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2 Laboratoire de Probabilités et Modèles Aléatoires, Laboratoire Jacques-Louis Lions, Université Paris
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Abstract

Thanks to computing power increase, risk quantification relies more and more on computer
modeling. Methods of risk quantification based on a fixed computational budget exist, but
computer codes are almost always considered as a single black box.
In this paper, we are interested in analyzing the behavior ofa complex phenomenon, which
consists of two nested computer codes. By two nested computer codes, we mean that some
inputs of the second code are outputs of the first code. Each code can be approximated by a
parametrized computer model.
First we propose methods to calibrate the parameters of the computer models and build a pre-
dictor of the nested phenomenon for a given set of observations. The presented methods enable
to take into account observations of the first code, the second code and the nested code.
Second the choice of the observations is studied. Methods ofsequential designs, that means step
by step addition of observation points to the observations’set, are examined. These sequential
designs aim at improving the performance of calibration or prediction while optimizing the
computational budget.
We show that the independent calibration of the 2 computer models is not efficient for predict-
ing the nested phenomenon. We propose an original method that significantly improves the
prediction’s performance.
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1 Introduction

Simulation has an increasing role for the conception, the optimization and the risk analysis of
complex systems. Computer codes are thus introduced. Thesecodes depend on the system
inputs that are used to characterize the system we want to model (geometry, initial conditions,
boundary conditions...). However these codes can be numerically expensive and are therefore
replaced by a surrogate model.
In this paper the term phenomenon refers to the complex and perfect but expensive to evaluate
computer code and the term computer model refers to the surrogate model of the computer code.
The computer model is characterized by the system inputs andits parameters. For a computer
model to be predictive, its parameters have to be calibratedfrom direct and/or indirect measure-
ments. In this work, we assume that these computer models aredeterministic, relatively quick
to evaluate, but imperfect, in the sense that playing on the values of the input parameters only
is not sufficient to make the predictions of the calibrated computer model exactly match the
outputs of the computer code. In this case the computer modelis too crude for its outputs to
match exactly the outputs of the complex code after calibration. In this paper we mainly think
at this configuration.

In order to take into account the model error and quantify theuncertainties associated with the
parameters identification, a Bayesian formalism [15] is adopted in the following. The input
parameters are therefore modeled by random variables, whereas the difference between the
outputs of the calibrated computer model and of the complex code is modeled by a Gaussian
process. This latter hypothesis is widely used in computer sciences ([16], [17], [14], [10], [11]),
as it allows a very good trade-off between error control, complexity, and efficiency. Two central
issues of this approach, also called Kriging, concern the choice of the statistical properties of
the Gaussian process that is used, and the choice of a prior distribution for the input parameters
([6],[12],[5]). In this work, only non-informative prior distributions will be discussed for the
input parameters ([1],[17]), and, for the sake of concision, we will assume that the Gaussian
process is centered and that its covariance function is known. The interested reader may refer
to [2] for further details on the covariance function identification in calibration purposes.
The posterior distributions of the input parameters and of the Gaussian processes are condi-
tioned by the set of available observation points. The optimized choice of the observation points
is therefore a way to improve the performance of calibrationof the parameters and of prediction
of the phenomenon. Concerning the case of a unique phenomenon several methods of Design
of Experiments exist and include methods of space-filling designs and criterion-based designs
([16], [17], [4], [8]).

A lot of industrial issues involve multi-physics phenomena, however, the existing methods of
Kriging and designs often consider a unique phenomenon or a multi-physics phenomenon as
a unique phenomenon. In this paper we will focus on the case oftwo nested phenomena, that
means that the studied complex phenomenon can be divided in two phenomena and the output
of the first phenomenon is an input of the second phenomenon.

In this paper methods to calibrate the input parameters and build a predictor of a nested phe-
nomenon are proposed. The choice of the observations is alsostudied and sequential designs
specific for the case of a nested phenomenon are proposed. These designs enable to improve
the performance of calibration and prediction by exploiting the nested structure of the studied
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phenomenon.
The outline of this paper is the following. Section 2 presents the background in Kriging and
sequential designs for a unique phenomenon and introduces the formalism used for the nested
phenomenon. Section 3 presents the studied methods of calibration and prediction :

1. The ”parallel” method corresponds to the case where the parameters and the predictors
of the phenomena 1 and 2 are first calibrated and built separately, and then a predictor of
the nested phenomenon is obtained by coupling the predictors of the two phenomena.

2. The linearized methods rely on the linearization of the nested phenomenon and enable to
build Gaussian predictors for all the phenomena (1, 2 and nested). The posterior distribu-
tion of the parameters is also Gaussian.

Section 4 presents the studied sequential designs in case ofa nested phenomenon. Existing
methods are adapted to select new observation points on the phenomena 1 and 2 alone in or-
der to improve the performance of calibration and prediction of the nested phenomenon while
optimizing the computational budget. In section 5 the presented methods are applied to two
numerical examples.

2 Background in Kriging and sequential designs for a unique phenomenon and formal-
ism used for the nested phenomenon

2.1 Kriging of a unique phenomenon

In this part, we are interested in the modeling of a unique phenomenon. Letx ∈ Dd be the
input vector that characterizes this phenomenon, whereDd is assumed to be a compact subset
of R

d, d ≥ 1, and lety ∈ L2 (Dd, R
n) , n ≥ 1 be the quantity of interest that is used to analyze

the studied phenomenon, whereL2 (Dd, R
n) is the space of the functions with values inR

n

which are square integrable onDd . This quantity of interest is supposed to be a particular
realization of a Gaussian processY , such that :

Y (x) = f (x; β) + ǫ (x) , (1)

where :

• f (x; β) : Dd × R
p → R

n is a deterministic function, which is continuous onDd,

• β ∈ R
p is the parameters’ vector,

• ǫ (x) ∼ GP
(
0 , C

(
x,x

′
) )

, whereGP ( µ , Σ ) denotes a Gaussian process of mean
µ and covarianceΣ andC

(
x,x

′
)

is a (n × n)-dimensional matrix-valued covariance
function, which is assumed continuous onDd ×Dd .

We suppose thatN observations of the studied phenomenon are available. We denote bySN the
σ-algebra generated by these observations,X

(N) =
(
x

(), . . . ,x(N)
)

the vector of the inputs of
the observations,Y(N) =

(
y
(
x

()
)
, . . . , y

(
x

(N)
))

the vector of the outputs of the observations.
In this paper we will consider the case where the functionf (x; β) can be written (or approx-
imated thanks to a linearization) as a linear function with respect toβ : f (x; β) = h (x)t

β .
So the formalism is as follows :

L (Y (x) | β) = GP
(

h (x)t
β , C (x,x)

)
, (2)

3



Sophie Marque-Pucheu, Guillaume Perrin and Josselin Garnier

where

• h (x) : R
d → Mp,n (R) is a(p × n) -dimensional matrix of deterministic functions that are

continuous onDd,

• L (X | Y ) denotes the conditional distribution ofX givenY .

