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REVIEW

Patient healthcare trajectory. An 
essential monitoring tool: a systematic review
Jessica Pinaire1,2,3*, Jérôme Azé3, Sandra Bringay3,4 and Paul Landais1,2

Abstract 

Background: Patient healthcare trajectory is a recent emergent topic in the literature, encompassing broad con-
cepts. However, the rationale for studying patients’ trajectories, and how this trajectory concept is defined remains a 
public health challenge. Our research was focused on patients’ trajectories based on disease management and care, 
while also considering medico-economic aspects of the associated management. We illustrated this concept with 
an example: a myocardial infarction (MI) occurring in a patient’s hospital trajectory of care. The patient follow-up was 
traced via the prospective payment system. We applied a semi-automatic text mining process to conduct a com-
prehensive review of patient healthcare trajectory studies. This review investigated how the concept of trajectory is 
defined, studied and what it achieves.

Methods: We performed a PubMed search to identify reports that had been published in peer-reviewed journals 
between January 1, 2000 and October 31, 2015. Fourteen search questions were formulated to guide our review. A 
semi-automatic text mining process based on a semantic approach was performed to conduct a comprehensive 
review of patient healthcare trajectory studies. Text mining techniques were used to explore the corpus in a semantic 
perspective in order to answer non-a priori questions. Complementary review methods on a selected subset were 
used to answer a priori questions.

Results: Among the 33,514 publications initially selected for analysis, only 70 relevant articles were semi-auto-
matically extracted and thoroughly analysed. Oncology is particularly prevalent due to its already well-established 
processes of care. For the trajectory thema, 80% of articles were distributed in 11 clusters. These clusters contain dis-
tinct semantic information, for example health outcomes (29%), care process (26%) and administrative and financial 
aspects (16%).

Conclusion: This literature review highlights the recent interest in the trajectory concept. The approach is also gradu-
ally being used to monitor trajectories of care for chronic diseases such as diabetes, organ failure or coronary artery 
and MI trajectory of care, to improve care and reduce costs. Patient trajectory is undoubtedly an essential approach to 
be further explored in order to improve healthcare monitoring.

Keywords: Systematic reviews, Text mining, Healthcare trajectory, PPS, Semi-automated, Word cloud
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Background
Patient healthcare trajectory is a recent emergent topic 
in the literature, encompassing broad concepts. Our 
research was focused on the patient trajectory based on 
disease management and care, while also considering 
medico-economic aspects of the associated management. 

We approached patient care trajectories based on an 
example; the occurrence of a myocardial infarction (MI). 
As MI treatment is performed in a health facility, we were 
able to trace the patient trajectories through the national 
hospital financing system, using comprehensive hospi-
tal databases or registers, regularly collected for billing 
purposes.

The first prospective payment system (PPS), based on 
diagnosis-related groups (DRG), was established in the 
United States in 1983. The objective of this system was 
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to control the expenditures of health care institutions 
and streamline the costs [1]. Thereafter, similar medical 
information systems were adopted in many other indus-
trialised countries. Others, like France, also adopted an 
anonymised database with unique patient identifiers (for 
instance, through cryptographic hash functions) to facili-
tate chaining hospital stays [2–4]. In addition, the gradual 
increase in fees-for-services enhanced the coding quality 
[5]. The introduction of these systems enabled new epi-
demiological and/or economic studies [6–9] using these 
databases, with temporal follow-up of patients allowing 
tracing of their trajectory of care. This review investi-
gated how the trajectory concept is defined, studied and 
what it achieves.

We carried out a literature search on PubMed using 
keywords related to trajectory, PPS and MI concepts. We 
then proceeded in two steps: (1) a non-a priori search 
with text mining techniques; and (2) a more standard 
analysis of a sub-selection of documents.

Similar systematic reviews [10] have been performed 
before, but without using automatic procedures. How-
ever, conducting an automatic search is of considerable 
interest for processing a large number of documents. 
Text mining allows better targeting for information 
retrieval and reduces the search time [11], while also ena-
bling users to prioritise searches.

Our reviewing strategy is presented in the “Methods” 
section; the search questions that guided our review, 
together with the various methods used to address them. 
The results are reported in the “Results” section. We end 
with the “Discussion” section, where we present answers 
to the search questions and comment on the results. To 

conclude this section, we discuss the different existing 
text mining techniques used in systematic reviews.

Methods
Search questions
Healthcare researchers currently explore the literature 
manually, and use statistical methods or models that 
require a priori extreme simplification of the processes. 
Data exploration methods such as text mining methods 
end by the interpretation and exploration of the pro-
cesses, not a priori by knowledge discovery. We formu-
lated practical questions to guide the review process (see 
Table 1). We identified seven types of non-a priori ques-
tions expressed in general terms that integrate thematic 
and medical oriented issues and satisfy scientific and 
medical aspects for health care professional expertise. 
We also identified seven additional specific a priori ques-
tions requiring in-depth analysis.

