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Abstract

We derive the hydrodynamic limit of a kinetic equation where the interactions
in velocity are modelled by a linear operator (Fokker-Planck or Linear Boltzmann)
and the force in the Vlasov term is a stochastic process with high amplitude and
short-range correlation. In the scales and the regime we consider, the hydrodynamic
equation is a scalar second-order stochastic partial differential equation. Compared
to the deterministic case, we also observe a phenomenon of enhanced diffusion.
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1 Introduction

1.1 Kinetic equations

Let N ∈ N
∗. We denote by T

N the N -dimensional torus. Let ε > 0. We consider the
following kinetic equation

∂tf + εv · ∇xf + Ē(t, x) · ∇vf = Qf, t > 0, x ∈ T
N , v ∈ R

N , (1.1)

which is a perturbation of the equation

∂tf + Ē(t, x) · ∇vf = Qf t > 0, x ∈ T
N , v ∈ R

N . (1.2)
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The operator Q is either the linear Boltzmann operator

QLBf = ρ(f)M − f, ρ(f) =

∫

RN

f(v)dv, M(v) =
1

(2π)N/2
exp

(

−|v|2
2

)

, (1.3)

or the Fokker-Planck operator

QFPf = divv(∇vf + vf). (1.4)

The force field Ē(t, x) in (1.2) is a Markov, stationary mixing process (see Section 2 for
more details). We show in Section 3 that there is a unique, ergodic, invariant measure
for (1.2) and that this invariant measure is the law of an invariant solution (x, v) 7→
ρ(x)M̄t(x, v) parametrized by ρ(x). See (3.6)-(3.7) for the definition of M̄t. Consider
the solution f to (1.1) starting from a state

fin(x, v) ≈ ρin(x)M 0(x, v). (1.5)

Rescale over time intervals of order ε−2:

f ε(t, x, v) = f(ε−2t, x, v). (1.6)

Then f ε is solution to the equation

∂tf
ε +

v

ε
· ∇xf

ε +
1

ε2
Ē(ε−2t, x) · ∇vf

ε =
1

ε2
Qf ε, t > 0, x ∈ T

N , v ∈ R
N . (1.7)

On bounded time intervals [0, T ], we expect

f ε(t, x, v) ≈ ρ(x, t)M ε−2t(x, v), (1.8)

where ρ is solution to a given equation (the hydrodynamic equation) which we would like
to identify. We do not prove (1.8), but find the limit equation satisfied by ρ = limε→0 ρ

ε,
where ρε = ρ(f ε). We show in Theorem 1.2 that ρ satisfies a diffusion equation, where the
drift term is a second order differential operator in divergence form with respect to the
space-variable x. Showing that ρε is close to ρ with ρ a diffusion (in infinite dimension)
is therefore a result of diffusion-approximation (in infinite dimension). See Theorem 1.2
for the precise statement. Theorem 1.1 is concerned with the limit behaviour of the
average Eρε, a deterministic issue. The proof of this result is related to characteristic
equations associated to (1.1), which we discuss in the next section.

1.2 Trajectories

The phase space associated to (1.1) is T
N × R

N . Consider the following systems of
stochastic differential equations:

dXt = εdVt,

dVt = Ē(t,Xt)dt+ jumps,
(1.9)
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and

dXt = εdVt,

dVt = (Ē(t,Xt)− Vt)dt+
√
2dBt.

(1.10)

In (1.9) the second equation describes the following piecewise deterministic Markov
process (PDMP). Consider the Poisson process associated to the times (Tn) and to the
probability measure Mdv: the increments Tn+1 − Tn are i.i.d. with exponential law
of parameter 1. At each time t = Tn, Vt is jumping to a new value VTn+ chosen at
random, according to the probability law Mdv. Between each jump, (Vt) is evolving by
the differential equation

dVt
dt

= E(t,Xt), Tn < t < Tn+1, (1.11)

which is coupled with the first equation of (1.9). In (1.10), Bt is an N -dimensional
Wiener process. In both the LB case and the FP case, the extra stochastic processes
which we introduce are independent on (Ē(t)). In this context, the equation (1.1) gives
the evolution of the density, with respect to the Lebesgue measure on T

N
x × R

N
v , of the

conditional law of (Xt, Vt): let FE
t = σ((Ēs)0≤s≤t). If the law of (X0, V0) has density fin

with respect to the Lebesgue measure on T
N
x × R

N
v , then

E
[

ϕ(Xt, Vt)|FE
t

]

=

∫∫

TN×RN

ϕ(x, v)ft(x, v)dxdv, (1.12)

for all ϕ ∈ Cb(T
N × R

N ). From (1.12), it follows that

E [ϕ(Xt)] =

∫

TN

ϕ(x)Eρt(x)dx, ρt = ρ(ft), (1.13)

for all ϕ ∈ Cb(T
N ). We have two main results. The first one, Theorem 1.1, gives the

limit behaviour of Eρε−2t. The second one, Theorem 1.2, describes the limit behaviour
of ρε−2t. The first result should follow from the second one. However, there are various
reasons for giving two separate statements:

1. we obtain the limit behaviour of Eρε−2t, by proving the convergence in law of Xε−2t

(hence focusing on the left-hand side of (1.13)),

2. on the contrary, the limit behaviour of ρε−2t is obtained by working at the level of
the PDE (1.7),

3. the proof of Theorem 1.1 uses the central limit theorem for martingales. This
approach to the limiting behaviour of (1.9) or (1.10) is very classical in a certain
mathematical community (see, e.g., the second paragraph of the introduction to
[15], and also Chapter 13 of the same reference), but is certainly not familiar to
a large group of analysts, and we wanted to emphasize these probabilistic aspects
here,
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4. we make a smallness hypothesis on the forcing stochastic field (Ē(t)), hypothe-
sis (1.24), in Theorem 1.2, which is necessary to ensure that the limit stochastic
PDE (1.25) is well-posed. It should not be relevant in the context of Theorem 1.1
since there is no noise there (it is averaged out), and indeed, our alternative proof
to Theorem 1.1 does not require any smallness hypothesis on (Ē(t)),

5. in the proof of Theorem 1.1, we introduce some tools and some results that are
used later on in the proof of Theorem 1.2; with this progression, the proof of
Theorem 1.2, which is quite long, is more gradual.

Note, however, that we establish Theorem 1.1 in the restrictive case of a field Ēt inde-
pendent on x.

1.3 Main results

Notations. The three first moments of a function f ∈ L1(RN , |v|2dv) are

ρ(f) =

∫

RN

f(v)dv, J(f) =

∫

RN

vf(v)dv, K(f) =

∫

RN

v ⊗ vf(v)dv, (1.14)

where a⊗ b is the N ×N rank-one matrix built on a, b ∈ R
N with ij-th elements aibj.

We denote by K the second moment of M (due to the particular fact that M is a
Maxwellian, this is simply the identity matrix of size N ×N):

K = K(M) =

∫

RN

v ⊗ vM(v)dv = IdN . (1.15)

For m ∈ N, we denote by J̄m(f) the total m-th moment of f :

J̄m(f) =

∫∫

TN×RN

|v|mf(x, v)dxdv. (1.16)

Let us also introduce the Banach space

Gm =
{

f ∈ L1(TN × R
N); J̄0(f) + J̄m(f) < +∞

}

, (1.17)

with norm ‖f‖Gm = J̄0(f) + J̄m(f).

Deterministic convergence. Our first result gives the convergence of the average
Eρε.

Theorem 1.1. Let fin ∈ G3 be non-negative. Let (Ēt) be a mixing force process accord-
ing to Definition 2.2. Let f ε ∈ C([0, T ];L1(TN ×R

N )) be the mild solution to (1.7) with
initial condition fin, in the sense of Definition 4.1 or 4.2, depending on the nature of
the collision operator Q. Let rε = Eρ(f ε). Assume that fin has the following structure:

fin(x, v) = ρin(x)g(v), (1.18)
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where g ∈ L1(RN ), ρ(g) = 1. Then, rε → r in C([0, T ];L2(TN )− weak), where r is the
solution to the diffusion equation

∂tr − divx(K♯∇xr +Ψr) = 0, (1.19)

with initial condition
r(0) = rin. (1.20)

The coefficients in (1.19) have the following expression:

K♯ = K + E
[

Ē(0) ⊗ [R0(Ē(0)) + (b− 1)R1(Ē(0))]
]

, (1.21)

and

Ψ = E
[

bĒ(0) · ∇xR1(Ē(0)) + [R0(Ē(0)) + (b− 1)R1(Ē(0))]divx(Ē(0))
]

, (1.22)

where bLB = 2 in the case Q = QLB and bFP = 1 in the case Q = QFP, and where the
resolvent Rλ is defined by (2.20).

We show in (5.31) that K♯ ≥ K. It is a remarkable fact that the stochastic forcing
term Ēt has an influence on the diffusion matrix at the limit, and that it increases the
diffusion effects. Note that the influence of stochastic mixing forcing terms in kinetic
equations has also been investigated in [18, 12]. The context and the results in these
two papers are different from the present one however. Indeed,

1. the starting kinetic equations in [18, 12] are not collisional,

2. In [18, 12], in the scaling that is considered, a collisional kinetic equation is obtained
at the limit. The collision operator (an operator acting on functions of the variable
v thus) is a diffusion operator. At the level of trajectories, this operator appears
due to the convergence of the velocity Vt of particles to a diffusion like equation
(1.10) with E = 0.

Diffusion-approximation Our main result of diffusion-approximation for ρε is the
following one.

Theorem 1.2. Let f εin ∈ G3 be non-negative. Let σ̄ > 2 + 3
2N . Let (Ēt) be a mixing

force field on H σ̄(TN ;RN ) according to Definition 2.1. Let f ε ∈ C([0, T ];L1(TN ×R
N ))

be the mild solution to (1.7) with initial condition f εin, in the sense of Definition 4.1 or
4.2, depending on the nature of the collision operator Q. Let ρε = ρ(f ε). Assume the
convergence

ρ(f εin) → ρin in L1(TN ), with ρin ∈ L2(TN ). (1.23)

Let K♯ and Ψ be defined by (1.21) and (1.22) respectively. There exists a constant α0 > 0
such that, if the measure α for the size of (Ēt) in (2.6) satisfies

α < α0, (1.24)
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then, for all σ̄ ≥ σ > 2 + 3
2N , (ρε) converges in law on C([0, T ];H−σ(TN )) to ρ, the

weak solution in the sense of Definition 6.1 of the stochastic equation

dρ = divx(K♯∇xρ+Ψρ)dt+
√
2divx(ρS

1/2dW (t)), (1.25)

with initial condition
ρ(0) = ρin. (1.26)

In (1.25), W (t) is a cylindrical Wiener process on
[

L2(TN )
]N

, and S1/2 is the Hilbert-

Schmidt operator on
[

L2(TN )
]N

defined in Section 6.5.1.

Note the weak mode of convergence of ρε. It is weak in the probabilistic sense (conver-
gence in law). This is inherent to the limit theorems (like the Donsker theorem) which
lay the bases of diffusion-approximation results. The convergence is weak with respect
to the space-variable also. We intend to improve this point, and to consider non-linear
equations in a similar regime, in a future work.

The plan of the paper is the following one. In Section 2 we describe the type of forcing
field Ē(t) which we consider. In Section 3, we prove some mixing properties and compute
the invariant measures for the unperturbed equation (1.2). In Section 4, we solve the
Cauchy Problem for the kinetic equation (1.1). In Section 5, we prove Theorem 1.1 (de-
terministic limit). In Section 6, we establish our main result of approximation-diffusion,
Theorem 1.2.

Note that the present paper is quite long. There are various reasons for these, first the
fact that the whole proof of Theorem 1.2 requires many step. However, the heart of our
diffusion-approximation result is the computations done by the perturbed test-function
method in Section 6.1. An other reason for the length of the paper is that we have
taken the care to present all the details of some intuitive facts, like the statements of
Theorem 4.3 or Theorem B.1 for example. Indeed, semi-groups, generator and Markov
processes in infinite dimension require some circumspection. With that regard, we have
used in particular the references [10] and [19].

2 Mixing force field

Let σ̄ > 2 + 3
2N and let F = H σ̄(TN ;RN ). This is the state space for the mixing force

field Ē. Let (Ēt)t≥0 be a stationary, homogeneous Markov process of generator A over
F (the generator is defined according to the theory developed in Appendix B). Let
P (t, e, B) be a transition function for (Ēt) associated to the filtration generated by (Ēt)
(see, e.g., [10, p. 156] for the definition), satisfying the Chapman-Kolmogorov relation

P (t+ s, e, B) =

∫

F
P (s, e1, B)dP (t, e, de1), (2.1)

for all s, t ≥ 0, e ∈ F , B Borel subset of F . Let P(F ) be the set of Borel probability
measures on F . By [10, p. 157], up to a modification of the probability space (Ω,F), say
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into a probability space (Ω̃, F̃), there exists a collection {Pµ;µ ∈ P(F )} of probability
measures and some Markov processes (E(t, s))t≥s with transition function P such that,
Pµ(E(s, s) ∈ D0) = µ(D0) for all Borel subset D0 of F . When µ is the Dirac mass
µ = δe, we use the shorter notation Pe instead of Pδe . By [10, p. 157] additionally, for
all D ∈ F , e 7→ Pe(D) is Borel measurable. Let e0 be a random variable on F of law µ.
We do a slight abuse of notation and denote by (E(t, s; e0),P) the couple (E(t, s),Pµ).
This means that the finite-dimensional distribution of both processes are the same, i.e.

P(E(t1, s; e0) ∈ D1, . . . , E(tn, s; e0) ∈ Dn) = Pµ(E(t1, s) ∈ D1, . . . , E(tn, s) ∈ Dn),
(2.2)

for all s ≤ t1 ≤ · · · ≤ tn, and D1, . . . ,Dn Borel subsets of F . For simplicity, we use the
notation E(t; e), or Et(e), instead of E(t, 0; e). Note that, by iteration of (2.1), we have

P(Ē(0) ∈ D0, Ē(t1) ∈ D1, . . . , Ē(tn) ∈ Dn)

=

∫

D0

· · ·
∫

Dn−1

P (tn−tn−1, en−1,Dn)P (tn−1−tn−2, en−2, den−1) · · ·P (t1, e0, de1)dν(e0)

= Pν(E(t1, 0) ∈ D1, . . . , E(tn, 0) ∈ Dn), (2.3)

where ν is the law of Ē(0). Therefore Ēt and Et(Ē0) have the same finite-dimensional
distributions: Ēt is a version Et(Ē0). The probability space Ω̃ used in [10, p. 157] to
define the probability measures Pe is the path-space F [0,+∞) (the σ-algebra F̃ is the
product σ-algebra). Assume in addition that (Ēt) is càdlàg. Then it is clear that we
can take the Skorohod space D([0,+∞);F ) as a path space to define Pe. The σ-algebra
F̃ is then the trace of the product σ-algebra, which coincide with the Borel σ-algebra
when the Skorohod topology is considered on D([0,+∞);F ). In this context, it holds
true that e 7→ Pe(D) is Borel measurable for all D ∈ F̃ (see the proof of Proposition 1.2
p. 158 in [10]). To sum up (see [22, Section I-3]), if (Ēt) is càdlàg, we can assume that
t 7→ E(t, s; e) is càdlàg, for all s ∈ R and e ∈ F . As a last remark, note that it is always
possible, using the Kolmogorov extension theorem, to build a càdlàg stationary process
(Ě(t))t∈R indexed by t ∈ R with the finite-dimensional distributions

P(Ě(s) ∈ D0, Ě(s+ t1) ∈ D1, . . . , Ě(s+ tn) ∈ Dn)

= P(Ē(0) ∈ D0, Ē(t1) ∈ D1, . . . , Ē(tn) ∈ Dn), (2.4)

for all s ∈ R, 0 ≤ t1, . . . , tn. Instead of adding a new notation (Ě(t))t∈R, we simply
denote this process by (Ē(t))t∈R. We also denote by (GEt ) the usual augmentation (cf.
[22, Definition (4.13), Section I-4]) of the canonical filtration (Ft) on D([0,+∞);F ) with
respect to the family (Pe)e∈F . In successive order, (Ft) is the filtration generated by the
evaluation maps (πt), πt(ω) = ω(t); F∗

t is the intersection over e ∈ F of the σ-algebras
FPe

t obtained by completing Ft with Pe-negligible sets; and Gt is F∗
t+:

Gt =
⋂

s>t

F∗
s . (2.5)
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Definition 2.1 (Mixing force field). Let (Ēt)t≥0 be a càdlàg, stationary, homogeneous
Markov process of generator A over F . We say that (Ēt)t≥0 is a mixing force field if the
conditions (2.6), (2.7), (2.12), (2.19), (2.22) below are satisfied.

Our first hypothesis is that there exists a stable ball: there exists α ≥ 0 such that:
almost-surely, for all e with ‖e‖F ≤ α, for all t ≥ 0,

‖E(t; e)‖F ≤ α. (2.6)

Our second hypothesis is about the law ν of Ēt. We assume that it is supported in the
ball B̄α of F (therefore, it has moments of all orders) and that it is centred:

∫

F
e dν(e) = E

[

Ēt
]

= 0, (2.7)

for all t ≥ 0. Note that a consequence of this hypothesis is that: almost-surely, for all
t ≥ 0,

‖Ēt‖F ≤ α. (2.8)

Our third hypothesis is a mixing hypothesis: we assume that there exists a continu-
ous, non-increasing, positive and integrable function γmix ∈ L1(R+) such that, for all
probability measures µ, µ′ on F , for all random variables e0, e

′
0 on F of law µ and µ′

respectively, there is a coupling ((E∗
t (e0))t≥0, (E

∗
t (e

′
0))t≥0) of ((Et(e0))t≥0, (Et(e

′
0))t≥0)

such that
E‖E∗

t (e0)− E∗
t (e

′
0)‖F ≤ αγmix(t), (2.9)

for all t ≥ 0. Typically, we expect γmix to be of the form γmix(t) = Cmixe
−βmixt, βmix > 0

(see the example treated in Section 2.4 for instance). Written as in (2.9), our statement
is a little bit incorrect. Indeed, (Et(e0),P) is just a convention of notation for (Et,Pµ)
and, here in (2.9), two measures Pµ and Pµ′ are involved. We need to give a more
formal form to (2.9) therefore. This is done in the next paragraph, using a Monge-
Kantorovitch problem. The precise mixing hypothesis is (2.12). However, regarding the
mixing properties of (Et), one may jump directly to the paragraph 2.2, where we derive
the consequences of (2.12) that are of interest to us.

