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Combinatorics for general kinetically
constrained spin models

Laure Marêché∗

July 21, 2017

Abstract. Bootstrap percolation is a well-known class of mono-
tone cellular automata, in which sites may be infected or not and,
at any step, a site becomes infected if a certain constraint is satis-
fied. Bootstrap percolation has a non-monotone stochastic coun-
terpart, kinetically constrained models (KCM), which were intro-
duced to model the liquid/glass transition, a major open problem
of condensed matter physics. In KCM, the state of each site is re-
sampled (independently) at rate 1 if the constraint is satisfied. A
key problem for KCM is to determine the divergence of timescales
as p → 0, where p is the equilibrium density of infected sites. In
this article we establish a combinatorial result which in turn allows
to prove a lower bound on timescales for KCM.

1 Introduction

The study of KCM is linked to the study of bootstrap percolation models. A
bootstrap percolation model (see [6]) is determined by the choice of an update
family U = {X1, . . . , Xm} where m ∈ N∗ and the Xi, called update rules,
are finite nonempty subsets of Zd \ {0}. It is a discrete time deterministic
process (At)t∈N, where At is a set of vertices of Zd, considered as the set
of infected vertices at time t. (At)t∈N is defined by choosing A0 (the set of
initially infected vertices), and setting recursively

At+1 = At ∪ {s ∈ Zd : s+Xi ⊂ At for some i ∈ {1, . . .m}}
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sité Paris Diderot in Paris, France. She acknowledges support of the ERC Starting Grant
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for all t ∈ N. In other words, a site s becomes infected at time t + 1 if the
translate by s of an update rule is infected at time t, and infected vertices
remain infected forever.

KCM are a non-monotone, stochastic counterpart of bootstrap percola-
tion, in which infected vertices can heal. It is a continuous time Markov
process on {0, 1}Zd : at any time t ∈ R+, each site of Zd is in state 0 or 1.
The sites at state zero are the equivalent of infected vertices. Each site s,
independently from the other sites, waits for a mean one exponential time,
then tries to update its state, which means to replace it with a random vari-
able that is 0 with probability p and 1 with probability 1 − p (p ∈ (0, 1) is
fixed). However, the update occurs only if there is an update rule X such
that all the sites in s + X are at 0 (in other words, the state of a site can
change only if “enough sites in its neighborhood” are at state zero). Then
the site waits for another exponential time, tries again to update itself, and
so on.

KCM were introduced by physicists to describe the liquid/glass transition,
whose understanding is an important open problem of condensed matter
physics (see for example [15, 4]). Indeed, their behavior when p tends to
zero matches well the experimental observations, in particular the anomalous
divergence of timescales. This is why both physicists and mathematicians are
interested in studying the timescales of KCM when p tends to zero.

Various specific update families have been studied. Among them, we re-
call the Frederickson-Andersen j-facilitated models (FAjf) in Zd, with j ∈
{1, . . . , d}, for which U is the collection of subsets of {e1, . . . , ed,−e1, . . . ,−ed}
of cardinal j, where {e1, . . . , ed} is the canonical basis (see [7, 13]). In words,
a site can be updated if it has at least j nearest neighbors at state 0. The
bootstrap percolation model corresponding to this update family is the clas-
sical j-neighbor percolation model (see [3] and references therein). Another
important model is the East model on Z, in which U = {−1} (see [11] for a
review of the East model). There are also results on its generalization to Zd,
the East-like model, where U = {−e1, . . . ,−ed} (see [9]).

All of these models are particular cases of update families. However,
there recently was a breakthrough in the study of bootstrap percolation (see
[6, 5, 2]): beautiful universality results were proved for totally general up-
date families. The main results concern the probability that every site is
eventually infected and the mean time of infection of the origin, TU .

These results pave the way for understanding the KCM with general
update families. A set of conjectures for the two-dimensional case was for-
mulated in [14]. These conjectures concern a very natural timescale of the
KCM: Eµ(τ0), the mean of the first time at which the origin is zero when
each site is initially at state 0 with probability p independently of the others.
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A technique to establish upper bounds on Eµ(τ0) when p tends to zero
was introduced in [13], and was generalized in [12] to deal with all possible
update families, proving an upper bound matching the conjectures of [14].
However, a robust technique is still missing for the lower bound; the only
general result was proven in [7] and states that Eµ(τ0) ≥ T

1−o(1)
U when p tends

to zero. Intuitively, this bound comes from the fact that in the KCM, the
zeroes can not spread faster than the infection in the bootstrap percolation
process does, as a site can change its state to zero in the KCM only if it can
be infected in the next step of the bootstrap percolation process. But there
are cases for which this lower bound is not the right scaling: in the East
model, it was proven in [1] that Eµ(τ0) = eΘ(ln(1/p)2), while TU = Θ (1/p).

This comes from the fact that a typical configuration in the East model
has a “box” full of ones of size roughly 1/p centered at the origin, hence to
reach the origin, the zeroes have to “cross the box”. Moreover, a combinatorial
result proven by Chung, Diaconis and Graham in [10] shows that in order to
do that, the dynamics has to go through a configuration with log2(1/p) zeroes
in the box. Such a configuration has probability e−Θ(ln(1/p)2), therefore one
has to wait a time eΘ(ln(1/p)2) for the dynamics to go through one of these,
which yields the scaling.

It was conjectured in [14] that a large class of two-dimensional general
KCM, called supercritical rooted models, have the same behavior as the East
model, hence also verify Eµ(τ0) = eΘ(ln(1/p)2). In this article, we establish
a combinatorial result valid in an even larger class of models, stating that
indeed, if we start from a configuration which contains only ones in a certain
region of linear size Ω(n2n) centered at the origin, necessarily we have to
go through a configuration with at least n zeroes in this region before a
zero can appear at the origin. Our result allows to derive that Eµ(τ0) ≥
eΘ(ln(1/p)2) for these models, using the argument introduced in [8] for the
East model. Therefore it proves the lower bound in the conjecture of [14],
not only for two-dimensional supercritical rooted models, but also for their
natural generalization in any dimension.

Our result generalizes the result of [10] to all general models that are not
in the supercritical unrooted class, and to any dimension (the East model
studied in [10] is defined only in dimension 1). As the proof of [10] relies
heavily on the orientation of the East model and the general models have a
complete lack of orientation, our proof is completely different from theirs.

We will begin this article by explaining the notations and stating the
result, then we will detail the one-dimensional case, in which the proofs are
simpler, and finally we will present the proof in general dimension.
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2 Notations and result

Fix d ∈ N∗ and set U = {X1, . . . , Xm} an update family.
We are interested in the configurations that are attainable by the dynam-

ics of the KCM with update family U in a finite domain Λ ⊂ Zd when we
start with only ones in Λ and at most a bounded number of zeroes are allowed
at the same time in Λ. We want to prove that none of these configurations
can have a zero at the origin if Λ is chosen appropriately.

In order to state our result, we need some definitions and notations. First
of all, we need to clarify what the dynamics of a KCM in a finite domain
Λ is. It will be a dynamics on configurations in {0, 1}Λ following the rules
described in the introduction. However, these rules specify that a site s can
be updated if one of the s + Xi contains only zeroes, and the s + Xi may
not be entirely contained in the domain Λ. Consequently, one has to fix the
states of the sites outside Λ. In this article, we will consider that they are
zeroes (empty boundary conditions).