Step 1: document retrieval
In PubMed, we searched for documents examining 
patient healthcare trajectories, as well as PPS and MI. 
The review selection process is summarised in Fig. 1. The 
trajectory concept can be expressed with different words 
such as “trajectory”, “pathway” or “path”. For the PPS 
theme, keywords used are “Prospective Payment System” 
and “PMSI” (Programme de médicalisation du système 
d’information, the French PPS equivalent), in addition to 
“DRG” (Diagnosis-Related Group) databases. This theme 
also arises in the International Classification of Diseases 
(ICD), pricing for the activity via the “fee-for-service” 
or “activity-based payment” expressions, but also in the 

Table 1 Search questions

Non-a priori questions

 Q1 Do studies on the patients’ trajectories exist?

 Q2 What are the topics in these studies? (support, treatment, costs, etc.)

 Q3 Which diseases are studied by trajectories?

 Q4 Is PPS explored in the search?

 Q5 Is PPS used in studying trajectories?

 Q6 Are there any studies on the trajectories of patients with MI?

 Q7 What is studied in MI?

A priori questions

 Q8 What are the various concepts of the trajectory? (How is this concept defined?)

 Q9 What is the interest in the subject: have many studies focused on patients’ trajectories?

 Q10 Which countries conduct studies on trajectories?

 Q11 What are the objectives of patient trajectory studies?

 Q12 What methods are used in patient trajectory studies?

 Q13 What are the characteristics of the studies: number of patients involved, duration of follow-up?

 Q14 What data is used in these studies: hospital or other?
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Fig. 1 Flow diagram of study selection
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national health registry or hospital registry concepts. We 
conducted searches according to the themes and con-
straints summarised in Table 2.

Step 2: first text mining approach
The strategy was as follows:

(i)  From the selection of articles gathered in step 1, we 
created a corpus of texts, divided into three parts, 
T1 to T3 (corresponding to Table 2 topics), consist-
ing of the title and abstract, in which we removed 
the keywords (see Table 2) in order to only keep the 
other terms;

(ii)  The three parts of the corpus were analysed sepa-
rately with IRaMuteQ1 software. This is an R inter-
face for multidimensional analysis of texts and 
questionnaires [12], allowing statistical analysis of 
the text corpus [13];

(iii) We applied the following pre-processing tech-
niques: (a) Lemmatization of texts, (b) Dictionary 
enrichment: we lemmatized unrecognised terms by 
TreeTagger2 and added specific medical terms and 
well-known acronyms such as acute myocardial 
infarction (AMI). Subsequently, the analyses were 
conducted with the full forms (nouns, adjectives, 
adverbs and verbs);

(iv) We carried out conventional textual analysis, then 
similarity analysis and finally clustering. The various 
tools used were as follows:

Word cloud This is a synthetic representation of the 
terms distribution: the most recurrent words are in 
the centre with text size proportional to the number of 
occurrences. Thus, this kind of representation symbol-
ises, by order of importance, the concepts covered in all 
of the articles. This method will provide an answer to Q1.

1 http://www.iramuteq.org/.
2 http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/.

Similarity analysis This graph theory-based technique 
is conventionally used to describe social representations 
based on survey questionnaires [14]. Similarity analysis is 
applied to study the proximity and relationships between 
elements in a set, in the form of maximum trees. The 
objective is to reduce the numbers of links between two 
items, to obtain an acyclic connected graph. The maxi-
mum tree is therefore the tree created by the strongest 
edges of the graph, where the strength is measured by 
the occurrence of the linked terms. For each corpus, we 
selected the tree representation described in [15] and 
in the algorithm in [16], to describe communities via 
the shortest path, thus highlighting the most frequently 
associated words in the same sentence or text. The graph 
generates a more precise idea of the content of articles 
concerning the concepts and themes raised by linking 
important terms. This method will provide answers to 
Q3, Q5 and Q7.

Text clustering Reinert clustering [17] is a form of divi-
sive hierarchical clustering (DHC) that is carried out in 
several stages, offering a global approach to the corpus. 
It identifies statistically independent word classes after 
partitioning the corpus. These classes may be interpreted 
by their profiles, which are characterised by specific cor-
related words. DHC summarises this through a dendro-
gram. This analysis generates a complementary vision 
with regard to similarity analysis by clustering articles 
according to concepts, partly identified by similarity 
analysis, characterised by word groups. This method will 
supplement the answer to Q7, and address Q2, Q4 and 
Q6.