2.1 Mixing hypothesis

Let W be the functional defined by

W (P1,P2) = inf
Π

∫∫

D(R+;F )×D(R+;F )
c(E,E′)dΠ(E,E′), (2.10)

c(E,E′) = sup
t≥0

sup
0<h<1

1

h

∫ t+h

t

[

γ−1
mix(s)‖E(s) − E′(s)‖F

]

ds, (2.11)

for all P1, P2 probability measures on D(R+;F ). The inf in (2.10) is on all probability
measures Π on the product D(R+;F )×D(R+;F ) with respective marginals P1 and P

2.
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Our mixing hypothesis is the following one: we assume that, for all µ, µ′ probability
measures on F ,

W (Pµ,Pµ′) ≤ α. (2.12)

The cost
c : D(R+;F )×D(R+;F ) → R ∪ {+∞}

in (2.11) is a regularization of the cost

c̄(E,E′) := sup
t≥0

[

γ−1
mix(t)‖E(t) − E′(t)‖F

]

.

We use this regularization because the pointwise evaluation (E,E′) 7→ (E(t), E′(t)) is
not continuous on D(R+;F ) ×D(R+;F ) (which is endowed with the product topology
of the Skorohod topology on each factor). On the other hand, the map

(E,E′) 7→
∫ t+h

t

[

γ−1
mix(s)‖E(s)− E′(s)‖F

]

ds

is continuous onD(R+;F )×D(R+;F ). Consequently, the cost c is lower semi-continuous.
By Theorem 4.1 in [23], the inf in (2.10) is reached for an optimal transport plan Π∗

µ,µ′ .
Let us give the interpretation of this result. Intuitively, W (Pµ,Pµ′) is related to the
optimal coupling problem for

Ec((Et(e0))t≥0, (Et(e
′
0))t≥0), (2.13)

where e0 has law µ and e′0 has law µ′. Here, we use the notation introduced in (2.2).
However, as already explained, (2.13) has no real meaning since (Et(e0),P) is just a
convention of notation for (Et,Pµ) and that here in (2.13), two measures Pµ and Pµ′ are
involved. Nevertheless, let us do once again the following abuse of notation: we use the
notation ((E∗

t (e0))t≥0, (E
∗
t (e

′
0))t≥0,P) to denote (E,E′,Π∗

ν,ν′). This means that, for all
Φ: D(R+;F )×D(R+;F ) → R continuous and bounded, we have

EΦ(E∗
t (e0))t≥0, (E

∗
t (e

′
0))t≥0) =

∫∫

D(R+;F )×D(R+;F )
Φ(E,E′)dΠ∗

µ,µ′ (2.14)

Intuitively, we have obtained (replacing the cost c by the cost c̄),

E sup
t≥0

[

γ−1
mix(t)‖E∗

t (e0)− E∗
t (e

′
0)‖F

]

≤ α, (2.15)

which is stronger than (2.9) (E supt versus supt E). This remains however reasonable (see
the examples in Section 2.4). Note that Pµ and Pµ′ are supported in the set Σα of the
càdlàg functions R+ → F taking values in the ball B̄α. Consequently, Π

∗
µ,µ′ is supported

in Σα × Σα. This means that the factors E∗
t (e0))t≥0, (E

∗
t (e

′
0))t≥0 of the coupling also

satisfy (2.6).
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2.2 Some consequences of the mixing hypothesis

Let t ≥ 0 be fixed. Take Φ in (2.14) of the form

Φ(E,E′) =
1

h

∫ t+h

t
‖E(s) − E′(s)‖F ds.

By (2.12) and (2.14), we have

E

[

1

h

∫ t+h

t
‖E∗

s (e0)− E∗
s (e

′
0)‖F ds

]

≤ αγmix(t+ h).

Taking the limit [h→ 0], we obtain (by dominated convergence)

E
[

‖E∗
t+(e0)− E∗

t+(e
′
0)‖F

]

≤ αγmix(t).

This being true for every t ≥ 0, we have, actually, (2.9). If ϕ is a Lipshitz continuous
function on F , now, we have

Eϕ(E∗
t (e0)) = 〈etAϕ, µ〉

(where etA denote the semi-group associated to A: Eeϕ(Et) = etAϕ(e)). From (2.9), it
follows that

∣

∣〈etAϕ, µ〉 − 〈etAϕ, µ′〉
∣

∣ ≤ ‖ϕ‖Lipαγmix(t), (2.16)

for all t ≥ 0. Let ν denote the law of (Ē(t)) and let e ∈ B̄α. We will use (2.16) in
particular when e0 = e a.s. and e′0 has law ν. Then (2.16) gives the following mixing
estimate:

‖etAϕ(e)− 〈ϕ, ν〉‖F ≤ α‖ϕ‖Lipγmix(t), (2.17)

for all t ≥ 0, for all e ∈ B̄α. The estimate (2.17) has an extension to quadratic
functionals: for all linear and continuous Λ: F → R, for all bi-linear and continuous
q : F × F → R, we have, for all e ∈ B̄α,

‖etA[Λ + q](e)− 〈Λ + q, ν〉‖F ≤ α
(

‖Λ‖B(F ) + 2α‖q‖B(F×F )

)

γmix(t), (2.18)

where ‖Λ‖B(F ) is norm of linear form of Λ and ‖q‖B(F×F ) is the norm of bi-linear form
of q. Note that, actually, 〈Λ, ν〉 = 0 by (2.7). The factor α in front of ‖q‖B(F×F ) in
(2.18) is due to the decomposition (recall that e0 = e a.s. and e′0 has law ν)

etAq(e)− 〈q, ν〉 = E
[

q(E∗
t (e0), E

∗
t (e0))− q(E∗

t (e0),E
∗
t (e

′
0))
]

+ E
[

q(E∗
t (e0), E

∗
t (e

′
0))− q(E∗

t (e
′
0), E

∗
t (e

′
0))
]

.

We have indeed

|etAq(e)− 〈q, ν〉| ≤ ‖q‖B(F×F )E
[

(‖E∗
t (e0)‖F + ‖E∗

t (e
′
0)‖F )‖E∗

t (e0)− E∗
t (e

′
0)‖F

]

≤ 2α‖q‖B(F×F )E‖E∗
t (e0)− E∗

t (e
′
0)‖F by (2.6),

≤ 2α2‖q‖B(F×F )γmix(t) by (2.9).
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Without loss of generality (as we can rescale γmix if we rescale α), we assume

‖γmix‖L1(R+) = 1. (2.19)

Using (2.17), the resolvent

Rλϕ(e) :=

∫ ∞

0
e−λt

(

etAϕ
)

(e)dt, (2.20)

is well defined for all λ ≥ 0, e ∈ B̄α and all ϕ : F → R which is Lipschitz continuous
and satisfies the cancellation condition 〈ϕ, ν〉 = 0. Using (2.7), we can therefore define
Rλϕ(e) for λ ≥ 0, where ϕ is the identity of F . By a slight abuse of notation, we write
Rλ(e) in that case. By (2.9) (with e0 = e a.s. and e′0 ∼ ν) and (2.19), we have

‖R0(e)‖F ≤ α, (2.21)

for all e with ‖e‖F ≤ α. We will assume that, there exists a constant C0
α ≥ 0 such that,

for all linear functional Λ: F → R, we have

|A[|Λ(R0)|2](e)| ≤ C0
α‖Λ‖2B(F ), |A[Λ(R0)](e)| ≤ C0

α‖Λ‖B(F ), (2.22)

for all e with ‖e‖F ≤ α.

2.3 Covariance

Our mixing hypothesis has the following consequence on the covariances of (Et) and
(Ēt): let

Γe(s, t) = E [Es(e)⊗ Et(e)] , Γ̄(t) = E
[

Ē(t)⊗ Ē(0)
]

. (2.23)

Let t ≥ s ≥ r ≥ 0. Conditioning on GEt−s, we have

Γe(t− r, t− s) = e(t−s)A(e(s−r)Aθ ⊗ θ)(e), θ(e) = e

It follows from (2.18) that, for all e with ‖e‖F ≤ α,

‖Γe(t− r, t− s)− Γ̄(s− r)‖F ≤ 2α2γmix(t− s). (2.24)

Note also that, for all i, j ∈ {1, . . . , N}, x, y ∈ T
N , we have

Γ̄ij(t, x, y) = E

(

[

Ēt(x)
]

i

[

Ē0(y)
]

j

)

=

∫

B̄α

etAπx,i(e)πy,j(e)dν(e),

where πx,i(e) := ei(x). Consequently, (2.18) implies that

∥

∥Γ̄ij(t)
∥

∥

Hσ̄(TN
x ×TN

y )
≤ 2α2γmix(t), (2.25)

for all i, j ∈ {1, . . . , N}.
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2.4 Some simple examples

Let (En(e))n≥0 be a Markov chain on F with E0(e) = e, and let (Nt)t≥0 be a Poisson
process of rate 1 (N0 = 0). Set

E(t, s; e0) = ENt−s
(e0). (2.26)

We assume that the ball B̄α of F is stable by (En). We set Ēt = E(t, 0; ē0), where
ē0 is a random variable of law ν independent on (En(e))n≥0 and (Nt)t≥0. Then (Ēt)
is a stationary process (it is a time-homogeneous Markov process and is initially at
equilibrium). With the definition (2.26) adopted above, two processes (Et(e0)) and
(Et(e

′
0)) are coupled (this is a synchronous coupling). Indeed, Et(e0) = Et(e

′
0) as soon

as t ≥ T1, where T1 is the time of occurrence of the first jump of Nt. Let δ ∈ (0, 1) and
let γmix(t) = Cmixe

−δt, where Cmix is a constant. We have

eδt‖Et(e0)− Et(e
′
0)‖F ≤ 2αeδt1t≤T1 ≤ 2αeδT1 .

Since EeδT1 < +∞, this gives (2.12) with a suitable choice of Cmix. In addition, the
semi-group, generator and resolvent R0 have the explicit forms

etAϕ(e) = e−tϕ(e) + (1− e−t)〈ϕ, ν〉,

and
Aϕ(e) = 〈ϕ, ν〉 − ϕ(e), R0ϕ(e) = e.

From these formula, we deduce the second inequality in (2.22) with C0
α ≥ α. The first

inequality in (2.22) is obtained with any C0
α ≥ 2α2.

An other instance of mixing force field is a function η(Xt), η : R
m → F , of an Ornstein-

Uhlenbeck process (Xt) on R
m:

dXt = −Xtdt+
√
2dBt, (2.27)

where (Bt) is a Wiener process on R
m. We choose η Lipschitz and taking values in the

ball B̄α of F . We will not develop that example much, but simply check that the mixing
condition (2.12) is also satisfied here. Since η is Lipschitz, it is sufficient to check it
directly on (Xt). We use once again a synchronous coupling: let

X∗(t;X0) = e−tX0 +
√
2

∫ t

0
e−(t−s)dBs, X∗(t;X ′

0) = e−tX ′
0 +

√
2

∫ t

0
e−(t−s)dBs

and let γmix(t) = Cmixe
−t, where Cmix is a constant. Then

et|X∗(t;X0)−X∗(t;X ′
0)| ≤ |X0|+ |X ′

0|,

hence (2.12) is satisfied provided we limit ourselves to initial laws µ and µ′ with first
moment below a given threshold. This is not a limitation since the invariant measure
associated to (2.27), which is Gaussian, has a finite first moment.

13



2.5 Mixing force process

In Theorem 1.1 and Section 5, we consider the case where Ēt is independent on x. This
means that the state space is R

N , and (Ēt) is simply a process on R
N . In this simpler

framework, the notion of mixing force field is reduced to the following notion of mixing
force process.

Definition 2.2 (Mixing force process). Let (Ēt) be a càdlàg, stationary, homogeneous
Markov process of generator A over R

N . We say that (Ēt) is a mixing force process if
the conditions (2.28), (2.29), (2.30) below are satisfied.

Condition (2.28) is the condition of localization

|E(t; e)| ≤ α, (2.28)

almost-surely, for all t ≥ 0, for all e ∈ B̄α, where B̄α is the closed ball of center 0 and
radius α in R

N . We require then that the invariant measure ν of (Et) is supported in
B̄α and that

∫

RN

e dν(e) = E[Ēt] = 0. (2.29)

The mixing hypothesis is
W (Pµ,Pµ′) ≤ α (2.30)

like in (2.12), except that now, in W , D(R+;F ) has to be replaced by the state space
D(R+;R

N ) (and µ and µ′ are probability measures on R
N). As in (2.9), taking e0 of law

µ and e′0 of law µ′, this implies the existence of a coupling ((E∗
t (e0))t≥0, (E

∗
t (e

′
0))t≥0) of

((Et(e0))t≥0, (Et(e
′
0))t≥0) such that

E|E∗
t (e0)−E∗

t (e
′
0)| ≤ αγmix(t), (2.31)

for all t ≥ 0.

3 Unperturbed equation: ergodic properties

We consider first the equation

∂tft + Ē(t) · ∇vft = Qft t > 0, v ∈ R
N , (3.1)

where Q = QLB or Q = QFP. In (3.1), Ē(t) should stand for Ē(x, t), where (Ē(t))
is a mixing force field, since (3.1) is the instance of Equation 1.1 obtained for ε = 0.
However, x is just a parameter and we may as well consider that (Ē(t)) is a mixing
force process. Thus, in all this section, (Ē(t)) is a mixing force process in the sense of
Definition 2.2.

To find the invariant measure for (3.1), we solve the equation starting from a given time
s ∈ R, and then let s → −∞. More precisely, given e ∈ R

N , we consider the following
evolution equation:

∂tft + E(t, s; e) · ∇vft = Qft t > s, v ∈ R
N . (3.2)

14



Let f ∈ L1(RN ) and s ∈ R. The solution to (3.2) with initial condition ft=s = f is

fLBs,t (v) = e−(t−s)f

(

v −
∫ t

s
E(r, s; e)dr

)

+ ρ(f)

∫ t

s
e−(t−σ)

[

M

(

v −
∫ t

σ
E(r, s; e)dr

)]

dσ, (3.3)

when Q = QLB, and

fFPs,t (v) = eN(t−s)
∫

RN

f

(

e(t−s)v −
∫ t

s
e−(s−σ)E(σ, s, e)dσ +

√

e2(t−s) − 1w

)

M(w)dw,

(3.4)

when Q = QFP. A brief explanation to (3.3) and (3.4) is given in Appendix A. By the
term “solution to (3.2)”, we mean weak solutions, i.e. functions f ∈ C([s,+∞);L1(RN ))
satisfying the identity

〈ft, ϕ〉 = 〈f, ϕ〉 +
∫ t

s
〈fσ, E(σ, t; e) · ∇vϕ〉+ 〈fσ, Q∗ϕ〉dσ,

almost-surely, for all ϕ ∈ C∞
c (RN ), for all t ≥ s. We may also consider mild solutions

(this is equivalent, actually), as we do in Section 4. We do not need to be very specific on
that point here. All that matter to us is to understand the limit behaviour of fs,t defined
by (3.3)-(3.4) when s→ −∞. This is the content of the following result, Theorem 3.1.

Theorem 3.1 (Invariant solutions). Let (Ē(t)) be a mixing force process in the sense of
Definition 2.2. Let fLBs,t and fFPs,t be defined by (3.3) and (3.4) respectively, with e ∈ B̄α.
Then

(fLBs,t , E(t, s; e)) → (ρ(f)M̄LB
t , Ēt) and (fFPs,t , E(t, s; e)) → (ρ(f)M̄FP

t , Ēt) (3.5)

in law on L1(RN )× R
N when s→ −∞, where M̄LB

t and M̄FP
t are defined by

M̄LB
t =

∫ t

−∞
e−(t−σ)

[

M

(

v −
∫ t

σ
Ē(r)dr

)]

dσ, (3.6)

and

M̄FP
t =M

(

v −
∫ t

−∞
e−(t−r)Ē(r)dr

)

, (3.7)

respectively.

We denote by µρ the invariant measure (parametrized by ρ) defined by

〈ϕ, µρ〉 = Eϕ(ρM̄t, Ēt), (3.8)

for all continuous and bounded function ϕ on L1(RN )× R
N .
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Remark 3.1. We call M̄LB
t and M̄FP

t the invariant solutions, since their laws are the
invariant measure for (3.1). Note that (Ē(r)) in (3.6) and (3.7) is defined for all r ∈ R

(see the discussion and convention of notations around (2.4)).

Remark 3.2. Let ϕ be a bounded continuous function on R
N ×R

N . Similarly to (1.12),
we have, by conditioning on the natural filtration (FE

t ) of (Et):

E [ϕ(Vs,t, E(t, s; e))] = E

∫

RN

fs,t(v)ϕ(v,E(t, s; e))dv, (3.9)

where Vs,t is the solution to (1.9) or (1.10) (with Ē(t) instead of Ē(t,Xt)) starting from
Vs at time t = s, where Vs follows the law of density f with respect to the Lebesgue
measure on R

N . Since

Φ: (f, e) 7→
∫

RN

f(v)ϕ(v, e)dv

is continuous and bounded on L1(RN )× R
N , we deduce from Theorem 3.1 that

lim
s→−∞

E [ϕ(Vs,t, E(t, s; e))] = 〈λρ, ϕ〉 := ρE

∫

RN

M̄t(v)ϕ(v, Ēt)dv, (3.10)

where ρ = ρ(f).

The proof of Theorem 3.1 uses the estimates (3.13) and (3.14) in the following lemma.

Lemma 3.2. For w, z ∈ R
N , we have the estimates and identities

‖M(· − w)‖2L2(M−1) = e|w|
2

, (3.11)

‖M(· − w)−M(· − z)‖2L2(M−1) = e|w|
2

+ e|z|
2 − 2ew·z, (3.12)

in L2(M−1), and

‖M(· − w)‖L1(RN ) = 1, (3.13)

‖M(· − w)−M(· − z)‖L1(RN ) ≤ 2 ∧
[ |w − z|
(1− |w − z|)+

]1/2

(3.14)

in L1(RN ).