Set Λ ⊂ Zd. We denote by 0Λ the configuration which contains only
zeroes in Λ, and by 1Λ the configuration which contains only ones in Λ.
Furthermore, for all η ∈ {0, 1}Λ, x ∈ Λ, we define the configuration ηx by

(ηx)y =

{
1− ηx if y = x

ηy if y 6= x.
Moreover, if Λ′ ⊂ Λ and η ∈ {0, 1}Λ, we denote

by ηΛ′ the configuration of {0, 1}Λ′ such that (ηΛ′)x = ηx for any x ∈ Λ′. In
addition, if Λ′ ⊂ Zd is disjoint from Λ, for all η ∈ {0, 1}Λ, η′ ∈ {0, 1}Λ′ , we
denote by ηΛη

′
Λ′ the configuration on Λ∪Λ′ defined by (ηΛη

′
Λ′)x = ηx if x ∈ Λ

and (ηΛη
′
Λ′)x = η′x if x ∈ Λ′.

We say that a move from η ∈ {0, 1}Λ to η′ ∈ {0, 1}Λ is legal if η′ = η, or
if η′ = ηx with x ∈ Λ and there exists an update rule X ∈ U such that
(ηΛ0Λc)x+X = 0x+X . That is, a move is legal if it is a possible move for
the KCM with update family U , in the domain Λ with empty boundary
condition.

Definition 1. If η, η′ ∈ {0, 1}Λ, a legal path from η to η′ is a sequence of
configurations (ηj)0≤j≤m such that m ∈ N∗, η0 = η, ηm = η′, and for all
j ∈ {0, . . . ,m− 1}, the move from ηj to ηj+1 is legal.
For any n ∈ N∗, we say that (ηj)0≤j≤m is a n-legal path if for all j ∈
{0, . . . ,m}, ηj does not contain more than n zeroes in Λ.

A legal path is a possible path for the KCM dynamics; a n-legal path is a
possible path such that at most n zeroes are allowed at the same time in Λ.
In order to have lighter notations, we use the same notation ηj for the j-th
step of a path and for the configuration that is equal to η everywhere except
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at site j. In order to avoid confusion, η0, ηj, ηj+1 and ηm will always denote
a step of a path, and no other index will be used to describe a step of a path.

For all n ∈ N∗, we define V (n,Λ) = {η ∈ {0, 1}Λ | there exists a n −
legal path from 1Λ to η}. V (n,Λ) is the set of configurations of {0, 1}Λ that
are attainable from the configuration containing only ones using at most n
zeroes.
V (n,Λ) will be very different depending on the properties of U . In this
article, we will distinguish between two classes of update families. To define
them, we recall the concept of stable directions introduced in [6]:

Definition 2. For any u ∈ Sd−1, let Hu = {x ∈ Rd | 〈x, u〉 < 0} the half-
space with boundary orthogonal to u. We say that u is a stable direction for
the update family U when there does not exists X ∈ U such that X ⊂ Hu.

This implies in particular that if we consider the KCM with update family
U in Zd, and if there are only ones in (Hu)

c, then no zero can appear in (Hu)
c.

Indeed, a state change in a site s ∈ (Hu)
c would require an update rule X

such that the configuration is zero in s+X. Hence s+X would have to be
in Hu, which would imply 〈s + x, u〉 < 0 for all x ∈ X. But s ∈ (Hu)

c, thus
〈s, u〉 ≥ 0, and we would deduce 〈x, u〉 < 0 for all x ∈ X, i.e. X ⊂ Hu, which
is impossible. Intuitively, it means that the zeroes of the configuration can
not move towards direction u.

The following definition is an extension to the dimension d of the defini-
tion proposed in [14]:

Definition 3. We say that U is supercritical unrooted if there exists a hy-
perplane of Rd that contains all stable directions of U .

Our combinatorial result (theorem 1) is valid in all models that are not
supercritical unrooted, which actually covers many different behaviors. In
particular, in two dimensions, according to the classification in [6] they in-
clude: supercritical models which have two non opposite stable directions,
critical and subcritical models. Supercritical models which have two non op-
posite stable directions are those that are called supercritical rooted models
in [14] and for which Eµ(τ0) is conjectured to scale as eΘ(ln(1/p)2). Among
the models mentioned in the introduction (FAjf for j ∈ {1, . . . , d}, East and
East-like), only FA1f is supercritical unrooted.

We now suppose that U is not supercritical unrooted.
We are going to introduce notations that are necessary to state the result.
Firstly, there exists a basis {v1, . . . , vd} of Rd and u1, . . . , ud ∈ Sd−1 stable

directions for U such that ‖vi‖2 = 1 for any i ∈ {1, . . . , d}, such that in this
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×0

Pn

Λ

Figure 1: The setting of the theorem.

basis, for any i ∈ {1, . . . , d}, {(x1, . . . , xd) ∈ Rd |xi = 0} is orthogonal to ui,
and such that the half-space Hui is {(x1, . . . , xd) ∈ Rd |xi > 0}. The proof
of this result may be found in the appendix.
From now on, we will use the coordinates of the basis {v1, . . . , vd}, but when
we say a site is in Zd, we will mean that its coordinates in the canonical basis
are integers.

For all n ∈ N∗, we set an = r(2n − 1) and bn = rn2n−1. We are going to
consider a sequence (Pn)n∈N∗ of discrete boxes defined by

Pn = {x ∈ Zd |x = (x1, . . . , xd),∀i ∈ {1, . . . , d},−an ≤ xi ≤ bn}.

Finally, we denote by r the range of the interactions: r = max{‖x −
y‖∞ |x, y ∈ X ∪ {0}, X ∈ U} (beware: the range is usually defined in the
canonical basis, while we define it in our new basis).

We can now state the

Theorem 1. Let U be any update family that is not supercritical unrooted.
Fix n ∈ N∗ and Λ ⊂ Zd such that Pn ⊂ Λ. Then for any η ∈ V (n,Λ), it
holds η0 = 1.

This means that if we consider the KCMwith update family U in a domain
Λ large enough to contain Pn (see figure 1), then more than n zeroes are
necessary to bring a zero to the origin when we start with the configuration
containing only ones.

Remark. • As Zd is translation invariant, the theorem implies that for
any n ∈ N∗, any domain Λ ⊂ Zd, any s ∈ Λ such that s+ Pn ⊂ Λ, for
any η ∈ V (n,Λ), ηs = 1: for any site far enough from the boundary of
the domain, one needs more than n zeroes to bring a zero at this site.
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• Our theorem is stated for paths that are n-legal when all sites outside
of Λ are zeroes (empty boundary conditions); it actually remains valid
if we consider the n-legal paths for any boundary conditions. Indeed,
if we consider that the sites of Λc are not all zeroes, the possible moves
are more restricted, hence when one starts with the configuration con-
taining only ones in the domain, it is harder to bring zeroes far from the
boundary. Consequently, the theorem is also valid with other boundary
conditions.