Step 3: thorough analysis of the selected articles
We used the sub-selection technique derived from 
Moher’s method described in [18], and crossed the sets 
of themes: T1 and T2, denoted T1∩T2, then T1 and 
T3, denoted T1∩T3. This selection was performed in 
the same manner as described in Table 2. We added an 
additional constraint to better target our study through 
counting the K occurrence number of the trajectory con-
cept in each document and selecting those for which: 
K ≥  2. We counted each time the words “trajectories”, 
“trajectory” or “pathway” appeared in the titles and sum-
maries of the articles.

Our reading grid was based on that described in the 
PRISMA3 guidelines. We selected items that could be 
used to address the a priori search questions (see 
Table  1), Q8 to Q14: publication year, country of study, 
number of patients, observation period, methods and 
objectives. Other items that were irrelevant to our study 
were not kept. We added the following items: pathologies 

3 www.prisma-statement.og.

Table 2 Keywords used in document retrieval

Topics and constraints Keywords

C1: Medical context “health”, “patient(s)”

T1: Trajectory “trajectories”, “trajectory”, “path”, “pathway(s)”

T2: PPS “prospective payment system”, “PMSI”, “DRG”, 
“ICD”, “regional information system”, “fee for 
service system”, “registry”, “Activity-based 
Payment”

T3: MI “myocardial infarction” in the title

C2: Dates January 1, 2000 to October 31, 2015

C3: Languages English, French, Spanish and Italian

http://www.iramuteq.org/
http://www.cis.uni-muenchen.de/%7eschmid/tools/TreeTagger/
http://www.prisma-statement.og
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studied, databases used and definition of the trajectory 
concept.

Results
Some results, not listed in this paper, can be viewed at 
the following address: http://www.lirmm.fr/~pinaire/.

Step 1: document retrieval
The document retrieval resulted in a total of 33,514 
articles.

Step 2: first text mining approach
We present the results obtained by our method which 
combined different approaches of lexicographic analysis 
(see below) following the flow diagram (Fig. 1).

Word cloud For T1 (see Fig. 2), the salient terms were 
“care”, “study”, “cancer”, “cell”, “treatment” and “increase”, 
while for T2 they were “study”, “registry”, “datum” 
and “cancer”, and for T3 they were “AMI”, “acute” and 
“hospital”.

Similarity analysis In a maximum tree only the strong-
est edges of the graph are kept. An edge symbolises the 

Fig. 2 Word cloud: trajectory, PPS, MI

http://www.lirmm.fr/%7epinaire/
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co-occurrence between vertices (i.e. terms), and its thick-
ness represents the strength of the link. For instance, in 
Fig. 3, the link between “care” and “study” is thicker than 
the link between “significant” and “difference”. For T1, 
Fig. 3 comprises three hubs: the bottom part with a large 
network characterised by “care”, then a smaller contigu-
ous network gathering the terms “clinical” and “outcome”. 
On the right upper part, there is a network encom-
passes genetics terms, with “cell”, “expression” and “gene”, 
then a smaller connecting network gathering the terms 
“increase”, “high” and “significantly”. The central upper 
part contains the terms “cancer”, “diagnosis” and “treat-
ment”. Finally, the left upper part has a large network 
containing “study”, to which are attached several smaller 
clusters characterised by the terms “risk”, “disease”, “time”, 
“year” and finally “disease”. The most closely linked word 
communities are “genetics” with “cancer”, “cancer” with 
“study”, and “study” with “care”.

Text clustering Following this clustering, 80% of the 
articles of T1 were distributed in 11 disjointed clusters, 
86% for T2 in five clusters, and 98% for T3 in five clus-
ters. We then performed a second clustering on the sub-
corpus of each theme, consisting of articles that were not 
clustered during the first analysis.

For T1, Fig.  4 shows, from right to left, two clusters 
pooling the concepts of genetic organisation (cluster 5), 
signal organisation and cellular mediation (cluster 10). 
Cluster 8 pools concepts related to the immune system 
response in an inflammatory process. Cluster 1 pools 
dysfunctions related to diabetes and the consequences. 
Cluster 2 and 7 respectively symbolise time in the organi-
zation of hospital stays, and time in the trajectory. Clus-
ter 6 concerns questionnaires and psychometric scales 
with depression. Cluster 11 contains concepts related 
to medical imagery. In the last branch, cluster 9, medi-
cine is described with regard to its financial and regula-
tory aspects. Cluster 4 concerns the patient management 
including practices. Cluster 3 groups together terms per-
taining to the way information is conveyed.

