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Given n agents each of which has a secret (a fact not known to anybody else), the classical version of the gossip problem is to achieve shared knowledge of all secrets in a minimal number of phone calls. There exist protocols achieving shared knowledge in 2(n-2) calls: when the protocol terminates everybody knows all the secrets. We generalize that problem and focus on higher-order shared knowledge: how many calls does it take to obtain that everybody knows that everybody knows all secrets? More generally, how many calls does it take to obtain shared knowledge of order k? This requires not only the communication of secrets, but also the communication of knowledge about secrets. We give a protocol that works in (k+1)(n-2) steps and prove that it is correct: it achieves shared knowledge of level k. The proof is presented in a dynamic epistemic logic that is based on the observability of propositional variables by agents.

Introduction: the gossip problem and its generalization

The original version of the gossip problem goes as follows [START_REF] Akkoyunlu | Some constraints and tradeoffs in the design of network communications[END_REF][START_REF] Hurkens | Spreading gossip efficiently[END_REF].

There are six agents each of which knows some secret not known to anybody else. Two agents can make a telephone call and exchange all secrets they know. How many calls does it take to share all secrets, i.e., how many calls have to take place until everybody knows all secrets?

The problem can be generalized from six to arbitrary numbers of agents n. In the literature one can find various protocols achieving the goal in 2(n -2) calls. It has been proved that they are optimal: no protocol exists achieving the goal with less calls [START_REF] Baker | Gossips and telephones[END_REF][START_REF] Tijdeman | On a telephone problem[END_REF][START_REF] Hajnal | A cure for the telephone disease[END_REF].

There are contexts where the agents have to achieve higher-order knowledge, typically in order to coordinate some joint action. While after 2(n-2) calls all secrets are shared knowledge, they fail to be common knowledge. Unless everybody knows the protocol and there is a global clock, such common knowledge cannot be attained. More modestly, the agents may want to achieve second-order shared knowledge: they may have the goal that everybody knows that everybody knows all secrets. This paper investigates how such higher-order knowledge can be achieved.

Let Agt be the set of all agents. Let us denote the secret of agent i by s i . To simplify things we suppose that s i is a proposition that is true. Let us write K i ϕ to express that agent i knows that the formula ϕ is true. The initial situation before the agents start gossiping is expressed by i∈Agt s i ∧ K i s i ∧ j∈Agt,j =i ¬K j s i ∧ ¬K j ¬s i and the formula i∈Agt K i j∈Agt s j expresses the goal that every agent knows every secret. Let us abbreviate the conjunction j∈Agt s j of all secrets by All . Furthermore, let EK J ϕ abbreviate the conjunction i∈J K i ϕ, where J ⊆ Agt is an arbitrary nonempty subset of Agt. So EK Agt All expresses that all secrets are shared knowledge: every agent knows every secret. EK Agt EK Agt All expresses the goal that every agent knows that all secrets are shared knowledge. The formula

EK Agt . . . EK Agt k times

All

expresses that all secrets are shared knowledge up to depth k ≥ 1.

The result of a phone call between two agents is that their knowledge increases. Let us model this by means of modal operators of action: the formula [Call i j ]ϕ expresses that ϕ is true after i and j talked to each other. Then [Call i j ]EK {i,j} (s i ∧s j ) expresses that the result of Call i j is that i and j know their secrets. When we say that during a call the agents communicate all they know then this not only concerns secrets, but also knowledge about secrets and more generally higher-order knowledge. Therefore calls achieve common knowledge between the calling agents, i.e.,

[Call i j ]EK {i,j} . . . EK {i,j} (s i ∧ s j )
is the case for arbitrary nestings of EK {i,j} . Furthermore, the formula