Proof of Lemma 3.2. Standard manipulations and identities for Gaussian densities give
(3.11), (3.12) and (3.13) (one can also use (3.15) below to prove (3.11) and (3.12)). By
(3.13) and the triangular inequality, we have the bound by 2 in (3.14). To obtain the
second estimate, we use the identity

‖M(· − w)−M(· − z)‖L1(RN ) = ‖M(· − w + z)−M‖L1(RN ),

and the expansion

M(v − w) =
1

(2π)N/2
e−

|v−w|2

2 =M(w)
∑

n∈NN

Hn(v)w
n, (3.15)
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where Hn is the n-th Hermite polynomial (see [16, Section 1.1.1]). This yields the
inequality

‖M(· − w)−M‖L1(RN ) ≤M(w)
∑

n∈NN \{0}
‖Hn‖L1(RN )|w|n.

Since ‖Hn‖L1(RN ) ≤ ‖Hn‖L2(M−1) =
1√
n!

(cf. [16, Lemma 1.1.1]), the Cauchy-Schwarz

inequality yields, for |w| < 1,

‖M(· − w)−M‖L1(RN ) ≤M(w)

[

e|w||w|
1− |w|

]1/2

≤
[ |w|
1− |w|

]1/2

.

Indeed, setting a = |w|, we have a ∈ [0, 1] and

M(w)e|w|/2 =

[

1

(2π)N
ea−a

2

]1/2

≤
[

1

(2π)N
e1/4

]1/2

≤ 1

since e1/4 ≤ 2π.

Proof of Theorem 3.1. Let e ∈ B̄α t ∈ R, let Φ: L1(RN ) × F → R be a bounded and
uniformly continuous function and let ε > 0. Our aim is to show that

EΦ(fs,t(v), E(t, s; e)) − EΦ(ρM̄t, Ēt) < Kε, (3.16)

for s < min(0, t), |s| large enough, where K is a finite constant (it will turn out that
K = 5+, but this does not matter). Note that is is sufficient to consider uniformly
continuous functions in (3.16), cf. Proposition I-2.4 in [13]. We denote by η a modulus
of uniform continuity of Φ associated to ε.

Step 1. Reduction to the case f ∈ L2(M−1). The maps f 7→ fs,t, f 7→ ρ(f)M̄t are
continuous on L1, uniformly in s ≤ t:

‖fs,t‖L1(RN ), ‖ρ(f)M̄LB
t ‖L1(RN ) ≤ ‖f‖L1(RN ).

Using the uniform continuity of Φ on K, we have

EΦ(fs,t(v), E(t, s; e)) − EΦ(ρM̄t, Ēt) < 2ε+ EΦ((f̃)s,t, E(t, s; e)) − EΦ(ρ(f̃)M̄t, Ēt)

if ‖f − f̃‖L1(RN ) < η. Therefore, to prove (3.16), we turn to the case f ∈ L2(M−1).

Step 2. Cut-off after time s. For s ≤ t, introduce

M̄LB
s,t =

∫ t

s
e−(t−σ)

[

M

(

v −
∫ t

σ
Ē(r)dr

)]

dσ, (3.17)

and

M̄FP
s,t =M

(

v −
∫ t

s
e−(t−r)Ē(r)dr

)

. (3.18)
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We have ‖M̄LB
s,t − M̄LB

t ‖L1(RN ) ≤ e−(t−s) by a direct computation and

‖M̄FP
s,t − M̄FP

t ‖L1(RN ) ≤ b

(∫ s

−∞
e−(t−r)Ē(r)dr

)

where b(|w − z|) is the right-hand side of (3.14). We use the bound

b(r) ≤
√
5

2
r1/2 (3.19)

and (2.6) to obtain, almost-surely, ‖M̄FP
s,t − M̄FP

t ‖L1(RN ) ≤
√
5
2 α

1/2e−
1

2
(t−s). To sum up,

in both the LB and FP case, we have a bound almost-sure on ‖M̄s,t − M̄t‖L1(RN ) by a
deterministic quantity which tends to 0 when t−s→ +∞. It follows that, for t−s large
enough,

|EΦ(ρ(f)M̄t)− EΦ(ρ(f)M̄s,t, Ēt)| < ε.

In the next step we prove that

EΦ(fs,t, E(t, s; e)) − EΦ(ρ(f)M̄s,t) < 2ε, (3.20)

for t− s large enough.

Step 3. Convergence in law. Let e ∈ B̄α. Let e0 = e a.s. and e′0 = Ēs. Since
E(s, t; e) has the same law as Et−s(e0) and Ē(t) has the same law as Et−s(e′0), (2.31)
gives a coupling

(E(s, t; e), Ē(t))t≥s → (E∗(s, t; e), Ē∗
t )t≥s

such that
E‖E∗(t, s; e)− Ē∗

t ‖F ≤ αγmix(t− s), (3.21)

for all t ≥ s. We have

EΦ(fs,t, E(t, s; e))−EΦ(ρ(f)M̄s,t, Ēt) = EΦ(f∗s,t, E
∗(s, t; e))−EΦ(ρ(f)M̄∗

s,t, Ē
∗
t ), (3.22)

where the superscript star in fs,t and M̄s,t indicates that E(s, t; e) has been replaced by
E∗(s, t; e) and Ē(t) by Ē∗

t . Since

EΦ(f∗s,t, E
∗(s, t; e)) − EΦ(ρ(f)M̄∗

s,t, Ē
∗
t )

≤ ε+ ‖Φ‖BC
[

P(‖f∗s,t − ρ(f)M̄∗
s,t‖L1(RN ) > η) + P(‖E∗(s, t; e)− Ē∗

t ‖F > η)
]

,

it is sufficient to prove that f∗s,t − ρ(f)M̄∗
s,t → 0 and E∗(s, t; e) − Ē∗

t → 0 in probability

on L1(RN ) and F respectively. We show the strongest (strongest, as is proved classically
by means of the Markov inequality) property

lim
s→−∞

E‖f∗s,t − ρ(f)M̄∗
s,t‖L1(RN ) = 0, lim

s→−∞
E‖E∗(s, t; e)− Ē∗

t ‖F = 0. (3.23)
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The second limit in (3.23) is a consequence of (3.21). Let us prove the first limit.
Consider first the LB case. Using (3.13) and the estimate |ρ(f)| ≤ ‖f‖L1(RN ), we have

E‖fLB,∗s,t − ρ(f)M̄LB,∗
s,t ‖L1(RN ) ≤ ‖f‖L1(RN )e

−(t−s)

+ ‖f‖L1(RN )E

∫ t

s
e−(t−σ)b

(∫ t

σ
|E∗(r, s, e) − Ē∗(r)|dr

)

dσ,

where, as in (3.19), we denote by b(|w − z|) the right-hand side of (3.14). From (3.19)
follows

2b(r) ≤ ε+
5

4ε
r.

We deduce the estimate

E‖fLB,∗s,t − ρ(f)M̄LB,∗
s,t ‖L1(RN ) ≤ ‖f‖L1(RN )(e

−(t−s) + ε)

+
5

4ε
‖f‖L1(RN )

∫ t

s
e−(t−r)

E|E∗(r, s, e)− Ē∗(r)|dr.

By (3.21), this yields the following estimate:

E‖fLB,∗s,t − ρ(f)M̄LB,∗
s,t ‖L1(RN ) ≤ ‖f‖L1(RN )

(

e−(t−s) + ε+
5α

4ε

∫ t

s
e−(t−r)γmix(t− r)dr

)

= ‖f‖L1(RN )

(

e−(t−s) + ε+
5α

4ε

∫ t−s

0
er−(t−s)γmix(r)dr

)

.

(3.24)

We fix r1 such that 5
4α
∫∞
r1
γmix(r)dr < ε2. Then

5

4
α

∫ t−s

0
er−(t−s)γmix(r)dr ≤ ε2 +

5

4
α

∫ r1

0
γmix(r)dr e

r1−(t−s) < 2ε2

for t− s large enough and (3.23) follows from (3.24). In the FP case, we start first from
the exponential estimate

‖fFPs,t |E≡0 − ρ(f)M‖L2(M−1) ≤ es−t‖f‖L2(M−1). (3.25)

In (3.25), fFPs,t |E≡0 denote the function (3.4) obtained when E ≡ 0. The estimate (3.25) is
a consequence of the dual estimate in L2(M) for functions h such that 〈h,M〉L2(RN ) = 0,
cf. [1, p. 179]. It implies

‖fFPs,t |E≡0 − ρ(f)M‖L1(RN ) ≤ es−t‖f‖L2(M−1). (3.26)

The translations

v 7→ v −
∫ t

s
e−(t−σ)Ẽ(σ, s, e)dσ, v 7→ v −

∫ t

s
e−(t−σ)Ẽ∗

s (σ)dσ,
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leave invariant the L1-norm. Therefore (3.26) yields

E‖fFP,∗s,t − ρ(f)M̄FP,∗
t ‖L1(RN ) ≤ es−t‖f‖L2(M−1)

+ |ρ(f)|E
∥

∥

∥

∥

M

(

· −
∫ t

s
e−(t−σ)Ē∗(σ)dσ

)

−M

(

· −
∫ t

s
e−(t−σ)E∗(σ, s, e)dσ

)∥

∥

∥

∥

L1(RN )

.

We conclude as in the case Q = QLB by means of (3.14).

4 Resolution of the kinetic equation

We consider the resolution of the Cauchy problem of (1.1) or (1.7) at fixed ε > 0. We
set ε = 1 for simplicity. Then (1.1) and (1.7) are the same equation

∂tf + v · ∇xf + Ē(t, x) · ∇vf = Qf. (4.1)

More generally, what matters to us is the dynamics given by (f, e) 7→ (ft, Et(e)), where
ft is the solution to the equation

∂tf + v · ∇xf + E(t, x) · ∇vf = Qf, (4.2)

with E(t, x) = Et(e(x)). Therefore, this is (4.2) which we solve. We simply assume that
t 7→ E(t, ·) is a càdlàg function with values in F (see Section 2 for the definition of the
state space F ). In the particular case E(t, x) = Et(e(x)), we define in this way pathwise
solutions. We solve the Cauchy Problem for (4.2) in the LB-case and in the FP-case in
Section 4.1 and Section 4.2 respectively. Then, in Section 4.3, we establish the Markov
property of the process (ft, Et(e)), where the first component ft is the solution to (4.2)
with the forcing E(t, x) = Et(e(x)).

4.1 Cauchy Problem in the LB case

Let t 7→ E(t, ·) be a càdlàg function with values in F . Let Φt(x, v) = (Xt(x, v), Vt(x, v))
denote the flow associated to the field (v,E(t, x)):

Ẋt =Vt, X0 = x,

V̇t =E(t,Xt), V0 = v.

The partial map (x, v) 7→ Φt(x, v) is a C1-diffeomorphism of TN × R
N . We denote by

Φt the inverse application: Φt ◦ Φt = Id. Note that Φt and Φt preserve the Lebesgue
measure on T

N × R
N .

Definition 4.1 (Mild solution, LB case). Let fin ∈ L1(TN × R
N ). Assume Q = QLB.

A continuous function from [0, T ] to L1(TN ×R
N ) is said to be a mild solution to (4.2)

with initial datum fin if

f(t) = e−tfin ◦Φt +
∫ t

0
e−(t−s)[ρ(f(s))M ] ◦ Φt−sds, (4.3)

for all t ∈ [0, T ].
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Proposition 4.1 (The Cauchy Problem, LB case). Let fin ∈ L1(TN × R
N). Assume

(2.6). There exists a unique mild solution to (4.2) in C([0, T ];L1(TN ×R
N)) with initial

datum fin. It satisfies

‖f(t)‖L1(TN×RN ) ≤ ‖fin‖L1(TN×RN ) for all t ∈ [0, T ]. (4.4)

If fin ≥ 0, then f(t) ≥ 0 for all t ∈ [0, T ] and (4.4) is an identity. In addition, if
fin ∈W k,1(TN × R

N ) with k ≤ 2, then

‖f‖L∞(0,T ;W k,1(TN×RN )) ≤ C(k, T, fin), (4.5)

where the constant C(k, T, fin) depends on k, T , N , and on the norms

sup
t∈[0,T ]

‖E(t, ·)‖F and ‖fin‖W k,1(TN×RN )

only. Eventually, if fin ∈ Gm, then f(t) ∈ Gm for all t ∈ [0, T ].

Proof of Proposition 4.1. Let ET denote the space of continuous functions from [0, T ] to
L1(TN × R

N ). We use the norm

‖f‖ET
= sup

t∈[0,T ]
‖f(t)‖L1(TN×RN )

on ET . Note that
‖ρ(f)‖L1(TN ) ≤ ‖f‖L1(TN×RN ). (4.6)

Let f ∈ ET . Assume that (4.3) is satisfied. Then, by (4.6), we have

‖f(t)‖L1(TN×RN ) ≤e−t‖fin‖L1(TN×RN ) +

∫ t

0
e−(t−s)‖f(s)‖L1(TN×RN )ds.

By Gronwall’s Lemma applied to t 7→ et‖f(t)‖L1(TN×RN ), we obtain (4.4) as an a priori

estimate. Besides, the L1-norm of the integral term in (4.3) can be estimated by (1 −
e−T )‖f‖ET

. Therefore existence and uniqueness of a solution to (4.3) in L1(Ω;ET ) follow
from the Banach fixed point Theorem. To obtain the additional regularity (4.5), we do
the same kind of estimates on the system satisfied by the derivatives and incorporate
these estimates in the fixed-point space. To conclude the proof, let us assume fin ≥ 0.
Since s 7→ s− (negative part) is convex and satisfies (a+ b)− ≤ a−+ b−, we deduce from
(4.3) and the Jensen inequality that

f−(t) ≤
∫ t

0
e−(t−s)[ρ(f(s))M ]− ◦Φt−sds.

Since M ≥ 0 and ρ(f)− ≤ ρ(f−), (4.6) yields the estimate

‖f−(t)‖L1(TN×RN ) ≤
∫ t

0
e−(t−s)‖f−(s)‖L1(TN×RN )ds.

We conclude to f− = 0 by the Gronwall Lemma. Eventually, that fin ∈ Gm implies
f(t) ∈ Gm for all t ∈ [0, T ] (propagation of moments) is proved in Proposition 6.3.
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4.2 Cauchy Problem in the FP case

Let Kt(x, v; y,w) denote the kernel associated to the kinetic Fokker-Planck equation

∂tf = QFPf − v · ∇xf. (4.7)

Let us recall some elementary facts aboutKt (see [4] for more results about the analytical
properties of Kt, and [21] for the probabilistic interpretation of Kt). The function
Kt(·; y,w) is the density with respect to the Lebesgue measure on T

N × R
N of the law

µ
(y,w)
t of the solution (Xt, Vt) to the SDE

dXt =Vtdt, X0 = y, (4.8)

dVt =− Vtdt+
√
2dBt, V0 = w. (4.9)

where Bt is a Wiener process over RN . Therefore

Ktf(x, v) :=

∫∫

TN×RN

Kt(x, y; y,w)f(y,w)dydw

satisfies the identity

〈Ktf, ϕ〉 =
∫∫

TN×RN

Eϕ(Xt, Vt)f(y,w)dydw, (4.10)

for f ∈ L1(TN × R
N ) and ϕ : TN × R

N → R continuous and bounded. The solution to
(4.8)-(4.9) is given explicitly by

Xt =y + (1− e−t)w +

∫ t

0
(1− e−(t−s))dBs,

Vt =e
−tw +

∫ t

0
e−(t−s)dBs.

(4.11)

The process (X0
t , V

0
t ) given by (4.11) when y = 0, w = 0 is a Gaussian process with

covariance matrix

Qt :=









∫ t

0
|1− e−s|2ds

∫ t
0 e

−s(1− e−s)ds
∫ t

0
e−s(1− e−s)ds

∫ t
0 e

−2sds









⊗ IN . (4.12)

Using (4.12) and (4.10)-(4.11), one can show that Kt : L
p(TN × R

N ) → Lp(TN × R
N )

with norm bounded by e
N
p′
t
. We have also the estimate

∫∫

TN×RN

|∇wKt(x, v; y,w)|dxdv ≤ Ct−1/2, (4.13)

for all (y,w) ∈ T
N × R

N , t ∈ [0, T ], with a constant C independent on (y,w) and T .
The estimate (4.13) also follows from the estimate between (26) and (27) that can be
found in [4].
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Definition 4.2 (Mild solution, FP case). Let t 7→ E(t, ·) be a càdlàg function with
values in F . Let p ∈ [1,+∞[. Let fin ∈ Lp(TN ×R

N ). Assume Q = QFP. A continuous
function from [0, T ] to Lp(TN × R

N )) is said to be a mild solution to (4.2) in Lp with
initial datum fin if

f(t) = Ktfin +

∫ t

0
∇wKt−s[E(s)f(s)]ds, (4.14)

for all t ∈ [0, T ].

Proposition 4.2 (The Cauchy Problem, FP case). Let t 7→ E(t, ·) be a càdlàg function
with values in F . Let p ∈ [1,+∞[. Let fin ∈ Lp(TN × R

N ). Then (4.2) has a unique
mild solution f in Lp with initial datum fin. If fin ≥ 0, then f(t) ≥ 0, for all t ∈ [0, T ].
In addition, for every k ≤ 2, the regularity W k,p(TN × R

N )) is propagated:

sup
t∈[0,T ]

‖f(t)‖W k,p(TN×RN ) ≤ C(k, T )‖fin‖W k,p(TN×RN ), (4.15)

where the constant C(k, T ) depends on k, T , N and supt∈[0,T ] ‖E(t, ·)‖F . If p = 1 and
fin ≥ 0, then ‖f(t)‖L1(TN×RN ) = ‖fin‖L1(TN×RN ). If, more generally, there is no sign

condition on fin ∈ L1(TN × R
N), then (4.4) is satisfied. Eventually, if fin ∈ Gm, then

f(t) ∈ Gm for all t ∈ [0, T ].