We performed a more detailed examination of clusters 
3 and 4, while studying the similarity tree. The two clus-
ters pool 1645 items between them. For cluster 3, there 
are three nodes (see Fig. 5), i.e. for “care”, which is closely 
related to that for “study”, which in turn is closely related 
to that for “cancer”. For cluster 4 (see Fig. 5), there is only 
one node represented by “care”, from which there are 
several branches for “research” and “process”, and then 
higher there is a sub-node for “clinic”, connecting “trial”, 
“datum”, “bases” and “identify”.

In the second clustering of the 3160 non-clustered arti-
cles, we identified five clusters consisting of 99% of the 
articles. From right to left, cluster 1 pools the concept 
of studies from a methodological standpoint. Cluster 

5 concerns end-of-life issues. Cluster 4 pools the mac-
roscopic aspect of care with public support. Cluster 3 
groups studies involving animal experiments. Finally, 
cluster 2 concerns genetic mutation and anomalies. 
Three articles could not be clustered due to a lack of 
information.

Step 3: thorough analysis of the selected articles
Through set crossing, we generated a sub-selection of 
84 articles, including 53 for T1∩T2 and 31 for T1∩T3. 
After reading the abstracts, we eliminated 8 articles for 
T1∩T2, and 6 for T1∩T3 as they evaluated a protein or 
organisation trajectory rather than patient trajectory. For 
the majority of items, we created categories as detailed 
in Table  3 and the sources of associated references are 
indexed in Table 4.

Generally, the authors used several sources and meth-
ods in their studies. The results for these items are sum-
marised in Fig. 6.

We grouped the countries according to continent. For 
T1∩T2, we noted strong representation from Europe 
(55% of articles) and the Americas (29%). There were 
some studies from Oceania (9%) and Asian countries 
(7%). For T1∩T3, the article distribution was essentially 
between three continents: Europe (36%), the Americas 
(28%) and Asia (24%). Australasia was marginal, with 4% 
of articles. There were some atypical studies with data 
from multiple continents (8%).

We next considered publication year. For T1∩T2, the 
results highlighted activity that began developing in 
2013. While for T1∩T3, we noted a peak of activity in 
2004, and increasing activity in 2012.

The number of patients involved was then analysed, 
showing that the number of patients ranged from 14 to 
6.2 million T1∩T2 (vs 20–30.20 million for T1∩T3), with 
a median of 859 and an interquartile interval (IQ) of 3250 
(vs 604.5 and IQ = 933.25 for T1∩T3), with missing data 
for three articles (vs five for T1∩T3).

We also focused on the observation duration, measured 
in months, available in more than 85% articles. Observa-
tion duration ranged from 5 to 180 months in T1∩T2 (vs 
3 to 240 months in T1∩T3) with a median of 36 months 
and an IQ of 54 months (vs 12 and 99 months in T1∩T3).

Discussion
Our method is based on a semi-automatic approach of 
text mining. We used terms and concepts which emerged 
from classification techniques rather than the simple 
presence of words. This approach was structured into 
two main steps prior to a thorough text analysis of the 
selected articles. These two steps were based on docu-
ment retrieval and text mining techniques.
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Step 1: document retrieval
For document retrieval, we chose to focus our study on 
PubMed. The search results are entirely dependent on 
the choice of keywords, making this a particularly deli-
cate task when definitions may vary between authors 
and countries. Indeed, we encountered this difficulty 
for T2. As presented in Table 2, the keywords used were 
“Prospective Payment System”, “PMSI”, “DRG”, “ICD”, 
“regional information system”, “fee for service system”, 
“registry”, “Activity-based Payment”. However some doc-
uments used words not in our final selection, such as in 

[19], which contains the term “national case-mix system”. 
Our objective was not to be exhaustive with regard to 
covering all the publications, but rather to define a gen-
eral method of analysis. A way to improve our approach 
would be to implement an adaptive algorithm for key-
words enrichment.

Step 2: first text mining approach
The lexicographic analysis was based on three combined 
tools.

Fig. 5 Similarity analysis on cluster 3 from the first T1 clustering corpus
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For the word cloud approach, the occurrence of the 
terms “study” and “care”, for all of the studied fields, 
means that these articles cover care concept and stud-
ies on topics such as diseases or drugs. For T1, the terms 
“treatment” and “increase” reflect a focus on patient 
healthcare trajectories. Thus, there are many studies on 
patient trajectories. Here we have answered Q1.

For the similarity analysis, the results showed that 
for T1, studies were closely related to care, disease and 
more specifically to cancer. In response to Q3, the stud-
ied diseases were those causing severe and chronic organ 
dysfunction: heart, kidneys, or lungs. We noted that the 
cancer concept was also closely related to that of genet-
ics. We found here that the use of the keyword “pathway” 

highlighted all articles pertaining to cell signalling or 
gene pathways [20–29].