From Eq. (2) it can be inferred that, in case of a non informative prior for the parameters, that
is the prior pdf of the parameters is proportional to 1 on its definition space ([1], [6], [5]), the
posterior distributions of the parameters and of the Gaussian process are Gaussian ([1]). In what
follows, the term predictor of the phenomenon corresponds to the posterior distribution of the
Gaussian process associated with the phenomenon. If we denote byN ( µ , Σ ) the Gaussian
distribution of meanµ and covarianceΣ, the posterior distributions of the parameters and of
the Gaussian process can be written as follows :

L (β | SN) = N
(

µ
(N)
β , V

(N)
β

)

,

L (Y (x) | SN) = GP
(

µ(N) (x) , C(N) (x,x)
)

.
(3)

where :

V
(N)
β =

((

H(N)
)t (

R(N)
)−1

H(N)

)−1

,

µ
(N)
β = V

(N)
β

(

H(N)
)t (

R(N)
)−1

Y
(N),

µ
(N)
β ∈ R

p, V
(N)
β ∈ Mp,p (R) ,

µ(N) (x) = h (x)t
µ

(N)
β + C

(
x, X(N)

) (
RN
)−1
(

Y
(N) − HNµ

(N)
β

)

,

C(N)
(
x,x

′
)

= C
(
x,x

′
)
− C

(
x, X(N)

) (

R(N)
)−1

C
(
X

(N),x
′
)

+ u(N) (x)t
V

(N)
β u(N)

(
x

′
)
,

µ(N) (x) ∈ R
n, C(N)

(
x,x

′
)
∈ Mn,n (R) ,

u(N) (x) = h (x) −
(

H(N)
)t (

R(N)
)−1

C
(
X

(N),x
)
,

H(N) = h
(
X

(N)
)t

, R(N) = C
(
X

(N), X(N)
)
,

H(N) ∈ MNn,p (R) , R(N) ∈ MNn,Nn (R) .
(4)

The Gaussian process modeling provides therefore a formalism to solve two problems given
these observations : the calibration of the computer model and the prediction of the phe-
nomenon.
The calibration’s problem can be summarized as follows :

• The functionf (x; β) denotes an available computer model, which is parametrizedby an
unknown vectorβ.

• The centered Gaussian processǫ (x) represents the model error of the computer model com-
pared to the phenomenon.
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• We suppose that there exists a unique and true value forβ, which is denoted byβ∗. The goal
of the calibration is to estimateβ∗ and to add a measure of uncertainty to this estimation,
which is achieved by calculating the posterior distribution of the parameters given the
observations.

• The performance of the calibration can therefore be assessed by computing the following
error :

ǫ2
β =

E
[
‖β∗ − β‖2 | SN

]

‖β∗‖2
. (5)

The numerator of the fraction above can be divided in two parts :

E
[
‖β∗ − β‖2 | SN

]
=

p
∑

i=1

(

β∗ − µ
(N)
β

)2

i

︸ ︷︷ ︸
error on the parameters’ mean

+

p
∑

i=1

(

V
(N)
β

)

ii

︸ ︷︷ ︸
variance of the parameters

(6)

The mean of the posterior distribution of the parameters is the best deterministic estima-
tion ofβ∗ in theL2 sense, and its variance characterizes the uncertainty of this estimation.
The error of calibration integrates therefore the error on the mean and the uncertainty of
the mean.

The prediction’s problem can be summarized as follows :

• The functionf (x; β) is seen as a model trend and is generally a priori chosen.

• The centered Gaussian processǫ (x) can be seen as the learning process of the phenomenon.

• The goal of the prediction is to predict the value ofy (x) in a non computed pointx and
to add a measure of uncertainty to this prediction, which is reached by calculating the
posterior distribution of the Gaussian processY (x) given the available information.

• The performance of the prediction can therefore be evaluated by the computation of this
second error :

ǫ2
y =

E
[
‖y − Y ‖2

L2 | SN

]

‖y‖2
L2

, (7)

where, for allu in L2 (Dd, R
n),‖u‖2

L2 =
∫

Dd
‖u (x) ‖2dx.

The numerator of the fraction above can be divided in two parts :

E
[
‖y − Y ‖2

L2 | SN

]
=

∫

Dd

‖y (x) − µ(N) (x) ‖2dx

︸ ︷︷ ︸
integrated square error on the predictor’s mean

+

∫

Dd

tr
(

C(N) (x,x)
)

dx

︸ ︷︷ ︸
integrated variance of the predictor

(8)
where tr(M) denotes the trace of the matrixM .

The mean of the posterior distribution of the processY (x) is the best deterministic predic-
tion of y (x) and its variance allows us to characterize the uncertainty of this prediction.
The error of prediction integrates therefore the error on the mean and the uncertainty of
the mean.
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2.2 Designs of Experiments in case of a unique phenomenon

The efficiency of prediction and calibration depends on the space filling properties of the set of
the available observations ofy, which is generally called Design of Experiments.
Hence, several methods exist ([16], [17], [4], [8]) to choose the Design of Experiments used for
the calibration or the prediction :

• methods based on the exploration of the inputs’ space : space-filling Latin Hypercube Sam-
pling, quasi-Monte-Carlo sampling...

• methods based on the minimization of a quantity associated with the variance of the cali-
brated parametersV (N)

β ,

• methods based on the minimization of a quantity associated with the variance of the predictor
C(N) (x,x).

2.3 Formalism used for the nested phenomenon

In this paper, we focus on the case of two nested phenomena. Two quantities of interest,y1 and
y2, are thus introduced to characterize these two phenomena, which are supposed to be two real-
valued continuous functions on their respective definitiondomainsDd1 andDd2 = R × Ddc2 .
The setsDd1 andDdc2 are moreover supposed to be two compact subsets ofR

d1 andR
d2−1

respectively, whered1 andd2 are two positive integers. Given these two functions, the nested
phenomenon is defined as follows :

yc (x
c
) = y2 ((y1 (x

c1
) ,x

c2
)) , x

c
= (x

c1
,x

c2
) ∈ Dd1 ×Ddc2 . (9)

In theory, the definition domains may be unbounded, but the reduction to compact sets enables
the square integrability ofyc on Dd1 × Ddc2 and therefore the calculation of the performance
criterion defined in Eq. (7).

In this work, we suppose that two parametrized computer models are available for the analysis
of these two phenomena, which are assumed to be linear with respect to their parameters. The
objective is to adapt the previously presented methods to calibrate the parameters of the two
computer models and to build a predictor of the nested phenomenon. As previously, a Gaussian
formalism is introduced, which consists in assuming that the deterministic functionsy1 andy2

are the realizations of two Gaussian processesY1 andY2, such that:

Y1 (x
1
) = h1 (x

1
)t

β1 + ǫ1 (x
1
) ,

Y2 (x
2
) = h2 (x

2
)t

β2 + ǫ2 (x
2
) ,

(10)

where :

• β1 ∈ R
p1 andβ2 ∈ R

p2 are the parameters’ vectors,

• p1 andp2 are positive integers that characterize the dimension of the parametersβ1 andβ2,

• h1 (x
1
) ∈ R

p1 andh2 (x
2
) ∈ R

p2 are vectors of deterministic functions, which are supposed
to be known,x

1
7→ h1 (x

1
) is continuous onDd1, x

2
7→ h2 (x

2
) is continuous onDd2

and(x
2
)1 7→ h2 (x

2
) is continuously differentiable,
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• ǫ1 andǫ2 are real-valued centered Gaussian processes, defined by their covariance functions
C1

(
x

1
,x

′

1

)
andC2

(
x

2
,x

′

2

)
. C1 is assumed to be Hölder continuous onDd1 × Dd1 , so

that the realizations of the processY1 are Hölder continuous, andC2 is assumed to be
continuous onDd2 ×Dd2 .

According to Eq. (9) and (10), the nested phenomenonyc (x
c
) can therefore be seen as a

particular realization of the processYc (x
c
), such that:

Yc (x
c
) = Y2 ((Y1 (x

c1
) ,x

c2
)) (11)

It can be inferred from Eq. (10) and (11) that there are three possible types of observations in
case of a nested phenomenon :

1. Observations of the phenomenon 1. Theσ-algebra generated by the observations of the

inputsX
(N1)
1 =

(

x
()
1

, . . . ,x
(N)
1

)

and the outputsY(N1)
1 =

(

y1

(

x
()
1

)

, . . . , y1

(

x
(N)
1

))

will be denoted bySN1 ,

2. Observations of the phenomenon 2. Theσ-algebra generated by the observations of the

inputsX
(N2)
2 =

(

x
()
2

, . . . ,x
(N)
2

)

and the outputsY(N2)
2 =

(

y2

(

x
()
2

)

, . . . , y2

(

x
(N)
2

))

will be denoted bySN2 ,

3. Observations of the nested phenomenon. Theσ-algebra generated by the observations of

the inputsX(Nc)
c =

(

x
()
c , . . . ,x

(Nc)
c

)

and the outputsY(Nc)
c =

(

yc

(

x
()
c

)

, . . . , yc

(

x
(Nc)
c

))

will be denoted bySNc
,

3 Calibration and prediction of two nested phenomena

In this section, the objective is to calibrate the parameters of the two computer models and to
build a predictor of a nested phenomenon for a given set of observation points, which means to
determine the posterior distributions of the parameters and of the process modeling the nested
phenomenon :

L
(
βc | SNgp

)
,

L
(
Yc (x

c
) | SNgp

)
,

(12)

where :

• SNgp
denotes the available information, which can be defined as theσ-algebra generated by

the observations of the phenomena 1 and 2 in the parallel method and by the observations
of the phenomena 1, 2 and nested in the linearized methods,

• βc =

[
β1

β2

]

.
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According to Eq. (10) and (11) the process associated with the nested phenomenon is given by
:

Yc (x
c
) = h2

((
h1 (x

c1
)t

β1 + ǫ1 (x
c1

) ,x
c2

))t
β2 + ǫ2

((
h1 (x

c1
)t

β1 + ǫ1 (x
c1

) ,x
c2

))
.

