L1(TN ) ≤ ‖f‖L1(TN×RN ). (4.6)

Let f ∈ XT . Assume that (4.3) is satisfied. Then, by (4.6), we have

‖f(t)‖L1(TN×RN ) ≤e−t‖fin‖L1(TN×RN ) +

∫ t

0
e−(t−s)‖f(s)‖L1(TN×RN )ds.

By Gronwall’s Lemma applied to t 7→ et‖f(t)‖L1(TN×RN ), we obtain (4.4) as an a priori

estimate. Besides, the L1-norm of the integral term in (4.3) can be estimated by (1 −
e−T )‖f‖XT

. Therefore existence and uniqueness of a solution to (4.3) in L1(Ω;XT ) follow
from the Banach fixed point Theorem. To obtain the additional regularity (4.5), we do
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the same kind of estimates on the system satisfied by the derivatives and incorporate
these estimates in the fixed-point space. To conclude the proof, let us assume fin ≥ 0.
Since s 7→ s− (negative part) is convex and satisfies (a+ b)− ≤ a−+ b−, we deduce from
(4.3) and the Jensen inequality that

f−(t) ≤
∫ t

0
e−(t−s)[ρ(f(s))M ]− ◦Φt−sds.

Since M ≥ 0 and ρ(f)− ≤ ρ(f−), (4.6) yields the estimate

‖f−(t)‖L1(TN×RN ) ≤
∫ t

0
e−(t−s)‖f−(s)‖L1(TN×RN )ds.

We conclude to f− = 0 by the Gronwall Lemma. Eventually, that fin ∈ Gm implies
f(t) ∈ Gm for all t ∈ [0, T ] (propagation of moments) is proved in Proposition 5.6.

4.2 Cauchy Problem in the FP case

Let Kt(x, v; y,w) denote the kernel associated to the kinetic Fokker-Planck equation

∂tf = QFPf − v · ∇xf. (4.7)

Let us recall some elementary facts aboutKt (see [3] for more results about the analytical
properties of Kt, and [17] for the probabilistic interpretation of Kt). The function
Kt(·; y,w) is the density with respect to the Lebesgue measure on T

N × R
N of the law

µ
(y,w)
t of the solution (Xt, Vt) to the SDE

dXt =Vtdt, X0 = y, (4.8)

dVt =− Vtdt+
√
2dBt, V0 = w. (4.9)

where Bt is a Wiener process over RN . Therefore

Ktf(x, v) :=

∫∫

TN×RN

Kt(x, y; y,w)f(y,w)dydw

satisfies the identity

〈Ktf, ϕ〉 =
∫∫

TN×RN

Eϕ(Xt, Vt)f(y,w)dydw, (4.10)

for f ∈ L1(TN × R
N ) and ϕ : TN × R

N → R continuous and bounded. The solution to
(4.8)-(4.9) is given explicitly by

Xt =y + (1− e−t)w +

∫ t

0
(1− e−(t−s))dBs,

Vt =e
−tw +

∫ t

0
e−(t−s)dBs.

(4.11)

19



The process (X0
t , V

0
t ) given by (4.11) when y = 0, w = 0 is a Gaussian process with

covariance matrix

Qt :=









∫ t

0
|1− e−s|2ds

∫ t
0 e

−s(1− e−s)ds
∫ t

0
e−s(1− e−s)ds

∫ t
0 e

−2sds









⊗ IN . (4.12)

Using (4.12) and (4.10)-(4.11), one can show that Kt : L
p(TN × R

N ) → Lp(TN × R
N )

with norm bounded by e
N

p′
t
. We have also the estimate

∫∫

TN×RN

|∇wKt(x, v; y,w)|dxdv ≤ Ct−1/2, (4.13)

for all (y,w) ∈ T
N × R

N , t ∈ [0, T ], with a constant C independent on (y,w) and T .
The estimate (4.13) also follows from the estimate between Equations (26) and (27) of
[3].

Definition 4.2 (Mild solution, FP case). Let t 7→ E(t, ·) be a càdlàg function with
values in F . Let p ∈ [1,+∞[. Let fin ∈ Lp(TN ×R

N ). Assume Q = QFP. A continuous
function from [0, T ] to Lp(TN × R

N )) is said to be a mild solution to (4.2) in Lp with
initial datum fin if

f(t) = Ktfin +

∫ t

0
∇wKt−s[E(s)f(s)]ds, (4.14)

for all t ∈ [0, T ].

Proposition 4.2 (The Cauchy Problem, FP case). Let t 7→ E(t, ·) be a càdlàg function
with values in F . Let p ∈ [1,+∞[. Let fin ∈ Lp(TN × R

N ). Then (4.2) has a unique
mild solution f in Lp with initial datum fin. If fin ≥ 0, then f(t) ≥ 0, for all t ∈ [0, T ].
In addition, for every k ≤ 2, the regularity W k,p(TN × R

N )) is propagated:

sup
t∈[0,T ]

‖f(t)‖W k,p(TN×RN ) ≤ C(k, T )‖fin‖W k,p(TN×RN ), (4.15)

where the constant C(k, T ) depends on k, T , N and supt∈[0,T ] ‖E(t, ·)‖F . If p = 1 and
fin ≥ 0, then ‖f(t)‖L1(TN×RN ) = ‖fin‖L1(TN×RN ). If, more generally, there is no sign

condition on fin ∈ L1(TN × R
N), then (4.4) is satisfied. Eventually, if fin ∈ Gm, then

f(t) ∈ Gm for all t ∈ [0, T ].

Proof of Proposition 4.2. The existence-uniqueness follows from the Banach fixed point
Theorem using (4.13), in a manner similar to the proof of Proposition 4.1. To obtain
(4.15) for k = 1, we assume first that f(t) is in W k,p(TN ×R

N ) for all t and we use the
relations

∇xKt(x, v; y,w) = −∇yKt(x, v; y,w),

∇vKt(x, v; y,w) = −(1− e−t)∇yKt(x, v; y,w) − e−t∇wKt(x, v; y,w),
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and Gronwall’s Lemma, to obtain (4.15). We can drop the a priori requirement that
f(t) is in W k,p(TN × R

N ) for all t either by incorporating this in the fixed-point space,
or by working with differential quotients. The case k = 2 is obtained similarly. To prove
that fin ≥ 0 implies f(t) ≥ 0, we use a duality argument: it is sufficient to prove the
propagation of the sign for L∞ solutions to the dual equation

ϕ(T ) = ψ, (4.16)

∂tϕ = −v · ∇xϕ− Ēt · ∇vϕ−Q∗
FPϕ, 0 < t < T. (4.17)

This follows from the maximum principle, since Q∗
FPϕ = ∆vϕ − v · ∇vϕ. The maxi-

mum principle for the solutions to (4.16)-(4.17) also yields the L1-estimate (4.4). The
propagation of moments is proved in Proposition 5.6.

4.3 Markov property

We prove the following result.

Theorem 4.3 (Markov property). Let (Ē(t)) be a mixing force field in the sense of
Definition 2.1. We denote by A the generator of (Ēt). Let X denote the state space

X = L1(TN × R
N )× F. (4.18)

For (f, e) ∈ X , let ft denote the mild solution to (4.2) with initial datum f and forcing
Et(e). Then (ft, Et(e))t≥0 is a time-homogeneous Markov process over X .

Proof of Theorem 4.3. We will just give the sketch of the proof. We use the propagation
of the W 2,1-regularity stated in Proposition 4.1 and Proposition 4.2. when ft has the
regularity W 2,1(TN × R

N ), it is simple to prove that

ft = Ψt(f, (E(σ))0≤σ≤t), (4.19)

where Ψ0,t(f, ·) is a continuous map from L1([0, t];F ) to L1(TN × R
N ). Indeed, if f it ,

i ∈ {1, 2} are two solutions to (4.2) corresponding to two different forcing terms Ei(t, x),
i ∈ {1, 2}, we just need to write

[

∂t + E1 · ∇v −Q
]

(f1t − f2t ) = (E2 − E1) · ∇vf
2
t ,

multiply the equation by sgn(f1 − f2) and integrate, to obtain

‖f1t − f2t ‖L1(TN×RN ) ≤ C

∫ t

0
‖E2(s)− E1(s)‖F ds, (4.20)

where the constant C depends on the L∞
t L

1
x,v-norm of ∇vf

2
t . Without loss of generality,

we can assume that Ω is the path-space, in which case (4.19) gives

ft = Ψt(f, ω). (4.21)

Setting θtω = ω(t + ·), we see that Ψ satisfies the co-cycle property Ψt+s(f, ω) =
Ψt(Ψs(f, ω), θsω). In this context of random dynamical system, it is clear that the
process (ft, Et(e))t≥0 is a Markov process, [4]. The extension to the case where f ∈
L1(TN × R

N ) results from a density argument.
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Let us introduce the operators

L♯ϕ(f, e) =Aϕ(f, e) + (Qf − e · ∇vf,Dfϕ(f, e)), (4.22)

L♭ϕ(f, e) =− (v · ∇xf,Dfϕ(f, e)), (4.23)

and L = L♯ + L♭. Formally, L is the generator associated to the Markov process
(ft, Et). In the proposition 4.4 below, we describe a class of test-functions that are in
the domains of both L♯ and L♭, the class being big enough to be used to characterize
the limit process by the perturbed test-function method.

Proposition 4.4. Let (Ē(t)) be a mixing force field in the sense of Definition 2.1. Let
A be the generator of (Et), let X be the state space defined by (4.18), and let L♯ and
L♭ be defined by (4.22)-(4.23). Let ψ : Rm × F → R be a continuous function which is
bounded on bounded sets of Rm × F and satisfies the following properties:

1. for all u ∈ R
m, e 7→ ψ(u; e) is in the domain of A and (u, e) 7→ Aψ(u; e) is bounded

on bounded sets of Rm × F ,

2. for all e ∈ F , u 7→ ψ(u; e) is differentiable, (u, e) 7→ ∇uψ(u; e) is bounded on
bounded sets of Rm × F and continuous with respect to e.

Let ξ1, . . . , ξm ∈ C∞
c (TN × R

N ). Then the test-function

ϕ : (f, e) 7→ ψ(〈f, ξ1〉, . . . , 〈f, ξm〉; e) (4.24)

satisfies L♯ϕ(f, e),L♭ϕ(f, e) < +∞ for all (f, e) ∈ X and ϕ is in the domain of L in
the sense that

Ptϕ(f, e) = ϕ(f, e) + tLϕ(f, e) + of,e(t), (4.25)

for all (f, e) ∈ X .