For T2, cancer was closely related to the registry data. 
This highlights the descriptive aspect of the data infor-
mation, i.e. registry data describing the patient’s cancer 
history from its diagnosis. We noted that the study con-
cept was related to the disease concept, i.e. cardiac or 
renal, but also to the various treatments and therapies. In 
response to Q5, T2 was thus related to research: in dis-
ease studies [30–37], to compare care and coding [38–
40], but also in monitoring of patients over time and the 
survival rate [31, 41–44]. Survival rate forms part of a tra-
jectory concept. This trajectory concept may also 

Table 3 Description of the observed items and categories

Item Category Details

Objective Medical advances Better comprehension of a disease and subsequent adaptation of care

Health recommendations Medical instructions to improve the health status and/or avoid its impairment

Cost/quality assessment Comparison of treatments, care process, new drugs

Health planning Implementation of care process to improve support

Data processing tool Creation of a synthetic tool for data visualisation or algorithms formulations to gather and classify data 
derived from several sources

Others Other objectives

Databases Registry Registry databases

Hospital & PPS Hospital or prospective payment system databases

Interviews Any type of interview

Questionnaires Questionnaires and multiple choice questionnaire

Others Pharmacy databases, social security databases, data from GPs, blood bank databases, and patient diaries.

Diseases Cardiovascular diseases Stroke, MI, heart failure

Diabetes Diabetes case

Cancer Colorectal, prostate, breast, lung, bladder, cervical, endometrial

Lung diseases Chronic obstructive pulmonary disease, pulmonary embolism

Kidney diseases Renal failure

Neurological diseases Multiple sclerosis, schizophrenia, depression

Others Gout, osteoarthritis, scoliosis, craniotomy, colon penetration injury, pelvic fractures, pain

Methods Survival models Cox, Kaplan–Meier models

Param and non-param tests Chi Squared, Fisher, Student, Kruskal–Wallis, Mann–Whitney tests, etc.

Clustering

ANOVA–ANCOVA

Linear or logistic models Linear or logistic regression, GLM, logistic model

Others Latent variable models, Kappa coefficient, meta-analysis, etc.

Trajectory Cost Tracking costs in the case of a treatment or care process

Care Care trajectory, with the history of consultations, reasons for hospitalisation, care provided

Care process Series of steps through which the patient passes into an integrated care process, or a series of operational 
steps of a care team

Health outcomes Symptoms, clinical, cognitive developments

Biological measures Different types of measures

Risk Disease progression risk

Survival Survival pattern

Others Measurement of time physical activity, patient decision making
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encompass the registry, i.e. a longitudinal concept con-
taining many concepts related to longitudinality.4

The T3 graph highlights two standpoints regarding MI 
studies: firstly that of clinicians who study MI, its risks 
and aggravating factors to gain insight into preventing 

4 November 6, 1995: Decree relative to the Registers National Committee.

and, if necessary, managing these patients. Secondly, 
that of patients with coronary symptoms, which could 
progress to incidents, which could then progress to AMI 
requiring hospitalisation and with high risk of mortality 
depending on the patient’s age. This partly answers Q7.

The text clustering enabled summarisation of the results 
in order to list the topics studied, asked in Q2, in these 

Table 4 Review references sources by item reviewed

Item Category T1∩T2 T1∩T3

Trajectory Cost [58, 59, 86, 87]

concept Care [30, 31, 38, 60, 81, 88–93] [39, 40, 46, 47, 53, 54, 94, 95]

Care process [41, 96–107] [48–51, 108]

Health outcomes [32–36, 42, 109–115] [43, 45, 52, 55, 56, 116]

Biological measures [37]

Risk [57]

Survival [117] [44, 118]

Others [119, 120] [121–123]

Objective Medical advances [31, 33, 35–37, 109, 113, 120] [40, 43, 54]

Health recommendations [30, 32, 41, 106, 115] [46, 47, 50, 52, 53, 56, 116, 121, 122]

Cost/quality assessment [42, 58, 59, 86, 87, 90, 96, 98–103, 107, 111, 114] [39, 44]

Health planning [90, 92, 93, 104, 110, 112] [48, 49, 51, 95, 108]

Data processing tool [60, 81, 88, 91]

Others [34, 89, 97, 105, 117, 119] [45, 55, 57, 94, 118, 123]

Continent America [31, 35–37, 41, 42, 91, 96, 98, 99, 103, 109, 120] [48–50, 56, 57, 95, 123]

Asia [104, 105, 107] [43, 45, 94, 118, 121, 122]