(13)

It can be inferred from Eq. (13) that the distribution of the processYc (x
c
) given βc is not

Gaussian and its mean is not linear with respect to the parameters. So the posterior distributions
of the parameters and of the process of Eq. (12) are not Gaussian. Their general formulation is,
according to the Bayes rule and the law of total probability :

L
(
βc | SNgp

)
∝ L

((

Y
(N1)
1 , Y

(N2)
2 , Y

(Nc)
c

)

| βc

)

Lprior (βc) ,

L
(
Yc (x

c
) | SNgp

)
=

∫

βc
L
(
Yc (x

c
) | βc,SNgp

)
L
(
βc | SNgp

)
dβc,

(14)

whereLprior (βc) is the prior distribution ofβc andL stand in this equation for the densities of
the distribution by abuse of notation.

3.1 Coupling of predictors : the parallel method

According to the previous section, the most intuitive way tocalibrate the parameters and to build
a predictor of the nested phenomenon is to first consider the phenomena 1 and 2 separately,
calibrate the parameters and build a Gaussian predictor foreach of them and then to couple the
predictors of the two phenomena to obtain a predictor of the nested phenomenon. So the steps
of the so-called parallel method are :

1. Calibration and prediction for the phenomena 1 and 2 separately.

2. The predictors of the phenomena 1 and 2 are coupled to builda predictor of the nested
phenomenon.

3. The moments of order 1 and 2 of the coupled predictor are evaluated.

3.1.1 Calibration and prediction of the phenomena 1 and 2

The phenomena 1 and 2 are considered separately. The parameters are calibrated and a predictor
is built for each phenomenon independently. According to Eq. (2), (3) and (10), we have for
i ∈ {1, 2} andx

i
∈ Ddi

:

L (βi | SNi
) = N

(

µ
(Ni)
βi

, V
(Ni)
βi

)

,

L (Yi (xi
) | SNi

) = GP
(

µ
(Ni)
i (x

i
) , C

(Ni)
i (x

i
,x

i
)
)

.
(15)
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where fori ∈ {1, 2} :

V
(Ni)
βi

=

((

H
(Ni)
i

)t (

R
(Ni)
i

)−1

H
(Ni)
i

)−1

,

µ
(Ni)
βi

= V
(Ni)
βi

(

H
(Ni)
i

)t (

R
(Ni)
i

)−1

Y
(Ni)
i ,

µ
(Ni)
βi

∈ R
pi, V

(Ni)
βi

∈ Mpi,pi
(R) ,

µ
(Ni)
i (x

i
) = hi (x

i
)t

µ
(Ni)
βi

+ Ci

(

x
i
, X

(Ni)
i

)(

R
(Ni)
i

)−1 (

Y
(Ni)
i − H

(Ni)
i µ

(Ni)
βi

)

,

C
(Ni)
i

(
x

i
,x

′

i

)
= Ci

(
x

i
,x

′

i

)
− Ci

(

x
i
, X

(Ni)
i

)(

R
(Ni)
i

)−1

Ci

(

X
(Ni)
i ,x

′

i

)

+ ui
(Ni) (x

i
)t

V
(Ni)
βi

ui
(Ni)

(
x

′

i

)
,

µ
(Ni)
i (x

i
) ∈ R, C

(Ni)
i

(
x

i
,x

′

i

)
∈ R,

ui
(Ni) (x

i
) = hi (x

i
) −

(

H
(Ni)
i

)t (

R
(Ni)
i

)−1

Ci

(

X
(Ni)
i ,x

i

)

,

H
(Ni)
i = hi

(

X
(Ni)
i

)t

, R
(Ni)
i = Ci

(

X
(Ni)
i , X

(Ni)
i

)

,

H
(Ni)
i ∈ MNi,pi

(R) , R
(Ni)
i ∈ MNi,Ni

(R) .
(16)

At this step, the parameters are calibrated but there is no predictor of the nested phenomenon.

3.1.2 Coupling of the predictors of the phenomena 1 and 2

According to Eq. (10) and (15), a predictor of the nested phenomenon is obtained by coupling
the predictors of the phenomena 1 and 2. For a givenx

c
= (x

c1
,x

c2
) ∈ Ddc

, the coupled
predictor can be written :

Y
(N2)
2

((

Y
(N1)
1 (x

c1
) ,x

c2

))

= µ
(N2)
2

((

µ
(N1)
1 (x

c1
) + σ

(N1)
1 (x

c1
) u,x

c2

))

+σ
(N2)
2

((

µ
(N1)
1 (x

c1
) + σ

(N1)
1 (x

c1
)u,x

c2

))

v,
(17)

where :

• Y
(Ni)
i (x

i
) denotes a process which has the conditional distribution ofYi (xi

) givenSNi
,

• σ
(Ni)
i (x

i
) =

√

C
(Ni)
i (x

i
,x

i
),

• u andv are independent standard Gaussian random variables.

According to Eq. (17), the predictor of the nested phenomenon is non Gaussian. However, we
will focus on the mean and the variance of this predictor, according to the following considera-
tions :

1. the mean of the nested predictor is the best prediction of the nested phenomenon in the
L2 sense,
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2. the variance of the nested predictor is an interesting indicator of the uncertainty of this
prediction .

3.1.3 Estimation of the moments of order 1 and 2

The general formulation of the moments of order 1 and 2 of the nested predictor can be inferred
from Eq. (17), according to the standard normality and the independence ofu andv :

E
[
Y2 (Y1 (x

c1
) ,x

c2
) | SNgp

]
= E

[

Y
(N2)
2

((

Y
(N1)
1 (x

c1
) ,x

c2

))]

= Eu

[

µ
(N2)
2

((

µ
(N1)
1 (x

c1
) + σ

(N1)
1 (x

c1
) u,x

c2

))]

,
(18)

E
[
Y2 (Y1 (x

c1
) ,x

c2
)2 | SNgp

]
= E

[

Y
(N2)
2

((

Y
(N1)
1 (x

c1
) ,x

c2

))2
]

= Eu

[

µ
(N2)
2

((

µ
(N1)
1 (x

c1
) + σ

(N1)
1 (x

c1
)u,x

c2

))2
]

+Eu

[

σ
(N2)
2

((

µ
(N1)
1 (x

c1
) + σ

(N1)
1 (x

c1
)u,x

c2

))2
]

.

(19)

According to Eq. (18) and (19), the estimates of the moment oforder 1 and 2 are the calculations
of two one-dimensional integrals with a Gaussian measure. This can be done by quadrature rules
or by Monte-Carlo methods ([3]).