Proof of Proposition 4.4. Let ξ = (ξi)1,m. We have

L♯ϕ(f, e) =
{

Aψ(u; e) + 〈f,Q∗ξ + e · ∇vξ〉∇uψ(u; e)
}∣

∣

u=〈f,ξ〉,

L♭ϕ(f, e) = 〈f, v · ∇xξ〉∇uψ(u; e)
∣

∣

u=〈f,ξ〉,

therefore (f, e) 7→ (L♯ϕ(f, e),L♭ϕ(f, e)) is bounded on bounded sets of X . To obtain
(4.25), we use the decomposition of Ptϕ(f, e)− ϕ(f, e) into the sum of the terms

E(f,e)ϕ(f,Et)− ϕ(f, e) (4.26)

and
E(f,e) [ϕ(ft, Et)− ϕ(f,Et)] . (4.27)

By item 1, we have the asymptotic expansion (4.26) = tAψ(u; e)
∣

∣

u=〈f,ξ〉 + o(t). In

addition, by (4.2), we have

ut = u+ t
(

〈f,Q∗ξ + e · ∇vξ〉+ 〈f, v · ∇xξ〉
)

+ o(t),
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where ut = 〈ft, ξ〉, u = 〈f, ξ〉. By item 2, we obtain the asymptotic expansion

(4.27) = t
(

〈f,Q∗ξ + e · ∇vξ〉+ 〈f, v · ∇xξ〉
)

∇uψ(u; e)
∣

∣

u=〈f,ξ〉 + o(t).

This concludes the proof.

Remark 4.1. The result of Proposition 4.4 holds true if we consider some functions ξi
not as smooth and localised as C∞

c functions, provided there is a sufficient balance with
the regularity and integrability properties of f . For example, we apply Proposition 4.4
in Section 5.1.3 with ξi(x, v) = ξ̂i(x)ζi(v), where ξ̂i is in some Sobolev space Hs(TN )
and ζi(v) is a polynomial in v of degree less than two. In that case, we view (ft, Et) as
a Markov process on X3 := G3 × F and the conclusion of Proposition 4.4 is valid for
f ∈ G3.

Remark 4.2. Note that, in the context of Proposition 4.4, the function |ψ|2 has the same
properties (item 1 and item 2) as ψ. Therefore |ψ|2 is also in the domain of L .

5 Diffusion-approximation

We consider the Markov process (f εt , Ē
ε
t ) (see Theorem 4.3). The generator L ε of this

process can be decomposed as

L
ε =

1

ε2
L♯ +

1

ε
L♭,

where L♯ and L♭ are defined by (4.22) and (4.23) respectively. For every ϕ in the domain
of L ε, the process

M ε
ϕ(t) := ϕ(f εt , Ē

ε
t )− ϕ(fin, Ē0)−

∫ t

0
L

εϕ(f εs , Ē
ε
s)ds (5.1)

is a (Gt/ε2)-martingale (this is a consequence of Theorem 4.3 and Theorem B.1 in Ap-
pendix B). The equation associated to the principal generator L♯ is (1.2). It has been
analysed in Section 3. Our approach to the proof of the convergence of (ρε) uses the
perturbed test-function method introduced by Papanicolaou, Stroock, Varadhan in [14].
Let us explain the main steps of the proof.

1. Limit generator. To find the limit generator L associated to the equation
satisfied by the limit ρ of (ρε), which acts on test functions ϕ(ρ), we seek two
correctors ϕ1 and ϕ2 such that, for the perturbed test function

ϕε(f, e) = ϕ(ρ) + εϕ1(f, e) + ε2ϕ2(f, e), (5.2)

we may write L εϕε = Lϕ+ o(1). See Section 5.1.

2. Tightness. We prove the tightness of the sequence (ρε) in an adequate space.
First, we obtain some bounds uniform with respect to ε by perturbation of the
functional which we try to estimate. See Section 5.2. Then we establish some
uniform estimates on the time increments of (ρε). See Section 5.3.
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3. Convergence. We use the characterization of (1.24)-(1.25) as a martingale prob-
lem to take the limit of the processes (ρε). This is a very classical approach to the
convergence of stochastic processes, see the introduction to [11, Chapter III]. We
will consider the class Θ of test-functions ϕ(ρ) of the form

ϕ(ρ) = ψ (〈ρ, ξ〉) , (5.3)

for ξ ∈ C3(TN ), ρ ∈ L1(TN ), and ψ a Lipschitz function on R such that ψ′ ∈
C∞
b (R). This class Θ is a separating class in L1(TN ): if two random variables ρ1

and ρ2 satisfy Eϕ(ρ1) = Eϕ(ρ2) for all ϕ as in (5.3), then ρ1 and ρ2 have the same
laws (this is because Θ separates points, see Theorem 4.5 p. 113 in [7]).

5.1 Perturbed test-function

Let ϕ : L1(TN ) → R be a given test-function as in (5.3). Consider the perturbation
(5.2). To obtain the approximation L εϕε = Lϕ + o(1), we identify the powers in ε in
each side of this equality. This gives, for the scale ε−2, the first equation L♯ϕ = 0. This
equation is satisfied since ϕ is independent on e. Indeed, we have Aϕ = 0, consequently,
and also

(Qf − e · ∇vf,Dfϕ(ρ)) = (ρ(Qf − e · ∇vf),Dρϕ(ρ)) = 0

since ρ(Qf) = 0 and ρ(e · ∇vf) = 0. At the scales ε−1 and ε0 respectively, we obtain
the equation for the first corrector

L♯ϕ1 + L♭ϕ = 0 (5.4)

and the equation for the second corrector

L♯ϕ2 + L♭ϕ1 = Lϕ. (5.5)

If (5.4) and (5.5) are satisfied, then L εϕε = Lϕ+ εL♭ϕ2. We solve (5.4) and (5.5) by
formal computations first, see Section 5.1.1 and Section 5.1.2. In Section 5.1.3 then, we
give and prove the rigorous statement concerning the resolution of (5.4) and (5.5), see
Proposition 5.4.

5.1.1 First corrector

We seek a solution to (5.4) by means of the resolvent formula

ϕ1(f, e) =

∫ ∞

0
E(f,e)ψ(ft, Et)dt, ψ = L♭ϕ,

where ft is obtained either by (3.3) or (3.4) with s = 0. The right-hand side ψ is

ψ(f, e) = L♭ϕ(f, e) = −(divx(vf)),Dfϕ(ρ)).

Since ρ(vf) = J(f), this gives

ψ(f, e) = −(divx(J(f)),Dρϕ(ρ)). (5.6)
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Lemma 5.1. Let fs,t be equal either to (3.3), or to (3.4). The two first moments of fs,t
(see (1.14) for the definition of the moments) are, respectively, ρ(fs,t) = ρ(f), and

J(fs,t) =e
−(t−s)J(f) + ρ(f)

∫ t

s
e−(t−σ)E(σ, s; e)dσ. (5.7)

Proof of Lemma 5.1. We use the formula
∫

RN

(1, v, v⊗2)M(v − w)dv = (1, w,K + w⊗2), (5.8)

where K is defined by (1.16). By (5.8) (and a change of variable in the FP-case), we
obtain (5.7).

Remark 5.1. Similar computations done on the equilibria M̄LB
t and M̄FP

t defined by
(3.6) and (3.7) give the formula

J(M̄LB
0 ) = J(M̄FP

0 ) =

∫ 0

−∞
eσĒ(σ)dσ. (5.9)

Using (2.12) and (5.7), it is also simple to establish

∫ ∞

0
|EJ(f0,t)|dt < +∞,

∫ ∞

0
EJ(f0,t)dt = J(f) + ρ(f)R0(e). (5.10)

Combining (5.6) and (5.10), we obtain the following candidate as first corrector:

ϕ1(f, e) = −(divx(H(f, e)),Dρϕ(ρ)), H(f, e) := J(f) + ρ(f)R0(e). (5.11)

5.1.2 Second corrector and limit generator

Let µρ be the invariant measure parametrized by ρ associated to L♯, defined by (3.8).
Since L ∗

♯ µρ = 0 and 〈Lϕ, µρ〉 = Lϕ(ρ), a necessary condition to (5.5) is that

Lϕ(ρ) = 〈L♭ϕ1, µρ〉. (5.12)

If (5.12) is satisfied, then we set

ϕ2(f, e) =

∫ ∞

0

(

E(f,e)L♭ϕ1(ft, Et)− 〈L♭ϕ1, µρ〉
)

dt. (5.13)

The equation (5.12) gives the limit generator L . Since f 7→ H(f, e), defined in (5.11),
is linear, we have

L♭ϕ1(f, e) = −(divx(vf),Dfϕ1(f, e))

= (divx[H(divx(vf), e)],Dρϕ(ρ)) +D2
ρϕ(ρ) · (divx(H(f, e)),divx(J(f))),

(5.14)
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and thus

Lϕ(ρ) = (〈ψ, µρ〉,Dρϕ(ρ))+

∫

E×F
D2

ρϕ(ρ)·(divx(H(f, e)),divx(J(f)))dµρ(f, e), (5.15)

where ψ(f, e) = divx(H(divx(vf), e). Let us compute the first term in the right-hand
side of (5.15). Using (5.11), we have

ψ(f, e) = D2
x:K(f) + divx [R0(e)divx(J(f))] . (5.16)

The part 〈D2
x:K(f), µρ〉 = D2

x:
[

ρEK(M̄0)
]

is given by (5.17) below.

Lemma 5.2. Let M̄LB
t and M̄FP

t be defined by (3.6) and (3.7) respectively. The expec-
tation of the second moment of M̄0 is

E
[

K(M̄0)
]

=K +
b

2
E

[

Ē(0)
sym

⊗ R1(Ē(0))

]

, (5.17)

where bLB = 2 and bFP = 1.

Proof of Lemma 5.2. We compute, using (5.8),

K(M̄LB
0 ) =

∫ 0

−∞
eσ

(

K +

[∫ 0

σ
Ē(r)dr

]⊗2
)

dσ.