[Call i1 j1 ] . . . [Call i 2(n-2) j 2(n-2) ] 2(n-2) times
EK Agt All expresses that the protocol where i 1 calls j 1 first, then i 2 calls j 2 , . . . , and finally i 2(n-2) calls j 2(n-2) achieves shared knowledge. We note (k, n) the instance of the generalized gossip problem with n ≥ 2 agents and the goal to achieve depth k ≥ 1 of shared knowledge. So the original problem corresponds to the instance [START_REF] Akkoyunlu | Some constraints and tradeoffs in the design of network communications[END_REF][START_REF] Herzig | A poor man's epistemic logic based on propositional assignment and higher-order observation (regular paper)[END_REF]. We are going to introduce a protocol achieving shared knowledge of depth k in (k+1)(n-2) calls. Our proofs are formally rigorous: they are couched in a dynamic epistemic logic that is called DEL-PAO (Dynamic Epistemic Logic of Propositional Assignment and Observation), with epistemic operators K i , for i ∈ Agt, and dynamic operators [Call i j ], for i, j ∈ Agt. We had introduced and studied that logic in [START_REF] Herzig | A poor man's epistemic logic based on propositional assignment and higher-order observation (regular paper)[END_REF], building on previous work by van der Hoek and colleagues [START_REF] Van Der Hoek | Knowledge and control[END_REF][START_REF] Van Der Hoek | A logic of revelation and concealment[END_REF]. We do not address the question whether our protocol is optimal and leave that to future work.

The paper is organized as follows. Section 2 presents our algorithm. Section 3 recalls syntax and semantics of our dynamic epistemic logic DEL-PAO. In Section 4 we show how to capture the algorithm as a DEL-PAO program. In Section 5 we prove in DEL-PAO that the algorithm is correct. Section 6 concludes.

An algorithm achieving higher-order shared knowledge

The following algorithm generates a sequence of calls for a given instance (k, n) of the generalized gossip problem, for k ≥ 1 and n ≥ 4. Throughout the algorithm two of the agents, which we call left and right, will have a central, fixed role: each of the other agents only communicates with either left or right. The n -2 remaining agents will be numbered 0, 1, . . ., n-3.

The algorithm is made up of turns. During each turn, left and right collect the secrets of other agents. Together with the last agent they talked to in that turn, they thereby become what we call 'semi-experts'. A further call between complementary semi-experts turns them into full experts. The last agents left and right talked to play a crucial role. These two further semi-experts are permuted at each turn in a way that will guarantee that the goal is reached. At the first turn (turn 0), agent left calls agent 0, then 1, . . . , then n-4, and finally agent right calls agent n-3; at the second turn (turn 1), agent left calls agent n-3, then 0, then 4, . . . , then n-5; and finally agent right calls agent n-4; and so on. In the rest of the paper, we assume that every index of agent is taken modulo n-2 and we omit "(mod n-2)".

Figure 1 gives a visual representation of Algorithm 1: agents 0, 1, . . ., n-3 are put on a wheel which, between each turn, rotates clockwise. Agent left calls everyone in ascending order, except the agent at the rightmost position of the wheel, then right calls this agent. So each turn involves n-2 calls, and overall the algorithm produces a sequence of (k+1)(n-2) calls.

Theorem 1. The instance (k, n) of the generalized gossip problem can be solved in at most (k+1)(n-2) calls.

The rest of the paper is devoted to the proof of the above theorem: we are going to establish that the sequence of calls produced by the algorithm is indeed a solution. Our proof will be done in the formal language of DEL-PAO that we introduce first.

Dynamic Epistemic Logic of Propositional Assignment and Observation DEL-PAO

Dynamic Epistemic Logic of Propositional Assignment and Observation DEL-PAO is grounded on the notion of observability of propositional variables. It refines a logic that was proposed and studied in a series of papers by van der Hoek, Wooldridge and colleagues under the names Epistemic Coalition Logic of Propositional Control with Partial Observability ECL-PC(PO) [START_REF] Van Der Hoek | Knowledge and control[END_REF] and Logic of Revelation and Concealment LRC [START_REF] Van Der Hoek | A logic of revelation and concealment[END_REF]. Basically the idea is that each agent has a set of propositional variables she can observe: no different truth value is possible for her. The other way round, any combination of truth values of the non-observable variables is possible for her. In this section, we recall this logic; more details can be found in [START_REF] Herzig | A poor man's epistemic logic based on propositional assignment and higher-order observation (regular paper)[END_REF].