Theorem 1. If the following assumptions are verified :

1. The computer model of the phenomenon 2 can be written as a linear combination of
products of a polynomial by an exponential of order less than2, that is :

(h2 (x
2
))i = g ((x

2
)1 ; ji, ai, bi) mi

(
(x

2
)−1

)
, (20)

where

• i ∈ {1 . . . p2},

• mi is a deterministic function,

• g (x2; j, a, b) = xj
2 exp (ax2 + bx2

2),

• x
2

=
(
(x

2
)1 , (x

2
)−1

)
,

2. The covariance functionC2 is a tensor product of a Gaussian covariance for(x
2
)1 by

any covariance function for(x
2
)−1, that is :

C2

(

x
2
,x

′

2

)

= exp



−

(

(x
2
)1 −

(
x

′

2

)

1

l2

)2


C2̄

(

(x
2
)−1 ,

(

x
′

2

)

−1

)

, (21)

wherel2 is the correlation length associated with(x
2
)1 andC2̄ is the covariance function

associated with(x
2
)−1,

3. The conditionbi < 1

2σ
(N1)
1 (xc1)

2 , i ∈ {1 . . . p2} is verified,

10
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then the conditional moments of order 1 and 2 ofY2 ((Y1 (x
c1

) ,x
c2

)) can be calculated analyt-
ically.

In other words, if the Gaussian process modeling the phenomenon 2 has a trend which is a linear
combination of products of polynomials by exponentials of order 2, and a covariance function
which is a tensor product of a Gaussian covariance for(x

2
)1 and some covariance function for

(x
2
)−1, then conditionally to some integration criteria on the trend, the moments of order 1 and

2 of the coupling of the predictors of the phenomena 1 and 2 canbe computed analytically.

Hence, two methods for obtaining the moments of order 1 and 2 of the predictor of the nested
phenomenon can be used : the Monte-Carlo one and the analytical one.
In the Monte-Carlo method the computational cost can be high, especially for the moment of
order 2 but the approach can be generalized to the coupling ofmore than two phenomena.
The computational cost of the analytical method is almost zero but the approach cannot be
generalized to the coupling of more than two phenomena and the covariance function of the
Gaussian process modeling the phenomenon 2 has to present a Gaussian expression with respect
to (x

2
)1.

3.2 Linearized method

In this section we propose another approach to calibrate theparameters and build a predictor of
the nested phenomenon by taking into account the observation points of the three phenomena
(1, 2 and nested).

3.2.1 Linearization of the nested model

According to Eq. (13) and the following assumptions :

1. β1 − β̄1 = O (δ),

2. ǫi = O (δ) , i ∈ {1, 2},

3. δ is small,

11
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we can get a linear approximation of the process modeling thenested phenomenon by a Taylor
expansion of order 1 withδ:

Yc (x
c
) = h2

((
h1 (x

c1
)t

β1 + ǫ1 (x
c1

) ,x
c2

))t
β2 + ǫ2

((
h1 (x

c1
)t

β1 + ǫ1 (x
c1

) ,x
c2

))
,

= h2

((
h1 (x

c1
)t

β̄1 + h1 (x
c1

)t
(
β1 − β̄1

)
+ ǫ1 (x

c1
) ,x

c2

))t
β2

+ǫ2

((
h1 (x

c1
)t

β̄1,xc2

))
,

= h2

((
h1 (x

c1
)t

β̄1,xc2

))t
β2 + ǫ2

((
h1 (x

c1
)t

β̄1,xc2

))

+
∂h2

∂(x2)1

(
h1 (x

c1
)t

β̄1

)t
β̄2

(
h1 (x

c1
)t
(
β1 − β̄1

)
+ ǫ1 (x

c1
)
)
,

= h2

((
h1 (x

c1
)t

β̄1,xc2

))t
β2

+
∂h2

∂(x2)1

((
h1 (x

c1
)t

β̄1,xc2

))t
β̄2

(
h1 (x

c1
)t
(
β1 − β̄1

))

+
∂h2

∂(x2)1

((
h1 (x

c1
)t

β̄1,xc2

))t
β̄2ǫ1 (x

c1
) + ǫ2

((
h1 (x

c1
)t

β̄1,xc2

))

(22)
So the a priori linearized model of the process modeling the nested phenomenon can be written
as follows :

Yclb
(x

c
) = hclb

(x
c
)t

βc + ǫclb
(x

c
) , (23)

whereǫclb
(x

c
) is the proposed model error :

ǫclb
(x

c
) = ∆Fc

(
x

c
, β̄c

)
ǫ1 (x

c1
) + ǫ2

((
h1 (x

c1
)t

β̄1,xc2

))
, (24)

and :
Yclb

(x
c
) = Yc (x

c
) + hclb·1

(x
c
)t

β̄1, (25)

β̄c =

[
β̄1

β̄2

]

, (26)

∆Fc

(
x

c
, β̄c

)
=

∂h2

∂(x2)1

((
h1 (x

c1
)t

β̄1,xc2

))t
β̄2, (27)

hclb
(x

c
) =





hclb·1
(x

c
)

hclb·2
(x

c
)



 ,

hclb·1
(x

c
) = ∆Fc

(
x

c
, β̄c

)
h1 (x

c1
) ,

hclb·2
(x

c
) = h2

((
h1 (x

c1
)t

β̄1,xc2

))
.

(28)

Thanks to the Gaussianity and independence ofǫ1 andǫ2 we thus have a Gaussian process model
for the nested phenomenon :

L (Yclb
(x

c
) | βc) = GP

(

hclb
(x

c
)t

βc , Cclb

(

x
c
,x

′

c

) )

, (29)

12
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where the covariance function of the Gaussian process is defined as follows :

Cclb

(
x

c
,x

′

c

)
= ∆Fc

(
x

c
, β̄c

)
C1

(
x

c1
,x

′

c1

)
∆Fc

(
x

′

c
, β̄c

)

+C2

((
h1 (x

c1
)t

β̄1,xc2

)
,
(

h1

(
x

′

c1

)t
β̄1,x

′

c2

))

.
(30)

Given Eq. (10) and (23) and the independence ofǫ1 andǫ2 a joint model for the three phenomena
(1, 2 and nested) is proposed :

L (Ylb (x
lb

) | βc) = GP
(

hlb (x
lb

)t
βc , C lb (x

lb
,x

lb
)
)
, (31)

where :

x
lb

=







x
1

x
2

x
c







, Ylb (x
lb

) =







Y1 (x
1
)

Y2 (x
2
)

Yclb
(x

c
)







, (32)

hlb (x
lb

) =





h1 (x
1
) 0 hclb·1

(x
c
)

0 h2 (x
2
) hclb·2

(x
c
)



 , (33)

C lb

(

x
lb

,x
′

lb

)

=









C1

(
x

1
,x

′

1

)
0 C1

(
x

1
,x

′

c1

)
∆Fc

(
x

′

c
, β̄c

)

0 C2

(
x

2
,x

′

2

)
C2

(

x
2
,
(

h1

(
x

′

c1

)t
β̄1,x

′

c2

))

∆Fc

(
x

c
, β̄c

)
C1

(
x

c1
,x

′

1

)
C2

((
h1 (x

c1
)t

β̄1,xc2

)
,x

′

2

)
Cc

(
x

c
,x

′

c

)









.