This gives

E
[

K(M̄LB
0 )
]

=K +

∫ 0

−∞
eσ
∫ 0

σ

∫ 0

σ
Γ̄(r − s)drdsdσ,

where Γ̄(t) is the covariance of (Ē(t)) (see (2.18)). We decompose the Lebesgue measure
on the square [σ, 0]2 as a sum of one-dimensional Hausdorff measures supported on the
intersection of lines parallel to the diagonal {r = s} with [σ, 0]2 to obtain

∫ 0

σ

∫ 0

σ
Γ̄(r − s)drds =

∫ 0

σ
(r − σ)[Γ̄(r) + Γ̄(−r)]dr.

Two successive integration by parts and (2.20) give then (5.17). Similarly, we have by
(3.7) and (5.8),

K(M̄FP
0 ) = K +

[∫ 0

−∞
eσĒ(σ)dσ

]⊗2

.

To conclude to (5.17), we use the following Lemma 5.3.

Lemma 5.3. For δ > 0, we have

E

[

Rδ(Ē(0))
sym

⊗ Ē(0)

]

= 2δE

[∫ 0

−∞
eδσĒ(σ)dσ

]⊗2

. (5.18)

In particular, when δ ≥ 0, E

[

Rδ(Ē(0))
sym

⊗ Ē(0)

]

is a non-negative symmetric matrix.
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Proof of Lemma 5.3. We compute

E

[∫ 0

−∞
eδσĒ(σ)dσ

]⊗2

=

∫ 0

−∞

∫ 0

−∞
eδ(σ+s)

E[Ē(s)⊗ Ē(σ)]dσds

=

∫ 0

−∞

∫ s

σ=−∞
eδ(σ+s)

E[Ē(s)
sym

⊗ Ē(σ)]dσds (5.19)

Then we set σ′ = σ − s, and some standard rearrangements and computations give the
formula (5.18). It is clear then that the left-hand side of (5.18) is a non-negative matrix
when δ > 0. This is also true for δ = 0 be continuity.

Remark 5.2. Using (5.9), we obtain

E

[

R0(Ē0)
sym

⊗ J(M̄0)

]

=

∫ 0

−∞
eσE

[

R0(Ē(0))
sym

⊗ Ē(σ)

]

dσ

= E

[

R1R0(Ē(0))
sym

⊗ Ē(0)

]

. (5.20)

To identify the contribution of the second part in (5.16), we adapt (5.20) to get

〈divx [R0(e)divx(J(f))] , µρ〉 =∂xj

∫ 0

−∞
eσE

[

R0(Ēj(0))∂xi

(

ρĒi(σ)
)]

=∂xj
E
[

R1R0(Ēj(0))∂xi

(

ρĒi(0)
)]

.

The first-order part in (5.15) is therefore (〈ψ, µρ〉,Dρϕ(ρ)), with

〈ψ, µρ〉 = D2
x:

[

ρ

(

K +
b

2
E

[

Ē(0)
sym

⊗ R1(Ē(0))

])]

+ divxE
[

R1R0(Ē(0))divx
(

ρĒ(0)
)]

.

(5.21)
This can be rewritten as

〈ψ, µρ〉 = divx(K♯∇xρ+Θρ), (5.22)

whereK♯ and Θ are given in (1.19) and (1.20) respectively. To compute the second-order
part in (5.15), we have two terms to consider: 〈J(f)⊗ J(f), µρ〉 and 〈R0(e)⊗ J(f), µρ〉.
We have already established

〈R0(e)⊗ J(f), µρ〉 = E
[

R1R0(Ē(0))⊗ (ρĒ(0))
]

.

By (5.9) and (5.18), we have also

〈J(f)⊗ J(f), µρ〉 = E
[

(ρR1(Ē(0))) ⊗ (ρĒ(0))
]

.

It follows by the resolvent identity R1R0 = R0 −R1 that
∫

E×F
D2

ρϕ(ρ) · (divx(H(f)),divx(J(f)))dµρ(f, e)

= ED2
ρϕ(ρ) · (divx(ρR0(Ē(0))),divx(ρĒ(0))). (5.23)

To sum up, we find the following expression for the limit generator L :

Lϕ(ρ) = (divx(K♯∇xρ+Θρ),Dρϕ(ρ)) + ED2
ρϕ(ρ) · (divx(ρR0(Ē(0))),divx(ρĒ(0))).

(5.24)

27



5.1.3 First and second correctors

Recall (see (1.17), (1.18)) that

J̄m(f) =

∫∫

TN×RN

|v|mf(x, v)dxdv, Gm =
{

f ∈ L1(TN × R
N ); J̄m(f) < +∞

}

.

Recall also that F = C1(TN ). Let us introduce the following notations. We write a . b
with the meaning that a ≤ Cb, where the constant C may depend on R (cf. (2.7)), on
C0
R (cf. (2.17)), on various irrelevant constants, and on the dimension N .

Proposition 5.4. Let ϕ be of the form (5.3), with ξ ∈ C3(TN ) and ψ a Lipschitz
function of class C3 on R such that the derivatives ψ(j), j ∈ {1, 2, 3} are bounded. Let
ϕ1, ϕ2 be the correctors defined by (5.4), (5.13) respectively. Then the functions ϕ1, ϕ2

satisfy L♯ϕi(f, e) < +∞, L♭ϕi(f, e) < +∞ for all f ∈ G3, e ∈ F and are in the domain
of L ε. We have the estimates

|ϕ1(f, e)| . ‖ψ′‖Cb(R)‖ξ‖C1(TN )(J̄0(f) + J̄1(f)), (5.25)

and
|L♭ϕ1(f, e)| . ‖ψ′‖C1

b
(R)‖ξ‖2C2(TN )(|J̄0(f)|2 + |J̄2(f)|2), (5.26)

on ϕ1 and the following estimates on ϕ2:

|ϕ2(f, e)| . ‖ψ′‖C1
b
(R)‖ξ‖2C2(TN )(|J̄0(f)|2 + |J̄2(f)|2), (5.27)

and
|L♭ϕ2(f, e)| . ‖ψ′‖C2

b
(R)‖ξ‖3C3(TN )(|J̄0(f)|3 + |J̄3(f)|3), (5.28)

for all f ∈ G3, for all e ∈ F with ‖e‖F ≤ R. The estimate

|Lϕ(ρ)| . ‖ψ′‖Cb(R)‖ξ‖
2
C2(TN )‖ρ‖2L1(TN ) (5.29)

is also satisfied for all ρ ∈ L1(TN ).

Proof of Proposition 5.4. For ϕ as in (5.3), the formula (5.11), (5.14) read

ϕ1(f, e) = ψ′(〈ρ, ξ〉)〈H(f, e),∇xξ〉), H(f, e) = J(f) + ρ(f)R0(e), (5.30)

and

L♭ϕ1(f, e) = ψ′(〈ρ, ξ〉)
[

〈Kij(f), ∂
2
xixj

ξ〉+ 〈Ji(f), ∂xi
(R0(ej)∂xj

ξ)〉
]

+ ψ′′(〈ρ, ξ〉)〈H(f, e),∇xξ〉〈J(f),∇xξ〉, (5.31)

respectively. The two estimates (5.25), (5.26) then follow from the bound (2.7), (2.16)
on Ēt and R0(e). The formula (5.12) for Lϕ and (5.26) then give (5.29). Let us focus
on the estimate (5.27) on |ϕ2(f, e)| now. For simplicity, let us denote by ψ′, ψ′′, . . . the
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derivatives of ψ evaluated at the point 〈ρ, ξ〉. We start from the formula (5.13), which
gives

ϕ2(f, e) =

∫ ∞

0
E(f,e) [L♭ϕ1(ft, Et)− 〈L♭ϕ1, µρ〉] dt, (5.32)

where ft is obtained either by (3.3) or (3.4) with s = 0. Consider the LB-case. There
are two terms in ft and three terms in L♭ϕ1, which makes at least six terms to consider.
We find out more than six terms actually, because of the translations in v. Consider the
first term in (3.3). By (5.8), and for

wt :=

∫ t

0
Es(e)ds,

we have

K(f(· − wt)) = K(f) + J(f)
sym

⊗ wt + ρ(f)w⊗2
t , J(f(· − wt)) = J(f) + ρ(f)wt.

In (5.31)-(5.32), and regarding the linear terms with factor ψ′, this gives the contributions

Φ2,a = ψ′
∫

TN

∫ ∞

0
e−t

E

[

K(f) + J(f)
sym

⊗ wt + ρ(f)w⊗2
t

]

:D2
xξdtdx,

and

Φ2,b = ψ′
∫

TN

∫ ∞

0
e−t

E [(J(f) + ρ(f)wt) · ∇x[R0(Et(e)) · ∇xξ]] dtdx.

Using the bound ‖wt‖F ≤ t sups∈[0,t] ‖Es(e)‖F and (2.7), (2.16), we have

|Φ2,a|, |Φ2,b| . ‖ψ′‖Cb(R)‖ξ‖C2(TN )(J̄0(f) + J̄1(f) + J̄2(f)).

Since J̄1(f) ≤ 1
2 J̄0(f) +

1
2 J̄2(f), this gives us a bound by ‖ψ′‖Cb(R)‖ξ‖C2(TN )(J̄0(f) +

J̄2(f)). Using (5.8) again, and still regarding the linear terms with factor ψ′ only, we
see that the second term in the expansion (3.3) of fLBt has the contributions

Φ2,c = ψ′
∫

TN

∫ ∞

0
(θc(t)− θc(+∞))dtdx, Φ2,d = ψ′

∫

TN

∫ ∞

0
(θd(t)− θd(+∞))dtdx,

where

θc(t) =ρ(f)

∫ t

0
e−(t−σ)

[

K + E

(∫ t

σ
Es(e)ds

)⊗2
]

:D2
xξdσ, (5.33)

θd(t) =ρ(f)

∫ t

0
e−(t−σ)

E

[∫ t

σ
Es(e)ds · ∇x[R0(Et(e)) · ∇xξ]

]

dσ, (5.34)

By standard manipulations on the integrals in (5.33), we have

θc(t) = ρ(f)(1− e−t)K:D2
xξ + 2ρ(f)

∫ t

0
e−σ

∫ σ

0

∫ σ

r
Γe(t− r, t− s):D2

xξdsdrdσ,
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where the covariance Γe is defined by (2.18). The most delicate term to estimate in Φ2,c

is

Φ∗
2,c = 2

∫

TN

ρ(f)

∫ ∞

0

∫ t

0
e−σ

∫ σ

0

∫ σ

r

[

Γe(t− r, t− s)− Γ̄(s− r)
]

:D2
xξdsdrdσdtdx.