Europe [30, 32, 33, 38, 58–60, 81, 86–90, 93, 100, 102, 106, 
110–115, 117, 119]

[39, 40, 47, 51–54, 108, 116]

Intercontinental [44, 55]

Australasia [34, 92, 97, 101] [46]

Databases Questionnaires [30, 36, 89, 90, 102, 104, 109, 110, 112–115] [50, 52, 55, 121]

Interviews [33, 96–98, 117] [94, 95, 122, 123]

Hospital & PPS [33, 34, 38, 42, 81, 86–88, 91, 92, 99, 104, 105, 111, 117] [40, 43, 45–52, 54, 57, 116, 118, 121, 122]

Registry [30–32, 34–37, 41, 58–60, 81, 87–89, 91, 93, 96–98, 100, 
101, 103, 106, 107, 109, 113–115, 119, 120]

[39, 47, 57]

Others [31, 34, 35, 41, 58–60, 90, 99, 101, 105, 112] [53, 56]

Methods ANOVA–ANCOVA [41, 105, 112] [44–46, 49, 56, 121, 122]

Clustering [32, 35, 58, 91]

Linear or logistic models [30, 35, 36, 38, 86, 93, 100, 102, 103, 109, 113–115, 117, 
119]

[50, 55]

Param and non param 
tests

[30, 32, 35, 41, 58, 96, 98, 101–104, 106, 107, 110–114, 
119, 120]

[44, 46–49, 51, 53–55, 118, 121, 122]

Survival models [30, 31, 34, 37, 107, 120] [44, 47, 52, 54, 118, 122]

Others [32, 33, 37, 42, 59, 60, 81, 86, 87, 89, 91, 92, 110, 111, 113, 
117]

[40, 43, 48, 49, 51–53, 56, 57, 94, 116, 118, 121–123]

Diseases Cardiovascular diseases [38, 96, 98, 101, 105, 107, 113, 114] [39, 40, 43–57, 94, 95, 108, 116, 118, 121–123]

Cancer [30, 31, 34, 42, 81, 87–91, 97, 99, 106, 112, 115, 117, 120]

Diabetes [37, 60, 92, 100, 105]

Neurological diseases [33, 35, 93, 104, 109, 110] [57]

Lung diseases [32, 90, 111]

Kidney diseases [59, 60, 119]

Others [32, 41, 58, 86, 102, 103] [47]
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Fig. 6 Databases and methods used in trajectories studies
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articles concerning patient trajectories. The first topic 
that we covered is disease with, for example, metabolic 
disorders such as diabetes and cardiovascular complica-
tions. Certain articles addressed patients’ feelings, anxi-
eties and disease experience. In the patient trajectory, 
there was support from the patient’s immediate relations 
and family, but also health services, such as home nurses. 
Other articles focused on end-of-life situations, pallia-
tive care and processes set up to manage this last stage of 
the disease. Another topic was clinical research, involv-
ing developing cohorts, data collection, and methods 
used in different studies. Other studies concentrated on 
hospital organisation, various services, patient care staff, 
and associated costs. Other articles were focused on the 
health regulations and recommendations from guides of 
good practices.

As a response to Q4, our conclusion regarding the two 
T2 clusterings was that PPS is used in research primar-
ily in the study of diseases, sometimes on disease onset, 
especially on disease management, associated costs, 
treatment and possible complications, but also in its cod-
ing. The studied diseases included neurological disorders, 
cancer, irregular heartbeat and cardiovascular diseases, 
the implantable medical devices to regulate these anom-
alies, traumas and wounds, infectious diseases, organ 
transplants, genetic and autoimmune diseases, and finally 
renal failure. Pregnancy and birth are also studied.

The T3 results, in reply to Q6 and to complete response 
to Q7, showed that MI is studied from several aspects, 
with the first regarding the risk factors (socioeconomic, 
age, hypertension, diabetes). Then there are the bio-
chemical and cardiocirculatory functioning aspects, 
the various mechanisms which lead to MI and genetic 
predisposition [45]. In addition, there is the psychologi-
cal aspect of ill patients and the consequences. There is 
also emergency management before hospital admission, 
including transport and first aid. Then there is care at 
admission, medication management [44] and associated 
costs—here the trajectory concept emerges. There is also 
an aspect regarding the effectiveness of the measures 
implemented [46–52] and the different treatments [53–
55]. Another investigated aspect concerns lifestyle, with 
regard to dietary habits, healthy lifestyle [56], comorbidi-
ties [43, 57] (smoking and/or alcohol), but also environ-
mental factors like atmospheric pollution.