Proof of Proposition 4.2. The existence-uniqueness follows from the Banach fixed point
Theorem using (4.13), in a manner similar to the proof of Proposition 4.1. To obtain
(4.15) for k = 1, we assume first that f(t) is in W k,p(TN ×R

N ) for all t and we use the
relations

∇xKt(x, v; y,w) = −∇yKt(x, v; y,w),

∇vKt(x, v; y,w) = −(1− e−t)∇yKt(x, v; y,w) − e−t∇wKt(x, v; y,w),

and Gronwall’s Lemma, to obtain (4.15). We can drop the a priori requirement that
f(t) is in W k,p(TN × R

N ) for all t either by incorporating this in the fixed-point space,
or by working with differential quotients. The case k = 2 is obtained similarly. To prove
that fin ≥ 0 implies f(t) ≥ 0, we use a duality argument: it is sufficient to prove the
propagation of the sign for L∞ solutions to the dual equation

ϕ(T ) = ψ, (4.16)

∂tϕ = −v · ∇xϕ− Ēt · ∇vϕ−Q∗
FPϕ, 0 < t < T. (4.17)

This follows from the maximum principle, since Q∗
FPϕ = ∆vϕ − v · ∇vϕ. The maxi-

mum principle for the solutions to (4.16)-(4.17) also yields the L1-estimate (4.4). The
propagation of moments is proved in Proposition 6.3.

4.3 Markov property

We prove the following result.
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Theorem 4.3 (Markov property). Let (Ē(t)) be a mixing force field in the sense of
Definition 2.1. We denote by A the generator of (Et). Let X denote the state space

X = L1(TN × R
N )× F. (4.18)

For (f, e) ∈ X , let ft denote the mild solution to (4.2) with initial datum f and forcing
Et(e). Then (ft, Et(e))t≥0 is a time-homogeneous Markov process over X .

Proof of Theorem 4.3. For a synthetic treatment of the proof, we use the following no-
tations:

G = L1(TN × R
N ), H =W 2,1(TN × R

N ).

For Φ bounded and continuous on X , e ∈ F , define

PtΦ(f, e) = E(f,e)Φ(ft, Et(e)). (4.19)

Let (Gt) be the filtration defined in (2.5). The process (ft, Et(e)) is (Gt)-adapted. To
prove this assertion, note that ft is obtained as the solution of a fixed-point equation
(see the proof of Proposition 4.1 and Proposition 4.2 respectively). Consequently (ft)
is the limit of the sequence obtained by iterating the fixed-point map, starting from
f . It is simple to check that each element in this sequence is (Gt)-adapted. Since (Gt)
is complete, this implies that (ft) also is (Gt)-adapted. Our aim, first, is to prove the
following identity: for 0 ≤ s, t,

E(f,e)(Φ(ft+s, Et+s(e))|Gs) = (PtΦ)(fs, Es(e)). (4.20)

We can use the propagation of the W 2,1-regularity stated in Proposition 4.1 and Propo-
sition 4.2 and an argument of density to reduce the proof of (4.20) to the case where
f ∈ H. In that case, (ft, Et) is seen as a process with state space Y = H ×F . We apply
this reduction because, when ft has the regularity W 2,1(TN ×R

N ), it is simple to prove
that

ft = Ψ0,t(f, (E(σ))0≤σ≤t), (4.21)

where Ψ0,t(f, ·) is a continuous map from L1([0, t];F ) to L1(TN × R
N ). Indeed, if f it ,

i ∈ {1, 2} are two solutions to (4.2) corresponding to two different forcing terms Ei(t, x),
i ∈ {1, 2}, we just need to write

[

∂t + E1 · ∇v −Q
]

(f1t − f2t ) = (E2 − E1) · ∇vf
2
t ,

multiply the equation by sgn(f1 − f2) and integrate, to obtain

‖f1t − f2t ‖L1(TN×RN ) ≤ C

∫ t

0
‖E2(s)− E1(s)‖F ds,

where the constant C depends on the L∞
t L

1
x,v-norm of∇vf

2
t . Similarly, we may introduce

the solution map Ψs,t, which associates to the path (E(σ))s≤σ≤t and to the datum fσ at
σ = s, the solution to (4.2) at time t. We have then the semi-group property

Ψ0,t+s(f, (E(σ))0≤σ≤t+s) = Ψs,t+s(Ψ0,s(f, (E(σ))0≤σ≤s), (E(σ))s≤σ≤t+s). (4.22)
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Using (4.22), the relation (4.20) is equivalent to

E

(

Φ [Ψs,t+s(ξ, (Eσ(e))s≤σ≤t+s), Et+s(e)]
∣

∣

∣
Gs
)

= (PtΦ)(ξ,Es(e)). (4.23)

where ξ = fs is Gs-measurable. The property (4.23) is true for every random variable ξ
which is Gs-measurable. The reason for this is that Ψs,t(ξ, (Eσ(e))s≤σ≤t+s) is a functional
of (Eσ(e))s≤σ≤t+s. The proof of (4.23) is clear if we replace (Eσ(e))s≤σ≤t+s by the
piecewise constant path (Ẽσ(e))s≤σ≤t+s, where Ẽσ(e) = Es+ti(e) for all σ ∈ [s+ ti, s +
ti+1), where

s = s+ t0 < s+ t1 < · · · < s+ tN = s+ t

is a subdivision of the interval [s, s+ t]. Indeed, we have then

Φ
[

Ψs,t+s(ξ, (Ẽσ(e))s≤σ≤t+s), Et+s(e)
]

= Φ̄N (ξ;Es+t0(e), . . . , Es+tN (e)),

where Φ̄N is continuous in its arguments. By considering the finite-dimensional distri-
butions of (Et), we obtain

E
[

Φ̄N (ξ;Es+t0(e), . . . , Es+tN (e))|Gs
]

= PN,tΦ(ξ,Es(e)), (4.24)

where

PN,tΦ(f, e) = EeΦ̄N (f ;Et0(e), . . . , EtN (e)))

= EeΦ
[

Ψ0,t(f, (Êσ(e))0≤σ≤t), Et(e)
]

,

where (Êσ(e))0≤σ≤t is the piecewise-constant path defined by Êσ(e) = Eti(e) for all
σ ∈ [ti, ti+1), i = 0, . . . , N − 1. Since (Eσ(e))s≤σ≤t+s is càdlàg, we can approxi-
mate (Eσ(e))s≤σ≤t+s by (Ẽσ(e))s≤σ≤t+s, due to the continuous dependence of Ψs,t+s on
(Eσ(e))s≤σ≤t+s with respect to the L1([s, t+ s];F )-norm. When the size max(ti+1 − ti)
of the subdivision tends to 0, we have PN,tΦ(f, e) → PtΦ(f, e). This yields (4.20). From
(4.20) then, it follows that (ft, Et(e))t≥0 is a time-homogeneous (Gt)-Markov process.

To achieve the proof, we use the theory of semigroups developed by Priola in [19]. We
refer the reader to Appendix B on that subject. Denote by BM(X ) the set of bounded
measurable functions on X and by BC(X ) the set of bounded continuous functions on
X . Then BC(X ) is π-dense in BM(X ) (consider the class A of Borel sets B such that the
characteristic function 1B is π-limits of a sequence of functions in BC(X ): A contains
closed sets since x 7→ d(x, F ) is continuous if F is closed, d being the metric on X , and
it is simple to check that A is stable by countable union and by the operation B 7→ Bc).
If Φ ∈ BM(X ) is the π-limit of a sequence (Φn) of BC(X ), then

PtΦn(fs, Es(e)) → PtΦ(fs, Es(e)), (4.25)

E(f,e)(Φn(ft+s, Et+s(e))|Gs) → E(f,e)(Φ(ft+s, Et+s(e))|Gs),
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by dominated convergence. Consequently (4.20) holds true when Φ ∈ BM(X ). Assume
that BM(X ) is stable by Pt. Then, taking the expectancy in (4.20), we obtain the semi-
group property Pt+s = PsPt. To prove that BM(X ) is stable by Pt, it is sufficient to
show that Pt sends BC(X ) in BM(X ), since the latter is π-dense in the former. Let
Φ ∈ BC(X ). We have

PtΦ(f, e) = EeΦ [Ψ0,t(f, (Es)0≤s≤t)), Et] . (4.26)

We have seen that, if f ∈ H, then PtΦ(f, e) is the limit of the right-hand side of (4.26)
where the path (Es)0≤s≤t is replaced by a piecewise constant path. In that last case,
e 7→ PtΦ(f, e) is measurable since (recall Section 2) for all Borel set D ∈ F , e 7→ Pe(D)
is Borel-measurable. By approaching the càdlàg path (Es)0≤s≤t by a piecewise constant
paths, we can conclude therefore that, for all f ∈ H, e 7→ PtΦ(f, e) is measurable. On
the other hand, for all e ∈ F , the map f 7→ PtΦ(f, e) is continuous from G to R. This is
a consequence of the L1-estimate (4.4). By approaching a function f in G by a sequence
of more regular functions in H, we deduce that e 7→ PtΦ(f, e) is measurable for all
f ∈ G. Consequently, PtΦ is a Carathéodory function. It is a classical fact then, that
Carathéodory functions are measurable, [6, Lemma 1.2.3].

Let us introduce the operators

L♯ϕ(f, e) =Aϕ(f, e) + (Qf − e · ∇vf,Dfϕ(f, e)), (4.27)

L♭ϕ(f, e) =− (v · ∇xf,Dfϕ(f, e)), (4.28)

and L = L♯ + L♭. Formally, L is the generator associated to the Markov process
(ft, Et). We do not need to be much specific on that point here. Indeed, what is
relevant to apply the perturbed test-function method in Section 6 (see (6.2)) are sufficient
conditions for a test function to be both in the domain of L♯ and in the domain of L♭.
We prove the following result.

Proposition 4.4. Let (Ē(t)) be a mixing force field in the sense of Definition 2.1. Let
A be the generator of (Et), let X be the state space defined by (4.18), and let L♯ and
L♭ be defined by (4.27)-(4.28). Let ψ : Rm × F → R be a continuous function which is
bounded on bounded set of Rm × F and satisfies the following properties:

1. for all u ∈ R
m, e 7→ ψ(u, e) is in the domain of A and (u, e) 7→ Aψ(u; e) is bounded

on bounded sets of Rm × F ,

2. for all e ∈ F , u 7→ ψ(u; e) is differentiable, (u, e) 7→ ∇uψ(u; e) is bounded on
bounded sets of Rm × F and continuous with respect to e.

Let ξ1, . . . , ξm ∈ C∞
c (TN × R

N ). Then the test-function

ϕ : (f, e) 7→ ψ(〈f, ξ1〉, . . . , 〈f, ξm〉; e) (4.29)

satisfies L♯ϕ(f, e),L♭ϕ(f, e) < +∞ for all (f, e) ∈ X and ϕ is in the domain of L in
the sense that

Ptϕ(f, e) = ϕ(f, e) + tLϕ(f, e) + o(t), (4.30)

for all (f, e) ∈ X .
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Proof of Proposition 4.4. Let ξ = (ξi)1,m. We have

L♯ϕ(f, e) =
{

Aψ(u; e) + 〈f,Q∗ξ + e · ∇vξ〉∇uψ(u; e)
}∣

∣

u=〈f,ξ〉,

L♭ϕ(f, e) = 〈f, v · ∇xξ〉∇uψ(u; e)
∣

∣

u=〈f,ξ〉,

therefore (f, e) 7→ (L♯ϕ(f, e),L♭ϕ(f, e)) is bounded on bounded sets of X . To obtain
(4.30), we use the decomposition of Ptϕ(f, e)− ϕ(f, e) into the sum of the terms

E(f,e)ϕ(f,Et)− ϕ(f, e) (4.31)

and
E(f,e) [ϕ(ft, Et)− ϕ(f,Et)] . (4.32)

By item 1, we have the asymptotic expansion (4.31) = tAψ(u; e)
∣

∣

u=〈f,ξ〉 + o(t). In

addition, by (4.2), we have

ut = u+ t
(

〈f,Q∗ξ + e · ∇vξ〉+ 〈f, v · ∇xξ〉
)

+ o(t),

where ut = 〈ft, ξ〉, u = 〈f, ξ〉. By item 1, we obtain the asymptotic expansion

(4.32) = t
(

〈f,Q∗ξ + e · ∇vξ〉+ 〈f, v · ∇xξ〉
)

∇uψ(u; e)
∣

∣

u=〈f,ξ〉 + o(t).

This concludes the proof.

Remark 4.1. The result of Proposition 4.4 holds true if we consider some functions ξi
not as smooth and localised as C∞

c functions, provided there is a sufficient balance with
the regularity and integrability properties of f . For example, we apply Proposition 4.4
in Section 6.1.3 with ξi(x, v) = ξ̂i(x)ζi(v), where ξ̂i is in some Sobolev space Hs(TN )
and ζi(v) is a polynomial in v of degree less than two. In that case, we view (ft, Et) as
a Markov process on X3 := G3 × F and the conclusion of Proposition 4.4 is valid for
f ∈ G3.

Remark 4.2. Note that, in the context of Proposition 4.4, the function |ψ|2 has the same
properties (item 1 and item 2) as ψ. Therefore |ϕ|2 is also in the domain of L .

5 Deterministic convergence

In this section, we prove Theorem 1.1. We establish the convergence

lim
ε→0

sup
t∈[0,T ]

∣

∣

∣

∣

∫

TN

rεt (x)ϕ(x)dx −
∫

TN

rt(x)ϕ(x)dx

∣

∣

∣

∣

= 0 (5.1)

for all ϕ ∈ C(TN ). We use the two following results.
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Theorem 5.1 (Martingale characterization of Markov processes). Let (Xt) be a R
N -

valued time-homogeneous Markov process of generator L. Assume that (Xt) is càdlàg.
Then, for all continuous bounded ϕ : RN → R

N in the domain of L,

Z(t) := ϕ(Xt)− ϕ(X0)−
∫ t

0
Lϕ(Xs)ds (5.2)

is an R
N -valued (FX

t )-martingale. If ϕ2 is in the domain of L, then the quadratic
variation of (Z(t)) is

[Zi, Zj ]t =

∫ t

0
(Lϕiϕj − ϕiLϕj − ϕjLϕi)(Xs)ds. (5.3)

Theorem 5.2 (CLT for martingales). Let (Zt) be a R
N -valued càdlàg martingale satis-

fying

lim
ε→0

εE

[

sup
0≤t≤T/ε2

|Zt − Zt−|
]

= 0. (5.4)

Assume
1

t
[Z,Z]t → σ∗σ in probability, (5.5)

where σ is an N ×N matrix. Then

εZt/ε2 → σWt (5.6)

in law on C([0, T ];RN ), where (Wt) is an N -dimensional Wiener process.

Proof of Theorem 5.1. We apply [10, Proposition 1.7, p. 162]. Since (Xt) is càdlàg, it is
progressive. We obtain the fact that (Z(t)) is an (FX

t )-martingale. The proof of (5.3)
is a consequence of Theorem B.1 in the appendix B.

Proof of Theorem 5.2. Let (εn) ↓ 0. We apply [10, Theorem 1.4, p. 339] to

Mn(t) = εnZt/ε2n , cij(t) = (σ∗σ)ijt.

Indeed, Condition (1.14) in [10, p. 340] is fulfilled by (5.4).

Remark 5.1. Assume, in the context of Theorem 5.1, that (Xt) is ergodic, with invariant
measure λ and let Z be defined by (5.2). We have then

1

t
[Zi, Zj ]t →〈Lϕiϕj − ϕiLϕj − ϕjLϕi, λ〉 in probability

=− 〈ϕiLϕj + ϕjLϕi, ν〉 since L∗λ = 0.

Therefore, we obtain (5.6) with

(σ∗σ)ij = −〈ϕiLϕj + ϕjLϕi, λ〉. (5.7)
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5.1 Classical diffusion limit

Let us first illustrate the application of Theorem 5.1 and Theorem 5.2 in the case where
Ē ≡ 0 in (1.7) and Q = QLB. The equation (1.7) is deterministic then. An argument
using a PDE theory approach gives the convergence of rε = ρε to r solution to (1.19) in
L2(0, T ;L2(TN )), see [9, Theorem 1.1] for example. Using a probabilistic approach, we
consider the jump process (Vt) associated to (1.2) (this is a pure jump process since we
assume Ē ≡ 0). We obtain the convergence of the process (Xε

t ) that is behind r
ε = ρε,

and a convergence to r in C([0, T ];L2(TN )− weak). Indeed, let us set

Xε
t = X0 +

[

ε

∫ t/ε2

0
Vsds

]

, (5.8)

where X0 follows a law with density ρin with respect to the Lebesgue measure on T
N .

In (5.8), [Y ] denote the equivalence class in T
N = R

N/ZN of an element Y ∈ R
N . By

(1.18), X0 and V0 are independent, V0 having the law of density g with respect to the
Lebesgue measure on R

N . Then rε is the density, with respect to the Lebesgue measure
on T

N , of the law of Xε
t . For all ψ : RN → R continuous and bounded, we have

∫

TN

rε(x, t)ψ(x)dx = Eψ(Xε
t ). (5.9)

The generator L of (Vt) is Lϕ(v) = 〈ϕ,M〉 − ϕ. We apply Theorem 5.1 to the Markov
process (Vt) with ϕ such that

Lϕ = −Id. (5.10)

The solution to (5.10) is ϕ = Id. We have then

Xε
t = X0 + εZt/ε2 − ε(Vt/ε2 − V0) = X0 + εZt/ε2 +O(ε), (5.11)

where the O(ε) is in L1(Ω) (and thus, in probability) since Vt has either the distribution
of V0 or, if a jump has already occurred, the density M with respect to the Lebesgue
measure on R

N . We obtain, using (5.7), the convergence (5.5) with σ∗σ = 2K, where
K is given by (1.15). By Theorem 5.2 thus, we have

Xε
t → Xt := X0 −

√
2KWt

in law on C([0, T ];RN ). Using (5.9), we obtain

∫

TN

rε(x, ·)ψ(x)dx →
∫

TN

r(x, ·)ψ(x)dx in C([0, T ]), (5.12)

for all ψ : RN → R continuous and bounded, where r satisfies (1.19). Since (rε) is
bounded uniformly in ε in C([0, T ];L2(TN )) (see [9]), the convergence (5.12) is satisfied
for all ψ ∈ L2(TN ). We conclude to the convergence of (rε) to r in C([0, T ];L2(RN ) −
weak).
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Remark 5.2. In the FP case, the proof is direct and does not require Theorem 5.1 and
Theorem 5.2. Indeed, we have (5.8) where Vt satisfies (4.9). We replace Vs in the integral
in (5.8) by −dVs +

√
2dBs to obtain

Xε
t = X0 + εBt/ε2 − ε(Vt/ε2 − V0)

Since (4.11) gives a bound (in L2(Ω) for example) on (Vt), we have (5.11) with Zt = Bt
and we conclude using the scale invariance of the Wiener process.