The other terms are bounded by ‖ξ‖C2(TN )(J̄0(f)+ J̄2(f)) using (2.7). Using also (2.19),
we have

|Φ∗
2,c| . 2J̄0(f)‖ξ‖C2(TN )

∫ ∞

0

∫ t

0
e−σ

∫ σ

0

∫ σ

r
γmix(t− s)dsdrdσdt

. 2J̄0(f)‖ξ‖C2(TN )

∫ ∞

0

∫ t

0
s(e−s − e−t)γmix(t− s)dsdt.

Neglecting the term −e−t and using (2.14) gives a bound |Φ∗
2,c| . 2J̄0(f)‖ξ‖C2(TN ). We

have also

θd(t) = ρ(f)

∫ t

0
e−σ

∫ σ

0
E [Et−s(e) · ∇x[R0(Et(e)) · ∇xξ]] dsdσ.

Conditioning on Gt−s, we see that

E [Et−s(e)⊗R0(Et(e))] = e(t−s)A
[

ψ ⊗ esAR0ψ
]

(e), ψ(e) = e.

By (2.13), (2.16), (2.14), we obtain
∥

∥

∥

∥

∥

∫ ∞

0

∫ t

0
e−σ

∫ σ

0

[

e(t−s)A
[

ψ · ∇x(e
sAR0ψ · ∇xξ)

]

(e)

− 〈ψ · ∇x(PsR0ψ · ∇xξ), ν〉
]

dsdσdt

∥

∥

∥

∥

∥

C(TN )

≤ R
2

∫ ∞

0

∫ t

0
e−σ

∫ σ

0
γmix(t− s)dsdσdt‖ξ‖C1(TN )

≤ R
2‖ξ‖C1(TN ).

With this estimate, it is easy to prove that |Φ2,d| . ‖ξ‖C2(TN )J̄0(f). Let us look as
the quadratic terms with factor ψ′′ now. There are two terms in (3.3), so four terms
Φ2,e, . . . ,Φ2,h to consider here. The first term in (3.3) has a factor e−t, like in Φa, Φb.
There is no contribution from 〈L♭ϕ1, µρ〉 in Φ2,e,Φ2,f ,Φ2,g hence, and the convergence of
the integral in (5.32) is clear. Therefore, using the same arguments as above, we obtain
the estimates

|Φ2,e|, |Φ2,f |, |Φ2,g| . ‖ψ′′‖Cb(R)‖∇xξ‖2C1(TN )(|J̄0(f)|2 + |J̄1(f)|2). (5.35)

Let us illustrate this on the example of Φ2,g. We have

Φ2,g = ψ′′
∫ ∞

0
e−t

∫ t

0
e−(t−σ)

E

[
∫ t

σ
〈ρ(f)Er(e),∇xξ〉L2(TN )dr

×〈J(f) + ρ(f)

∫ t

0
Es(e)ds+ ρ(f)R0(Et),∇xξ〉L2(TN )

]

,
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which gives (5.35). The last term Φ2,h is

Φ2,h = ψ′′
∫ ∞

0
(θh(t)− θh(+∞))dt,

where

θh(t) = E

∫ t

0

∫ t

σ

∫ t

0

∫ t

σ′

e−(t−σ)e−(t−σ′)〈ρ(f)Es(e),∇xξ〉L2(TN )

× 〈ρ(f)Es′(e) + c(t)−1ρ(f)R0(Et(e)),∇xξ〉L2(TN )ds
′dsdσ′dσ.

The coefficient c(t) is

c(t) =

∫ t

0

∫ t

σ′

e−(t−σ′)ds′dσ′ =
∫ t

0
σe−σ = 1− (t+ 1)e−t.

The technique used to estimate the terms Φ2,c and Φ2,d applies here to give

|Φ2,h| . ‖ψ′′‖Cb(R)‖∇xξ‖2C1(TN )|J̄0(f)|2.
This concludes the estimate on ϕ2 in the LB-case. The estimate on ϕ2 in the FP-case
is obtained by the same arguments. This follows from the expressions for K(ft), J(ft),
which involve various terms, similar to those estimated in the LB-case. For example, a
careful computation based on (3.4) and (5.8) gives

K(fFPt ) =ρ(f)

[

(1− e−2t)K +

(∫ t

0
e−(t−σ)Eσ(e)dσ

)⊗2
]

+ e−2tK(f)

+ e−t

[
∫ t

0
e−(t−σ)Eσ(e)dσ ⊗ J(f) + J(f)⊗

∫ t

0
e−(t−σ)Eσ(e)dσ

]

.

A comparable expansion for J(fFPt ) gives the result, like in the LB-case. Using (2.17),
a careful study of the terms composing ϕ2 shows that ϕ1 and ϕ2 are of the form (4.24)
with some ξi as in Remark 4.1. By Proposition 4.4, we deduce that L♯ϕi(f, e) < +∞,
L♭ϕi(f, e) < +∞ for all f ∈ G3, e ∈ F and that ϕ1 and ϕ2 are in the domain of L ε.
There remains to prove (5.28). Compared to the development of ϕ2, when computing
L♭ϕ2, still more terms appear, which combine the derivatives of ψ up to the order three.
However, all the questions of convergence of the integrals with respect to t have been
dealt with in the estimate of ϕ2. Although lengthy, it is not problematic to prove (5.28):
we do not expound that part thus.

Remark 5.3 (Linear test function). In Section 5.3, we apply Proposition 5.4 to a linear
test-function ϕ(ρ) = 〈ρ, ξ〉L2(TN ), which means ψ′ = 1, ψ′′ = 0. In that case, the bounds
on the first corrector is a little bit simpler: we have

|ϕ1(f, e)| . ‖ξ‖C1(TN )(J̄0(f) + J̄1(f)), (5.36)

and
|L♭ϕ1(f, e)| . ‖ξ‖C2(TN )(J̄0(f) + J̄2(f)), (5.37)

for all f ∈ G, for all e ∈ F with ‖e‖F ≤ R.
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By Theorem 4.3, Remark 4.2 and Theorem B.1, we obtain the following corollary to
Proposition 5.4.

Corollary 5.5. Let ϕ be of the form (5.3), with ξ ∈ C3(TN ) and ψ a Lipschitz function
of class C3 on R such that the derivatives ψ(j), j ∈ {1, 2, 3} are bounded. Let ϕ1, ϕ2 be
the correctors defined by (5.4), (5.13) respectively. Let θ be the correction of ϕ at order
0, 1 or 2:

θ ∈ {ϕ,ϕ + εϕ1, ϕ+ εϕ1 + ε2ϕ2}.
Then

M ε
θ (t) := θ(f εt , Ē

ε
t )− θ(fin, Ē0)−

∫ t

0
L

εθ(f εs , Ē
ε
s)ds (5.38)

and

|M ε
θ (t)|2 −

∫ t

0

[

L
ε|θ|2 − 2θL εθ

]

(f ε(s), Ēε(s))ds

are (Gt/ε2)-martingale.

5.2 Bounds on the moments

Recall that J̄m(f) denotes the m-th moment of f (see (1.17)) and that Gm is the space
of functions f ∈ L1(TN × R

N) such that J̄m(f) < +∞.

Proposition 5.6. Let f ε0 ∈ Gm. Let (f εt ) be the unique mild solution to (1.7) on [0, T ]
given by Proposition 4.1 or 4.2. Then, for all m ∈ N, almost-surely, for all t ≥ 0,

J̄m(f εt ) ≤ C(R,m, t)
[

J̄m(f ε0 ) + J̄0(f
ε
0 )
]

, (5.39)

where C(R,m, t) is a constant which is bounded for t in a bounded set.

Proof of Proposition 5.6. By density, we can assume that fin ∈W 2,1(TN ×R
N). We can

also replace v 7→ |v|m by v 7→ |v|mχη(v), where χη is a function with compact support
which converges pointwise to 1 when η → 0. By the results of propagation of regularity
given in Proposition 4.1 and Proposition 4.2, the following computations are licit then.
For simplicity, we take directly χ ≡ 1. First, we have

d

dt
J̄2m(f εt ) =

1

ε2

[

J̄2m(Qf εt ) + 2m

∫∫

TN×RN

|v|2(m−1)v · Ēε
t f

ε
t (x, v)dxdv

]

. (5.40)

If m = 0, then, for all t ≥ 0, almost-surely, J̄0(f
ε
t ) = J̄0(f

ε
0 ) since the equation is

conservative. If m > 0, then we use the following inequality (which is a consequence of
Young’s inequality)

2m|v|2m−1 ≤ 1

2R
|v|2m + [2R(2m− 1)]2m−1,

to infer, by (5.40) and (2.9), that

d

dt
J̄2m(f εt ) ≤

1

ε2

[

J̄2m(Qf εt ) +
1

2
J̄2m(f εt ) + R[2R(2m− 1)]2m−1J̄0(f

ε
t )

]

.
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We have, in the case Q = QLB,

J̄2m(QLBf) = J̄2m(M)J̄0(f)− J̄2m(f).

If Q = QFP, then

J̄2m(QFPf) =− 2m

∫∫

TN×RN

|v|2(m−1)v · (∇vf(x, v) + vf(x, v))dxdv

=(N + 2(m− 1))J̄2(m−1)(f)− 2mJ̄2m(f).

In the first case Q = QLB, we obtain

J̄2m(f εt ) ≤ e−
t

2ε2 J̄2m(f ε0 ) + 2(1− e−
t

2ε2 )
[

J̄2m(M) + R[2R(2m− 1)]2m−1
]

J̄0(f
ε
0 ).

This gives (5.39). If Q = QFP, we conclude similarly by a recursive argument on m.

5.3 Tightness

For σ > 0, we denote by H−σ(TN ) the dual space of Hσ(TN ). Let Jσ
1 = (Id −∆x)

−σ.
In the standard Fourier basis (wk) of L

2(TN ), Jσ
1 is given by

Jσ
1 wk = (1 + λk)

−σwk, λk = 4π2|k|2, wk(x) = exp(2πik · x).