Observability atoms

The atomic formulas of DEL-PAO are called visibility atoms and take the form S i1 S i2 ...S in p, where p is a propositional variable from a countable non-empty set Prop and i 1 , i 2 , ..., i n are agents from a finite non-empty set Agt. When n=0 then we have nothing but a propositional variable. For n=1, the atom S i1 p reads "agent i 1 sees the value of the variable p", and for n=2, the second-order observation S i1 S i2 p reads "agent i 1 sees whether i 2 sees the value of p"; and so on. Beyond individual observability the language of DEL-PAO also accounts for joint observability: the atom JSp reads "all agents jointly see the value of p". Metaphorically, joint attention about a propositional variable p is the case when there is eye contact between the agents when observing p. Joint visibility implies individual visibility: when a valuation contains JS p then it should also contain S i p.

One can define first-and higher-order knowledge about literals by means of conjunctions of visibility atoms. Indeed, for a propositional variable p we have that agent i knows that p is true when p is true and i sees p. Similarly i knows that p is false when p is false and i sees p. The list below collects some equivalences that will be valid:

K i p ↔ p ∧ S i p K i ¬p ↔ ¬p ∧ S i p ¬K i p ∧ ¬K i ¬p ↔ ¬S i p K j K i p ↔ p ∧ S i p ∧ S j p ∧ S j S i p K j K i ¬p ↔ ¬p ∧ S i p ∧ S j p ∧ S j S i p
Formally the definition of observability atoms is as follows. First, the set of observability operators is OBS = {S i : i ∈ Agt} ∪ {JS}, where S i stands for individual visibility of agent i and JS stands for joint visibility of all agents. The set of all sequences of visibility operators is noted OBS * and the set of all non-empty sequences is noted OBS + . We use σ , σ ′ , . . . for elements of OBS * . Finally, the set of atomic formulas is ATM = {σ p : σ ∈ OBS * , p ∈ Prop}. The elements of ATM are also called visibility atoms, or atoms for short. For example, JS S 2 q reads "all agents jointly see whether agent 2 sees the value of q"; in other words, there is joint attention in the group of all agents concerning 2's observation of q. The elements of ATM are noted α, α ′ , . . . , β, β ′ , . . ..

Complex formulas

Beyond atomic formulas the language of DEL-PAO has epistemic operators as well as actions, alias programs, assigning truth values to visibility atoms. It is defined by the following grammar:

ϕ ::= α | ¬ϕ | ϕ ∧ ϕ | K i ϕ | CKϕ | [π]ϕ π ::= +α | -α | π; π | π ⊔ π | ϕ?
where α ranges over ATM and i over Agt.

Our atomic programs are assignments of truth values to atoms from ATM : +α makes α true and -α makes α false. Complex programs are constructed with dynamic logic operators: π; π ′ is sequential composition, π⊔π ′ is nondeterministic choice, and ϕ? is test. Just as in dynamic logic, the formula [π]ϕ reads "after every execution of π, ϕ is true". The formula K i ϕ reads "i knows that ϕ is true on the basis of what she observes", and CKϕ reads "all agents jointly know that ϕ is true on the basis of what they jointly observe". These epistemic operators account for forms of individual and common knowledge that are respectively obtained via individual observation and joint observation of facts. They therefore differ conceptually from the classical operators of individual and common knowledge as studied in the area of epistemic logic [START_REF] Fagin | Reasoning about Knowledge[END_REF].