5.2 Diffusion limit for the stochastically forced equation

We consider now the general case of Equation (1.7) with a non-trivial mixing force process
(Ēt) (cf. Definition 2.2). Recall that FE

t is the σ-algebra generated by (Es)0≤s≤t. For
ϕ : RN → R continuous and bounded, we have

∫

TN

ρε(x, t)ϕ(x)dx = E

[

ϕ(Xε
t )|FE

t/ε2

]

,

and (5.9), where Xε
t is like in (5.8) and (Vt) is either the stochastic process described in

(1.9) in the case Q = QLB (given E, this is a PDMP), or the Ornstein-Uhlenbeck process
(1.10) in the case Q = QFP. The process (Vt, Et) is Markov and has the generator L
given by

Lϕ(v, e) = Q∗ϕ(v, e) − e · ∇vϕ(v, e) +Aϕ(v, e). (5.13)

The proof of this result is analogous to (actually, simpler than, since the state space has
finite dimension) the proof of Theorem 4.3. By Theorem 3.1 (see Remark 3.2), (Vt, Et)
is ergodic and has the invariant measure λ defined by

〈λ, ϕ〉 = E

∫

RN

M̄t(v)ϕ(v, Ēt)dv.

This is a consequence of (3.10) and of the fact that (Vt, Et) is time homogeneous. More
precisely, denoting by (etL) the semi-group generated by (Vt, Et), (3.10) gives, for all
f ∈ L1(RN ), and for all ϕ bounded and continuous on R

N × R
N ,

lim
t→+∞

∫

RN

f(v)etLϕ(v, e)dv = 〈λ, ϕ〉
∫

RN

f(v)dv. (5.14)

To apply Theorem 5.1 and Theorem 5.2 like in Section 5.1, we need to solve the Poisson
equation

Lϕ(v, e) = −v. (5.15)

Using (5.7) then, we need to compute

(σ∗σ)ij = 〈ϕivj + ϕjvi, λ〉. (5.16)
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5.3 The auxiliary test-function

Our aim is to find the solution ϕ to the Poisson equation Lϕ = ψ (with ψ(v) = −v in
our case). An argument of perturbation (of the case E ≡ 0) suggests the solution

ϕ(v, e) = v +R0(e), (5.17)

where the resolvent R0(e) is defined in (2.20) and (2.21). The test-function (5.17) indeed
satisfies (5.15) since Q∗v = −v and AR0(e) = −e. However, there is a more systematic
way to obtain (5.17) than just guessing, and we explain it below, since it involves some
computations that are necessary later in Section 6. To solve Lϕ = ψ (with ψ(v) = −v
in our case, thus), we use the resolvent formula

ϕ = −
∫ ∞

0
etLψdt. (5.18)

This may work at least if 〈ψ, λ〉, which is equal to limt→+∞ etLψ by ergodicity, vanishes.
In our case ψ(v) = v, this condition is satisfied as we will see. Note first that, for
f ∈ L1(RN ) and f0,t is given either by (3.3) or (3.4) with s = 0, we have, by (3.9),

∫

RN

f(v)etLψ(v, e)dv = Ee

∫

RN

f0,t(v)ψ(v, e)dv. (5.19)

With ψ(v, e) = −v, we obtain
∫

RN

f(v)etLψ(v, e)dv = −EeJ(f0,t). (5.20)

Lemma 5.3. Let fs,t be equal either to (3.3), or to (3.4). The two first moments of fs,t
(see (1.14) for the definition of the moments) are, respectively, ρ(fs,t) = ρ(f), and

J(fs,t) =e
−(t−s)J(f) + ρ(f)

∫ t

s
e−(t−σ)E(σ, s; e)dσ. (5.21)

Proof of Lemma 5.3. We use the formula

∫

RN





1
v
v⊗2



M(v −w)dv =





1
w

K + w⊗2,



 , (5.22)

where K is defined by (1.15). By (5.22) (and a change of variable in the FP-case), we
obtain (5.21).

Corollary 5.4. Let fs,t be equal either to (3.3), or to (3.4) and let M̄LB
t and M̄FP

t be
defined by (3.6) and (3.7) respectively. We have then, for all e ∈ B̄α,

∫ ∞

0
|EJ(f0,t)|dt < +∞,

∫ ∞

0
EJ(f0,t)dt = J(f) + ρ(f)R0(e), (5.23)

J(M̄LB
0 ) = J(M̄FP

0 ) =

∫ 0

−∞
eσĒ(σ)dσ. (5.24)
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Proof of Corollary 5.4. We take t = 0, ρ = 1 and the limit s → −∞ in (5.21) to obtain
(5.24). To prove (5.23), we use the following formula:

∫ ∞

0

∫ t

0
e−(t−r)

Eϕ(E(0, r; e))drdt =

∫ ∞

0
Eϕ(E(0, r; e))dr.

Comparing (5.18)-(5.20) and (5.23), we obtain (5.17).

5.4 Diffusion matrix

Now that we have found ϕ solution to (5.15), let us come back to (5.16).

Lemma 5.5. Let M̄LB
t and M̄FP

t be defined by (3.6) and (3.7) respectively. The expec-
tation of the second moment of M̄0 is

E
[

K(M̄0)
]

=K + bE
[

Ē(0) ⊗R1(Ē(0))
]

, (5.25)

where bLB = 2 and bFP = 1.

Proof of Lemma 5.5. We compute, using (5.22),

K(M̄LB
0 ) =

∫ 0

−∞
eσ

(

K +

[
∫ 0

σ
Ē(r)dr

]⊗2
)

dσ.

This gives

E
[

K(M̄LB
0 )
]

=K +

∫ 0

−∞
eσ
∫ 0

σ

∫ 0

σ
Γ̄(r − s)drdsdσ,

where Γ̄(t) is the covariance of (Ē(t)) (see (2.23)). By symmetry, we have

∫ 0

σ

∫ 0

σ
Γ̄(r − s)drds = 2

∫ 0

σ
(r − σ)Γ̄((r)dr.

By two successive integration by parts, we have next

2

∫ 0

−∞
eσ
∫ 0

σ
(r − σ)Γ̄((r)drdσ =2

∫ 0

−∞
eσ
∫ 0

σ
Γ̄((r)drdσ = 2

∫ 0

−∞
eσΓ̄((σ)dσ.

Coming back to the definition (2.23), we obtain

∫ 0

−∞
eσΓ̄((σ)dσ =

∫ 0

−∞
eσE

[

Ē(σ)⊗ Ē(0)
]

dσ

=

∫ +∞

0
e−σE

[

Ē(−σ)⊗ Ē(0)
]

dσ

=

∫ +∞

0
e−σE

[

Ē(0) ⊗ Ē(σ)
]

dσ = E
[

Ē(0)⊗R1(Ē(0))
]

, (5.26)
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and we conclude to (5.25). Similarly, we have by (3.7) and (5.22),

K(M̄FP
0 ) = K +

[∫ 0

−∞
eσĒ(σ)dσ

]⊗2

.

To conclude to (5.25), we use the following Lemma 5.6.

Lemma 5.6 (Symmetry and positivity). For δ > 0, we have

E
[

Rδ(Ē(0))⊗ Ē(0)
]

= δE

[∫ 0

−∞
eδσĒ(σ)dσ

]⊗2

. (5.27)

In particular, if δ ≥ 0, we have E
[

Rδ(Ē(0)) ⊗ Ē(0)
]

= E
[

Ē(0)⊗Rδ(Ē(0))
]

and this
quantity is non-negative.

Proof of Lemma 5.6. We compute

E

[
∫ 0

−∞
eδσĒ(σ)dσ

]⊗2

=

∫ 0

−∞

∫ 0

−∞
eδ(σ+s)E[Ē(s)⊗ Ē(σ)]dσds

=2

∫ 0

−∞

∫ s

σ=−∞
eδ(σ+s)E[Ē(s)⊗ Ē(σ)]dσds

=2

∫ 0

−∞

∫ s

σ=−∞
eδ(σ+s)E[Ē(0)⊗ Ē(σ − s)]dσds

=2

∫ 0

−∞

∫ 0

σ=−∞
eδ(σ+2s)

E[Ē(0)⊗ Ē(σ)]dσds

=
1

δ

∫ 0

−∞
eδσE[Ē(0) ⊗ Ē(σ)]dσ

=
1

δ

∫ ∞

0
e−δσE[Ē(σ)⊗ Ē(0)]dσ =

1

δ
E
[

Rδ(Ē(0)) ⊗ Ē(0)
]

,

(5.28)

which gives the result.

By (5.16) and (5.17), we have

σ∗σ = 2E
[

K(M̄0)
]

+ E
[

R0(Ē(0)) ⊗ J(M̄0) + J(M̄0)⊗R0(Ē(0))
]

.

We use (5.24) to derive the following expression

E
[

R0(Ē0)⊗ J(M̄0)
]

=

∫ 0

−∞
eσE

[

R0(Ē(0))⊗ Ē(σ)
]

dσ. (5.29)

As in (5.26), this is E
[

R1R0(Ē(0)) ⊗ Ē(0)
]

and thus

σ∗σ = 2E
[

K(M̄0)
]

+ E
[

R1R0(Ē(0)) ⊗ Ē(0) + Ē(0) ⊗R1R0(Ē(0))
]

.
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To obtain a more tractable expression of σ∗σ, we use the resolvent identity R1R0 =
R0 −R1 which yields, by the symmetry property stated in Lemma 5.6,

σ∗σ = 2E
[

K(M̄0)
]

+ 2E
[

Ē(0) ⊗ (R0(Ē(0)) −R1(Ē(0)))
]

.

Using (5.25), we obtain

σ∗σ = 2K + 2E
[

Ē(0) ⊗ [R0(Ē(0)) + (b− 1)R1(Ē(0))]
]

. (5.30)

We have therefore (5.1) for all ϕ ∈ C(TN), where r is the solution to (1.19) starting
from rin. Note that, as a consequence of Lemma 5.6, we have

K♯ ≥ K, (5.31)

in the sense of symmetric matrices.

6 Diffusion-approximation

In this section, we establish the limit behaviour of ρε as stated in Theorem 1.2. We forget
now the probabilistic origin of f ε, the solution to (1.7). This probabilistic aspect has
been used in the previous Section 5. Our main probabilistic object of study now is the
process (f εt ) solution to the SPDE (1.7). More precisely, we consider the Markov process
(f εt , Ē

ε
t ) (see Theorem 4.3). The generator L ε of this process can be decomposed as

L
ε =

1

ε2
L♯ +

1

ε
L♭,

where L♯ and L♭ are defined by (4.27) and (4.28) respectively. For every ϕ in the domain
of L ε, the process

M ε
ϕ(t) := ϕ(f εt , Ē

ε
t )− ϕ(fin, Ē0)−

∫ t

0
L

εϕ(f εs , Ē
ε
s)ds (6.1)

is a (Gt/ε2)-martingale (this is a consequence of Theorem 4.3 and Theorem B.1 in Ap-
pendix B). The equation associated to the principal generator L♯ is (1.2). It has been
analysed in Section 3. Our approach to the proof of the convergence of (ρε) uses the
perturbed test-function method introduced by Papanicolaou, Stroock, Varadhan in [17]
and adapted in the setting of hydrodynamic limits in [8]. Let us explain the main steps
of the proof.

1. Limit generator. To find the limit generator L associated to the equation
satisfied by the limit ρ of (ρε), which acts on test functions ϕ(ρ), we seek two
correctors ϕ1 and ϕ2 such that, for the perturbed test function

ϕε(f, e) = ϕ(ρ) + εϕ1(f, e) + ε2ϕ2(f, e), (6.2)

we may have L εϕε = Lϕ+ o(1). See Section 6.1.
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2. Tightness. We prove the tightness of the sequence (ρε) in an adequate space.
First, we obtain some bounds uniform with respect to ε by perturbation of the
functional which we try to estimate. See Section 6.2. Then we establish some
uniform estimates on the time increments of (ρε). See Section 6.3.

3. Convergence. We use the characterization of (1.25)-(1.26) as a martingale prob-
lem to take the limit of the processes (ρε). This is a very classical approach to the
convergence of stochastic processes, see the introduction to [14, Chapter III]. The
class Θ of test-functions ϕ(ρ) of the form

ϕ(ρ) = ψ
(

〈ρ, ξ〉L2(TN )

)

, (6.3)

for ξ in a dense subset of L2(TN ) and ψ a Lipschitz function on R such that
ψ′ ∈ C∞

b (R), is a separating class in L2(TN ): if two random variables ρ1 and ρ2
satisfy Eϕ(ρ1) = Eϕ(ρ2) for all ϕ as in (6.3), then ρ1 and ρ2 have the same laws
(this follows from the fact that Θ separates points and from Theorem 4.5 p. 113
in [10]). This is why we put a special emphasis in Section 6.1.3 on the application
of the perturbed test-function method to test-functions as in (6.3).

6.1 Perturbed test-function

Let ϕ : L2(TN ) → R be a given test-function in the variable ρ. We specify its regularity
later. Consider the perturbation (6.2). To obtain the approximation L εϕε = Lϕ+o(1),
we identify the powers in ε in each side of this equality. This gives, for the scale ε−2,
the first equation L♯ϕ = 0. This equation is satisfied since ϕ is independent on e, hence
Aϕ = 0, and

(Qf − e · ∇vf,Dfϕ(ρ)) = (ρ(Qf − e · ∇vf),Dρϕ(ρ)) = 0

since ρ(Qf) = 0 and ρ(e · ∇vf) = 0 separately. At the scale ε−1 and ε0, we obtain the
equation for the first corrector

L♯ϕ1 + L♭ϕ = 0 (6.4)

and the equation for the second corrector

L♯ϕ2 + L♭ϕ1 = Lϕ, (6.5)

respectively. If (6.4) and (6.5) are satisfied, then L εϕε = Lϕ + εL♭ϕ2. We solve
(6.4) and (6.5) by formal computations first, see Section 6.1.1 and Section 6.1.2. In
Section 6.1.3 then, we discuss more rigorously the resolution of (6.4) and (6.5).

6.1.1 First corrector

We seek a solution to (6.4) by means of the resolvent formula

ϕ1(f, e) =

∫ ∞

0
E(f,e)ψ(ft, Et)dt, ψ = L♭ϕ,
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where ft is obtained either by (3.3) or (3.4) with s = 0. The right-hand side ψ is

ψ(f, e) = L♭ϕ(f, e) = −(divx(vf)),Dfϕ(ρ)) = −(divx(J(f)),Dρϕ(ρ)),

since ρ(vf) = J(f). By (5.23), we obtain the candidate

ϕ1(f, e) = −(divx(H(f)),Dρϕ(ρ)), H(f) := J(f) + ρ(f)R0(e). (6.6)

6.1.2 Second corrector and limit generator

Let µρ be the invariant measure parametrized by ρ associated to L♯, defined by (3.8).
Since L ∗

♯ µρ = 0 and 〈Lϕ, µρ〉 = Lϕ(ρ), a necessary condition to (6.5) is that

Lϕ(ρ) = 〈L♭ϕ1, µρ〉. (6.7)

If (6.7) is satisfied, then we set

ϕ2(f, e) =

∫ ∞

0

(

E(f,e)L♭ϕ1(ft, Et)− 〈L♭ϕ1, µρ〉
)

dt. (6.8)

The equation (6.7) gives the limit generator L . Since f 7→ H(f) is linear, we have

L♭ϕ1(f, e) = −(divx(vf),Dfϕ1(f, e))

= (divx[H(divx(vf))],Dρϕ(ρ)) +D2
ρϕ(ρ) · (divx(H(f)),divx(J(f))), (6.9)

and thus

Lϕ(ρ) = (〈ψ, µρ〉,Dρϕ(ρ)) +

∫

E×F
D2
ρϕ(ρ) · (divx(H(f)),divx(J(f)))dµρ(f, e), (6.10)

where ψ(f, e) = divx(H(divx(vf)). Let us compute the first term in the right-hand side
of (6.10). Using (6.6), we have

ψ(f, e) = D2
x:K(f) + divx [R0(e)divx(J(f))] .

The part 〈D2
x:K(f), µρ〉 = D2

x:
[

ρEK(M̄0)
]

is given by (5.25). To identify the contribu-
tion of the second part, we adapt (5.29) to obtain

〈divx [R0(e)divx(J(f))] , µρ〉 =∂xj
∫ 0

−∞
eσE

[

R0(E
∗
j (0))∂xi (ρE

∗
i (σ))

]

=∂xjE
[

R1R0(E
∗
j (0))∂xi (ρE

∗
i (0))

]

.

The first-order part in (6.10) is therefore (〈ψ, µρ〉,Dρϕ(ρ)), with

〈ψ, µρ〉 = D2
x:
[

ρ
(

K + αE
[

Ē(0)⊗R1(Ē(0))
])]

+ divxE
[

R1R0(Ē(0))divx
(

ρĒ(0)
)]

.

This can be rewritten as
〈ψ, µρ〉 = divx(K♯∇xρ+Ψρ), (6.11)
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where K♯ and Ψ are given in (1.21) and (1.22) respectively. Note that this is consistent
with the result (5.30) obtained for a Ē independent on x (indeed, the drift coefficient
Ψ vanishes if Ē is independent on x). To compute the second-order part in (6.10), we
have two terms to consider: 〈J(f)⊗ J(f), µρ〉 and 〈R0(e)⊗ J(f), µρ〉. We have already
established

〈R0(e)⊗ J(f), µρ〉 = E
[

R1R0(Ē(0))⊗ (ρĒ(0))
]

.

By (5.24) and (5.27), we have also

〈J(f)⊗ J(f), µρ〉 = E
[

(ρR1(Ē(0))) ⊗ (ρĒ(0))
]

.

It follows by the resolvent identity R1R0 = R0 −R1 that

∫

E×F
D2
ρϕ(ρ) · (divx(H(f)),divx(J(f)))dµρ(f, e)

= ED2
ρϕ(ρ) · (divx(ρR0(Ē(0))),divx(ρĒ(0))). (6.12)

6.1.3 First and second correctors

Recall (see (1.16), (1.17)) that

J̄m(f) =

∫∫

TN×RN

|v|mf(x, v)dxdv, Gm =
{

f ∈ L1(TN × R
N ); J̄m(f) < +∞

}

.