(34)

3.2.2 Calibration of the computer models’ parameters and posterior predictive distributions

We suppose that we have observation points of the studied phenomena. Given Eq. (31), we
can infer from Eq. (2) and (3) that, in case of a non informative uniform prior overRp1+p2 for
the parametersβc, the posterior distributions of the parameters and of the Gaussian processes
associated with the three phenomena are Gaussian. We have :

L (βc | SN1 ∪ SN2 ∪ SNc
) = N

(

µ
(Nlb)
βc

, V
(Nlb)
βc

)

,

L (Ylb (x
lb

) | SN1 ∪ SN2 ∪ SNc
) = GP

(

µlb
(Nlb) (x

lb
) , C

(Nlb)
lb (x

lb
,x

lb
)
)

,
(35)

13
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where :

V
(Nlb)
βc

=

((

H
(Nlb)
lb

)t (

R
(Nlb)
lb

)−1

H
(Nlb)
lb

)−1

,

µ
(Nlb)
βc

= V
(Nlb)
βc

(

H
(Nlb)
lb

)t (

R
(Nlb)
lb

)−1

Y
(Nlb)
lb ,

µlb
(Nlb) (x

lb
) = hlb (x

lb
)t

µ
(Nlb)
βc

+ C lb

(

x
lb

, X
(Nlb)
lb

)(

R
(Nlb)
lb

)−1 (

Y
(Nlb)
lb − H

(Nlb)
lb µ

(Nlb)
βc

)

,

C
(Nlb)
lb (x

lb
,x

lb

′) = C lb (x
lb

,x
lb

′) − C lb

(

x
lb

, X
(Nlb)
lb

)(

R
(Nlb)
lb

)−1

C lb

(

X
(Nlb)
lb ,x

lb

′
)

+
(
ulb

(Nlb) (x
lb

)
)t

V
(Nlb)
βc

ulb
(Nlb) (x

lb

′) ,

ulb
(Nlb) (x

lb
) = hlb (x

lb
) −

(

H
(Nlb)
lb

)t (

R
(Nlb)
lb

)−1

C lb

(

X
(Nlb)
lb ,x

lb

)

,

H
(Nlb)
lb = hlb

(

X
(Nlb)
lb

)t

, R
(Nlb)
lb = C lb

(

X
(Nlb)
lb , X

(Nlb)
lb

)

.

(36)
This method thus enables to obtain Gaussian posterior distributions for the parameters and for
the Gaussian processes associated with all the phenomena. However, the linearization assump-
tion has to be validated, which can be done by cross-validation techniques ([7],[13]).

3.3 A posteriori linearized method

This method of calibration and prediction is also based on a linearization of the nested phe-
nomenon, but instead of considering the initial Gaussian process modeling the phenomenon 1,
we consider the predictor of the phenomenon 1, whose error issmaller. So this enables to reduce
the risks posed by the linearization of the process modelingthe nested phenomenon. Moreover,
because the posterior distributions of the parameters and of the Gaussian process modeling the
phenomenon 1 are estimated separately, the risk of error compensation on the parametersβ1 is
also reduced.
The steps of the method can be summarized as follows :

1. Calibration of the parameters of the first computer model and construction of a predictor
of the phenomenon 1 given the observation points of this phenomenon.

2. The process modeling the nested phenomenon is linearizedby replacing the phenomenon
1 by its predictor, this enables to write the joint distribution of the processes modeling the
phenomena 2 and nested as a multi-dimensional Gaussian process.

3. Calibration of the parameters of the second computer model and construction of a predic-
tor for the phenomena 2 and nested given the observation points of these phenomena.

3.3.1 Linearization of the nested model

We suppose that we have observation points of the phenomenon1, which are denoted bySN1

and that the prior distribution ofβ1 is uniform overRp1. According to the method presented in

14
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section 2 the posterior distributions of the parameters andof the Gaussian process modeling the
phenomenon 1 are Gaussian.

Let ǫ(N1)
1 (x

1
) be a process with distributionGP

(

0 , C
(N1)
1 (x

1
,x

1
)
)

, then the processµ(N1)
1 (x

1
)+

ǫ
(N1)
1 (x

1
) has the conditional distribution ofY1 (x

1
) givenSN1 . Furthermore, the conditional

distribution ofYc (x
c
) givenSN1 is the distribution ofY2

((

Y
(N1)
1 (x

c1
) ,x

c2

))

. This process

has the form :

Y2

((

Y
(N1)
1 (x

c1
) ,x

c2

))

= h2

((

µ
(N1)
1 (x

c1
) + ǫ

(N1)
1 (x

c1
) ,x

c2

))t

β2

+ǫ2

((

µ
(N1)
1 (x

c1
) + ǫ

(N1)
1 (x

c1
) ,x

c2

))

.
(37)

Assuming thatǫ(N1)
1 (x

1
) is small, we can linearize the previous equation :

Y2

((

Y
(N1)
1 (x

c1
) ,x

c2

))

= h2

((

µ
(N1)
1 (x

c1
) ,x

c2

))t

β2

+
∂h2

∂(x2)1

((

µ
(N1)
1 (x

c1
) ,x

c2

))t

β2 ǫ
(N1)
1 (x

c1
)

+ǫ2

((

µ
(N1)
1 (x

c1
) ,x

c2

))

.

(38)

Thanks to the Gaussianity and independence ofǫ
(N1)
1 (x

1
) and ǫ2 (x

2
), the process modeling

the nested phenomenon is Gaussian, so the joint distribution of the processes modeling the
phenomena 2 and nested can be written :

L (Yla (x
la

) | β2,SN1) = GP
(

hla (x
la

)t
β2 , C la (x

la
,x

la

′)
)
, (39)

where :

x
la

=

[
x

2

x
c

]

, Yla (x
la

) =

[
Y2 (x

2
)

Yc (x
c
)

]

, (40)

hla (x
la

) =
[

h2 (x
2
) h2

((

µ
(N1)
1 (x

c1
) ,x

c2

))]

. (41)

The errorsǫ(N)
1 (x

1
) andǫ2 (x

2
) are independent centered Gaussian processes, so the covariance

functionC la (x
la

,x
la

′) is defined by :

C la (x
la

,x
la

′) =






C2

(
x

2
,x

′

2

)
C2

(

x
2
,
(

µ
(N1)
1

(
x

′

c1

)
,x

′

c2

))

C2

((

µ
(N1)
1 (x

c1
) ,x

c2

)

,x
′

2

)

C2

((

µ
(N1)
1 (x

c1
) ,x

c2

)

,
(

µ
(N1)
1

(
x

′

c1

)
,x

′

c2

))




 .

(42)

3.3.2 Calibration of the parameters of the second computer model and posterior predictive
distribution

We suppose that we have observation points of the phenomena 2and nested, which are denoted
by SN2 ∪ SNc

and that the prior distribution ofβ2 is uniform overRp2.
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Given Eq. (39), we can infer from Eq. (2) and (3) that the posterior distributions ofβ2 and of
the process modeling the phenomena 2 and nested are Gaussianand are defined as follows :

L (β2 | SN2 ∪ SNc
,SN1) = N

(

µ
(Nla)
β2

, V
(Nla)
β2

)

,

L (Yla (x
la

) | SN2 ∪ SNc
,SN1) = GP

(

µla
(Nla) (x

la
) , C

(Nla)
la (x

la
,x

la
)
)

,

(43)

where :

V
(Nla)
β2

=

((

H
(Nla)
la

)t (

R
(Nla)
la

)−1

H
(Nla)
la

)−1

,

µ
(Nla)
β2

= V
(Nla)
β2

(

H
(Nla)
la

)t (

R
(Nla)
la

)−1

Y
(Nla)
la ,

µla
(Nla) (x

la
) = hla (x

la
)t

µ
(Nla)
β2

+ C la

(

x
la
, X

(Nla)
la

)(

R
(Nla)
la

)−1 (

Y
(Nla)
la − H

(Nla)
la µ

(Nla)
β2

)

,

C
(Nla)
la (x

la
,x

la

′) = C la (x
la
,x

la

′) − C la

(

x
la
, X

(Nla)
la

)(

R
(Nla)
la

)−1

C la

(

X
(Nla)
la ,x

la

′
)

+
(
ula

(Nla) (x
la

)
)t

V
(Nla)
β2

ula
(Nla) (x

la

′) ,

ula
(Nla) (x

la
) = hla (x

la
) −

(

H
(Nla)
la

)t (

R
(Nla)
la

)−1

C la

(

X
(Nla)
la ,x

la

)

,

H
(Nla)
la = hla

(

X
(Nla)
la

)t

, R
(Nla)
la = C la

(

X
(Nla)
la , X

(Nla)
la

)

.

(44)
As mentioned earlier, the posterior distributions of the parametersβ1 and of process modeling
the phenomenon 1 are Gaussian (Eq. (2), (3) and (10)), so thismethod enables to obtain Gaus-
sian posterior distributions for the parameters and Gaussian predictors for all the phenomena.