The other boolean operators ⊤, ⊥, ∨, → and ↔ are defined as abbreviations, and K i ϕ abbreviates ¬K i ¬ϕ. For J ⊆ Agt, the shared knowledge modality is defined by

EK J ϕ def = i∈J K i ϕ
and the iteration of that operator is defined inductively for k ≥ 0 by EK 0 J ϕ = ϕ and EK n+1 J ϕ = EK J EK n J ϕ. Moreover, skip abbreviates ⊤? and fail abbreviates ⊥?. We also use the abbreviation π k , for k ≥ 0, inductively defined by π 0 = skip and π k+1 = π k ; π. We sometimes drop set parentheses and, e.g., write EK i,j ϕ instead of EK {i,j} ϕ.

Introspective valuations

The models of DEL-PAO are simply sets of visibility atoms. In order to guarantee positive and negative introspection we have to ensure that agents are always aware of what they see: for every agent i and propositional variable p, S i S i p has to be in every valuation. More generally, a valuation V is introspective when it contains every visibility atom having two consecutive S i , such as S j S i S i S k p. So in an introspective valuation an agent is aware of what she sees, every agent sees this, and every agent sees that every agent sees this, etc.

Formally, a valuation V ∈ 2 ATM is introspective if and only if the following hold, for every α ∈ ATM and i ∈ Agt:

S i S i α ∈ V (C1) JS JS α ∈ V (C2) JS S i S i α ∈ V (C3) if JS α ∈ V , then S i α ∈ V (C4) if JS α ∈ V , then JS S i α ∈ V (C5)
The set of all introspective valuations is noted INTR. (C1) is about introspection of individual sight: an agent always sees whether she sees the value of an atom. (C2) requires the same for joint sight; indeed, if JS α is true then JS JS α should be true by introspection, and if JS α is false then all agents jointly see that at least one of them has broken eye contact. (C3) forces the first to be common knowledge. (C4) guarantees that joint visibility implies individual visibility. Together with (C2), (C5) guarantees that JS α ∈ V implies JS σ α ∈ V for σ ∈ OBS * .

The constraints (C4) and (C5) ensure that JS α ∈ V implies σ α ∈ V for σ ∈ OBS + . This motivates the following relation of introspective consequence between atoms: α ❀ β iff either α = β, or α = JS α ′ and β = σ α ′ for some σ ∈ OBS + . Closure under introspective consequence characterizes introspective valuations.

Proposition 1 ([6]

). A valuation V ⊆ ATM is introspective if and only if, for every α, β ∈ ATM and i ∈ Agt: Indistinguishability relations between valuations. Two valuations are related by the indistinguishability relation for agent i, noted ∼ i , if every α that i sees has the same value. Similarly, we have a relation ∼ Agt for joint indistinguishability. They are defined as follows:

σ S i S i α ∈ V for every σ ∈ OBS * (1) σ JS α ∈ V for every σ ∈ OBS + (2) if α ∈ V and α ❀ β then β ∈ V (3) An atom α ∈ ATM is valid in INTR if
V ∼ i V ′ iff S i α ∈ V implies V (α) = V ′ (α) V ∼ Agt V ′ iff JS α ∈ V implies V (α) = V ′ (α)
where we write V (α) = V ′ (α) when α has the same truth value in V and V ′ , i.e., when either α ∈ V and α ∈ V ′ , or α / ∈ V and α / ∈ V ′ . It is proven in [START_REF] Herzig | A poor man's epistemic logic based on propositional assignment and higher-order observation (regular paper)[END_REF] that the binary relations ∼ i and ∼ Agt are equivalence relations on the set of introspective valuations INTR and that valuations in INTR are not related to valuations outside of INTR by ∼ i and ∼ Agt .