Step 3: thorough analysis of the selected articles
A thorough analysis of the selected articles was per-
formed. Trajectory studies require, first and foremost, a 
definition of this concept, which is the focus of question 
Q8. The results showed that in most cases trajectory is 
characterised by care processes established for a specific 
disease to improve patient care, facilitate health planning 

within institutions, ensure prevention, predict the course 
of the disease and prevent the onset of symptoms.

In response to Q9, we found that interest in patient 
trajectory studies have increased in the last 5 years. The 
resurgence of studies in 2013 could be explained by the 
improvement in the quality of databases as of 2009 (ref ), 
particularly in France, and the possibility of chaining hos-
pital stays and reconstructing patient care trajectories 
throughout the country.

This interest in trajectories mainly stems from Europe 
and the Americas with 47 and 29% of studies, respec-
tively. The PPS concept necessarily led to only including 
countries with a similar health system database organisa-
tion. This is a weakness of our study, since countries with 
a different information health system to the American 
model were not selected through this filter. Thus we have 
answered Q10.

Then we sought to determine the rationale for why 
these studies were conducted and provide a response 
to Q11. The six-category article distribution we defined 
showed that the aim of most of the studies was to com-
pare treatments, techniques or care procedures. In 
each case, the aim was to reduce costs while improving 
the quality of care. Patient healthcare trajectory studies 
appeared beneficial in two ways: (1) First, the trajectory 
provides insight into the course of the disease following 
medical and surgical care. (2) Secondly, the trajectory 
may be highly informative regarding the medico-eco-
nomic aspects so as to be able to streamline the patient’s 
care management to avoid treatment dispersion.

In addition, the methods used underpinned the ration-
ale of comparative studies as part of care techniques, 
treatment or care processes. These methods (Anova, 
comparisons tests, survival models, linear or logistic 
regression, etc.) are listed in the second part of Fig.  6 
which solves question Q12.

We pursued this investigation by assessing the study 
characteristics, and answered Q13. In the studies, the 
number of recruited patients was estimated a priori for 
statistical analyses in good conditions with sufficient 
power. However, we identified a few studies that were 
conducted on the entire population, without sampling.

Overall, the study time was short, not more than a few 
years, which could be explained by economic consid-
erations or a lack of data. For retrospective studies, for 
example, it was sometimes hard to trace back several 
years because the information is deleted after a certain 
period of time.

Next, we investigated the origin of the data used. For 
T1∩T3, registry data were mostly used. For T1∩T2, hos-
pital databases and hospitalisation billing databases were 
used, so the studies were mostly hospital-based. Moreo-
ver, apart from hospital databases, some studies took 
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patients’ feelings into account via interviews and ques-
tionnaires. Some studies required additional information 
on, for instance, medication [31, 58] through pharmacy 
databases or non-hospital care [59, 60] with social secu-
rity databases for complete patient care monitoring.

To supplement previous findings concerning the list of 
diseases studied, for T1∩T2, the patient trajectories were 
closely focused on different cancers. Note that this brings 
us back to the results that were highlighted in step 2. We 
thus resolved question Q14.

Methods analysis
There are many different text mining techniques which 
are being constantly developed for literature searches and 
systematic review [6]. In systematic reviews, text mining 
techniques are used for four purposes [61]: (1) automatic 
terms recognition to identify and extract terms auto-
matically from texts [62]; (2) document classification by 
generating subsets of documents focused on a specific 
topic [63–66]; (3) document clustering to group docu-
ments into topics. These correspond to topics shared by 
all the documents in the group they contain and by no 
other document in the collection [17, 67, 68]; (4) draft-
ing abstracts by selecting sentences from each document 
based on the significance of its terms, which are com-
bined via classification techniques [69]. Some authors 
used text mining for other purposes. For example, in 
[70] the authors created correspondence databases link-
ing authors with the name abbreviations and processed 
a co-authorship analysis. In [71] the authors annotated 
abstracts in two ways, first the gene or protein of interest, 
then the protein interactions and/or gene functions. Ulti-
mately, they categorised documents according to these 
annotations. Thus, combining text mining methods for 
systematic review is a hot topic [72–75].

While there is no consensus for a method in conduct-
ing a review with a huge number of documents, there are 
several techniques in text mining already used in vari-
ous fields to explore text data [76–78]. Here, we wished 
to gain an overview of the document content in a recent 
developing field of inquiry, in order to provide general 
information and to respond to research questions. Our 
aim is to maximise the recall to ensure comprehensive 
study. We also aimed to better select publications, then 
reviewed them in a classical manner, by creating filters. 
With our method, searches are conducted based on the 
meaning of the words and concepts emerging from clas-
sification techniques rather than simply the presence of 
this term and concept. Thus, we conducted an in-depth 
study to explore the texts, starting by highlighting key-
words, which were often used in the abstracts. Word 
cloud representation was most suited for this step, as it 
enabled a quick visual reading of the results. However, 

beyond the visual data display, word clouds do not pro-
vide much information.