• Theorem 1 allows to prove that Eµ(τ0) ≥ eΘ(ln(1/p)2) in all models that
are not supercritical unrooted with the argument used in [8] for the
East model. Indeed, in a typical configuration, there is a domain of di-
ameter roughly (1/p)1/d centered at the origin that is full of ones, hence
theorem 1 implies that if a zero appears at the origin, the dynamics
went through a configuration with at least log2((1/p)1/d) = 1

d
log2(1/p)

zeroes in the domain. Such a configuration has probability e−Θ(ln(1/p)2),
thus one has to wait a time eΘ(ln(1/p)2) for the dynamics to go through
one of these, which yields the scaling. We stress that the theorem
hence the lower bound for Eµ(τ0) are valid for all the models that are
not supercritical unrooted, but that the scaling can be optimal only
for a subclass of models. For example, in two dimensions, it is optimal
for supercritical rooted models (see [12] for the matching upper bound)
but it is not optimal for critical and subcritical models, where boot-
strap percolation results ([6, 2]) imply that it is certainly not possible
to infect the origin in a time eO(ln(1/p)2).

• If U is supercritical unrooted instead, the behavior of the KCM is differ-
ent: in particular in dimensions 1 and 2 one can prove (see sections 3.2
and 4.2) that there exists a finite k ∈ N∗ such that when we consider
the KCM in any finite domain Λ, a zero can be brought to any s ∈ Λ
using only k zeroes. We expect this result to hold in any dimension.

3 Warm-up: the one-dimensional case

We begin by examining how the definitions of the classes of models translate
in this simpler setting. The following is an easy consequence of definition 3:

Proposition 2. An update family U is supercritical unrooted if and only if
it includes an update rule contained in N∗ and an update rule contained in
−N∗.
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Proof. By definition 3, a supercritical unrooted model in Zd is a model whose
stable directions are contained in an hyperplane of Zd. Here d = 1, and the
only hyperplane of Z is {0}. Therefore, a supercritical unrooted model is a
model that has no stable direction.

Furthermore, in R there are only two possible stable directions: 1 and
−1. In addition, u is a stable direction when there is no update rule in
{x ∈ R | 〈x, u〉 < 0}, hence ±1 is a stable direction when there is no update
rule in ∓N∗.

Therefore, a supercritical unrooted model is a model with an update rule
contained in N∗ and an update rule contained in −N∗.

Firstly, we will prove theorem 1 about non supercritical unrooted fami-
lies, then we will show that the behavior of supercritical unrooted models is
different.

3.1 Proof of theorem 1 for d = 1

Let U be a non supercritical unrooted update family.

We begin by introducing some conventions that will lighten the notations.
By definition of the basis {v1}, |v1| = 1, hence we get v1 = 1 or v1 = −1.
Consequently, Z is the same in the canonical basis and in {v1}. Therefore,
we may forget the canonical basis and use only {v1}.
We notice that by definition of the basis {v1}, {x ∈ R |x > 0} = Hu with u
a stable direction, thus there is no update rule contained in {x ∈ R |x > 0}.
We deduce that there is no update rule contained in N∗.

We will prove the theorem by induction. For all n ∈ N∗, we denote

Hn = “for any Λ ⊂ Z such that Pn = {−an, . . . , bn} ⊂ Λ,

for any η ∈ V (n,Λ), η0 = 1”.

Proving Hn for all n ∈ N∗ will prove the theorem.
In order to do that, we will need the

Lemma 1. Let n > 1 and suppose Hn−1. Then, for all Λ ⊂ Z such that
Pn ⊂ Λ, for all η ∈ V (n,Λ) \ {1Λ}, η has at least one zero in Λ \ Pn−1.

This lemma means that if Hn−1 holds, in a large enough interval, any
configuration attainable using no more than n zeroes must have one of its
zeroes outside of Pn−1 (except the configuration containing only ones, that
has no zero at all). This implies that there are at most n− 1 zeroes in Pn−1,
which will allow us to use Hn−1 to prove that the origin can not be reached
by zeroes.

8



0
Λ

Pn−1

Pn

Figure 2: Proof of the theorem in the one-dimensional case: there must be
a zero in Λ \ Pn−1, hence there can be at most n − 1 zeroes in Pn−1. Thus
Hn−1 implies that there is no zero at 0.

We first prove the theorem supposing lemma 1 holds; we will prove the
lemma afterwards. As we just said, we will proceed by induction in order to
prove that Hn holds for any n ∈ N∗.

Case n=1 This is a simple case: there can be at most one zero in the
configurations we consider, hence if they have a zero, this zero was created by
the zeroes of the boundary conditions, thus it has to be near the boundary.

Let Λ ⊂ Z such that P1 ⊂ Λ, and let η be in V (1,Λ).
If η = 1Λ, then η0 = 1 and there is nothing to prove. We now consider

the case η 6= 1Λ.
In this case, η has a single zero, at a site we denote by z, and there is

a 1-legal path (ηj)0≤j≤m from η to 1Λ. Since ηz = 0 and (1Λ)z = 1, there
exists j ∈ {0, . . . ,m − 1} such that ηjz = 0 and ηj+1

z = 1. Furthermore,
there exists X ∈ U such that (ηjΛ0Λc)z+X = 0z+X . Consequently, as ηj has
no other zero than z, z + X ⊂ Λc. We consider a site z′ ∈ z + X; z′ ∈ Λc

and |z′ − z| ≤ r. As z′ ∈ Λc, z′ 6∈ P1, thus z′ < −a1 or z′ > b1. Hence,
if z′ < −a1, then z ≤ z′ + r < −a1 + r = −r + r = 0, and if z′ > b1,
z ≥ z′ − r > b1 − r = r − r = 0. In any case, z 6= 0, therefore η0 = 1.

This proves H1.

Induction Let n > 1. We suppose Hn−1. Let us show Hn.
Let Λ ⊂ Z such that Pn ⊂ Λ. Let η be in V (n,Λ).
Intuitively, lemma 1 implies that any configuration of V (n,Λ) but 1Λ

has a zero in Λ \ Pn−1, hence there can be at most n − 1 zeroes in Pn−1.
Consequently, by Hn−1, η0 = 1 (see figure 2). We are going to write this
argument rigorously.

If η = 1Λ, then η0 = 1 and there is nothing to prove. Now, let us deal
with the case η 6= 1Λ.

As η ∈ V (n,Λ), there exists a n-legal path (ηj)0≤j≤m from η to 1Λ. We
will prove that (ηjPn−1

)0≤j≤m is a (n − 1)-legal path from η0
Pn−1

= ηPn−1 to

9



ηmPn−1
= 1Pn−1 .

Firstly, for all j ∈ {0, . . . ,m− 1}, the move from ηjPn−1
to ηj+1

Pn−1
is legal.

Indeed:

• If ηj+1 = ηj or if ηj+1 = (ηj)z with z ∈ Λ \Pn−1, ηj+1
Pn−1

= ηjPn−1
and the

move from ηj+1
Pn−1

to ηjPn−1
is legal.

• If ηj+1 = (ηj)z with z ∈ Pn−1, then since the move from ηj to ηj+1 is
legal, there exists X ∈ U such that (ηjΛ0Λc)z+X = 0z+X , and this implies
that (ηjPn−1

0(Pn−1)c)z+X = 0z+X . Therefore, the move from ηjPn−1
to

ηj+1
Pn−1

is legal.

Consequently, for all j ∈ {0, . . . ,m − 1}, the move from ηjPn−1
to ηj+1

Pn−1
is

legal. Therefore (ηjPn−1
)0≤j≤m is a legal path.

Moreover, for all j ∈ {0, . . . ,m}, ηjPn−1
contains at most n − 1 zeroes.