Truth conditions and validity. Given an introspective valuation V , update operations add or remove atoms from V . This requires some care because the resulting valuation should be be introspective. For example, removing S i S i p should be impossible. Another example is when V does not contain S i p: then V ∪ {JS p} would violate (C4). So when adding an atom to V one also has to add all its positive consequences. Symmetrically, when removing an atom one also has to remove its negative consequences. Let us define the following:

Eff + (α) = {β ∈ ATM : α ❀ β} Eff -(α) = {β ∈ ATM : β ❀ α} Clearly, when V is introspective then both V ∪ Eff + (α) and V \ Eff -(α) are so, too (unless α is valid).
Now the truth conditions are as follows:

V |= α iff α ∈ V V |= ¬ϕ iff V |= ϕ V |= ϕ ∧ ψ iff V |= ϕ and V |= ψ V |= K i ϕ iff V ′ |= ϕ for all V ′ such that V ∼ i V ′ V |= CKϕ iff V ′ |= ϕ for all V ′ such that V ∼ Agt V ′ V |= [π]ϕ iff V ′ |= ϕ for all V ′ such that V R π V ′
where R π is a binary relation on valuations that is defined (by mutual recursion with the definition of |=) by:

V R +α V ′ iff V ′ = V ∪ Eff + (α) V R -α V ′ iff V ′ = V \ Eff -(α) and α is not valid in INTR V R π1;π2 V ′ iff there is U such that V R π1 U and U R π2 V ′ V R π1⊔π2 V ′ iff V R π1 V ′ or V R π2 V ′ V R ϕ? V ′ iff V = V ′ and V |= ϕ
The relation R π is defined just as in PDL for the program operators ;, ⊔ and ?. The interpretation of assignments is designed in a way such that we stay in INTR: the program +α adds all the positive consequences of α; the program -α fails if α is valid in INTR and otherwise removes all the negative consequences of α. For example, we never have V R -S1 S1 p V ′ , i.e., the program -S 1 S 1 p always fails. In contrast, the program -S 1 S 2 p always succeeds, and we have V R -S1 S2 p (V \ {S 1 S 2 p, JS S 2 p, JS p}) because the only atoms-beyond S 1 S 2 p itself-whose consequence is S 1 S 2 p are JS S 2 p and JS p. Therefore V |= [-S 1 S 2 p]JS p for every V .

Like ∼ i and ∼ Agt , it is proven in [START_REF] Herzig | A poor man's epistemic logic based on propositional assignment and higher-order observation (regular paper)[END_REF] that valuations in INTR are only related to valuations in INTR by R π . Therefore there is no risk to "go out" of the set of introspective valuations with modal operators.

A model of ϕ is a valuation V such that V |= ϕ. 

A

Expressing calls in the language of DEL-PAO

The logic DEL-PAO provides a suitable framework to model calls between agents and to reason about the evolution of their knowledge. Before the proof of correctness of our algorithm, we show how to express calls and we give some of their properties.

In the protocols for the standard version of the gossip problem, agents only communicate their factual knowledge during a call. In order to achieve higherorder knowledge they also have to tell what they know about others: for shared knowledge of level k they have to exchange all their knowledge up to depth k -1.

Formally, let the level k of intended shared knowledge be given. Let i and j be two agents. For a given integer m, let the set all nonempty sequences of visibility operators S i and S j of length at most k-m be {σ 1 , . . . , σ l }. For example, for k = 3 and m = 1 that set is {S i , S j , S i S i , S i S j , S j S i , S j S j }. Then Call i j is the sequential composition of programs of the form

K i K y1 K y2 . . .K ym s ∨ K j K y1 K y2 . . .K ym s?; +σ 1 S y1 . . . S ym s; . . . ; +σ l S y1 . . . S ym s ⊔ ¬(K i K y1 K y2 . . .K ym s ∨ K j K y1 K y2 . . .K ym s)?
for secret s in {s i : i ∈ Agt}, integer m ≤ k-1, and agents y 1 , . . . , y m ∈ Agt m . For example, for k = 3 the following is an element of the sequence:

K i K y s ∨ K j K y s?; +S i S y s; +S j S y s; +S i S i S y s; +S i S j S y s; +S j S i S y s; +S j S j S y s ⊔ ¬(K i K y s ∨ K j K y s)?
That piece of program tests whether K y s is known by i or j and if so makes S y s visible for both i and j and i's observation of S y s visible for j, and vice versa; when neither i nor j knows K y s then the first test K i K y s ∨ K j K y s? fails and the second test ¬(K i K y s ∨ K j K y s)? succeeds and the program does nothing. We observe that the additions +S i S i S k s and +S j S j S k s are trivial because they are introspectively valid. Some properties of the program Call i j and its interaction with the shared knowledge operator will be useful in our proofs.