Recall also that F = H σ̄(TN ). Let us introduce the following notations. We write a . b
with the meaning that a ≤ Cb, where the constant C may depend on α (cf. (2.6)), on
C0
α (cf. (2.22)), on various irrelevant constants, and on the dimension N .

Proposition 6.1. Let ϕ be of the form (6.3), with ξ ∈ C3(TN ) and ψ a Lipschitz
function on R such that ψ′ ∈ C∞

b (R). Let ϕ1, ϕ2 be the correctors defined by (6.4), (6.8)
respectively. Then ϕ1, ϕ2 satisfy L♯ϕi(f, e) < +∞, L♭ϕi(f, e) < +∞ for all f ∈ G3,
e ∈ F and are in the domain of L ε. We have the estimates

|ϕ1(f, e)| . ‖ψ‖W 1,∞(R)‖ξ‖C1(TN )(J̄0(f) + J̄1(f)), (6.13)

and
|L♭ϕ1(f, e)| . ‖ψ‖W 2,∞(R)‖ξ‖2C2(TN )(|J̄0(f)|2 + |J̄2(f)|2), (6.14)

on ϕ1 and the following estimates on ϕ2:

|ϕ2(f, e)| . ‖ψ‖W 2,∞(R)‖ξ‖2C2(TN )(|J̄0(f)|2 + |J̄2(f)|2), (6.15)

and
|L♭ϕ2(f, e)| . ‖ψ‖W 3,∞(R)‖ξ‖3C3(TN )(|J̄0(f)|3 + |J̄3(f)|3), (6.16)

for all f ∈ G3, for all e ∈ F with ‖e‖F ≤ α.
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Proof of Proposition 6.1. Let us focus on the estimate (6.15) on |ϕ2(f, e)|. Since

(h,Dfϕ(ρ)) = ψ′
(

〈ρ, ξ〉L2(TN )

)

〈ρ(h), ξ〉L2(TN ),

the equation (6.6) gives a first corrector

ϕ1(f, e) = ψ′
(

〈ρ, ξ〉L2(TN )

)

〈J(f) + ρ(f)R0(e),∇xξ〉L2(TN ). (6.17)

For simplicity, let us denote by ψ′, ψ′′, . . . the derivatives of ψ evaluated at the point
〈ρ, ξ〉L2(TN ). By (6.9), we have

L♭ϕ1(f, e) = ψ′
∫

TN

K(f):D2
xξ + J(f) · ∇x[R0(e) · ∇xξ]dx

+ ψ′′〈J(f),∇xξ〉L2(TN )〈J(f) + ρ(f)R0(e),∇xξ〉L2(TN ), (6.18)

and

ϕ2(f, e) =

∫ ∞

0
E(f,e) [L♭ϕ1(ft, Et)− 〈L♭ϕ1, µρ〉] dt, (6.19)

where ft is obtained either by (3.3) or (3.4) with s = 0. Consider the LB-case. There
are two terms in ft and three terms in L♭ϕ1, which makes at least six terms to consider.
We find out more than six terms actually, because of the translations in v. Consider the
first term in (3.3). By (5.22), and for

wt :=

∫ t

0
Es(e)ds,

we have

K(f(· − wt)) =K(f) + J(f)⊗ wt + wt ⊗ J(f) + ρ(f)w⊗2
t ,

J(f(· − wt)) =J(f) + ρ(f)wt.

In (6.18)-(6.19), and regarding the linear terms with factor ψ′, this gives the contributions

Φ2,a = ψ′
∫

TN

∫ ∞

0
e−tE

[

K(f) + 2J(f)⊗ wt + ρ(f)w⊗2
t

]

:D2
xξdtdx,

and

Φ2,b = ψ′
∫

TN

∫ ∞

0
e−tE [(J(f) + ρ(f)wt) · ∇x[R0(Et(e)) · ∇xξ]] dtdx.

Using the bound ‖wt‖F ≤ t sups∈[0,t] ‖Es(e)‖F and (2.6), (2.21), we have

|Φ2,a|, |Φ2,b| . ‖ψ′‖L∞(R)‖ξ‖C2(TN )(J̄0(f) + J̄1(f) + J̄2(f)).
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Since J̄1(f) ≤ 1
2 J̄0(f) +

1
2 J̄2(f), this gives us a bound by ‖ψ′‖L∞(R)‖ξ‖C2(TN )(J̄0(f) +

J̄2(f)). Using (5.22) again, and still regarding the linear terms with factor ψ′ only, we
see that the second term in the expansion (3.3) of fLBt has the contributions

Φ2,c = ψ′
∫

TN

∫ ∞

0
(θc(t)− θc(+∞))dtdx, Φ2,d = ψ′

∫

TN

∫ ∞

0
(θd(t)− θd(+∞))dtdx,

where

θc(t) =ρ(f)

∫ t

0
e−(t−σ)

[

K + E

(
∫ t

σ
Es(e)ds

)⊗2
]

:D2
xξdσ, (6.20)

θd(t) =ρ(f)

∫ t

0
e−(t−σ)

E

[
∫ t

σ
Es(e)ds · ∇x[R0(Et(e)) · ∇xξ]

]

dσ, (6.21)

By standard manipulations on the integrals in (6.20), we have

θc(t) = ρ(f)(1− e−t)K:D2
xξ + 2ρ(f)

∫ t

0
e−σ

∫ σ

0

∫ σ

r
Γe(t− r, t− s):D2

xξdsdrdσ,

where the covariance Γe is defined by (2.23). The most delicate term to estimate in Φ2,c

is

Φ∗
2,c = 2

∫

TN

ρ(f)

∫ ∞

0

∫ t

0
e−σ

∫ σ

0

∫ σ

r

[

Γe(t− r, t− s)− Γ̄(s− r)
]

:D2
xξdsdrdσdtdx.

The other terms are bounded by ‖ξ‖C2(TN )(J̄0(f)+ J̄2(f)) using (2.6). Using also (2.24),
we have

|Φ∗
2,c| . 2J̄0(f)‖ξ‖C2(TN )

∫ ∞

0

∫ t

0
e−σ

∫ σ

0

∫ σ

r
γmix(t− s)dsdrdσdt

. 2J̄0(f)‖ξ‖C2(TN )

∫ ∞

0

∫ t

0
s(e−s − e−t)γmix(t− s)dsdt.

Neglecting the term −e−t and using (2.19) gives a bound |Φ∗
2,c| . 2J̄0(f)‖ξ‖C2(TN ). We

have also

θd(t) = ρ(f)

∫ t

0
e−σ

∫ σ

0
E [Et−s(e) · ∇x[R0(Et(e)) · ∇xξ]] dsdσ.

Conditioning on Gt−s, we see that

E [Et−s(e)⊗R0(Et(e))] = e(t−s)A
[

ψ ⊗ esAR0ψ
]

(e), ψ(e) = e.
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By (2.18), (2.21), (2.19), we obtain
∥

∥

∥

∥

∥

∫ ∞

0

∫ t

0
e−σ

∫ σ

0

[

e(t−s)A
[

ψ · ∇x(e
sAR0ψ · ∇xξ)

]

(e)

− 〈ψ · ∇x(PsR0ψ · ∇xξ), ν〉
]

dsdσdt

∥

∥

∥

∥

∥

C(TN )

≤ α2

∫ ∞

0

∫ t

0
e−σ

∫ σ

0
γmix(t− s)dsdσdt‖ξ‖C1(TN )

≤ α2‖ξ‖C1(TN ).

With this estimate, it is easy to prove that |Φ2,d| . ‖ξ‖C2(TN )J̄0(f). Let us look as
the quadratic terms with factor ψ′′ now. There are two terms in (3.3), so four terms
Φ2,e, . . . ,Φ2,h to consider here. The first term in (3.3) has a factor e−t, like in Φa, Φb.
There is no contribution from 〈L♭ϕ1, µρ〉 in Φ2,e,Φ2,f ,Φ2,g hence, and the convergence of
the integral in (6.19) is clear. Therefore, using the same arguments as above, we obtain
the estimates

|Φ2,e|, |Φ2,f |, |Φ2,g| . ‖ψ′′‖L∞(R)‖∇xξ‖2C1(TN )(|J̄0(f)|2 + |J̄1(f)|2). (6.22)

Let us illustrate this on the example of Φ2,g. We have

Φ2,g = ψ′′
∫ ∞

0
e−t
∫ t

0
e−(t−σ)

E

[
∫ t

σ
〈ρ(f)Er(e),∇xξ〉L2(TN )dr

×〈J(f) + ρ(f)

∫ t

0
Es(e)ds+ ρ(f)R0(Et),∇xξ〉L2(TN )

]

,

which gives (6.22). The last term Φ2,h is

Φ2,h = ψ′′
∫ ∞

0
(θh(t)− θh(+∞))dt,

where

θh(t) = E

∫ t

0

∫ t

σ

∫ t

0

∫ t

σ′
e−(t−σ)e−(t−σ′)〈ρ(f)Es(e),∇xξ〉L2(TN )

× 〈ρ(f)Es′(e) + c(t)−1ρ(f)R0(Et(e)),∇xξ〉L2(TN )ds
′dsdσ′dσ.

The coefficient c(t) is

c(t) =

∫ t

0

∫ t

σ′
e−(t−σ′)ds′dσ′ =

∫ t

0
σe−σ = 1− (t+ 1)e−t.

The technique used to estimate the terms Φ2,c and Φ2,d applies here to give

|Φ2,h| . ‖ψ′′‖L∞(R)‖∇xξ‖2C1(TN )|J̄0(f)|2.
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This concludes the estimate on ϕ2 in the LB-case. The estimate on ϕ2 in the FP-case
is obtained by the same arguments. This follows from the expressions for K(ft), J(ft),
which involve various terms, similar to those estimated in the LB-case. For example, a
careful computation based on (3.4) and (5.22) gives

K(fFPt ) =ρ(f)

[

(1− e−2t)K +

(∫ t

0
e−(t−σ)Eσ(e)dσ

)⊗2
]

+ e−2tK(f)

+ e−t
[∫ t

0
e−(t−σ)Eσ(e)dσ ⊗ J(f) + J(f)⊗

∫ t

0
e−(t−σ)Eσ(e)dσ

]

.

A comparable expansion for J(fFPt ) gives the result, like in the LB-case. Using (2.22),
a careful study of the terms composing ϕ2 shows that ϕ1 and ϕ2 are of the form (4.29)
with some ξi as in Remark 4.1. By Proposition 4.4, we deduce that L♯ϕi(f, e) < +∞,
L♭ϕi(f, e) < +∞ for all f ∈ G3, e ∈ F and that ϕ1 and ϕ2 are in the domain of L ε.
There remains to prove (6.16). Compared to the development of ϕ2, when computing
L♭ϕ2, still more terms appear, which combine the derivatives of ψ up to the order three.
However, all the questions of convergence of the integrals with respect to t have been
dealt with in the estimate of ϕ2. Although lengthy, it is not problematic, to prove (6.16):
we do not expound that part thus.

Remark 6.1 (Linear test function). In Section 6.3, we apply Proposition 6.1 to a linear
test-function ϕ(ρ) = 〈ρ, ξ〉L2(TN ), which means ψ′ = 1, ψ′′ = 0. In that case, the bounds
on the first corrector is a little bit simpler: we have

|ϕ1(f, e)| . ‖ξ‖C1(TN )(J̄0(f) + J̄1(f)), (6.23)

and
|L♭ϕ1(f, e)| . ‖ξ‖C2(TN )(J̄0(f) + J̄2(f)), (6.24)

for all f ∈ G, for all e ∈ F with ‖e‖F ≤ α.

By Theorem 4.3, Remark 4.2 and Theorem B.1, we obtain the following corollary to
Proposition 6.1.

Corollary 6.2. Let ϕ be of the form (6.3), with ξ ∈ C3(TN ) and ψ a Lipschitz func-
tion on R such that ψ′ ∈ C∞

b (R). Let ϕ1, ϕ2 be the correctors defined by (6.4), (6.8)
respectively. Let θ be the correction of ϕ at order 0, 1 or 2:

θ ∈ {ϕ,ϕ + εϕ1, ϕ+ εϕ1 + ε2ϕ2}.

Then

M ε
θ (t) := θ(f εt , Ē

ε
t )− θ(fin, Ē0)−

∫ t

0
L

εθ(f εs , Ē
ε
s)ds (6.25)

is a (Gt/ε2)-martingale with quadratic variation given by

〈M ε
θ ,M

ε
θ 〉t =

∫ t

0

[

L
ε|θ|2 − 2θL εθ

]

(f ε(s), Ēε(s))ds,

for all t ≥ 0.

41



6.2 Bounds on the moments

Recall that J̄m(f) denotes the m-th moment of f (see (1.16)) and that Gm is the state
space of functions f ∈ L1(TN × R

N) such that J̄m(f) < +∞.

Proposition 6.3. Let f ε0 ∈ Gm. Let (f εt ) be the unique mild solution to (1.7) on [0, T ]
given by Proposition 4.1 or 4.2. Then, for all m ∈ N, almost-surely, for all t ≥ 0,

J̄m(f
ε
t ) ≤ C(α,m, t)

[

J̄m(f
ε
0 ) + J̄0(f

ε
0 )
]

, (6.26)

where C(α,m, t) is a constant which is bounded for t in a bounded set.

Proof of Proposition 6.3. By density, we can assume that fin ∈W 2,1(TN ×R
N). We can

also replace v 7→ |v|m by v 7→ |v|mχη(v), where χη is a function with compact support
which converges pointwise to 1 when η → 0. By the results of propagation of regularity
given in Proposition 4.1 and Proposition 4.2, the following computations are licit then.
For simplicity, we take directly χ ≡ 1. First, we have

d

dt
J̄2m(f

ε
t ) =

1

ε2

[

J̄2m(Qf
ε
t ) + 2m

∫∫

TN×RN

|v|2(m−1)v · Ēεt f εt (x, v)dxdv
]

. (6.27)

If m = 0, then, for all t ≥ 0, almost-surely, J̄0(f
ε
t ) = J̄0(f

ε
0 ) since the equation is

conservative. If m > 0, then we use the following inequality (which is a consequence of
Young’s inequality)

2m|v|2m−1 ≤ 1

2α
|v|2m + [2α(2m − 1)]2m−1,

to infer, by (6.27) and (2.8), that

d

dt
J̄2m(f

ε
t ) ≤

1

ε2

[

J̄2m(Qf
ε
t ) +

1

2
J̄2m(f

ε
t ) + α[2α(2m − 1)]2m−1J̄0(f

ε
t )

]

.

We have, in the case Q = QLB,

J̄2m(QLBf) = J̄2m(M)J̄0(f)− J̄2m(f).

If Q = QFP, then

J̄2m(QFPf) =− 2m

∫∫

TN×RN

|v|2(m−1)v · (∇vf(x, v) + vf(x, v))dxdv

=(N + 2(m− 1))J̄2(m−1)(f)− 2mJ̄2m(f).

In the first case Q = QLB, we obtain

J̄2m(f
ε
t ) ≤ e−

t

2ε2 J̄2m(f
ε
0 ) + 2(1− e−

t

2ε2 )
[

J̄2m(M) + α[2α(2m − 1)]2m−1
]

J̄0(f
ε
0 ).

This gives (6.26). If Q = QFP, we conclude similarly by a recursive argument on m.
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6.3 Tightness

For σ > 0, we denote by H−σ(TN ) the dual space of Hσ(TN ). Let Jσ1 = (Id −∆x)
−σ.

In the standard Fourier basis (wk) of L
2(TN ), J1 is given by

Jσ1 wk = (1 + λk)
−σwk, λk = 4π2|k|2, wk(x) = exp(2πik · x).

As J
σ/2
1 is an isometry L2(TN ) → Hσ(TN ), the norm on H−σ(TN ) is

‖Λ‖H−σ(TN ) =





∑

k∈Zd

|〈Λ, Jσ/21 wk〉L2(TN )|2




1/2

. (6.28)

Recall also that, by the Sobolev embedding, for all σ > 2 + N
2 , there is a constant

C(σ) ≥ 0 such that
‖ξ‖C2(TN ) ≤ C(σ)‖ξ‖Hσ(TN ). (6.29)

Proposition 6.4 (Tightness). Let f ε0 ∈ G3. Let (f εt ) be the unique mild solution to
(1.7) on [0, T ] given by Proposition 4.1 or 4.2. Let σ > 2+ 3

2N . Then (ρεt )t∈[0,T ] is tight
in the space C([0, T ];H−σ(TN )).

Proof of Proposition 6.4. Let us fix σ > σ2 > σ1 such that

σ1 > 2 +
N

2
, σ2 > σ1 +

N

2
, σ > σ2 +

N

2
. (6.30)

Let us introduce also

ζε = ρε − εdivx(J(f
ε) + ρ(f ε)R0(Ē

ε
t )).

We show first that ρε is close to ζε in C([0, T ];H−σ(TN )) and then prove that (ζε) is
tight in C([0, T ];H−σ(TN )).

Step 1. ρε is close to ζε. Let ξk = J
σ2/2
1 wk. Let ϕk(ρ) = 〈ρ, ξk〉L2(TN ) and let

ϕk,1(f, e) = 〈J(f) + ρ(f)R0(e),∇xξk〉L2(TN )

be the first corrector associated to ϕk. By the estimate on the first corrector in Propo-
sition 6.1 and the estimates on the moments of f ε in Proposition 6.3, we have

|〈ρε(t)− ζε(t), ξk〉L2(TN )| . ε‖ξk‖C1(TN ) . ε‖ξk‖C2(TN ). (6.31)

In (6.31), we have extended the notation a . b to denote the inequality a ≤ Cb, where C
depends on α, on C0

α, on N and also on the constant C(σ1) in (6.29), on sup0<ε<1 J̄m(f
ε
0 )

for m = 0, . . . , 3 and on T . Note that C should not depend on ε, nor on ω.

Let us prove that the sequence (‖ξk‖C2(TN )) is square-summable. By (6.29), it is sufficient
to consider the behaviour of (‖ξk‖Hσ1 (TN )). This sequence is square summable by (6.30)
since

‖ξk‖Hσ1 (TN ) = ‖wk‖Hσ1−σ2 = λ
σ1−σ2

2

k ,
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with λk = 4π2|k|2. Summing the square of (6.31) over k, we obtain thus

‖ρε − ζε‖C([0,T ];H−σ(TN )) . ε, (6.32)

almost-surely.