Indeed:

• If ηj = 1Λ, then ηjPn−1
contains no zero at all.

• If ηj 6= 1Λ, then since (η`)j≤`≤m is a n-legal path from ηj to 1Λ, ηj ∈
V (n,Λ), hence ηj ∈ V (n,Λ) \ {1Λ}. Moreover, we suppose Hn−1, thus
we can apply lemma 1, which yields that ηj has at least one zero in
Λ \ Pn−1. Hence, as ηj contains at most n zeroes, ηjPn−1

contains at
most n− 1 zeroes.

Therefore, for all j ∈ {0, . . . ,m}, ηjPn−1
contains at most n− 1 zeroes.

It follows that (ηjPn−1
)0≤j≤m is a (n− 1)-legal path from ηPn−1 to 1Pn−1 .

Thus ηPn−1 ∈ V (n− 1,Pn−1).
Consequently, by Hn−1, η0 = 1.
This proves Hn.

Consequently, Hn−1 implies Hn for all n > 1. Hence, as H1 holds, Hn

holds for all n ∈ N∗.
This ends the proof of theorem 1, given lemma 1.

It remains to prove lemma 1.

Proof of lemma 1. Let Λ ⊂ Z such that Pn = {−an, . . . , bn} ⊂ Λ.
We will consider a configuration η ∈ {0, 1}Λ, different from 1Λ, containing

at most n zeroes, such that all of its zeroes are in Pn−1, and we will show
that η 6∈ V (n,Λ). This will imply that any element of V (n,Λ) \ {1Λ} must
contain at least a zero outside of Pn−1, which is enough to prove the lemma.
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Λ
C B Pn−1 D1 B C

D′1D

Pn

an−1 r an−1 bn−1
an−1 r bn−10

Figure 3: The setting of lemma 1.

Let (ηj)0≤j≤m be a n-legal path of configurations in {0, 1}Λ with η0 = η.
We are going to show that ηm can not be 1Λ. This will imply that there does
not exist a n-legal path from η to 1Λ, which means that η 6∈ V (n,Λ).

To this end, we will denote (see figure 3):

B = {−an+an−1, . . . ,−an+an−1 +r−1}∪{bn−(bn−1 +r−1), . . . , bn−bn−1};

D = {−an + an−1 + r, . . . , bn − (bn−1 + r)}

D1 = {bn − (bn−1 + an−1 + r − 1), . . . , bn − (bn−1 + r)},

D′1 = {bn − (bn−1 + an−1 + r − 1), . . . , bn}

and C = Λ \ (B ∪D).
We notice that

−an + an−1 + r = −r(2n − 1) + r(2n−1 − 1) + r = −r2n−1 + r = −an−1

and

bn − (bn−1 + an−1 + r) = rn2n−1 − (r(n− 1)2n−2 + r(2n−1 − 1) + r)

= rn2n−2 − r2n−2 = r(n− 1)2n−2 = bn−1

hence Pn−1 = {−an + an−1 + r, . . . , bn − (bn−1 + an−1 + r)} = D \D1.
B will be a “buffer zone”: we will prove that it remains full of ones and

prevents the zeroes of C and D from interacting.
There will always be a zero in Pn−1, because the leftmost zero z in Pn−1 would
need an update rule full of zeroes to disappear. However, there is no zero in
B and the thickness of B is larger than the range of the interactions, hence
this update rule can not use zeroes in B or at the left of B. Thus it can use
only zeroes in Pn−1 or at the right of Pn−1, but z is the leftmost zero in Pn−1.
Therefore, the update rule would have to be completely contained in the right
of z, which is impossible since the assumption made on the model implies
that it has no update rule contained in N∗ (see the beginning of section 3).
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Hence the leftmost zero in Pn−1 can not disappear. Consequently, there will
always be a zero in Pn−1, which implies ηm 6= 1Λ.

More rigorously, we are going to prove by induction on j ∈ {0, . . . ,m}
that the property H′j holds, where H′j consists in:

(P j
1 ) ηjPn−1

contains a zero.

(P j
2 ) ηjB = 1B.

(P j
3 ) ηjC1Λ\C ∈ V (n− 1,Λ)

(P j
4 ) ηjD1

1D′1\D1
∈ V (n− 1, D′1).

The last two properties are necessary for the part of the argument that uses
Pn−1 to show that the zeroes do not reach B.

If we can show H′j for all j ∈ {0, . . . ,m}, in particular (Pm
1 ) will imply

that there is a zero in ηmPn−1
, thus ηm 6= 1Λ, hence the lemma.

Let us prove H′j for all j ∈ {0, . . . ,m}.

Case j = 0

• (P 0
1 ) is true, because η0 = η 6= 1Λ, thus η contains at least a zero, and

by assumption all zeroes of η are in Pn−1, hence ηPn−1 contains at least
one zero.

• (P 0
2 ) is true, because η0 = η has no zero in Λ\Pn−1, and B ⊂ Λ\Pn−1,

hence η0
B = 1B.

• (P 0
3 ) is true, because C ⊂ Λ \ Pn−1, thus ηC = 1C , hence η0

C1Λ\C =
1Λ ∈ V (n− 1,Λ).

• (P 0
4 ) is true, because D1 ⊂ Λ\Pn−1, thus ηD11D′1\D1

= 1D′1 , which gives
η0
D1

1D′1\D1
∈ V (n− 1, D′1).

Consequently, H′0 holds.

Induction Let j be in {0, . . . ,m− 1}. We suppose that H′j holds. Let
us show H′j+1.

As (ηj)0≤j≤m is a legal path, the move from ηj to ηj+1 is legal, hence
ηj+1 = ηj or ηj+1 = (ηj)z where z ∈ Λ satisfies that there exists X ∈ U with
(ηjΛ0Λc)z+X = 0z+X .

If ηj+1 = ηj, H′j+1 holds because H′j holds.
In the following, we deal with the case ηj+1 = (ηj)z. The arguments will

depend on the position of z:

12



• Case z ∈ B.

We will show that z ∈ B is impossible: the buffer zone remains pre-
served at step j + 1.

If z was in B, we would have z+X ⊂ Λ. Furthermore, by (P j
2 ) ηjB = 1B,

hence z +X ⊂ C ∪D. Moreover, if there existed x ∈ (z +X) ∩C and
y ∈ (z + X) ∩ D, then we would get |x − y| > r, which is impossible
as r = max{|x− y| |x, y ∈ X ∪ {0}, X ∈ U}. Therefore z + X ⊂ C or
z +X ⊂ D. We are going to deal with the two cases separately:

– Case z+X ⊂ C. The move from ηjC1Λ\C to (ηjC1Λ\C)z would then
be legal. In addition, ηj+1

Pn−1
= ηjPn−1

would contain at least a zero
by (P j

1 ), and ηj+1 contains at most n zeroes, hence (ηjC1Λ\C)z =

ηj+1
C∪B1Λ\(C∪B) would contain at most n−1 zeroes (by (P j

2 ), ηjB = 1B
hence ηj+1

B = (1B)z). Finally, by (P j
3 ), ηjC1Λ\C ∈ V (n−1,Λ). Since

the move from ηjC1Λ\C to (ηjC1Λ\C)z would be legal, (ηjC1Λ\C)z

would contain at most n− 1 zeroes and ηjC1Λ\C ∈ V (n− 1,Λ), we
would deduce (ηjC1Λ\C)z ∈ V (n − 1,Λ). However, this is impos-
sible: since z ∈ B and ηjB = 1B by (P j

2 ), (ηjC1Λ\C)z = 1, hence
(ηjC1Λ\C)z would have a zero in z. But as z ∈ B, z + Pn−1 ⊂ Λ,
hence by Hn−1 and the invariance by translation of Z, no con-
figuration in V (n − 1,Λ) can have a zero in z, which yields a
contradiction. Consequently, z +X ⊂ C is impossible.