As J
σ/2
1 is an isometry L2(TN ) → Hσ(TN ), the norm on H−σ(TN ) is

‖Λ‖H−σ(TN ) =





∑

k∈Zd

|〈Λ, Jσ/2
1 wk〉L2(TN )|2





1/2

. (5.41)

Proposition 5.7 (Tightness). Let f ε0 ∈ G3. Let (f εt ) be the unique mild solution to
(1.7) on [0, T ] given by Proposition 4.1 or 4.2. Then (ρεt )t∈[0,T ] is tight in the space

C([0, T ];H−1(TN )).

Proof of Proposition 5.7. Let us introduce the decomposition

ρε = θε + ζε, θε = εdivx(J(f
ε) + ρ(f ε)R0(Ē

ε
t )). (5.42)

Note that, contrary to ρε, which has continuous trajectories, θε and ζε are, a priori,
càdlàg processes, just like Ēε. We show first that ρε is close to ζε in the norm of
C([0, T ];H−1(TN )) and then prove in a second step that (ζε) is tight in the Skorohod
space D([0, T ];H−1(TN )). In the third last step, we show that (ρεt )t∈[0,T ] is tight in

C([0, T ];H−1(TN )).

Step 1. ρε is close to ζε. This is a straightforward consequence of the bound on the
moments (5.39). Let us extend the notation a . b to denote the inequality a ≤ Cb,
where the factor C may depend on R, on C0

R , on N and also on sup0<ε<1 J̄m(f ε0 ) for
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m = 0, . . . , 3 and on T . Note that C should not depend on ε, nor on ω. Then, by (5.39),
we have supt∈[0,T ] ‖θεt ‖H−1(TN ) . ε.

Step 2. (ζε) is tight in D([0, T ];H−1(TN )). The bound on the moments (5.39) shows
that supt∈[0,T ] ‖ρεt‖L2(TN ) and supt∈[0,T ] ‖θεt ‖H−1(TN ) are almost-surely bounded. Since
ζε = ρε − θε, the quantity supt∈[0,T ] ‖ζεt ‖H−1(TN ) is also almost-surely bounded. By [12,

Theorem 3.1], it is sufficient therefore to prove that, for all ξ ∈ C2(TN ), the family of
real-valued processes 〈ζε, ξ〉 is tight in D([0, T ]). Let us fix such a ξ, and let us set
ϕ(ρ) = 〈ρ, ξ〉 and γε = 〈ζε, ξ〉. Denote by

ϕ1(f, e) = 〈J(f) + ρ(f)R0(e), ξ〉

the first corrector associated to ϕ. To obtain an estimate on the time increments of γε,
we introduce the perturbed test function ϕε = ϕ+ εϕ1 and the martingale (cf. (5.38))

M ε(t) = ϕε(f ε(t), Ēε(t))− ϕε(f ε(0), Ēε(0)) −
∫ t

0
L

εϕε(f ε(s), Ēε(s))ds. (5.43)

We have thus

γεt =

∫ t

0
L

εϕε(f ε(σ), Ēε(σ))dσ +M ε(t). (5.44)

To prove that (γεt ) is tight inD([0, T ]), we will use the Aldous criterion, [11, Theorem 4.5,
p.356]. Let 1 > θ > 0. Let τ1, τ2 be some (Fε

t )-stopping times such that

τ1 ≤ τ2 ≤ τ1 + θ, τ2 ≤ T, a.s. (5.45)

By the Doob optional sampling theorem, we have

E
[

|M ε(τ2)−M ε(τ1)|2
]

= E
[

|M ε(τ2)|2 − |M ε(τ1)|2
]

.

Let (Aε
t ) be defined by (B.4), where L = L ε and ϕ = ϕε. By Theorem B.1, |M ε(t)|2−Aε

t

is a martingale. Consequently,

E
[

|M ε(τ2)−M ε(τ1)|2
]

= E
[

Aε
τ2 −Aε

τ1

]

. θ,

We also have

E

∣

∣

∣

∣

∫ τ2

τ1

L
εϕε(f ε(s), Ēε(s))ds

∣

∣

∣

∣

2

. θ2.

Using the decomposition (5.44), we conclude that the increments of γε also satisfy the
estimate

E
[

|γετ2 − γετ1 |
2
]

. θ.

By the Markov inequality, the Aldous criterion

lim
θ→0

lim sup
ε∈(0,1)

sup
τ1,τ2

P(|γετ2 − γετ1 | > η) = 0
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is satisfied for all η > 0, (the sup on τ1, τ2 being the sup over the stopping times satisfying
(5.45)). This gives the desired conclusion.

Step 3. (ρε) is tight in C([0, T ];H−1(TN )). Using Step 1. and [11, Lemma 3.31
p.352], we deduce that (Xε

t ) is tight in D([0, T ];Rd). Since (Xε
t ) is in C([0, T ];Rd), it is

actually tight in C([0, T ];Rd). To establish this fact, it is sufficient to use the relation
wρ(δ) ≤ 2w′

ρ(δ) (t 7→ ρ(t) continuous) between the modulus of continuity of continuous
functions and the modulus of continuity of càdlàg functions, see [2, (12.10) p. 123].

5.4 Convergence to the solution of a Martingale problem

Assume that the hypotheses of Proposition 5.7 are satisfied. Let εN = {εn;n ∈ N},
where (εn) ↓ 0. By the Skorohod theorem [2, p. 70], there is a subset of εN, which we
still denote by εN, a probability space (Ω̃, F̃ , P̃), some random variables {ρ̃ε; ε ∈ εN}, ρ̃
on C([0, T ];H−1(TN )), such that

1. for all ε ∈ εN, the laws of ρε and ρ̃ε as C([0, T ];H−1(TN ))-random variables coin-
cide,

2. P̃-a.s., (ρ̃ε) is converging to ρ̃ in C([0, T ];H−1(TN )) along εN.

By lower semi-continuity, we have P̃-a.s., for all t ∈ [0, T ], ρ̃t ∈ L1(TN ). Let (F̃t)t∈[0,T ]

be the natural filtration of (ρ̃(t))t∈[0,T ]. Our aim is to show that the process (ρ̃(t))t∈[0,T ]

is solution of the martingale problem associated to the limit generator L .

Proposition 5.8 (Martingale). Let ξ ∈ C3(TN ), and let ϕ be of the form (5.3), where
ψ is a Lipschitz function of class C3 on R such that the derivatives ψ(j), j ∈ {1, 2, 3}
are bounded. Let L be the limit generator defined by (5.24). Then the process

M̃ϕ(t) := ϕ(ρ̃(t))− ϕ(ρ̃(0)) −
∫ t

0
Lϕ(ρ̃(s))ds (5.46)

is a continuous martingale with respect to (F̃t)t∈[0,T ]. Let

Q(ρ; ξ) = E
[

〈ρ,R0(Ē(0)) · ∇xξ〉〈ρ, Ē(0) · ∇xξ〉
]

. (5.47)

The quadratic variation of (M̃ϕ(t)) has the expression

〈M̃ϕ, M̃ϕ〉t = 2

∫ t

0
|ψ′(〈ρ̃s, ξ〉)|2Q(ρ̃s; ξ)ds, (5.48)

for all t ∈ [0, T ].

Proof of Proposition 5.8. Recall that Lϕ(ρ̃(s)) is well defined by (5.29). For ϕ given
by (5.3) in the expression (5.24) of the limit generator, we get the decomposition

Lϕ(ρ) = ψ′(〈ρ, ξ〉)〈ρ,divx(K♯∇xξ) + Θ · ∇xξ〉
+ ψ′′(〈ρ, ξ〉)E

[

〈ρ,R0(Ē(0)) · ∇xξ〉〈ρ, Ē(0) · ∇xξ〉
]

. (5.49)
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Since ξ ∈ C3(TN ), we obtain that ρ 7→ Lϕ(ρ) is continuous for the H−1(TN )-topology,
thereby showing that the process (M̃ϕ(t)) is continuous. Let us prove now the martingale
property. Let 0 ≤ s ≤ t ≤ T . Let 0 ≤ t1 < · · · < tn ≤ s and let Θ be a continuous and
bounded function on [H−1(TN )]n. Note that F̃s is generated by the random variables
Θ(ρ̃(t1), . . . , ρ̃(tn)), for n ∈ N

∗, (ti)1,n and Θ as above. Our aim is therefore to prove
that

E

[

(M̃ϕ(t)− M̃ϕ(s))Θ(ρ̃(t1), . . . , ρ̃(tn))
]

= 0. (5.50)

Let ϕε = ϕ + εϕ1 + ε2ϕ2 be the second order correction of ϕ, with ϕ1 and ϕ2 given by
Proposition 5.4. We start from the identity (see (5.38))

E
[

(M ε
ϕ(t)−M ε

ϕ(s))Θ(ρε(t1), . . . , ρ
ε(tn))

]

= 0, (5.51)

where

M ε
ϕ(t) := ϕε(f ε(t), Ēε

t )− ϕε(fin, Ē
ε
0)−

∫ t

0
L

εϕε(f ε(s), Ēε
s)ds, (5.52)

Recall that L εϕε = Lϕ + εL♭ϕ2. By (5.51), the estimates on the correctors (Propo-
sition 5.4) and the uniform estimates on the moments of (f εt ) (Proposition 5.6), we
have

E
[

(Xε
ϕ(t)−Xε

ϕ(s))Θ(ρε(t1), . . . , ρ
ε(tn))

]

= O(ε),

where the process (Xε
ϕ(t)) is

Xε
ϕ(t) = ϕ(ρε(t))− ϕ(ρin)−

∫ t

0
Lϕ(ρε(s))ds.

By identities of the laws, it follows that

Ẽ

[(

ϕ(ρ̃ε(t))− ϕ(ρ̃ε(s))−
∫ t

s
Lϕ(ρ̃ε(s))ds

)

Θ(ρ̃ε(t1), . . . , ρ̃
ε(tn))

]

= O(ε). (5.53)

We must examine the convergence of each terms in (5.53). By a.s convergence of (ρ̃ε) in
C([0, T ];H−1(TN )) along εN, we have

[

ϕ(ρ̃ε(t))−
∫ t

0
Lϕ(ρ̃ε(s))ds

]

Θ(ρ̃ε(t1), . . . , ρ̃
ε(tn))

→
[

ϕ(ρ̃(t)) −
∫ t

0
Lϕ(ρ̃(s))ds

]

Θ(ρ̃(t1), . . . , ρ̃(tn))

almost-surely when ε→ 0 along εN. Since Θ is bounded and ϕ(ρ̃ε(t)) and Lϕ(ρ̃ε(t)) are
a.s. bounded by a constant (a consequence of (5.39)), we can apply the dominated con-
vergence theorem. This gives (5.50). Because M̃ϕ is continuous, the quadratic variation
of M̃ϕ is the unique non-decreasing process (At) such that |M̃ϕ(t)|2 − At is a martin-
gale. Theorem B.1 and a straightforward computation based on (5.49) show that the
right-hand side of (5.48) is indeed the quadratic variation of M̃ϕ.
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5.5 Limit SPDE

5.5.1 Covariance

Proposition 5.9. Let S be defined by (1.22). The operator S is symmetric, non-negative
and trace-class on the space L2(TN ;RN ).