Step 2. (ζε) is tight in C([0, T ];H−σ(TN )). For M > 0, δ ∈ (0, 3/4), define the set

KM =
{

ζ ∈ C([0, T ];H−σ(TN )); ‖ζ‖Cδ([0,T ];H−σ(TN )) + ‖ζ‖C([0,T ];H−σ1(TN )) ≤M
}

.

Since the injection H−σ1(TN ) →֒ H−σ(TN ) is compact, and by the Ascoli theorem, KM

is compact in C([0, T ];H−σ(TN )). Our aim is to show that P(ζε /∈ KM ) is small for
large M , uniformly with respect to ε. Using the Markov inequality, this follows from the
bounds

E‖ζε‖4Cδ([0,T ];H−σ(TN )) . 1, E‖ζε‖4C([0,T ];H−σ1(TN )) . 1. (6.33)

The second bound in (6.33) is a direct consequence of the estimate on the moments of
order zero and one of f ε, cf. Proposition 6.3, and of the injection L1(TN ) →֒ H−σ1(TN )
due to the condition (6.30) on σ1. To obtain an estimate on the time increments of ζε,
we introduce the perturbed test function ϕεk = ϕk+εϕk,1 and the martingale (cf. (6.25))

M ε
k(t) = ϕεk(f

ε(t), Ēε(t))− ϕεk(f
ε(0), Ēε(0)) −

∫ t

0
L

εϕεk(f
ε(s), Ēε(s))ds. (6.34)

For 0 ≤ s ≤ t ≤ T , the time increment 〈ζε(t)− ζε(s), ξk〉L2(TN ) reads

〈ζε(t)− ζε(s), ξk〉L2(TN ) =

∫ t

s
L

εϕεk(f
ε(σ), Ēε(σ))dσ +M ε

k(t)−M ε
k(s).

This gives us two terms to estimate. Regarding the first term, we compute L εϕεk =
L♭ϕk,1. By Proposition 6.1 and (6.24), we obtain |L εϕεk(f, e)| . ‖ξk‖C2(TN )(J̄0(f) +
J̄2(f)). The estimates on the moments of f ε yields the following bound:

∣

∣

∣

∣

∫ t

s
L

εϕεk(f
ε(σ), Ēε(σ))dσ

∣

∣

∣

∣

2

. |t− s|2‖ξk‖2C2(TN ), (6.35)

almost-surely. To estimates the time increments of the martingale M ε
k(t), we use the

Burkholder, Davis, Gundy inequality, [5]:

E|M ε
k(t)−M ε

k(s)|4 ≤ E sup
s≤r≤t

|M ε
k(r)−M ε

k(s)|4 . E|〈M ε
k ,M

ε
k〉t − 〈M ε

k ,M
ε
k〉s|2.

By Corollary 6.2, the quadratic variation of M ε
k is

〈M ε
k ,M

ε
k〉t =

∫ t

0

[

L
ε|ϕεk|2 − 2ϕεkL

εϕεk
]

(f ε(s), Ēε(s))ds.
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Since Df |ϕεk|2 − 2ϕεkDfϕ
ε
k = 0, only the part ε−2A of the generator L ε is contributing

to the quadratic variation. Since, in addition, A|ϕ|2 = 0, Aϕ = 0, we obtain

〈M ε
k ,M

ε
k〉t =

∫ t

0

[

A|ϕk,1|2 − 2ϕk,1Aϕk,1
]

(f ε(s), Ēε(s))ds. (6.36)

As ϕk,1(f, e) = c+ Λ(R0(e)), where Λ(e) = 〈ρ(f)e,∇ξk〉L2(TN ), we have

[

A|ϕk,1|2 − 2ϕk,1Aϕk,1
]

(f, e) = A|Λ(R0(e))|2 − 2Λ(R0(e))AΛ(R0(e)).

Since ‖Λ‖ ≤ J̄0(f)‖ξk‖C1(TN ), the estimates (2.22) give, for σ ≤ T ,

∣

∣

[

A|ϕk,1|2 − 2ϕk,1Aϕk,1
]

(f ε(σ), Ēε(σ))
∣

∣ . ‖ξk‖2C2(TN ),

almost-surely, and we obtain

E|M ε
k(t)−M ε

k(s)|4 . |t− s|2‖ξk‖4C2(TN ). (6.37)

Gathering (6.35) and (6.37), we see that

E

∣

∣

∣
〈ζε(t)− ζε(s), ξk〉L2(TN )

∣

∣

∣

4
. |t− s|2‖ξk‖4C2(TN ),

for 0 ≤ s, t ≤ T . By the Garsia - Rodemich - Rumsey inequality, [2, Theorem 7.34] with
q = 4, α = 1

q + δ, we obtain

E






sup
s 6=t

∣

∣

∣〈ζε(t)− ζε(s), ξk〉L2(TN )

∣

∣

∣

4

|t− s|4δ






. Cδ‖ξk‖4C2(TN ). (6.38)

We deduce that

E

[

sup
s 6=t

1

|t− s|4δ
∑

k

∣

∣

∣
〈ζε(t)− ζε(s), ξk〉L2(TN )

∣

∣

∣

4
]

. Cδ. (6.39)

We have then

∣

∣

∣

∣

∣

∑

k

∣

∣

∣
〈ζε(t)− ζε(s), J

σ/2
1 wk〉L2(TN )

∣

∣

∣

2
∣

∣

∣

∣

∣

2

≤
∑

k

∣

∣

∣
〈ζε(t)− ζε(s), ξk〉L2(TN )

∣

∣

∣

4∑

k

(1 + λk)
σ2−σ, (6.40)

since J
σ/2
1 wk = (1 + λk)

σ2−σ

2 ξk. The second sum in (6.40) is finite by (6.30). It follows
that E‖ζε‖4

Cδ([0,T ];H−σ(TN ))
. 1 and we conclude that (ρε) is tight in C([0, T ];H−σ(TN )).
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6.4 Convergence to the solution of a Martingale problem

Assume that the hypotheses of Proposition 6.4 are satisfied. Let εN = {εn;n ∈ N},
where (εn) ↓ 0. By the Skorohod theorem [3, p. 70], there is a subset of εN, which we
still denote by εN, a probability space (Ω̃, F̃ , P̃), some random variables {ρ̃ε; ε ∈ εN}, ρ̃
on C([0, T ];H−σ(TN )), such that

1. for all ε ∈ εN, the laws of ρε and ρ̃ε as C([0, T ];H−σ(TN ))-random variables
coincide,

2. P̃-a.s., (ρ̃ε) is converging to ρ̃ in C([0, T ];H−σ(TN )) along εN.

Let (F̃t)t∈[0,T ] be the natural filtration of (ρ̃(t))t∈[0,T ]. Our aim is to show that the process
(ρ̃(t))t∈[0,T ] is solution of the martingale problem associated to the limit generator L .

Proposition 6.5 (Martingale). Let σ > 2+ 3
2N , ξ ∈ Hσ+2(TN ), and let ϕ be defined by

ϕ(ρ) = ψ
(

〈ρ, ξ〉H−σ ,Hσ

)

, where ψ is a Lipschitz function on R such that ψ′ ∈ C∞
b (R).

Then the process

M̃ϕ(t) := ϕ(ρ̃(t))− ϕ(ρ̃(0)) −
∫ t

0
Lϕ(ρ̃(s))ds (6.41)

is a continuous martingale with respect to (F̃t)t∈[0,T ].

Proof of Proposition 6.5. Let 0 ≤ s ≤ t ≤ T . Let 0 ≤ t1 < · · · < tn ≤ s and let Θ be
a continuous and bounded function on [H−σ(TN )]n. Note that F̃s is generated by the
random variables Θ(ρ̃(t1), . . . , ρ̃(tn)), for n ∈ N

∗, (ti)1,n and Θ as above. Our aim is
therefore to prove that

E

[

(M̃ϕ(t)− M̃ϕ(s))Θ(ρ̃(t1), . . . , ρ̃(tn))
]

= 0. (6.42)

Let ϕε = ϕ + εϕ1 + ε2ϕ2 be the second order correction of ϕ, with ϕ1 and ϕ2 given by
Proposition 6.1. We start from the identity (see (6.25))

E
[

(M ε
ϕ(t)−M ε

ϕ(s))Θ(ρε(t1), . . . , ρ
ε(tn))

]

= 0, (6.43)

where

M ε
ϕ(t) := ϕε(f ε(t), Ēεt )− ϕε(fin, Ē

ε
0)−

∫ t

0
L

εϕε(f ε(s), Ēεs)ds, (6.44)

Recall that L εϕε = Lϕ + εL♭ϕ2. By (6.43), the estimates on the correctors (Propo-
sition 6.1) and the uniform estimates on the moments of (f εt ) (Proposition 6.3), we
have

E
[

(Xε
ϕ(t)−Xε

ϕ(s))Θ(ρε(t1), . . . , ρ
ε(tn))

]

= O(ε),

where the process (Xε
ϕ(t)) is

Xε
ϕ(t) = ϕ(ρε(t))− ϕ(ρin)−

∫ t

0
Lϕ(ρε(s))ds.
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By identities of the laws, it follows that

Ẽ

[(

ϕ(ρ̃ε(t))− ϕ(ρ̃ε(s))−
∫ t

s
Lϕ(ρ̃ε(s))ds

)

Θ(ρ̃ε(t1), . . . , ρ̃
ε(tn))

]

= O(ε). (6.45)

We must examine the convergence of each terms in (6.45). By a.s convergence of (ρ̃ε) in
C([0, T ];H−σ(TN )) along εN, we have

[

ϕ(ρ̃ε(t))−
∫ t

0
Lϕ(ρ̃ε(s))ds

]

Θ(ρ̃ε(t1), . . . , ρ̃
ε(tn))

→
[

ϕ(ρ̃(t)) −
∫ t

0
Lϕ(ρ̃(s))ds

]

Θ(ρ̃(t1), . . . , ρ̃(tn))

almost-surely when ε→ 0 along εN. Indeed, Lϕ is continuous on H−σ(TN ), in virtue of
(6.10)-(6.11)-(6.12) and the fact that ξ ∈ Hσ+2(TN ). Since Θ is bounded and ϕ(ρ̃ε(t))
and Lϕ(ρ̃ε(t)) are a.s. bounded by a constant (a consequence of (6.26)), we can apply
the dominated convergence theorem. This gives (6.42).

6.5 Limit SPDE

6.5.1 Covariance

For i, j ∈ {1, . . . , N}, x, y ∈ T
N , we set

H(i, x, j, y) = E

(

[

R0(Ē0(x))
]

i

[

Ē0(y)
]

j

)

. (6.46)

This defines a kernel on the product space
[

L2(TN )
]N

, and an associated operator S,

Sρi(x) =

N
∑

j=1

∫

TN

H(i, x, j, y)ρj (y)dy. (6.47)

Proposition 6.6. The operator S is symmetric, non-negative and trace-class on the

space
[

L2(TN )
]N

.

Proof of Proposition 6.6. That S is non-negative means 〈Sρ, ρ〉 ≥ 0, where 〈·, ·〉 is the

canonical scalar product on
[

L2(TN )
]N

given by

〈ρ, ρ′〉 =
N
∑

i=1

〈ρi, ρ′i〉L2(TN ).

By Lemma 5.6 indeed, we have

〈Sρ, ρ〉 = lim
δ→0

δE

∣

∣

∣

∣

∫ ∞

0
e−δt〈ρ, Ēt〉dt

∣

∣

∣

∣

2

≥ 0.
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Let (ζk) be an orthonormal basis of
[

L2(TN )
]N

. Using the Bessel-Parseval identity, we
have

Trace(S) =
∑

k

〈Sζk, ζk〉 = E〈R0(Ē0), Ē0〉 . 1,

therefore S is trace-class.

Proposition 6.7. The operator S admits a square-root S1/2 which is associated to a
kernel H(1/2).

Proof of Proposition 6.7. By the spectral theorem, there exists an orthonormal basis

(ζk) of
[

L2(TN )
]N

and some non-negative eigenvalues λk ≥ 0 such that

S =
∑

k∈N
λkζk ⊗ ζk, meaning that Sρ =

∑

k∈N
λk〈ρ, ζk〉ζk, ∀ρ.

It follows that the operator S1/2 :=
∑

k∈N λ
1/2
k ζk ⊗ ζk is well-defined, S =

[

S1/2
]2
. In

addition, H is given by

H(i, x, j, y) =
∑

k∈N
λkζk(i, x)ζk(j, y)

and S1/2 is associated to the kernel H(1/2), with

H(1/2)(i, x, j, y) =
∑

k∈N
λ
1/2
k ζk,i(x)ζk,j(y)

and

H(i, x, j, y) = 〈H(1/2)(i, x, ·),H(1/2)(j, y, ·)〉. (6.48)

Proposition 6.8. Let σ̄ ≥ σ ≥ 0. The operator S1/2 can be extended as an operator
[

H−σ(TN )
]N →

[

L2(TN )
]N

which is bounded by α:

∥

∥

∥S1/2(ρ)
∥

∥

∥

[L2(TN )]N
≤ α‖ρ‖

[H−σ(TN )]N
, (6.49)

for all ρ ∈
[

H−σ(TN )
]N

.

Proof of Proposition 6.8. The last line (5.28) in the proof of Lemma 5.6, gives us

∥

∥

∥
S1/2(ρ)

∥

∥

∥

2

[L2(TN )]N
= 〈ρ, S(ρ)〉 =

∫ ∞

0
〈Γ̄(t), ρ⊗ ρ〉dt,

where Γ̄(t) is the covariance defined in Section 2.3. The result follows then from the
estimate (2.25).
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6.5.2 Limit equation

Let (βk(t))k∈N be some independent one-dimensional Wiener processes, let (λk, ζk) de-
note the spectral elements of S, as in the Proof of Proposition 6.7 and let

W (t) =
∑

k∈N
βk(t)ζk (6.50)

be a cylindrical Wiener process on
[

L2(TN )
]N

. Consider the equation (1.25) with the
cylindrical Wiener process W (t) given by (6.50). In a first formal step, we test (1.25)
against a test-function ξ. This gives

d〈ρt, ξ〉H−σ ,Hσ = b(ρt, ξ)dt+
∑

k∈N
σk(ρt, ξ)dβk(t), (6.51)

where

b(ρ, ξ) = 〈ρ,divx(K♯∇xξ)−Ψ∇xξ〉H−σ ,Hσ , σk(ρ, ξ) =
√
2λ

1/2
k 〈ρ∇xξ, ζk〉L2(TN ).

Since
1

2

∑

k∈N
|σk(ρ, ξ)|2 =

∥

∥

∥S1/2(ρ∇xξ)
∥

∥

∥

2

[L2(TN )]N
, (6.52)

the equation (1.25) is indeed the equation associated to the limit generator L .

6.5.3 Resolution of the limit equation

Definition 6.1. Let σ satisfy σ̄ ≥ σ ≥ 0. Let m ∈ N be greater than σ + 2. Let ρin ∈
H−σ(TN ). Let W (t) be given by (6.50). An adapted process ρ ∈ C([0, T ];H−σ(TN )) is
said to be a weak solution to (1.25)-(1.26) in H−σ(TN ) if

〈ρt, ξ〉H−σ ,Hσ = 〈ρin, ξ〉H−σ ,Hσ +

∫ t

0
b(ρs, ξ)ds +

∑

k∈N

∫ t

0
σk(ρs, ξ)dβk(s), (6.53)

for all ξ ∈ Cm(TN ), for all t ∈ [0, T ].

Theorem 6.9. Let σ satisfy σ̄ ≥ σ ≥ 0. Let S1/2 be the Hilbert-Schmidt operator defined
in Section 6.5.1. Let W (t) be given by (6.50). There exists α0 > 0 such that, under the
smallness hypothesis (1.24), we have the following results.

1. Weak solutions to (1.25)-(1.26) in H−σ(TN ), σ ∈ {0, σ̄} are unique.

2. There exists a solution to (1.25)-(1.26) in L2(TN ).

We use the following corollary to items 1-2 in Theorem 6.9.

Corollary 6.10. Let σ satisfy σ̄ ≥ σ ≥ 0. Let S1/2 be the Hilbert-Schmidt operator
defined in Section 6.5.1. Let ρin ∈ L2(TN ). Let W (t) be given by (6.50). Assume (1.24).
Then (1.25)-(1.26) admits a unique weak solution (ρ∗t ) in H−σ(TN ), which coincides
with the weak solution in L2(TN ).
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Proof of Theorem 6.9. For simplicity, we consider only the case Ψ = 0. The adaptation
to the case of a non-trivial Ψ is easy. The existence assertion in item 2 is proved in
[7]. We can apply Theorem 6.24 p. 178 for example in the context of Example 6.23. To
obtain item 1, we prove that

sup
t∈[0,T ]

E

[

‖ρt‖2H−σ(TN )

]

≤ C‖ρin‖2H−σ(TN ), σ ∈ {0, σ̄}. (6.54)

Let us first establish the following estimate

∑

n∈ZN

|n|2
(1 + |m− n|2)σ̄(1 + |n|2)σ ≤ C1

1 + |m2|
(1 + |m|2)σ , σ ∈ {0, σ̄}, (6.55)

where C1 is a constant depending on σ̄ and N . If σ = 0, (6.55) follows from the fact
that

|n|2 ≤ 2|m|2 + 2|m− n|2,
∑

n∈ZN

1 + |n|2
(1 + |n|2)σ̄ < +∞.

If σ = σ̄, we make the distinction between the sum over |n| < 1
2 |m| and |n| ≥ 1

2 |m|. In
the first case, we have |m− n| ≥ |n| and thus

∑

|n|< 1

2
|m|

|n|2
(1 + |m− n|2)σ̄(1 + |n|2)σ̄ ≤ 1

4

|m|2
(1 + |m|2)σ̄

∑

n∈ZN

1

(1 + |n|2)σ̄ .