– Case z + X ⊂ D. There will be different arguments depending
on the position of z. Since z ∈ B, z < −an + an−1 + r or z >
bn − (bn−1 + r).

∗ If z < −an + an−1 + r, we can use the assumption on the
model. Indeed, z + X ⊂ D would imply that any site z′ ∈
z + X ⊂ D would verify z′ ≥ −an + an−1 + r. Consequently,
z + X ⊂ z + N∗, thus X ⊂ N∗, which would contradict the
assumption that the model is not supercritical unrooted.
∗ If z > bn−(bn−1 +r), we will use Hn−1. Indeed, it can be seen

that z+X ⊂ D1. Since z+X ⊂ D1, the move from ηjD1
1D′1\D1

to (ηjD1
1D′1\D1

)z would be legal. Furthermore, by (P j
1 ) ηj+1

Pn−1
=

ηjPn−1
would contain at least a zero, and ηj+1 contains at

most n zeroes, hence (ηjD1
1D′1\D1

)z = ηj+1
D1∪(B∩D′1)1D′1\(D1∪B)

would contain at most n − 1 zeroes. In addition, by (P j
4 )

ηjD1
1D′1\D1

∈ V (n − 1, D′1). This would allow us to conclude
that (ηjD1

1D′1\D1
)z ∈ V (n − 1, D′1). However, this is impossi-
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ble: (ηjD1
1D′1\D1

)z has a zero at z, and as z ∈ B one can check
that z + Pn−1 ⊂ D′1, which implies by Hn−1 that no configu-
ration of V (n − 1, D′1) can have a zero in z. Hence we get a
contradiction.

We deduce a contradiction in both cases, therefore z + X ⊂ D is
impossible.

Consequently, z ∈ B is impossible.

• Case z ∈ C.

If z ∈ C, (P j+1
1 ) is true because ηj+1

Pn−1
= ηjPn−1

, (P j+1
2 ) is true because

ηj+1
B = ηjB, and (P j+1

4 ) is true because ηj+1
D1

= ηjD1
.

We are going to prove (P j+1
3 ).

We observe that as z ∈ C, z+X ⊂ Λc∪C ∪B. Moreover, (P j
2 ) implies

ηjB = 1B, hence z+X ⊂ Λc∪C. Therefore, (ηjC1Λ\C0Λc)z+X = 0z+X , so
the move from ηjC1Λ\C to (ηjC1Λ\C)z = ηj+1

C 1Λ\C is legal. Furthermore,
by (P j+1

1 ) ηj+1
Pn−1

contains a zero, and ηj+1 contains at most n zeroes,
hence ηj+1

C 1Λ\C contains at most n− 1 zeroes. In addition, by (P j
3 ) we

have ηjC1Λ\C ∈ V (n − 1,Λ). This allows to conclude that ηj+1
C 1Λ\C ∈

V (n− 1,Λ), which is (P j+1
3 ). Therefore, (P j+1

3 ) is true.

Consequently, H′j+1 holds.

• Case z ∈ D.

If z ∈ D, (P j+1
2 ) is true because ηj+1

B = ηjB, and (P j+1
3 ) is true because

ηj+1
C = ηjC .

Let us prove (P j+1
1 ).

We want to prove that ηj+1
Pn−1

contains a zero. There will be two different
cases:

– If z ∈ D1, then ηj+1
Pn−1

= ηjPn−1
, hence by (P j

1 ) ηj+1
Pn−1

contains at
least one zero.

– If z ∈ Pn−1, then we notice that z + X ⊂ D ∪ B. Moreover, by
(P j

2 ) ηjB = 1B, thus z +X ⊂ D. Furthermore, by the assumption
on the model, X can not be entirely contained in N∗, and as it
is an update rule it does not contains zero, hence it contains an
element of −N∗. Therefore, there exists z′ ∈ z + X with z′ < z.
Since z′ ∈ D, z ∈ Pn−1 and z′ < z, we deduce z′ ∈ Pn−1. Then
as ηjz+X = 0z+X , ηj+1

z′ = ηjz′ = 0, with z′ ∈ Pn−1. Consequently,
ηj+1
Pn−1

contains a zero.

14



In both cases we conclude that ηj+1
Pn−1

contains a zero. Consequently,
(P j+1

1 ) is true.

Now let us prove (P j+1
4 ).

We are going to prove that ηj+1
D1

1D′1\D1
∈ V (n−1, D′1). As before, there

will be two different cases:

– If z ∈ D1, then z + X ⊂ D ∪ B. Furthermore, by (P j
2 ) ηjB = 1B,

hence we have z + X ⊂ D. Moreover, we observe that D′1 \ D1

is disjoint from D, thus we obtain (ηjD1
1D′1\D1

0(D′1)c)z+X = 0z+X .
This implies that the move from ηjD1

1D′1\D1
to (ηjD1

1D′1\D1
)z =

ηj+1
D1

1D′1\D1
is legal. Furthermore, ηj+1

Pn−1
contains at least one zero

by (P j+1
1 ), and ηj+1 contains at most n zeroes, hence ηj+1

D1
1D′1\D1

contains at most n − 1 zeroes. In addition, ηjD1
1D′1\D1

∈ V (n −
1, D′1) by (P j

4 ). Consequently, ηj+1
D1

1D′1\D1
∈ V (n− 1, D′1).

– If z ∈ Pn−1, then ηj+1
D1

= ηjD1
, and as ηjD1

1D′1\D1
∈ V (n− 1, D′1) by

(P j
4 ), ηj+1

D1
1D′1\D1

∈ V (n− 1, D′1).

In both cases we proved that ηj+1
D1

1D′1\D1
∈ V (n − 1, D′1). Therefore

(P j+1
4 ) is true.

This yields that H′j+1 holds.

To conclude, H′j+1 holds in all cases.

Consequently, H′j implies H′j+1 for any j ∈ {0, . . . ,m− 1}, and H′0 holds.
This proves that H′j holds for any j ∈ {0, . . . ,m}, which ends the proof of
the lemma.

3.2 Supercritical unrooted models

We are going to show that the hypothesis of theorem 1 is not restrictive: we
set U a supercritical unrooted update family and prove that theorem 1 is not
true for U . Indeed, a bounded number of zeroes is enough to bring a zero at
any site of any finite domain; more precisely

Proposition 3. There exists k ∈ N∗ such that for any finite domain Λ ⊂ Z
and any z ∈ Λ, there exists η ∈ V (k,Λ) such that ηz = 0.

Proof. The idea of the proof is to build an interval of zeroes that can “move
along Z”, and to transport it from the boundary conditions to z.
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I

I

Figure 4: A move of I one step to the right. Zeroes are represented by • and
ones by ◦.