Proof of Proposition 5.9. It is clear that S is symmetric. That S is non-negative means
〈Sρ, ρ〉 ≥ 0, where 〈·, ·〉 is the canonical scalar product on L2(TN ;RN ) given as the sum
over i ∈ {1, . . . , N} of the L2-scalar product of the components. By Lemma 5.3, we
have, for all ρ ∈ L2(TN ;RN ),

〈Sρ, ρ〉 = lim
δ→0

δE

∣

∣

∣

∣

∫ ∞

0
e−δt〈ρ, Ēt〉dt

∣

∣

∣

∣

2

≥ 0,

which shows that 〈Sρ, ρ〉 ≥ 0 indeed. Let us prove that S is trace-class. We fix an arbi-
trary orthonormal basis (ζk) of L

2(TN ;RN ). For all i, x, we haveH(i, x, ·) ∈ L2(TN ;RN ),
where H defined by (1.21) is the kernel of Q . We can use therefore the orthonormal
decomposition

H(i, x, ·) =
∑

k

〈H(i, x, ·), ζk〉ζk =
∑

k

Sζk(i, x)ζk. (5.54)

We evaluate this expansion at (i, x), sum over (i, x) and use the fact that S is non-
negative to obtain the classical identity that expresses Trace(S) has the sum over the
set {1, . . . , N} × T

N of the diagonal part (i, x) 7→ H(i, x, i, x). The bounds (2.7), (2.16)
then imply that Trace(S) ≤ NR is finite.

To define the square-root of S we employ the usual functional calculus for symmetric
compact operators, based on the spectral decomposition. We have

S =
∑

k∈N
λkζk ⊗ ζk, (5.55)

where (λk, ζk) are the spectral elements of S and ζ ⊗ ζ ′ is the notation for the rank-one
operator that maps ρ on 〈ρ, ζ〉ζ ′. The square-root S1/2 of S is defined by the formula

S1/2 =
∑

k∈N
λ
1/2
k ζk ⊗ ζk. (5.56)

We establish now the following result.

Proposition 5.10. The sum

∑

k

λk‖ζk‖2Hm(TN ;RN )

is finite.
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We will use Proposition 5.10 in the proof of Theorem 5.14. A direct consequence of
Proposition 5.10 is also that we can extend S1/2 as a bounded operator H−m(TN ;RN ) →
L2(TN ;RN ):

‖S1/2z‖L2(TN ;RN ) ≤ C‖z‖H−m(TN ;RN ). (5.57)

This extension is used in Proposition 5.11 in particular.

Proof of Proposition 5.10. Recall that F = H2m(TN ;RN ) has the standard Sobolev
norm defined by (2.1). Let α be a multi-index of length |α| ≤ m. We integrate the
identity λkζk = Sζk against (−1)|α|∂2αζk and integrate by parts to obtain the identity

λk‖∂αζk‖2L2(TN ;RN ) = (−1)|α|〈∂2αx H, ζk ⊗ ζk〉. (5.58)

Note that the procedure is valid because H ∈ H2m(TN × T
N ;RN × R

N ), a regularity
property due to (1.21) and (2.16). Using (1.21), we have also the identity

〈∂2αx H, ζk ⊗ ζk〉 = E〈∂2αR0(Ē0), ζk〉〈Ē0, ζk〉.

By the Parseval identity and the Cauchy-Schwarz inequality, it follows that

∑

k

λk‖∂αζk‖2L2(TN ;RN ) ≤ E

[

‖∂2αR0(Ē0)‖L2(TN ;RN )‖Ē0‖L2(TN ;RN )

]

,

which is bounded by R
2, owing to (2.7) and (2.16). This concludes the proof.

5.5.2 Representation formula

Let (ρ̃t) be the process considered in Section 5.4, defined as the a.s. limit of (ρ̃εt ). For
ρ ∈ H−1(TN ), v ∈ L2(TN ;RN ) let us set

Φ(ρ)v =
√
2divx(ρS

1/2v). (5.59)

Proposition 5.11. Let s > 2 + N . For t ∈ [0, T ], the application t 7→ Φ(ρ̃t) is well
defined as a map from U := L2(TN ;RN ) into H := H−s(TN ) and is a.s. continuous
from [0, T ] into L2(U ;H), the set of Hilbert-Schmidt operators from U to H. Moreover,
the process t 7→ Φ(ρ̃t) is adapted for the filtration (F̃t) generated by (ρ̃t).

Proof of Proposition 5.11. For smooth v and ρ defined on T
N , we have

|〈divx(ρS1/2v), ξ〉| = |〈v, S1/2(ρ∇xξ)〉| ≤ C‖v‖L2(TN ;RN )‖ρ∇xξ‖H−m(TN ;RN ), (5.60)

where the estimate from above in (5.60) is deduced from (5.57). The norm of the product
ρ∇xξ is bounded as follows:

‖ρ∇xξ‖H−m(TN ;RN ) ≤ ‖ρ‖H−1(TN )‖ξ‖C2(TN ).

Let s1 ∈ (2 +N/2, s −N/2). Using the Sobolev injection of Hs1(TN ) into C2(TN ), we
get the first bound

‖Φ(ρ̃t)‖L(U ;H−s1 (TN )) ≤ C‖ρ̃t‖H−1(TN ).
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Then we use the fact that the injection H−s1(TN ) →֒ H−s(TN ) = H is Hilbert-Schmidt,
to obtain the desired estimate

‖Φ(ρ̃t)‖L2(U ;H) ≤ C‖ρ̃t‖H−1(TN ).

Taking into account the almost sure continuity of t 7→ ρ̃t from [0, T ] into H−1(TN ), it is
easy to conclude the proof.

Note that t 7→ Φ(ρ̃t) is a predictable L(U ;H)-valued process (because the process is
adapted and has left-continuous trajectories).

Proposition 5.12. Let (X̃t) be the continuous H-valued martingale defined by

X̃t = ρ̃t − ρ̃in −
∫ t

0
divx(K♯∇xρ̃s +Θρ̃s)ds. (5.61)

There exists a filtered probability space (Ω̂, F̂ , P̂, (F̂t)), a L
2(TN ;RN )-valued cylindrical

Wiener process W defined on (Ω̃× Ω̂, F̃ × F̂ , P̃× P̂), adapted to (F̃t × F̂t)t, such that

X̃t(ω̃, ω̂) =

∫ t

0
Φ(ρ̃s, ω̃, ω̂)dW (s, ω̃, ω̂), (5.62)

where
X̃t(ω̃, ω̂) = X̃t(ω̃), Φ(ρ̃s, ω̃, ω̂) = Φ(ρ̃s, ω̃),

for P̃× P̂-a.e. (ω̃, ω̂) ∈ Ω̃× Ω̂.

Proof of Proposition 5.12. We apply Theorem 8.2 p. 220 in [5], with Q the identity of
U . The representation of X̃t as the stochastic integral (5.62) is then a consequence of
the identity

〈X̃, X̃〉t =
∫ t

0
Φ(ρ̃s)Φ(ρ̃s)

∗ds, (5.63)

giving the quadratic variation of (X̃t). It is clear that, as claimed above, X̃t takes values
in H = H−s(TN ). Actually, ρ̃(t) being in H−1(TN ), X̃t even takes values in H−3(TN ).
For ξ ∈ H3(TN ), we have 〈X̃t, ξ〉 = M̃ϕξ

(t), where ϕξ(ρ) = 〈ρ, ξ〉 and M̃ϕ is defined by

(5.46). The quadratic variation of the H-valued martingale (X̃t) is defined as

〈X̃, X̃〉t =
∑

k,l

〈X̃k, X̃l〉tξk ⊗ ξl,

where (ξk) is an orthonormal basis of H and X̃k(t) = 〈X̃(t)ξk, ξk〉. The formula (5.64) is
true, therefore, if, and only if, for all ξ ∈ Hs(TN ), the real-valued martingale (M̃ϕξ

(t))
has the quadratic variation

〈M̃ϕξ
, M̃ϕξ

〉t =
∫ t

0
‖Φ(ρ̃s)∗ξ‖2L2(TN ;RN )ds. (5.64)
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The quadratic variation of M̃ϕξ
is given by the formula (5.48) with ψ(s) = s. To

conclude, we simply need to observe that, by definition of S and of Q(ρ; ξ) in (5.47), we
have

Q(ρ; ξ) = 〈S(ρ∇xξ), ρ∇xξ〉L2(TN ;RN ) = ‖S1/2(ρ∇xξ)‖2L2(TN ;RN ),

and thus Q(ρ̃s; ξ) = ‖Φ(ρ̃s)∗ξ‖2L2(TN ;RN )
.

We gather the results of Section 5.4 and Proposition 5.12 to give the following theorem.
It is essentially the consequence of a slight abuse of notations, denoting by (Ω̃, F̃ , P̃) the
whole probability space (Ω̃× Ω̂, F̃ × F̂ , P̃× P̂).