4 Adaptive sequential design

In the previous section, methods of calibration and prediction of a nested phenomenon have
been presented. These methods require that observation points of the phenomena 1, 2 and/or
nested are available. These methods have the following interesting properties :

1. They enable to take into account the partial information,that is the observation points of
the phenomena 1 or 2 alone.

2. The moments of order 1 and 2 of the posterior distributionsof the parametersβc and of
the process modeling the nested phenomenonYc (x

c
) given the observation points can be

computed analytically.

The performance of calibration and prediction is thereforeconditioned by the Design of Ex-
periments. In this section methods of DoE suited for the caseof a nested phenomenon are
studied.
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4.1 Definition of a reference Design of Experiments

A reference method to choose the observation points in the case of a nested phenomenon is to
build a maximin Latin Hypercube Design (LHS) on the input spaceDdc

and then to generate
the observations of the three phenomena (1, 2 and nested) :

x
c
7→







y1 (x
c1

)

y2 ((y1 (x
c1

) ,x
c2

))

yc (x
c
)

.

wherey2 ((y1 (x
c1

) ,x
c2

)) = yc (x
c
) according to Eq. (9).

So if the Latin Hypercube Design onDdc
contains N samples, the set of available observations

is defined as follows :

1. X
(N)
1 =

(

x
()
c1

, . . . ,x
(N)
c1

)

andY
(N)
1 =

(

y1

(

x
()
c1

)

, . . . , y1

(

x
(N)
c1

))

,

2. X
(N)
2 =

((

y1

(

x
()
c1

)

,x
()
c2

)

, . . . ,
(

y1

(

x
(N)
c1

)

,x
(N)
c2

))

and

Y
(N)
2 =

(

y2

(

y1

(

x
()
c1

)

,x
()
c2

)

, . . . , y2

(

y1

(

x
(N)
c1

)

,x
(N)
c2

))

,

3. X
(N)
c =

(

x
()
c , . . . ,x

(N)
c

)

andY
(N)
c =

(

yc

(

x
()
c

)

, . . . , yc

(

x
(N)
c

))

.

Throughout this paper, this method of Design of Experimentswill be referred as the chained
Latin Hypercube Design.

4.2 Sequential designs in the case of a nested phenomenon

In this section we will study methods of sequential (step by step) choice of additional obser-
vation points. In order to improve the computational performance, the new observation points
are chosen in one of the phenomena 1 and 2. There are two main difficulties to choose a new
observation point:

1. on which phenomenon to add a new observation point,

2. for a given phenomenon, which new observation point to choose.

If we denote byΩNi

i ⊂ Ddi
the set of candidates in the input space of the phenomenonyi when

there are alreadyNi observations of the phenomenonyi, the new candidates can be chosen
according to the following criteria :

• for the methods based on the covariance matrix of the posterior distribution of the parameters
:

– the partial A-Optimal criterion is an alternate method where each new observation point
is alternately chosen on the phenomenon 1 or 2. The new observation point is se-
lected in order to minimize the trace of the covariance matrix of the posterior distri-
bution of the parameters of the first computer model (respectively second computer
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model) given the existing observation points of the phenomenon 1 (respectively 2)
plus the new candidate for the phenomenon 1 (respectively 2):

argminxi ⊂ Ω
Ni
i , i=(niter%2)+1

tr (V (βi | SNi
∪ xi)) , (45)

wheren%2 is equal to0 if n is even and to1 otherwise,

– the A-Optimal criterion is a global method (in contrast to analternate method) which
selects the best candidate among the candidates of the phenomena 1 and 2 in order
to minimize the trace of the covariance matrix of the posterior joint distribution of
the parameters of the two computer models :

argminxi ⊂ Ω
Ni
i , i∈{1,2}

tr
(
V
(
βc | SNseq

(xi)
))

, (46)

• for the methods based on the variance of the predictor of the nested phenomenon :

– the partial I-Optimal criterion is an alternate method where each new observation point
is alternately chosen on the phenomenon 1 or 2. The new observation point is
selected in order to minimize the integrated variance of thepredictor of the phe-
nomenon 1 (respectively 2) given the existing observation points of the phenomenon
1 (respectively 2) plus the new candidate for the phenomenon1 (respectively 2) :

argminxi ⊂ Ω
Ni
i , i=(niter%2)+1

∫

x
c
∈Ddc

V (Yi (xi
) | SNi

∪ xi) dx
i
, (47)

– the I-Optimal criterion is a global method which selects thebest among the candidates
of the phenomena 1 and 2 in order to minimize the integrated variance of the pre-
dictor of the nested phenomenon :

argminxi ⊂ Ω
Ni
i

, i∈{1,2}

∫

xc∈Ddc

V
(
Yc (x

c
) | SNseq

(xi)
)
dx

c
, (48)

where :

• niter is the iteration of the sequential design,

• SNseq
(xi) denotes the available information including the new candidate. Table 1 summa-

rizes the way to take into account the available informationdepending on the method of
calibration and prediction and the design criterion. In particular, some cases require to
have an estimate ofy1 (x1). In this work, inspired by the Kriging Believer strategy pro-
posed in [9], we will replace the unknown response of the phenomenony1 (x1) by the
expectation of its kriging predictorµ(N1)

1 (x1).

5 Applications

In this section, the methods presented in the sections 3 and 4are illustrated on two examples :
the first one is analytical and one-dimensional and the second one is an hydrodynamic example,
which is the coupling of two codes, a CFD code and a balistic code, and is multidimensional.
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Method Candidate on phenomenon 1 Candidate on phenomenon 2

Parallel, A-optimal SN1 ∪ x1 ∪ SN2
SN1 ∪ SN2 ∪ x2

Parallel, I-optimal SN2 , SN1 ∪ {x1, µ
(N1)
1 (x1)} SN2 ∪ x2 , SN1

A priori linearized, A-
optimal or I-optimal

SN1 ∪ x1 ∪ SN2 ∪ SNc
SN1 ∪ SN2 ∪ x2 ∪ SNc

A posteriori linearized,
A-optimal or I-optimal

SN2∪SNc
, SN1∪{x1, µ

(N1)
1 (x1)} SN2 ∪ x2 ∪ SNc

, SN1

Table 1: Definition of the informationSNseq
(xi) depending on the calibration and prediction

method and the design criterion

5.1 Definition of the reference method for the calibration and prediction

For the calibration and the prediction the black-box methodwill be considered as a reference.
This method corresponds to the case where the nested phenomenon is considered as a unique
phenomenon. The nested computer model is linearized in the vicinity of β̄c. The process ob-
tained has the same mean than in the a priori linearized method, but the model error is different.
According to Eq. (23) and (25), in the black-box method, the processYc (x

c
) is defined as

follows :
Yc (x

c
) + hclb·1

(x
c
)t

β̄1 = hclb
(x

c
)t

βc + ǫc (x
c
) , (49)

whereǫc (x
c
) is a Gaussian process whose covariance function is supposedto be stationary.

According to Eq. (2) and (49), the calibration and the prediction are done according to the
method presented in section 2.

5.2 Observation points choice and associated computational cost

In the reference design, the observation points are drawn according to chained Latin Hypercube
Designs (see section 4.1) of increasing sizes onDdc

.
In the sequential designs, an initial small dimensional chained Latin Hypercube Design is cho-
sen and new observation points are added one by one on the phenomena 1 or 2.
Each chained Latin Hypercube Design is repeated 50 times andthe figures 3, 4, 6 and 7 present
therefore the median of the results obtained for the 50 repetitions of the design.

In the presented examples the computational cost is considered to be 1 for the phenomena 1 and
2 such that it is equal to 2 for the nested phenomenon. The costof a chained Latin Hypercube
Design of n observation points is therefore 2n.

5.3 Covariance function

The covariance functions ofǫ1, ǫ2 andǫc are chosen in a parametric family. Except for the figure
4, the covariance functions are Matérn5

2
. In figure 4 the covariance functions ofǫ1 andǫ2 are

Gaussian.
Identifying the covariance parameters is a key issue when using the Gaussian process regression.
However, to focus on the interest of exploiting the nested structure of the codes in terms of
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prediction and calibration, we decided to fix the parametersof the covariance functions from a
preliminary study. In the following examples, the covariance functions are thus supposed to be
known.