By assumption, U is supercritical unrooted, hence by proposition 2 it
includes an update rule X ⊂ N∗ and an update rule X ′ ⊂ −N∗. We define
` = max{x ∈ X}, `′ = min{x ∈ X ′} and m = max(`,−`′).

Now consider Λ ⊂ Z a finite domain, I = {a, . . . , a+m− 1} with a ∈ Z,
and η ∈ {0, 1}Λ such that ηI = 0I (remember that the sites outside Λ are
considered to be zeroes) and ηΛ\I = 1Λ\I .
We will “move I one step to the right” with a (m + 1)-legal path by adding
a zero at the right of I and removing the leftmost zero of I (see figure 4).

• if a + m ∈ Λ, the move from η to ηa+m is legal. Indeed, as X ′ ⊂ −N∗
and `′ = min{x ∈ X ′}, we obtain X ′ ⊂ {`′, . . . ,−1} ⊂ {−m, . . . ,−1},
hence a + m + X ′ ⊂ {a, . . . , a + m − 1} = I. Therefore ηa+m+X′ =
0a+m+X′ , which implies that the move from η to ηa+m is legal. Thus
we make the move from η to ηa+m, and we have (ηa+m)a+m = 0. If
a+m 6∈ Λ, then we already have ηa+m = 0 and we do not need to make
the move. The configuration we obtain has zeroes in {a, . . . , a + m}
and ones elsewhere in Λ.

• if a ∈ Λ, the move from ηa+m to (ηa+m)a is legal. Indeed, as X ⊂ N∗
and ` = max{x ∈ X}, we obtain X ⊂ {1, . . . , `} ⊂ {1, . . . ,m}, hence
a + X ⊂ {a + 1, . . . , a + m}. Therefore (ηa+m)a+X = 0a+X , which
implies that the move from (ηa+m) to (ηa+m)a is legal. As it is legal,
we make it. If a 6∈ Λ, we do not need to make this move as the zero
in a does not count as a zero of the configuration. Moreover, since
(ηa+m)a = ηa = 0, ((ηa+m)a)a = 1, consequently the configuration we
get has zeroes in {a+ 1, . . . , a+m} and ones elsewhere in Λ.

The configuration (ηa+m)a has zeroes in {a+ 1, . . . , a+m} = I + 1 and ones
elsewhere in Λ, thus we can consider that the interval of zeroes I moved one
step to the right.
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In addition, there are at most m zeroes in Λ for η, m + 1 zeroes in Λ for
ηa+m, and m zeroes in Λ for (ηa+m)a, thus there are never more than m+ 1
zeroes in Λ. Consequently, one can move an interval I of zeroes of length m
one step to the right using a (m+ 1)-legal path.

Therefore, if η = 1Λ, it is possible to start with I included in Λc (which
contains an interval of length m since Λ is a finite domain); as we have empty
boundary conditions, I is then an interval of zeroes. Then we move I to the
right step by step using a (m+ 1)-legal path, until I reaches z. This yields a
(m+ 1)-legal path from 1Λ to a configuration η′ with η′z = 0. Consequently,
there exists a configuration η′ ∈ V (m+ 1,Λ) with η′z = 0.

We conclude that the proposition is true with k = m+ 1.

4 The general case

4.1 Proof of theorem 1

We begin by making an observation about the basis {v1, . . . , vd} defined in
section 2. It is constructed so that for any i ∈ {1, . . . , d}, there exists a stable
direction ui satisfying Hui = {(x1, . . . , xd) ∈ Rd |xi > 0}. By the definition
of a stable direction, there is no update rule contained in Hui . Therefore
there is no update rule such that all its sites have a positive i-th coordinate.

The reasoning to prove theorem 1 in any dimension is the same as in
dimension 1, with some subtleties due to a more complicated geometry.

We will again prove the theorem by induction: for all n ∈ N∗, we denote

Hn = “for any Λ ⊂ Zd such that Pn ⊂ Λ, for any η ∈ V (n,Λ), η0 = 1” .

Proving Hn for all n ∈ N∗ will prove the theorem.
In order to do that, we again need the

Lemma 2. Let n > 1 and suppose Hn−1. Then, for all Λ ⊂ Zd such that
Pn ⊂ Λ, for all η ∈ V (n,Λ) \ {1Λ}, η has at least one zero in Λ \ Pn−1.

We will prove the lemma 2 after the theorem.

Case n=1 The case is completely similar to the dimension 1: if the
configurations we consider have a zero, this zero was created by the zeroes of
the boundary conditions, hence it has to be near the boundary. Therefore,
we omit the proof.
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×0

Λ

Pn−1

Pn

Figure 5: There must be a zero in Λ\Pn−1, hence there can be at most n−1
zeroes in Pn−1. Thus Hn−1 implies that there is no zero at 0.

Induction Let n > 1. We suppose Hn−1. Let us show Hn.
Let Λ ⊂ Zd be such that Pn ⊂ Λ, and let η be in V (n,Λ).
If η = 1Λ, then η0 = 1 and there is nothing to prove. Now, let us deal

with the case η 6= 1Λ.
The argument is the same as in dimension 1 (see figure 5). As η ∈ V (n,Λ),

there exists a n-legal path (ηj)0≤j≤m from η to 1Λ. The same reasoning as
in the one-dimensional case yields that (ηjPn−1

)0≤j≤m is a (n − 1)-legal path
from η0

Pn−1
= ηPn−1 to ηmPn−1

= 1Pn−1 . Consequently, ηPn−1 ∈ V (n− 1,Pn−1).
By Hn−1, this implies that η0 = 1.

This proves Hn.

Consequently, Hn−1 implies Hn for all n > 1. Hence, as H1 holds, Hn

holds for all n ∈ N∗.
This ends the proof of theorem 1 given lemma 2.

We are now going to prove lemma 2.

Proof of lemma 2. Let Λ ⊂ Zd such that Pn ⊂ Λ.
As in the one-dimensional case, we consider a configuration η ∈ {0, 1}Λ,

different from 1Λ, containing at most n zeroes, such that all of its zeroes are
in Pn−1, and we prove that η 6∈ V (n,Λ). Let (ηj)0≤j≤m be a n-legal path with
η0 = η. We are going to show that ηm can not be 1Λ. This will imply that
there can not be a n-legal path from η to 1Λ, which means that η 6∈ V (n,Λ).
This is enough to prove the lemma.

To this end, we denote for all i ∈ {1, . . . , d} (see figure 6):

D = {(x1, . . . , xd) ∈ Zd | ∀j,−an + an−1 + r ≤ xj ≤ bn − (bn−1 + r)},
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Λ

C

B

×0

Pn−1

D

D1

D2

D′1

D′2

Pn
an−1 r an−1 bn−1

an−1 r bn−1

Figure 6: The setting of lemma 2. C is in light gray; D1 and D2 are in darker
gray. D is the region with the thick outline.

B = {(x1, . . . , xd) ∈ Zd | ∀j,−an + an−1 ≤ xj ≤ bn − bn−1} \D,

Di = {(x1, . . . , xd) ∈ D |xi > bn − (bn−1 + an−1 + r)},

D′i = {(x1, . . . , xd) ∈ Pn |xi > bn − (bn−1 + an−1 + r)}

and C = Λ \ (B ∪ D). We also notice that the same calculations as in
dimension 1 yield that

Pn−1 = {(x1, . . . , xd) ∈ Zd | ∀j,−an +an−1 + r ≤ xj ≤ bn− (bn−1 +an−1 + r)}

hence Pn−1 = D \ (
⋃d
i=1Di).