Theorem 5.13. Under the hypotheses of Theorem 1.1, let εN = {εn;n ∈ N}, where (εn)
is a sequence decreasing to 0. There is a subset of εN still denoted by εN, a filtered proba-
bility space (Ω̃, F̃ , P̃, (F̃t)), some random variables {ρ̃ε; ε ∈ εN}, ρ̃ on C([0, T ];H−1(TN )),
a L2(TN ;RN )-valued cylindrical1 Wiener process W̃ defined on (Ω̃, F̃ , P̃, (F̃t)) such that:

1. for all ε ∈ εN, the laws of ρε and ρ̃ε as C([0, T ];H−1(TN ))-random variables coin-
cide,

2. P̃-a.s., (ρ̃ε) is converging to ρ̃ in C([0, T ];H−1(TN )) along εN,

3. the H−1(Td) process ρ̃ is (F̃t)-predictable, supt∈[0,T ] ‖ρ̃t‖L1(TN ) ≤ ‖ρin‖L1(TN ) a.s.,

and the following equality (in H−s(TN ), s > 2 +N/2) is satisfied:

ρ̃t = ρin +

∫ t

0
divx(K♯∇xρ̃s +Θρ̃s)ds+

∫ t

0
Φ(ρ̃s)dW̃ (s), (5.65)

for all t ∈ [0, T ], almost surely, where Φ(s) is defined by (5.59).

Theorem 5.13 states that, up to subsequence, (ρε)ε∈εN is converging in law in the space
C([0, T ];H−1(TN ) to a weak-L1 martingale solution to Equation (1.24) with initial da-
tum ρin. This notion of “weak-L1 martingale solution” is defined in the following section.

5.5.3 Limit equation

Definition 5.1. Let ρin ∈ L1(TN ). A weak-L1 martingale solution to Equation (1.24)
with initial datum ρin is a multiplet

(Ω̃, F̃ , P̃, (F̃t), W̃ , (ρ̃t)),

where (Ω̃, F̃ , P̃, (F̃t)) is a filtered probability space, W̃ is a L2(TN ;RN )-valued cylindrical
defined on (Ω̃, F̃ , P̃, (F̃t)), (ρ̃t) is a process satisfying the properties given in item 3 of
Theorem 5.13.

Theorem 5.14. Let ρin ∈ L1(TN ). Two weak-L1 martingale solution to Equation (1.24)
that have the same initial datum ρin and are constructed on the same stochastic basis
coincide a.s.

1when we do not specify the covariance of the Wiener process, it is understood that it is the identity
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To establish this result of pathwise uniqueness for (1.24), we will use the following result.

Lemma 5.15. Let K♯ be defined by (1.19). Let (λk, ζk) denote the spectral elements of

S (cf. Section 5.5.1) and let ϕk = λ
1/2
k ζk. For all x ∈ T

N , the inequality

K♯(x) ≥ K +
∑

k

ϕk(x)⊗ ϕk(x) (5.66)

is satisfied in the sense of symmetric matrices.

Proof of Lemma 5.15. To establish (5.66), we use first (1.19) and (1.21), which gives

K♯(x) ≥ K + (H(i, x, j, x))ij ,

since b ≥ 1, whereas the term in factor of (b− 1) in (1.19) is a non-negative symmetric

matrix by Lemma 5.3. Since ϕk = λ
1/2
k ζk, the expansion (5.54) can be rewritten as

H(i, x, j, x) =
∑

k [ϕk(x)]i [ϕk(x)]j. This gives the desired result.

Proof of Theorem 5.14. We are given two weak-L1 martingale solution to (1.24) both
with initial datum ρin, and associated to the same probabilistic data (Ω̃, F̃ , P̃, (F̃t), W̃ ).
For simplicity of notations, we get rid of the tildas in what follows. By linearity, it is
sufficient to consider the case where ρin ≡ 0 is trivial. If (1.24) was deterministic, a
possible approach to uniqueness would be to regularize the equation, with the help of
the Yosida regularization of the operator −div(K♯∇·). In that way, and although ρt has
no space-derivatives a priori, one can deal with the commutators that appear when one
tries to do an energy estimate for a regularization of ρ 7→ ‖ρ‖L1(TN ). This approach
does not work for (1.24), since there are actually two second-order operators at stake
there: the second one appears when we write the Itô correction to the martingale term.
Instead of proving a renormalization property therefore, we will use a duality method.
Let t∗ ∈ (0, T ] be fixed, and let ψ∗ be a given FW

t∗ -measurable function. We consider a
solution (ψ,Z) of the backward SPDE

dψ = [−divx(K♯∇ψ) + Θ · ∇ψ] dt−
√
2ϕ · ∇xZdt+ Z · dW (t), (5.67)

for t ∈ (0, t∗), with terminal condition

ψ(t∗) = ψ∗. (5.68)

Let us explain the notations used in (5.67) and what we mean by “solution” (ψ,Z).
The component ϕk of ϕ are defined in Lemma 5.15. Let n =

[

N
2

]

+ 1. Since m >
N
2 + n, Proposition 5.10 and the usual Sobolev’s embedding show that ϕ is an element
of ℓ2(N;Cn(TN )). The products ϕ · ∇xZ and Z · dW (t) stands for

∑

k

ϕk · ∇xZk,
∑

k

Zkdβk(t)
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respectively. Here, we use the decomposition (see Proposition 4.1 of [5])

S1/2W (t) =
∑

k

ϕkβk(t),

where (β1(t), β2(t), . . . ) is a family of independent one-dimensional Wiener processes.
By P we denote the σ-algebra of predictable sets, based on the filtration (Ft). A couple
(ψ,Z) is said to be solution to (5.67)-(5.68) on (0, t∗) if

1. ψ ∈ L2(Ω× (0, t∗),P,H2(TN )), Z ∈ L2(Ω× (0, t∗),P, ℓ2(N;H1(TN ))),

2. ψ ∈ C([0, t∗];L2(TN )) almost surely,

3. for all t ∈ [0, t∗], almost surely,

ψ(t, x) = ψ∗(x) +
∫ t∗

t
[divx(K♯(x)∇ψ(s, x)) −Θ(x) · ∇ψ(s, x)] ds

+
√
2

∫ t∗

t
ϕ(x) · ∇xZ(s, x)ds −

∫ t∗

t
Z(s) · dW (s), (5.69)

for a.e. x ∈ T
N .

The equation (5.67) is super-parabolic in the sense of Assumption 2.2 of [6]. This is an
application of the estimate (5.66). By Theorem 2.2 in [6], a solution (ψ,Z) to (5.67)-
(5.68) as above does exist, provided ψ∗ ∈ L2(Ω,FW

t∗ ,H
1(TN )). Actually, Theorem 2.2

of [6] applies in the case where W is a finite-dimensional Wiener process. However, as
asserted in Remark 2.3 of [6], the result continues to hold in the case of the cylindrical
Wiener process W as considered here. This assertion must be specified a bit however.
Indeed, recasting the condition (2.4) of [6] in our framework, we need a bound on the
quantity

[

∑

k

Lip(ϕk)
2

]1/2

. (5.70)

As ϕ ∈ ℓ2(N;Cn(TN )) (recall Proposition 5.10), the quantity (5.70) is indeed finite.
Similarly, using Theorem 2.3 of [6] and the fact that ϕ ∈ ℓ2(N;Cn(TN )), we get the
higher differentiability property

ψ ∈ L2(Ω × (0, t∗),P,Hn+2(TN )), Z ∈ L2(Ω× (0, t∗),P, ℓ2(N;Hn+1(TN ))),

provided ψ∗ ∈ L2(Ω,FW
t∗ ,H

n+1(TN )). Since n > N/2, this shows that (ψ,Z) have
respectively C2 and C1 regularity in x. In particular, the equation (5.69) is satisfied
pointwise, for every x ∈ T

N . By subtracting (5.69) written at t = 0, we obtain

ψ(t, x) = ψ(0, x) −
∫ t

0
[divx(K♯(x)∇ψ(s, x)) −Θ(x) · ∇ψ(s, x)] ds

−
√
2

∫ t

0
ϕ(x) · ∇xZ(s, x)ds +

∫ t

0
Z(s) · dW (s), (5.71)
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for every x ∈ T
N . Let Jδ be the regularizing operator defined by convolution with an

approximation of the unit on T
N . By testing (5.65) with a function J∗

δ ξ, we obtain the
regularized equation

ρδ(t, x) = ρδ(0, x) +

∫ t

0
divδ(K♯∇ρ(s, x)) + Θ(x)ρ(s, x))ds

+
√
2

∫ t

0
divδ(ρ(s, x)ϕ(x) · dW (s)), (5.72)

where ρδ = Jδρ, divδ = Jδdivx. We apply the Itô formula to the two diffusions (5.71)
and (5.72), take expectancy and integrate the result with respect to x. Since ρδ(0) = 0,
this gives the identity

E〈ρδ(t∗), ψ∗〉 = E

∫ t∗

0
〈(ρ− ρδ)(s),div(K♯∇ψ(s))−Θ · ∇ψ(s)−

√
2ϕ · ∇Z(s)〉ds

+ E

∫ t∗

0
〈ρ(s),div(K♯(∇δ −∇)ψ(s))−Θ · (∇δ −∇)ψ(s)−

√
2ϕ · (∇δ −∇)Z(s)〉ds,

(5.73)

where we use the duality product between L1(TN ) and C(TN ) and the notation ∇δ =
∇J∗

δ . The regularity of (ψ,Z) is sufficient to justify that, in the limit δ → 0, (5.73) gives
E〈ρ(t∗), ψ∗〉 = 0. Since ψ∗ is arbitrary in the class L2(Ω,FW

t∗ ,H
n+1(TN )), this implies

ρ(t∗) = 0 almost surely.

5.5.4 Conclusion

We use the Gyöngy-Krylov argument, [9, Lemma 1.1]. We deduce that (1.24) has a
weak-L1 solution, strong in the probabilistic sense: there does exist a weak-L1 martingale
solution with probabilistic data that coincide with a set of probabilistic data prescribed in
advance. Moreover, weak-L1 martingale solutions with given initial datum to (1.24) are
unique. Consequently, the whole sequence (ρε) considered in Theorem 5.13 is converging
in law to the weak-L1 martingale solution to (1.24) with initial datum ρin. This concludes
the proof of Theorem 1.1.
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A Resolution of the unperturbed equation

Consider the LB case first. By integration with respect to v in the equation

∂tft + E(t, s; e) · ∇vft + ft = ρ(ft)M, (A.1)
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one checks that ρ(ft) = ρ(f) for all t ≥ 0. Therefore, the formula (3.3) is simply the
Duhamel formula associated to the PDE (A.1). In the FP case, instead of working on
the PDE

∂tft + E(t, s; e) · ∇vft = QFPft, (A.2)

we work on the solution Vt to the equation

dVt = (−Vt + E(t, s; e))dt +
√
2dBt, t ≥ s. (A.3)

If Vs has the law of density f with respect to the Lebesgue measure on R
N , then by

(1.12) (with no dependence on x here), we obtain, by explicit integration in (A.3),

∫

RN

ϕ(v)fFPs,t (v)dv

=

∫

RN

∫

RN

ϕ

(

e−(t−s)v +

∫ t

s
e−(t−σ)E(σ, s; e)ds +

√

1− e−2(t−s) w

)

M(w)f(v)dwdv.