First of all, the dynamic operators [Call i j ] and the shared knowledge operators EK J are normal modal operators. So in particular [Call i j ]ϕ ∧ [Call i j ]ψ ↔ [Call i j ](ϕ∧ψ) and (EK J ϕ∧EK J ψ) ↔ EK J (ϕ∧ψ) are DEL-PAO valid. Moreover, we can put coalitions together: the schema (EK J1 ϕ ∧ EK J2 ϕ) ↔ EK J1∪J2 ϕ is valid for every J 1 , J 2 ⊆ Agt. (To see this reduce EK according to its definition.) Finally, calls preserve positive knowledge and produce shared knowledge, which is a property that we state formally: Proposition 2. Let s ∈ {s i : i ∈ Agt} and m ≥ 0. Let ϕ be of the form either K i1 . . . K im s or EK J1 . . . EK Jm s. Then:

1. ϕ → [Call i j ]ϕ is DEL-PAO valid; 2. K i ϕ → [Call i j ]EK k-m
{i,j} ϕ is DEL-PAO valid. Finally, the program corresponding to the turn t of Algorithm 1 is: 

turn t = Call

Correctness of the algorithm

We now prove that the algorithm returns a solution. The dynamic modalities of DEL-PAO nicely allow to express that a further call would turn an agent i into an expert, i.e., that i is a semi-expert.

Algorithm 1 .

 1 For t = 0..k do agent left calls agent 0-t (mod n-2); agent left calls agent 1-t (mod n-2); . . . agent left calls agent n-3; agent left calls agent 0; agent left calls agent 1; . . . agent left calls agent n-4-t (mod n-2); agent right calls agent n-3-t (mod n-2).

Fig. 1 .

 1 Fig. 1. Graphical represention of the first three turns of Algorithm 1.

  left n-2-t ; . . . ; Call left n-3 ; Call left 0 ; . . . ; Call left n-4-t ; Call right n-3-t .

  and only if α belongs to every valuation in INTR. By Proposition 1, α is valid in INTR if and only if α is of the form either σ S i S i α with σ ∈ OBS * , or σ JS α with σ ∈ OBS + .

  formula ϕ is satisfiable in INTR if ϕ has an introspective model. For example, JS p ∧ ¬S i p has a model, but does not have an introspective model and is therefore unsatisfiable in INTR. A formula ϕ is valid in INTR if if every introspective valuation is a model of ϕ. We also say that ϕ is a validity of DEL-PAO. For example, ¬[-S 1 S 2 p]JS p is valid in INTR, and ¬β → [+α]¬β is valid in INTR if and only if α ❀ β.
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Let Agt = {left, right, 0, . . . , n-3} be the set of agents and Prop = {s i : i ∈ Agt} the set of propositional variables. The initial state is modeled by the valuation

So all secrets are true, each agent knows its own secret, and moreover the introspectively valid atoms are true. We have:

An agent is an expert for depth t if its personal goal for depth t is reached. Precisely, at w agent i is an expert for depth t ≥ 1 if and only if

Two agents i and j are complementary for depth t ('semi-experts'), noted compl t (i, j), if a call between i and j would make them both experts for depth t. More formally:

Furthermore, two pairs of agents (i 1 , i 2 ) and (j 1 , j 2 ) are complementary for depth t at valuation w if and only if

We will prove that at each turn, two pairs of agents are complementary: the first pair is agent left along with the last agent she called at this turn, and the second is agent right along with the last (and only agent) she called at this turn.