One way to gain further insight is to highlight a lexical 
universe attached to those keywords. Thus, the same word 
may be interpreted differently depending on the terms 
associated with it. Similarity analysis best addresses this 
issue. Its tree construction approach connects highly co-
occurring networks of terms and allows a better under-
standing of the most frequently discussed themes through 
the various items making up each corpus.

The last step in the exploration process is to deter-
mine whether it is possible to classify these articles in 
the topics highlighted by similarity analysis. We com-
pared these results by using Reinert clustering because 
it has the advantage of respecting the text construction. 
It is also offers more flexibility than latent Dirichlet allo-
cation (LDA), for example, where the researcher has to 
pre-determine the number of clusters. Although some 
authors have proposed solutions for the “optimal” num-
ber of topics in topic modelling [79, 80], it is not possible 
to verify, making this method even harder to apply.

The text mining methods that we selected have proven 
to be effective in exploring the corpora without a priori 
and with open-ended questions, allowing us to quickly 
identify documents associated with subjects beyond 
genetics. This facilitated the filtering of articles to apply 
methods with a priori to answer specific questions. 
Although existing methods for exploring text data to 
conduct rapid reviews are good, we hoped to validate a 
non-traditional methodology to conduct more extensive 
systematic reviews for future research.

Conclusion
In this article, a semi-automatic text mining methodology 
was applied to investigate patient healthcare trajectory. 
Patterns were extracted and identified semi-automat-
ically from the published articles in PubMed. With text 
mining techniques we could analyse large amounts of 
text data, which would have not been possible other-
wise. The originality of our approach lies in assisting a 
research review on the basis of a semantic approach, 
from research questions to targeted documents which 
will be then thoroughly analysed. This method is well-
adapted for complex review questions or hard to define 
topics such as those addressed in public health and more 
particularly in the context of patient healthcare trajectory 
literature. Finally, our strategy enabled us to explore the 
concept of trajectory in the care domain.

We illustrated our search using a frequent cause of 
hospital stay, the occurrence of a MI. We chose to trace 
the follow-up of these MI patients through the PPS. We 
addressed open-ended questions by determining the top-
ics covered in each area, to explore areas transversely, 
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while highlighting studies dealing with patient trajecto-
ries with regard to MI, based on PPS data. This seman-
tic approach was demonstrated to be well-tailored for 
addressing our issues.

Document retrieval on the patient trajectories was 
combined with two major themes, i.e. PPS databases 
and MI. The findings showed that this type of study is 
of interest in the biomedical community; for compara-
tive trajectories of drug prescriptions and costs Sundberg 
et al. concluded [58] that: “Drug prescriptions and costs 
of analgesics increased following conventional care and 
decreased following integrative care, indicating poten-
tially fewer adverse drug events and beneficial societal 
cost savings with integrative care”. Similarly, with regards 
to access to the appropriate treatment in time for can-
cer patients, Defossez et  al. affirmed [81] that “There is 
in particular a need to describe and analyse cancer care 
trajectories and to produce waiting time indicators…
The evaluation shows the ability of an integrated regional 
information system to formalise care trajectories and 
automatically produce indicators for time-lapse to care 
instatement, of interest in the planning of care in cancer.” 
Our study revealed that the trajectory concept, regard-
less of its form, is being explored, analysed and exploited, 
especially in oncology through the oncology communica-
tive medical file and multidisciplinary meetings.

To complete this research, it would now be interest-
ing to include studies on patient trajectories in electronic 
health records. Some recent studies have focused on the 
use of these new technologies in order to offer patients 
with mobility difficulties integrated care by pooling elec-
tronic records from patients, caregivers or healthcare 
teams as well as doctors’ follow-ups [82]. However, the 
implementation of such processes requires considerable 
organisation and adequate resources [83] and can lead to 
technical interoperability problems [84].

We were also studying patient trajectories in a health 
environment with MI. We obtained DRG sequences by 
chaining hospital stays. These sequences represent the 
chronological pattern of hospital healthcare of patients. 
We have characterised patient trajectories by such DRG 
sequences. We have applied sequential pattern mining 
techniques [85] to our trajectories in order to highlight 
frequent hospital trajectory patterns. To our knowledge, 
this is the first time that this type of approach, by apply-
ing sequential patterns to hospital data or registry data, 
has been used. Our ultimate goal is to build a predictive 
model of MI trajectories to simulate disease progress in 
the coming years so as to help anticipate health needs.
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