A change of variable gives (3.4) then.

B Martingale property of Markov processes

In this section, we make the connection between a Markov process and the Martingale
problem associated to its generator. Although this is a fundamental topic, we found
complete references (of Formula (B.3), giving the expression of the quadratic variation
in terms of the integral of the Carré du Champ operator) only in the case of finite-
dimensional state spaces. Theorem B.1 is given for functions ϕ ∈ BC(E) (continuous and
bounded functions). Some standard argument, using truncates, allow a generalization
to Lipschitz functions, as long as the processes at stakes have sufficient moments. This
generalization of Theorem B.1 is used in the proof of Proposition 5.8 for instance.

Let E be a Polish space. Let (Xt) be an E-valued time-homogeneous Markov process
with respect to a filtration (Ft), with Markov semi-group (Pt). The generator L as-
sociated to (Pt) is defined by means of the bounded pointwise convergence [16]. Let
∆t = t−1(Pt − Id). A function ϕ of BC(E) is in D(L ) if the family (∆tϕ)0<t<1 is
bounded for the norm ‖ϕ‖BC(E) = supx∈E |ϕ(x)| and if there exists ψ ∈ BC(E) such
that

∆tϕ(x) → ψ(x)

when t → 0+ for all x ∈ E. We set then Lϕ = ψ.

Theorem B.1. Let E be a Polish space. Let (Xt) be an E-valued time-homogeneous
Markov process with respect to a filtration (Ft), with Markov semi-group (Pt) of generator
L : for all ϕ ∈ BC(E)

E [ϕ(Xt+s)|Ft] = (Psϕ)(Xt). (B.1)
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Assume that t 7→ Ptϕ(x) is continuous, for all ϕ ∈ BC(E), x ∈ E. Assume that
(ω, t) 7→ Xt(ω) is measurable Ω× R+ → E. Then, for all ϕ in the domain of L ,

Mϕ(t) := ϕ(Xt)− ϕ(X0)−
∫ t

0
Lϕ(Xs)ds (B.2)

is a (Ft)-martingale. Assume furthermore that |ϕ|2 is in the domain of L . Then the
process (Zt) defined by

Zt := |Mϕ(t)|2 −
∫ t

0
(L |ϕ|2 − 2ϕL ϕ)(Xs)ds, (B.3)

is a martingale.

Remark B.1. Assume that (Xt) is càdlàg. Then the process

At :=

∫ t

0
(L |ϕ|2 − 2ϕL ϕ)(Xs)ds (B.4)

is continuous and adapted, and thus predictable. Consequently, (At) is the predictable
quadratic variation 〈Mϕ,Mϕ〉t, [11, p.38], of Mϕ: this is the compensator, [11, p.32], of
the quadratic variation [Mϕ,Mϕ]t, [11, p.51], of Mϕ.

Note that we assume also continuity from the left of t 7→ Ptϕ(x) in Theorem B.1. If
ϕ ∈ D(L ), this ensures that t 7→ Ptϕ(x) is differentiable, with d

dtPtϕ(x) = PtLϕ(x),
[16, Proposition 3.2].

Proof of Theorem B.1. Let 0 ≤ s ≤ t. By the Markov property (B.1), we have

E[Mϕ(t)|Fs]−Mϕ(s) = E[Mϕ(t)−Mϕ(s)|Fs]

= Pt−sϕ(Xs)− ϕ(Xs)−
∫ t

s
[Pσ−sLϕ](Xs)dσ.

We use the relation d
dtPtϕ(x) = PtLϕ(x) to obtain the martingale property. Indeed,

this gives

Pt−sϕ− ϕ =

∫ t

s
Pσ−sLϕdσ,

and thus E[Mϕ(t)|Fs] −Mϕ(s) = 0. The proof of the martingale property for (B.3) is
divided in several steps. By C(ϕ), we will denote any constant that depend on ϕ and
may vary from lines to lines. We fix a subdivision σ = (ti)0,n of [0, T ]. In a first step,
we show that

At = lim
|σ|→0

n−1
∑

i=0

E
[

At∧ti+1
−At∧ti |Fti

]

, (B.5)

with a convergence in L2(Ω). Indeed, we have

At =
n−1
∑

i=0

At∧ti+1
−At∧ti , (B.6)

45



and ζ(ti+1) := At∧ti+1
−At∧ti − E

[

At∧ti+1
−At∧ti |Fti

]

satisfies

E[ζ(ti)ζ(tj)] = 0, i 6= j, |ζ(ti+1)| ≤ C(ϕ)(ti+1 − ti), (B.7)

where C(ϕ) = ‖Lϕ2‖BC(E) + 2‖ϕ‖BC(E)‖L ϕ‖BC(E). It follows that

E

∣

∣

∣

∣

∣

n−1
∑

i=0

ζ(ti+1)

∣

∣

∣

∣

∣

2

= E

n−1
∑

i=0

|ζ(ti+1)|2 ≤ C(ϕ)T |σ|,

which tends to 0 when |σ| → 0. Using (B.6), we obtain (B.5). In a second step we prove
that

|Mϕ(ti+1)−Mϕ(ti)|2 = |ϕ(Xti+1
)− ϕ(Xti)|2 +Rti,ti+1

, (B.8)

with

E

n−1
∑

i=0

|Rti,ti+1
| = O(|σ|1/2). (B.9)

By definition of Mϕ(t), (B.8) is satisfied with a remainder term

Rti,ti+1
=

∣

∣

∣

∣

∫ ti+1

ti

Lϕ(Xs)ds

∣

∣

∣

∣

2

− 2(ϕ(Xti+1
)− ϕ(Xti))

∫ ti+1

ti

Lϕ(Xs)ds. (B.10)

Using the fact that ϕ2 ∈ D(L ), we have also

|ϕ(Xti+1
)− ϕ(Xti)|2 =Mϕ2(ti+1)−Mϕ2(ti)− 2ϕ(Xti )(Mϕ(ti+1)−Mϕ(ti))

+

∫ ti+1

ti

Lϕ2(Xs)ds− 2ϕ(Xti )

∫ ti+1

ti

Lϕ(Xs)ds.

It follows that

E[|ϕ(Xti+1
)− ϕ(Xti)|2|Fti ] =

∫ ti+1

ti

E
[(

Lϕ2(Xs)− 2ϕ(Xti)L ϕ(Xs)
)

|Fti

]

ds. (B.11)

Taking expectation in (B.11), we get the following bound.

E[|ϕ(Xti+1
)− ϕ(Xti)|2] ≤ Cϕ(ti+1 − ti). (B.12)

Consider now the cross-product term in the right-hand side of (B.10). Using Young’s
inequality with a parameter η > 0, we see that the term E|Rti,ti+1

| can be bounded by

(1 + η−1)E

∣

∣

∣

∣

∫ ti+1

ti

Lϕ(Xs)ds

∣

∣

∣

∣

2

+ ηE[|ϕ(Xti+1
)− ϕ(Xti)|2],

and thus, taking η = (ti+1− ti)1/2, bounded from above by C(ϕ)(ti+1− ti)3/2. This gives
(B.9). The third step establishes the limit

At = lim
|σ|→0

n−1
∑

i=0

E
[

|Mϕ(ti+1)−Mϕ(ti)|2|Fti

]

, (B.13)
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with a convergence in L1(Ω). To that purpose, we note that (B.8) shows that we can
replace the increment Mϕ(ti+1)−Mϕ(ti) by the increment ϕ(ti+1)− ϕ(ti) in the right-
hand side of (B.13). This gives an error term ε1(|σ|) which converges to 0 in L1(Ω),
taking (B.9) into account. By (B.5) and(B.11), we deduce that

At −
n−1
∑

i=0

E
[

|Mϕ(ti+1)−Mϕ(ti)|2|Fti

]

= ε2(|σ|) + r(t, σ), (B.14)

where ε2(|σ|) converges to 0 in L1(Ω) and

|r(t, σ)| ≤ 2

n−1
∑

i=0

∫ ti+1

ti

|(ϕ(Xti)− ϕ(Xs))Lϕ(Xs)| ds.

We have in particular

|r(t, σ)| ≤ C(ϕ)

n−1
∑

i=0

∫ ti+1

ti

|ϕ(Xti)− ϕ(Xs)| ds

and an estimate similar to (B.12) (obtained by working on the increment ϕ(Xs)−ϕ(Xti)
instead of ϕ(Xti+1

)− ϕ(Xti)) shows that

E|ϕ(Xs)− ϕ(Xti)|2 ≤ C(ϕ)(s − ti). (B.15)

We deduce that r(t, σ) is converging to 0 in L2(Ω) when |σ| → 0. At last, let us show
that Zt = |Mϕ(t)|2 − At is a martingale. Let 0 ≤ s < t. Set tn+1 = min{ti; ti ≥ t},
tl+1 = min{ti; ti ≥ s}. We may assume tn ≥ s. Then E[Zt − Zs|Fs] is the limit when
|σ| → 0 of the quantity

E

[

|Mϕ(t)|2 − |Mϕ(s)|2 −
n−1
∑

i=l

E
[

|Mϕ(ti+1)−Mϕ(ti)|2|Fti

]

∣

∣

∣Fs

]

(B.16)

By the tower property E[E[Y |Fti ]|Fs] = E[Y |Fs] if ti ≥ s, and the usual cancellation
properties for martingales, (B.16) is equal to

E

[

|Mϕ(t)−Mϕ(tn)|2 + E[|Mϕ(s)−Mϕ(tl)|2|Ftl ]
∣

∣

∣
Fs

]

. (B.17)

Using (B.15), we see that (B.17) tends to zero in L1(Ω). This gives the desired result
E[Zt − Zs|Fs] = 0.
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