In the second case, we use again the inequality |n|2 ≤ 2|m|2+2|m−n|2 and the estimate

∑

|n|≥ 1

2
|m|

|m|2 + |m− n|2
(1 + |m− n|2)σ̄(1 + |n|2)σ̄ ≤ 1 + |m|2

(1 + 1
4 |m|2)σ̄

∑

n∈ZN

1 + |n|2
(1 + |n|2)σ̄ ,

to conclude to (6.55). To prove (6.54), we use the Fourier basis {wn : x 7→ exp(2πin ·
x);n ∈ Z

N}. Taking ξ = wn in (6.53), applying Itō’s Formula, using the fact that
K♯ ≥ K = IdN and using (6.52), we see that

1

2
E|〈ρt, wn〉|2

≤ 1

2
E|〈ρin, wn〉|2 − 4π2|n|2

∫ t

0
|〈ρs, wn〉|2ds+

∫ t

0

∥

∥

∥S1/2(ρs∇xwn)
∥

∥

∥

2

[L2(TN )]N
ds,

where all the duality products 〈·, ·〉 are (H−σ,Hσ) duality products. By Proposition 6.8,
we obtain

1

2
E|〈ρt, wn〉|2

≤ 1

2
E|〈ρin, wn〉|2 − 4π2|n|2

∫ t

0
|〈ρs, wn〉|2ds+ α2

∫ t

0
‖ρs∇xwn‖2[H−σ̄(TN )]N

ds. (6.56)
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The integrand in the last term in (6.56) is

‖ρs∇xwn‖2[H−σ̄(TN )]N
=
∑

m∈ZN

(1 + |m|2)−σ̄ |〈ρs, wm · ∇xwn〉|2

=4π2
∑

m∈ZN

(1 + |m|2)−σ̄|n|2|〈ρs, wm+n〉|2

=4π2
∑

m∈ZN

(1 + |m− n|2)−σ̄|n|2|〈ρs, wm〉|2.

Here we use the remarkable identities ∇wn = 2πinwn and wmwn = wm+n. If we multiply
(6.56) by (1 + |n|2)−σ and sum the result over n ∈ Z

N , (6.55) gives

E‖ρt‖2H−σ(TN ) ≤ E‖ρin‖2H−σ(TN ) + C1α
2

∫ t

0
E‖ρs‖2H−σ(TN )ds

if α2C1 < 1. Using the Gronwall Lemma, we conclude to (6.54).

6.6 Uniqueness for the limit martingale problem

Denote by (ρ∗t ) the weak solution in L2(TN ) to (1.25)-(1.26) given by Corollary (6.10).

Proposition 6.11 (Markov property). Let (FW
t ) be the filtration generated by the cylin-

drical Wiener process (6.50). For ϕ : L2(TN ) → R measurable and bounded, define

P ∗
t ϕ(ρin) = Eϕ(ρ∗t ). (6.57)

Then (P ∗
t )t≥0 is a semi-group with generator L and (ρ∗t ) is a Markov process with semi-

group (P ∗
t )t≥0:

E
[

ϕ(ρ∗t+s)|FW
s

]

= (P ∗
t ϕ)(ρ

∗
s), a.s., (6.58)

for all t, s ≥ 0, t+ s ≤ T .

Proof of Proposition 6.11. We only give the sketch of the proof. First, assume that we
regularize the equation (1.25) into the following SPDE:

dρδ = divx(K♯∇xρ
δ +Ψρδ)dt+

√
2Jδdivx(ρ

δS1/2dW (t)), (6.59)

where Jδ = (Id − δ∆x)
−1/2, and let us solve (6.59) starting from ρin (we apply Theo-

rem 7.4 in [7]). We claim that the proof of Theorem 6.9 (case σ = 0) can be adapted to
prove, under the smallness hypothesis (1.24), that ρδ → ρ∗ in Cδ([0, T ];L2(TN )). The
process (ρδt )t∈[0,T ] is Markov and satisfies the analog to (6.58) (see Theorem 9.8 in [7]).

By taking the limit [ε→ 0], we obtain (6.58) for ϕ continuous and bounded on L2(TN ).
The remaining arguments to conclude the proposition are then standard (see the proof
of Theorem 4.3).

We can now state the following uniqueness result. The proof is very similar to the proof
of Theorem 4.1 p. 181-184 in [10], but is also different in many anecdotal aspects, so we
expound on it.
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Proposition 6.12 (Uniqueness for the limit martingale problem). Let (ρ♯t) be a pro-
cess in C([0, T ];H−σ(TN )) on a probability space (Ω♯,P♯,F ♯) with natural filtration

(F ♯
t )t∈[0,T ]. Let σ > 2 + 3

2N , ξ ∈ Hσ+2(TN ), and let ϕ be defined by

ϕ(ρ) = ψ
(

〈ρ, ξ〉H−σ ,Hσ

)

,

where ψ ∈ C∞
b (R). Assume that the process (M ♯

ϕ(t)) defined by

M ♯
ϕ(t) := ϕ(ρ♯(t))− ϕ(ρ♯(0)) −

∫ t

0
Lϕ(ρ♯(s))ds (6.60)

is a continuous martingale with respect to (F ♯
t )t∈[0,T ]. Then

E
♯
[

ϕ(ρ♯t+s)|F ♯
t

]

= P ∗
s ϕ(ρ

♯
t), (6.61)

for all s, t ≥ 0 with t+ s ≤ T .

Proof of Proposition 6.12. Without loss of generality, we may assume that T = +∞. Let
us first show that the martingale property for (M ♯

ϕ(t)) implies the martingale property
for

M ♯
ψ(t) := ψ(t, ρ♯(t)) − ψ(0, ρ♯(0))−

∫ t

0
[(∂t + L )ψ] (s, ρ♯(s))ds, (6.62)

where ψ(t, ρ) = θ(t)ϕ(ρ) with θ ∈ C1(R+). If (M(t))t≥0 is a continuous martingale, then

t 7→M(t)θ(t)−
∫ t

0
M(σ)θ′(σ)dσ

is a martingale. We apply this to (M ♯
ϕ(t)) and use the Fubini theorem to obtain the fact

that (6.62) is a continuous martingale. Taking now θ(t) = e−λt, λ > 0 gives us

e−λ(t+r)E♯[ϕ(ρ♯(t+ r))|F ♯
t ] = e−λtϕ(ρ♯(t)) +E

♯
[

∫ t+r

t
λe−λs(λ−1

L − Id)ϕ(ρ♯(s))ds
∣

∣

∣
F ♯
t

]

.

Doing the change of variable s = s′ + t in the integral shows that

ϕ(ρ♯(t)) = e−λrE[ϕ(ρ♯(t+ r))|F ♯
t ]− E♯

[

∫ r

0
λe−λs(λ−1

L − Id)ϕ(ρ♯(s + t))ds
∣

∣

∣
F♯t
]

.

We let r → +∞ to obtain

ϕ(ρ♯(t)) = E♯
[

∫ +∞

0
λe−λs(Id− λ−1

L )ϕ(ρ♯(s + t))ds
∣

∣

∣Ft♯
]

. (6.63)

The convergence is easy to justify since ϕ and Lϕ are bounded. Compare (6.63) to the
formula

R∗
λ =

∫ ∞

0
e−λtP ∗

t dt (6.64)
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for the resolvent associated to (P ∗
t ). Actually, both (6.63) and (6.64) can be written

more concisely by introducing a probability space (Ω0,P0,F0) and a random variable τ
on Ω0 with exponential distribution of parameter λ. We have then

J∗
λϕ := λR∗

λϕ = E
0P ∗

τ ϕ, ϕ(ρ♯(t)) = E
♯
[

E
0 [J∗

λ ]
−1 ϕ(ρ♯(τ + t))

∣

∣

∣
F ♯
t

]

.

By iteration, we obtain, for k ≥ 1,

[J∗
λ]
k ϕ = E

0P ∗
σk
ϕ, [J∗

λ ]
kϕ(ρ♯(t)) = E

[

E
0ϕ(ρ♯(σk + t))

∣

∣

∣F ♯
t

]

, (6.65)

where σk = τ1+ · · ·+τk with τ1, . . . , τk being some i.i.d. random variables of exponential
distribution E(λ). We take λ = N , where N → +∞ and k = [Ns] for a given s > 0. By
the weak law of large numbers, we have

σk → s

in probability. Taking the limit [k → +∞] in (6.65), we obtain

lim
N→+∞

[J∗
N ]

[ns] ϕ = P ∗
s ϕ, P ∗

s ϕ(ρ
♯(t)) = E

[

ϕ(ρ♯(s + t))
∣

∣

∣
F ♯
t

]

.

This is the desired result.

Conclusion. Using Proposition 6.5, we can apply Proposition 6.12 to ρ̃. Taking t = 0
in (6.61), we obtain

Eϕ(ρ̃s) = P ∗
s (ρin) = Eϕ(ρ∗s).

Since the class of test functions ϕ as in Proposition 6.12 is a separating class (cf. the
discussion after (6.3)), we obtain the identity in law of (ρ̃t) and (ρ∗t ). By uniqueness
of the limit, we also deduce that the whole sequence (ρεt ) is converging in law. This
concludes the proof of Theorem 1.2.

Remark 6.2 (Identification of the limit by representation of martingale). There is an
alternative approach to the identification of (ρ̃t). It consists in computing the quadratic
variation of the martingale (6.41). Indeed, using Theorem B.1, we can show that

〈M̃, M̃ 〉t = 2

∫ t

0

∥

∥

∥S1/2(ρ̃s∇xξ)
∥

∥

∥

2

[L2(TN )]N
ds.

Then we use a theorem of representation for martingales (see, e.g., Theorem 8.2 p. 220
in [7]) to introduce the cylindrical Wiener process W (t) and the equation 1.25. The
interest of this method is that one only needs to show the limit martingale property of
Proposition 6.5 for linear and quadratic test-functions. However, in the approach we
have adopted here, we do not need any theorem of representation for martingales, and
it may be considered more consistent that this alterniative one, since we remain focused
on the Martingale Problem.
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ANR-11-LABX-0020-01.
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A Resolution of the unperturbed equation

Consider the LB case first. By integration with respect to v in the equation

∂tft + E(t, s; e) · ∇vft + ft = ρ(ft)M, (A.1)

one checks that ρ(ft) = ρ(f) for all t ≥ 0. Therefore, the formula (3.3) is simply the
Duhamel formula associated to the PDE (A.1). In the FP case, instead of working on
the PDE

∂tft + E(t, s; e) · ∇vft = QFPft, (A.2)

we work on the solution Vt to the equation

dVt = (−Vt + E(t, s; e))dt +
√
2dBt, t ≥ s. (A.3)

If Vs has the law of density f with respect to the Lebesgue measure on R
N , then by

(1.12) (with no dependence on x here), we obtain, by explicit integration in (A.3),

∫

RN

ϕ(v)fFPs,t (v)dv

=

∫

RN

∫

RN

ϕ

(

e−(t−s)v +
∫ t

s
e−(t−σ)E(σ, s; e)ds +

√

1− e−2(t−s) w

)

M(w)f(v)dwdv.

A change of variable gives (3.4) then.

B Martingale characterization of Markov processes: qua-

dratic variation

This section is devoted to the proof of (B.5), for which we found no specific reference
(a sketch of the proof is given in [11, Paragraph 6.9.1]). We recall the following notion
from [19]. Let E be a Polish space. Let

BC(E) = {ϕ : E → R, ϕ continous and bounded }, ‖ϕ‖BC(E) = sup
x∈E

|ϕ(x)|. (B.1)

A family of operator Pt : BC(E) → BC(E) indexed by R+ is said to be a π-contraction
semi-group if

1. the map t ∋ R+ 7→ Ptϕ(x) ∈ E is continuous for every ϕ ∈ BC(E), x ∈ E,

2. for any sequence (ϕn) of BC(E) which converges pointwise to ϕ ∈ BC(E) and
satisfies supn ‖ϕn‖BC(E) < +∞ (this mode of convergence is denoted ϕn

π−→ ϕ in

what follows1), for t ≥ 0, we have Ptϕn
π−→ Ptϕ,

3. ‖Ptϕ‖BC(E) ≤ ‖ϕ‖BC(E) for all ϕ ∈ BC(E).

1this is called the bp-convergence in [10], see [10, p. 111]
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The generator L associated to (Pt) is defined by

D(L ) =
{

ϕ ∈ BC(E);∃ψ ∈ BC(E),∆tϕ
π−→ ψ when t→ 0+

}

, (B.2)

Lϕ(x) = lim
t→0+

∆tϕ(x), (B.3)

where

∆t =
Pt − Id

t
.

Theorem B.1 (Martingale characterization of Markov processes). Let E be a Polish
space, let (Gt) be a filtration. Let (Xt) be an E-valued time-homogeneous Markov process
with respect to (Gt), with semi-group (Pt). Assume that (Pt) is a π-contraction semi-
group of generator L . Assume that (Xt) is progressively measurable with respect to (Gt).
Then, for all continuous bounded ϕ : E → R in the domain of L ,

Mϕ(t) := ϕ(Xt)− ϕ(X0)−
∫ t

0
Lϕ(Xs)ds (B.4)

is a (Gt)-martingale. Furthermore, if (Xt) is càdlàg and stochastically continuous, and
if ϕ2 is in the domain of L , then the quadratic variation of (Mt) is

[Mϕ,Mϕ]t =

∫ t

0
(L |ϕ|2 − 2ϕL ϕ)(Xs)ds. (B.5)

Proof of Theorem B.1. Let us prove first that (Mϕ(t)) is a martingale. Let 0 ≤ s ≤ t.
We have

E[Mϕ(t)|Gs]−Mϕ(s) = E[Mϕ(t)−Mϕ(s)|Gs] = Pt−sϕ(Xs)−ϕ(Xs)−
∫ t

s
[Pσ−sLϕ](Xs)dσ.

We use the relation d
dtPtϕ(x) = PtLϕ(x) (see [19, Proposition 3.2]) to conclude. Indeed,

this gives

Pt−sϕ− ϕ =

∫ t

s
Pσ−sLϕdσ,

and thus E[Mϕ(t)|Gs]−Mϕ(s) = 0. To prove (B.5), we use the identity

E

∣

∣

∣

∣

∫ t

0
HsdMs

∣

∣

∣

∣

2

= E

∫ t

0
|Hs|2d[M,M ]s (B.6)

for the stochastic integral (see [20, 56-60] for the construction of the stochastic integral).
In (B.6), (Ht) is an adapted bounded càdlàg process. Our aim, therefore, is to prove

E

∣

∣

∣

∣

∫ t

0
HsdMs

∣

∣

∣

∣

2

= E

∫ t

0
|Hs|2dAs, (B.7)
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where At is the right-hand side of (B.5). The process (At) has finite variation, therefore
the right-hand side of (B.7) is a Stieltjes integral. It is sufficient for us to establish
(B.7) for the trivial integrand Ht = 1. However, it is more natural to consider a general
continuous, bounded, adapted process (Ht). In that case (see [20, p. 41]), the Stieltjes
integral in the right-hand side of (B.7) is the limit, when |σ| → 0, of the increments

E

n−1
∑

i=0

|Hti |2(Ati+1
−Ati), (B.8)

where σ = {t0 = 0, . . . , tn = t} is a subdivision of step |σ| = max0≤i<n(ti+1 − ti). The
left-hand side of (B.7) is also the limit, when |σ| → 0 of

E

∣

∣

∣

∣

∣

n−1
∑

i=0

Hti(Mti+1
−Mti)

∣

∣

∣

∣

∣

2

. (B.9)

Therefore, it is sufficient to prove that (B.8) = (B.9) + o(1) when |σ| → 0. To that
purpose, we can develop the square in (B.9). By the martingale property, it is equal to

E

n−1
∑

i=0

|Hti |2
∣

∣Mti+1
−Mti

∣

∣

2
= E

n−1
∑

i=0

|Hti |2E
[ ∣

∣Mti+1
−Mti

∣

∣

2 ∣
∣Gti
]

.

We decompose
|Mti+1

−Mti |2 = |ϕ(Xti+1
)− ϕ(Xti)|2 +Rti,ti+1

,

where

Rti,ti+1
=

∣

∣

∣

∣

∫ ti+1

ti

Lϕ(Xs)ds

∣

∣

∣

∣

2

− 2(ϕ(Xti+1
)− ϕ(Xti))

∫ ti+1

ti

Lϕ(Xs)ds. (B.10)

We show later that Rti,ti+1
can be neglected. We have then

|ϕ(Xti+1
)− ϕ(Xti)|2 =Mϕ2(ti+1)−Mϕ2(ti)− 2ϕ(Xti )(Mϕ(ti+1)−Mϕ(ti))

+

∫ ti+1

ti

Lϕ2(Xs)ds− 2ϕ(Xti )

∫ ti+1

ti

Lϕ(Xs)ds.

It follows that

E[|ϕ(Xti+1
)− ϕ(Xti)|2|Gti ] =

∫ ti+1

ti

(

Lϕ2(Xs)− 2ϕ(Xti )Lϕ(Xs)
)

ds. (B.11)

Taking expectation in (B.11), we obtain first that

E[|ϕ(Xti+1
)− ϕ(Xti)|2] ≤ Cϕ(ti+1 − ti), (B.12)
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where Cϕ = ‖L ϕ2‖BC(E)+2‖ϕ‖BC(E)‖L ϕ‖BC(E). Consider now the cross-product term
in the right-hand side of (B.10). Using Young’s inequality with a parameter η > 0, we
see that the term E|Rti,ti+1

| can be bounded by

(1 + η−1)E

∣

∣

∣

∣

∫ ti+1

ti

Lϕ(Xs)ds

∣

∣

∣

∣

2

+ ηE[|ϕ(Xti+1
)− ϕ(Xti)|2],

and thus, taking η = (ti+1 − ti)
1/2, bounded from above by C ′

ϕ(ti+1 − ti)
3/2. It follows

that

E

∣

∣

∣

∣

∣

n−1
∑

i=0

Rti,ti+1

∣

∣

∣

∣

∣

= O(|σ|1/2).

Since (Ht) is bounded, we have, consequently, (B.8) = (B.9) + E [rσ] +O(|σ|1/2) with

rσ = 2
n−1
∑

i=0

|Hi|2
∫ ti+1

ti

(ϕ(Xs)− ϕ(Xti ))Lϕ(Xs)ds.

There remains to prove that E [rσ] = o(1). The random variable rσ is bounded by a
constant depending on H and ϕ (but not on σ), therefore rσ = o(1) in probability will
imply the result. This latter estimate follows easily from the stochastic continuity of
(Xt).
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