5.4 Characteristics of the examples

5.4.1 Analytic example

For the analytic example, the properties of the computer models and of the phenomena are :

h1 (x) =





1
x
x2



 , β∗

1
=





−2
0.25

0.0625



 , y1 (x) = h1 (x)t
β∗

1
− 0.25 cos (2πx) , (50)

h2 (x) =







1
x
x2

x3







, β∗

2
=







6
−5
−2
1







, y2 (x) = h2 (x)t
β∗

2
− 0.25 cos (2πx) , (51)

Dd1 = Ddc
= [−7, 7] , Dd2 = [−2, 4] . (52)

Figure 1 presents for the phenomena 1, 2 and nested, the computer model and its error and the
prediction and its error (which are characterized by the conditional mean and variance of the
process modeling the phenomenon). It can be seen how the predictor, which has the condi-
tional distribution of the process modeling the phenomenon, enables to reduce the uncertainty
of prediction of a phenomenon. It can be seen that the errors of the computer models for the
phenomena 1 and 2 are regular, the assumption of stationarity is correct. The error for the com-
puter model of the nested phenomenon is more chaotic and the hypothesis of stationarity does
not seem to be valid.

5.4.2 Hydrodynamical example

This example consists in the coupling of two computer codes.The objective is to determine the
impact point of a conical projectile.
In what follows the term phenomenon refers to a computer codeand the term computer model
refers to the analytic approximation of a computer code.

The phenomenon 1 computes the drag coefficient of a cone divided by the height of the cone.
The dimension of the inputsx

1
is 2. These inputs are the height and the half-angle of the cone.

The phenomenon 2 is the distance between the beginning and the end of the ballistic trajectory
of the cone. Figure 2 presents an example of ballistic trajectory. The dimension of the inputsx

2

is 3. These inputs are the output of the phenomenon 1, the initial velocity and the initial angle
of the ballistic trajectory of the cone.
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Figure 1: The figures concern the analytical example. On the figures in the left-hand column
the lines represent the computer models alone and the grey area the 95% prediction intervals
associated with their errorsǫ1, ǫ2 or ǫc. On the figures in the right-hand column the lines
represent the predictions of the studied phenomena given 7 equally spaced observation points
on Dd1 , Dd2 andDdc

and their errors. In both columns the dots represent observations of the
true phenomena that were not used to build the predictor. Thecovariance functions of the model
errors are Matérn5
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Figure 2: Characteristics of the two phenomena in the hydrodynamic example

The input space is defined as follows :

Dd1 = [5◦, 45◦] × [0.2, 2] ,

Ddc2 = [1500, 3000]× [15◦, 35◦] ,

Dd2 = y1 (Dd1) ×Ddc2 ,

Ddc
= Dd1 ×Ddc2 ,

(53)

Figures 3 presents the evolution of the outputs of the phenomena 1 and 2 with respect to their
inputs. The sensitivity of the inputs is variable. In particular the output of the phenomenon 2 is
very sensitive to its first input.

The two phenomena, which are non-linear computer codes, areapproximated by analytic func-
tions. The analytic approximations of the phenomena 1 and 2 are defined by their basis functions
h1 (x

1
) andh2 (x

2
) and the associated optimal values of the parametersβ∗

1
andβ∗

2
. On the

figure 3 the graphs enable to defineh1 (x
1
) andh2 (x

2
). The optimal valuesβ∗

1
andβ∗

2
of

the parametersβ1 andβ2 are obtained by maximum likelihood estimation on two sets of200
observation points drawn according to Latin Hypercube Designs onDd1 andDd2 , considering
a nugget covariance function. Table 2 summarizes the inputsof the two phenomena and of the
analytic approximations of these phenomena.

5.5 Results

Figure 4 compares the parallel methods with the linearized methods in the case of observation
points drawn according to chained LHD. Regarding the calibration’s performance the parallel
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(d) Phenomenon 2 : initial velocity

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

50
0

10
00

15
00

20
00

25
00

(x
2
)2

y 2
(x

2
)

(e) Phenomenon 2 : initial angle from the hor-
izontal

Figure 3: The figures represent the variation of the outputs of the phenomena 1 and 2 with
respect to their inputs for sets of observation points drawnaccording to two Latin Hypercube
Designs of 200 points onDd1 andDd2 .
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Phenomenon Input variables Analytic approximation

Phenomenon 1

• (x
1
)1 : Half-angle of the
cone

• (x
1
)2 : Height of the cone

• h1 (x
1
) =







1

(x
1
)1

1

(x1)2







,

• β∗

1
=






−0.3738757

0.9035255

0.4554474




 .

Phenomenon 2

• (x
2
)1 : Output of the phe-
nomenon 1

• (x
2
)2 : Initial velocity

• (x
2
)3 : Initial angle to the
horizontal

• h2 (x
2
) =

[
1
1

max((x2)1
,y10)

]

where

y10 is the minimal value of the set
of observations of the phenomenon
1,

• β∗

2
=

[

62.99668

352.94021

]

.

Table 2: Input of the two studied phenomena and polynomial approximations of these phenom-
ena
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Methods
Parallel with Monte-Carlo (10 000 draws)
Parallel analytical method (Gaussian covariance)
A priori linearized
A posteriori linearized
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1e−03

1e−02

Computational cost

ǫ2 β

(a) Analytic example : Calibration

20 30 40 50 60

2e−03

1e−02
1e−02

Computational cost
ǫ2 y

(b) Analytic example : Prediction

Figure 4: The figures represent the performance of calibration and prediction for the previously
presented approaches (parallel with Monte-Carlo, parallel with analytical formula, a priori and
a posteriori linearized). The observations are drawn according to chained Latin Hypercube
designs (LHS) of increasing size. The observations’ choiceis repeated 50 times. The covariance
functions ofǫ1 andǫ2 are Gaussian.

methods and the a posteriori linearized method give very similar results, which are very good
when the number of observations increases. In contrast withthe other methods, the calibration’s
error of the a priori linearized method slowly decreases with the number of observations. Con-
cerning the prediction’s performance the different methods give similar results. Once again the
evolution is slightly different for the a priori linearizedmethod.

Figure 5 presents the performance of calibration and prediction for the linearized methods and
the black-box method in the two studied examples. Regardingthe calibration, the black-box
method performs poorly compared to the a posteriori linearized method. In the analytic exam-
ple the calibration’s performance of the two linearized methods are similar, whereas in the hy-
drodynamic example the a priori linearized method performspoorly to calibrate the parameters.
This emphasizes the interest of the a posteriori linearization. In both examples the prediction’s
performance of the linearized methods is relatively similar and the black-box method performs
poorly when the number of observations is low and tends to thelinearized methods when the
number of observations increases.

Figure 6 presents an example of predictors of the nested phenomenon of the analytical example
for the black-box and the a posteriori linearized methods with 8 and 20 observations . Concern-
ing the mean of the predictor :

25



Sophie Marque-Pucheu, Guillaume Perrin and Josselin Garnier

Methods
Black-box
A priori linearized
A posteriori linearized
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(c) Hydrodynamic example : Calibration
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(d) Hydrodynamic example : Prediction

Figure 5: The figures represent the performance of calibration and prediction for the linearized
approaches and the existing reference (black-box). The observation points are drawn accord-
ing to chained Latin Hypercube Designs of increasing size. The observation points’ draw is
repeated 50 times. The black-box method takes into account only the observations of the nested
phenomenon. The covariance functions ofǫ1, ǫ2 andǫc are Matérn5

2
.
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• the mean values are very close for the black-box and the a posteriori linearized method,

• for both methods the mean is more accurate when the number of observations increases.