As in the one-dimensional case, B will be a buffer zone. In that case, the
main reason for which no zero could appear in B was that a zero remained
trapped in Pn−1, hence there were at most n− 1 zeroes elsewhere, and Hn−1

limited their possible positions.
Here we can not keep a zero in Pn−1, but we can keep a zero in all the D\Di,
because initially there is at least a zero in Pn−1 ⊂ D \Di, and at any time, a
zero of D\Di with the lowest i-th coordinate among the zeroes of D\Di will
need, in order to disappear, a zero with a i-th coordinate as low as its own
because there is no update rule such that all of its zeroes have positive i-th
coordinate (this is the reason for which we work in the basis {v1, . . . , vd}).
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This zero can not be in B since B remains full of ones, hence it is in D \Di

and so remains in D \Di at the next step of the path.
This will have the same practical consequences as the zero trapped in Pn−1

had in the one-dimensional case: the presence of a zero in each of the D \Di

prevents ηm to be 1Λ; the n− 1 zeroes that any of the Di, or C, may contain
will not escape the Di or C. Moreover, for any i ∈ {1, . . . , d}, the argument
that in dimension 1 prevented the zeroes of Pn−1 from escaping to the left part
of B because there were no update rule contained in N∗ will here prevent
zeroes to enter B via the face of D with the lowest i-th coordinate, since
there is no update rule such that its zeroes all have positive i-th coordinates.
Therefore the buffer zone B will be preserved.

More precisely, we are going to prove by induction on j ∈ {0, . . . ,m} that
the property H′j holds, where H′j consists in:

(P j
1 ) For all i ∈ {1, . . . , d}, ηjD\Di

contains a zero.

(P j
2 ) ηjB = 1B.

(P j
3 ) ηjC1Λ\C ∈ V (n− 1,Λ).

(P j
4 ) For all i ∈ {1, . . . , d}, ηjDi

1D′i\Di
∈ V (n− 1, D′i).

If we can show H′j for all j ∈ {0, . . . ,m}, in particular (Pm
1 ) will imply

that there is a zero in ηmD , thus ηm 6= 1Λ, hence the lemma.
Let us prove H′j for all j ∈ {0, . . . ,m}.

Case j = 0 It works exactly as in the one-dimensional case. Conse-
quently, H′0 holds.

Induction Let j be in {0, . . . ,m− 1}. We suppose that H′j holds. Let
us show H′j+1.

As (ηj)0≤j≤m is a legal path, the move from ηj to ηj+1 is legal, hence
ηj+1 = ηj or ηj+1 = (ηj)z where z ∈ Λ and satisfies that there exists X ∈ U
with (ηjΛ0Λc)z+X = 0z+X .

If ηj+1 = ηj, H′j+1 holds because H′j holds.
In the following, we deal with the case ηj+1 = (ηj)z. As in the one-

dimensional case, the arguments will depend on the position of z:

• Case z ∈ B.

We will show that z ∈ B is impossible.

If z was in B, we would get z+X ⊂ Λ. Furthermore, by (P j
2 ) ηjB = 1B,

hence z +X ⊂ C ∪D. Moreover, if there existed x ∈ (z +X) ∩C and
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y ∈ (z+X)∩D, then we would get ‖x− y‖∞ > r, which is impossible
as r = max{‖x− y‖∞ |x, y ∈ X ∪ {0}, X ∈ U}. Therefore z + X ⊂ C
or z +X ⊂ D. We are going to deal with the two cases separately:

– Case z + X ⊂ C. This case is proven impossible in the same
way as in dimension 1: by showing that (ηjC1Λ\C)z would be a
configuration of V (n − 1,Λ) that has a zero in z ∈ Λ with z +
Pn−1 ⊂ Λ, which contradicts Hn−1.

– Case z+X ⊂ D. Again, there will be different arguments depend-
ing on the position of z. Since z ∈ B, if we denote by (z1, . . . , zd)
the coordinates of z, there would exist i ∈ {1, . . . , d} such that
zi < −an + an−1 + r or zi > bn − (bn−1 + r).

∗ If zi < −an+an−1+r, we can use the assumption on the model.
Indeed, z+X ⊂ D would imply that the i-th coordinate of any
site of z+X would be greater than or equal to −an+an−1 +r.
Consequently, z+X ⊂ z+{(x1, . . . , xd) ∈ Rd |xi > 0}, hence
X ⊂ {(x1, . . . , xd) ∈ Rd |xi > 0}, which is impossible.
∗ If zi > bn−(bn−1+r), we will useHn−1. Indeed, z ∈ D′i. More-

over, D is disjoint from D′i \Di, hence (ηjDi
1D′i\Di

0(D′i)
c)z+X =

0z+X , thus the move from ηjDi
1D′i\Di

to (ηjDi
1D′i\Di

)z would be
legal. Using the same arguments as in the one-dimensional
case, we would conclude that the configuration (ηjDi

1D′i\Di
)z

would be in V (n − 1, D′i). However, since z ∈ B and zi >
bn − (bn−1 + r), it can be seen that z + Pn−1 ⊂ D′i, and
(ηjDi

1D′i\Di
)z has a zero in z, hence this would contradictHn−1.

We deduce a contradiction in both cases, therefore z + X ⊂ D is
impossible.

Consequently, z ∈ B is impossible.

• Case z ∈ C.

As in the one-dimensional case, if z ∈ C, (P j+1
1 ) is true because ηj+1

D\Di
=

ηjD\Di
for any i ∈ {1, . . . , d}, (P j+1

2 ) is true because ηj+1
B = ηjB, and

(P j+1
4 ) is true because ηj+1

Di
= ηjDi

for any i ∈ {1, . . . , d}. Furthermore,
the proof of (P j+1

3 ) is the same as in dimension 1. Therefore, (P j+1
3 ) is

true.

Consequently, H′j+1 holds.

• Case z ∈ D′.
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As in the one-dimensional case, if z ∈ D, (P j+1
2 ) is true because ηj+1

B =
ηjB, and (P j+1

3 ) is true because ηj+1
C = ηjC .

Let us prove (P j+1
1 ).

We set i ∈ {1, . . . , d}. Let us prove that ηj+1
D\Di

contains a zero. There
will be two different cases:

– If z ∈ Di, then ηj+1
D\Di

= ηjD\Di
, hence by (P j

1 ) ηj+1
D\Di

contains at
least one zero.

– If z ∈ D \ Di, then we observe that z + X ⊂ D ∪ B. Moreover,
by (P j

2 ) ηjB = 1B, thus z + X ⊂ D. Furthermore, by assumption
on the model X 6⊂ {(x1, . . . , xd) ∈ Rd |xi > 0}, hence z + X 6⊂
z + {(x1, . . . , xd) ∈ Rd |xi > 0}, which implies that there exists a
site z′ ∈ z + X such that the i-th coordinate of z′ is lesser than
or equal to the i-th coordinate of z, hence lesser than or equal to
bn−an−1−bn−1−r since z ∈ D\Di. Therefore, as z′ ∈ D and the
i-th coordinate of z′ is lesser than or equal to bn−an−1− bn−1− r,
z′ ∈ D \Di. Furthermore, we have ηj+1

z′ = ηjz′ = 0. Consequently,
ηj+1
D\Di

contains a zero.