The first turn is a special case where semi-experts of depth 1 are produced.

Lemma 1. We have:

Proof. Let us write ij for the call between i and j. The first turn (turn 0) of Algorithm 1 produces the following sequence of calls: left0, left1, . . . , left(n-4), right(n-3).

By Proposition 2.2 we have w 0 |= [Call left 0 ]EK left,0 (s left ∧s 0 ) and therefore w 0 |= [Call left 0 ]K left (s left ∧s 0 ). We do the same for the next call:

. And so on until:

In the same vein we also have w 0 |= [Call right n-3 ]EK right,n-3 (s right ∧s n-3 ). By Proposition 2.1 we then obtain:

We now characterize the turns after turn 0 .

Lemma 2. For t ≥ 1, we have:

Agt All .

Proof. We use by induction on t. Both cases resemble the proof of Lemma 1.

Base case: t = 1. The turn 1 of Algorithm 1 produces the following sequence: left(n-3), left0, left1, . . . , left(n-5), right(n-4).

By Lemma 1 and Proposition 2.2 we have:

All . Then again by Proposition 2.2:

All , and for the next call:

All , and so on until:

]EK left,n-5 EK left,n-3,0,1,...,n-5 All . Similarly we have:

All . Finally we obtain the result by Proposition 2.1:

Inductive case. The reasoning is similar, but generalized to turn t+1. Suppose the formula is true for turn t. The turn t + 1 is: 

EK left,n-5-t EK left,n-3-t,...,n-5-t EK t Agt All ∧ EK right,n-4-t EK right,n-4-t EK t Agt All , which is our result for t + 1. Lemma 3. After the turn t -1 of Algorithm 1, the pairs (left, n-3-t) and (right, 0-t) are complementary for depth t.

Proof. From Lemma 2 we can deduce:

Agt All . Applying Proposition 2.2 we obtain:

Agt All , that is:

Agt All , which is equivalent to:

Following the same reasoning for left and 0-t, right and n-3-t, and finally n-3-t and 0-t, we obtain that each of them are complementary, hence the result.

Lemma 4. The goal for depth t, EK t

Agt All , is reached after the turn t of Algorithm 1.

Proof. The turn t of Algorithm 1 is: left(0-t), left(1-t), . . . , left(n-4-t), right(n-3-t).

By Lemma 3, after the turn t -1 and the first call left(0-t) of turn t, agents left and 0-t become experts for depth t. (Thus EK left,0-t EK t-1 Agt All .) Then, after the n-4 calls left(1-t), . . . , left(n-4-t) we get by Proposition 2.2:

Agt All , that is, 1-t, . . ., n-4-t are all experts for depth t.

Finally, after the last call right(n-3-t), and also by Lemma 3, agents right and n-3-t become experts for depth t. (Thus EK right,n-3-t EK t-1 Agt All .) Therefore after the n-2 calls of the turn t we have EK Agt EK t-1

Agt All , which is equivalent to EK t Agt All . Proposition 3. The sequence resulting from Algorithm 1 gives a solution to the generalized gossip problem.

Proof. By Lemma 4, the goal for depth t is reached after turn t of Algorithm 1. Thus the goal for depth k is reached after turn k (k + 1 turns), i.e., at the end of the algorithm.

Conclusion

We have provided a logical analysis of the gossip problem, focusing on how higher-order shared knowledge can be obtained. We did so in a particular dynamic epistemic logic: Dynamic Epistemic Logic of Propositional Assignment and Observation DEL-PAO. Its integration of knowledge modalities and dynamic modalities provides a handy language in order to reason about concepts such as an agent being a semi-expert, which is pivotal in our algorithm.

The gossip problem recently attracted quite some attention in the dynamic epistemic logic community [START_REF] Attamah | Knowledge and gossip[END_REF]. We believe that our generalization-as well as further variations where e.g. calls can only be made according to some graph structure-provide interesting, canonical multiagent planning problems that can be compared to the blocksworld in classical planning.