It can be seen that because of the stationarity of the Gaussian process modeling the nested phe-
nomenon in the black-box method, which means that the covariance function of the process
depends only on the distance between two inputs, the 95% prediction interval is the same be-
tween each regularly spaced observation points. On the contrary, with the a posteriori linearized
method the 95% prediction interval between each regularly spaced observation points depends
on the value ofx

c
and appears to be more suitable to the variations of the nested phenomenon.

The 95% prediction interval obtained with the a posteriori linearized method is more accurate
than the one obtained with the black-box method. The hypothesis of stationarity of the nested
phenomenon is not valid, so in the black-box method the 95% prediction interval is too small
or too high depending on the value ofx

c
. This is particularly true when looking at the figures

associated with the 20 observations.

According to the previously presented results the a posteriori linearized method is very efficient
to calibrate the parameters and build a predictor of the nested phenomenon. In what follows we
will now study methods of sequential designs for the a posteriori linearized method.

Figure 7 presents the performance of calibration and prediction for the chained Latin Hypercube
Design (LHS) and the sequential designs : partial A-optimal, partial I-optimal, A-optimal and
I-optimal. The A-optimal sequential design is particularly efficient to calibrate the parameters
in both examples. The I-optimal sequential design performsthe best to build a predictor of the
nested phenomenon in both examples. In both cases the total criteria (A-optimal and I-optimal)
perform better than the partial criteria (partial A-optimal and partial I-optimal). The total crite-
ria are not adapted to the parallel working but they enable tooptimize the computational budget
by choosing adequately on which phenomenon to add a new observation point.

Figure 8 presents the number of observations of the phenomena 1 and 2 at a given computational
cost for the different studied designs. It can be seen that these numbers are very different for
the sequential design adapted for calibration (A-optimal)and the one for prediction (I-optimal).
In the analytic example, the sequential I-optimal design leads to a design where there are ten
times more new observations of the phenomenon 1 than new observations of the phenomenon
2. The sequential A-optimal design leads to a design where there are almost as many new
observations of the phenomenon 1 as new observations of the phenomenon 2.
In the hydrodynamic example, the sequential I-optimal design leads to a design where there
are five times more new observations of the phenomenon 1 than new observations of the phe-
nomenon 2. The sequential A-optimal design leads to a designwhere there are new observations
of the phenomenon 2 only.

6 Conclusions and further work

In this paper, methods have been proposed to calibrate the parameters and build a predictor of a
nested phenomenon whatever the type of available observations among the phenomena 1, 2 and
nested. The proposed methods enable to estimate analytically the moments of order 1 and 2 of
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(d) 20 observations : A posteriori linearized

Figure 6: The figures present examples of the predictor of thenested phenomenon of the analytic
example for the black-box and the a posteriori linearized method. The predictors are built with
8 and 20 equally spaced observation points onDdc

. The observation points used to build the
predictors are the same for the two methods and are represented by vertical lines. The dots
represent the real values of the nested phenomenon. The black line represents the mean of the
predictor. The grey area represents the 95% prediction interval of the predictor. The covariance
functions ofǫ1 andǫ2 for the a posteriori linearized method,ǫc for the black-box method are
Matérn 5

2
.
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Figure 7: The figures represent the performance of calibration and prediction for the a poste-
riori linearized method with different types of designs. The initial designs of the sequential
approaches are drawn according to chained LHD. The observation points’ choice is repeated 50
times. The covariance functions are Matérn5

2
.
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(d) Hydrodynamic example : Phenomenon 2

Figure 8: The figures represent the number of observations ofthe phenomena 1 and 2 for the
different studied designs.
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all the phenomena.
The methods have been compared to the case where the nested phenomenon is considered as
a unique phenomenon. The results obtained in the examples demonstrate the interest of using
all the available information, that means not only the observations of the nested phenomenon
but also the observations of the phenomena 1 or 2 alone. This is particularly significant for the
calibration of the parameters and for the prediction when there are few observation points.
Among the presented methods, the a posteriori linearized method brings the best results for a
given set of observations.

The choice of the observation points impacts the performance of calibration and prediction.
Thus, methods to enrich step by step the set of observations have been studied. The sequential
designs presented are criterion-based. They can be based onthe performance of calibration or
of prediction. They are compared to a reference design whichis a maximin LHD on the input
space of the nested phenomenon. In all cases the global criterion-based designs perform better
than the reference design. The fact of taking into account the joint distribution of the Gaussian
processes modeling the nested phenomenon and the phenomena1 and 2 enables to optimize the
computational budget by adding new observation points on the phenomena 1 and 2 alone while
improving the performance of calibration or of prediction of the nested phenomenon.

The presented calibration and prediction methods take intoaccount a non informative prior
distribution for the parameters. However these methods caneasily be extended to the case of a
Gaussian prior distribution for the parameters.

In this paper, the case of two phenomena coupled by a scalar has been studied. However the
case of a coupling by a functional seems promising for futurework.
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A Proof of the theorem

Proof. According to Eq. (4), the mean of the predictor of the phenomenon 2 can be written :
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We can infer from Eq. (54) and (55) thatµ

(N2)
2 (x

2
) can be written as a linear combination of

functionsg :
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whereji, ai, bi are deterministic known coefficients andci deterministic functions.
According to Eq. (4), it can be written :
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• M2 = µ
(N2)
β2

(

µ
(N2)
β2

)t

+ V
(N2)
β2

,

• N2 = µ
(N2)
β2

v2
t − V

(N2)
β2

h2

(

X
(N2)
2

)t

C2

(

X
(N2)
2 , X

(N2)
2

)−1

,

• P2 = v2v2
t − C2

(

X
(N2)
2 , X

(N2)
2

)−1

+C2

(

X
(N2)
2 , X

(N2)
2

)−1

h2

(

X
(N2)
2

)

V
(N2)
β2

h2

(

X
(N2)
2

)t

C2

(

X
(N2)
2 , X

(N2)
2

)−1

.

From Eq. (57) and (55) and the fact that for allx, jm, jn, am, an, bm, bn, in R

g (x; jm, am, bm) g (x; jn, an, bn) = g (x; jm + jn, am + an, bm + bn)

it can be inferred thatµ(N2)
2 (x

2
)2 + σ

(N2)
2 (x

2
)2 can be written as a linear combination of func-

tionsg :

µ
(N2)
2 (x

2
)2 + σ

(N2)
2 (x

2
)2 =

(N2+p2)
2+1

∑

k=1

g ((x
2
)1 ; jk, ak, bk) ck

(
(x

2
)−1

)
(58)
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wherejk, ak, bk are deterministic known coefficients andck are deterministic functions.

Furthermore, if(x
2
)1 ∼ N

(

µ
(N1)
1 (x

1
) , σ

(N1)
1 (x

1
)2
)

, the mean ofg ((x
2
)1 ; j, a, b) can be

calculated analytically conditionally to an integration criterion :

Eu

[

g
(

µ
(N1)
1 (x

1
) + σ

(N1)
1 (x

1
) u; j, a, b

)]

=

exp
(

aµ
(N1)
1 (x

1
) + bµ

(N1)
1 (x

1
)2 + 1

2
E[Xg]2

V[Xg]

) j∑

k=0

(
j

k

)

µ
(N1)
1 (x

1
)j−k σ

(N1)
1 (x

1
)k

E
[
Xk

g

]
,

(59)
where

• Xg ∼ N

( “

a+2bµ
(N1)
1 (x1)

”

σ
(N1)
1 (x1)

1−2bσ
(N1)
1 (x1)

2 , 1

1−2bσ
(N1)
1 (x1)

2

)

,

• under the condition of integrabilityb < 1

2σ
(N1)
1 (x1)

2 that has to be verified.

It can be inferred from Eq. (18), (19), (56), (58) and (59) that, if the process modeling the
phenomenon 2 has a covariance function which presents a Gaussian expression with respect to
(x

2
)1 and has a trend which is a linear combination of products of polynomials by exponentials

of order 1 and 2, then the moments of order 1 and 2 of the coupledpredictor can be calculated
analytically conditionally to some integration criteria.
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