In both cases we conclude that ηj+1
D\Di

contains a zero. Consequently,
ηj+1
D\Di

contains a zero for all i ∈ {1, . . . , d}, hence (P j+1
1 ) is true.

Now let us prove (P j+1
4 ).

We let i ∈ {1, . . . , d}. We are going to prove that ηj+1
Di

1D′i\Di
∈ V (n−

1, D′i). As before, there will be two different cases:

– If z ∈ Di, then we observe that z +X ⊂ D ∪B. Furthermore, by
(P j

2 ) ηjB = 1B, hence we have z + X ⊂ D. Moreover, D′i \ Di is
disjoint fromD, thus we obtain (ηjDi

1D′i\Di
0(D′i)

c)z+X = 0z+X . This
implies that the move from ηjDi

1D′i\Di
to (ηjDi

1D′i\Di
)z = ηj+1

Di
1D′i\Di

is legal. Furthermore, ηj+1
D\Di

contains at least one zero by (P j+1
1 ),

and ηj+1 contains at most n zeroes, hence ηj+1
Di

1D′i\Di
contains at

most n− 1 zeroes. In addition, ηjDi
1D′i\Di

∈ V (n− 1, D′i) by (P j
4 ).

Consequently, ηj+1
Di

1D′i\Di
∈ V (n− 1, D′i).

– If z ∈ D \ Di, then ηj+1
Di

= ηjDi
, and as ηjDi

1D′i\Di
∈ V (n − 1, D′i)

by (P j
4 ), ηj+1

Di
1D′i\Di

∈ V (n− 1, D′i).

In both cases we proved that ηj+1
Di

1D′i\Di
∈ V (n − 1, D′i). This implies

that ηj+1
Di

1D′i\Di
∈ V (n−1, D′i) for any i ∈ {1, . . . , d}. Therefore (P j+1

4 )
is true.
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This yields that H′j+1 holds.

To conclude, H′j+1 holds in all cases.

Consequently, H′j implies H′j+1 for any j ∈ {0, . . . ,m− 1}, and H′0 holds.
This proves that H′j holds for any j ∈ {0, . . . ,m}, which ends the proof of
the lemma.

4.2 Supercritical unrooted models

As in the one dimensional case, we wish to prove that the hypothesis of our
theorem 1 is not restrictive, namely that the result is not valid in supercritical
unrooted models. In the one-dimensional case, we proved that a bounded
number of zeroes was enough to bring a zero anywhere in any finite domain
by constructing an interval of zeroes that could move along Z, and by making
it move from the boundary conditions to the target site. In d = 2 we can
extend the construction using the bootstrap results of [6], and we expect the
idea to extend to higher dimensions.

For d = 2, [6] explains how, if we have a semicircle containing no stable
direction, we can build a “droplet” of zeroes that can grow in the direction
given by the middle of the semicircle; as any change of site state can be
reversed in a KCM, the droplet will also be able to shrink in that direction.
If we have a supercritical unrooted model, its stable directions are contained
in a hyperplane of R2, which means a straight line, hence there are at most
two stable directions, and they must then be opposite. Therefore, there exists
two opposite semicircles containing no stable direction, with middles u and
−u. The construction of [6] can then be used to build a droplet that can
grow and shrink in directions u and −u. When it grows in one direction,
we have it shrink in the other, which allows to keep it below a bounded size
and to keep a bounded number of zeroes. Furthermore, this “grow in one
direction/shrink in the other” mechanism makes the droplet move along that
direction. Hence we can move this droplet from the boundary conditions to
the target site. This allows to bring a zero to the target site using only a
bounded number of zeroes.

Appendix: existence of the basis {v1, . . . , vd}
By assumption, the update family U is not supercritical unrooted, hence its
stable directions are not contained in any hyperplane of Rd. Therefore, there
exists stable directions u1, . . . , ud of U that form a basis of Rd.
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For any u ∈ Sd−1, we denote Hu the hyperplane orthogonal to u: Hu =
{x ∈ Rd | 〈x, u〉 = 0}.

Then, for any i ∈ {1, . . . , d},
⋂
j 6=iHuj is a straight line. Indeed,

⋂
j 6=iHuj

is the intersection of d−1 hyperplanes in Rd, hence it contains a straight line.
Furthermore,

⋂
j 6=iHuj is orthogonal to the uj, j 6= i, and since {u1, . . . , ud}

is a basis of Rd, {uj : j 6= i} generate a vector space of dimension d −
1. Therefore

⋂
j 6=iHuj is orthogonal to a vector space of dimension d − 1.

Consequently, it is at most a straight line. This yields that
⋂
j 6=iHuj is a

straight line.
For any i ∈ {1, . . . , d}, we define vi as a vector of `2-norm 1 in

⋂
j 6=iHuj .

We are going to show that {v1, . . . , vd} is a basis of Rd.
For any vector set {w1, . . . , wm} ⊂ Rd, we denote by Vect{w1, . . . , wm} the
vector space generated by {w1, . . . , wm}. It will be enough to prove that
Vect{v1, . . . , vd} is Rd. In order to do that, we take v ∈ Rd a vector or-
thogonal to the space Vect{v1, . . . , vd}. We are going to show that v must
be the null vector. For all i ∈ {1, . . . , d}, v is orthogonal to vi. More-
over, the vector space orthogonal to vi has dimension d − 1. Furthermore,
vi ∈

⋂
j 6=iHuj , hence the uj, j 6= i are orthogonal to vi. Hence, as the

uj, j 6= i are d − 1 linearly independent vectors, the vector space orthogo-
nal to vi is Vect{u1, . . . , ui−1, ui+1, . . . , ud}. This implies that v belongs to
Vect{u1, . . . , ui−1, ui+1, . . . , ud}, for any i ∈ {1, . . . , d}. As {u1, . . . , ud} is a
basis of Rd, this yields v = 0. Consequently, the vector space orthogonal to
Vect{v1, . . . , vd} is reduced to {0}. We deduce Vect{v1, . . . , vd} = Rd, thus
{v1, . . . , vd} is a basis of Rd.

Said basis verifies that for any i ∈ {1, . . . , d}, Hui = {(x1, . . . , xd) ∈
Rd |xi = 0}. Indeed, the latter hyperplane is generated by the vectors
v1, . . . , vi−1, vi+1, . . . , vd, which are d − 1 linearly independent vectors be-
longing to the hyperplane Hui of Rd, hence they generate Hui .

Consequently, we obtain that for any i ∈ {1, . . . , d}, ‖vi‖2 = 1 and in the
basis {v1, . . . , vd}, {(x1, . . . , xd) ∈ Rd |xi = 0} is orthogonal to ui.

We also want the half-space Hui to be {(x1, . . . , xd) ∈ Rd |xi > 0}
for all i ∈ {1, . . . , d}. We just showed that {x ∈ Rd | 〈x, ui〉 = 0} =
{(x1, . . . , xd) ∈ Rd |xi = 0}, therefore Hui is either {(x1, . . . , xd) ∈ Rd |xi >
0} or {(x1, . . . , xd) ∈ Rd |xi < 0}. If Hui = {(x1, . . . , xd) ∈ Rd |xi < 0}, we
replace vi with −vi. Thus we get Hui = {(x1, . . . , xd) ∈ Rd |xi > 0}.
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