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Abstract

Thanks to computing power increase, risk quantificatioresemore and more on computer
modeling. Methods of risk quantification based on a fixed cdatpnal budget exist, but
computer codes are almost always considered as a singlé& blac

In this paper, we are interested in analyzing the behavioa @omplex phenomenon, which
consists of two nested computer codes. By two nested cangoakes, we mean that some
inputs of the second code are outputs of the first code. Eagdé can be approximated by a
parametrized computer model.

First we propose methods to calibrate the parameters of tmeputer models and build a pre-
dictor of the nested phenomenon for a given set of obsenatibhe presented methods enable
to take into account observations of the first code, the sttcode and the nested code.
Second the choice of the observations is studied. Metha#gjoEntial designs, that means step
by step addition of observation points to the observatiges’ are examined. These sequential
designs aim at improving the performance of calibration egdiction while optimizing the
computational budget.

We show that the independent calibration of the 2 computeletsas not efficient for predict-
ing the nested phenomenon. We propose an original methadsidpaificantly improves the
prediction’s performance.
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1 Introduction

Simulation has an increasing role for the conception, therpation and the risk analysis of
complex systems. Computer codes are thus introduced. Tdoeles depend on the system
inputs that are used to characterize the system we want telnf@ebmetry, initial conditions,
boundary conditions...). However these codes can be noatigrexpensive and are therefore
replaced by a surrogate model.

In this paper the term phenomenon refers to the complex arfielgbéut expensive to evaluate
computer code and the term computer model refers to thegateonodel of the computer code.
The computer model is characterized by the system inputstsipdrameters. For a computer
model to be predictive, its parameters have to be calibfadeddirect and/or indirect measure-
ments. In this work, we assume that these computer modebeteeministic, relatively quick
to evaluate, but imperfect, in the sense that playing on #heeg of the input parameters only
is not sufficient to make the predictions of the calibratetchpater model exactly match the
outputs of the computer code. In this case the computer medebd crude for its outputs to
match exactly the outputs of the complex code after caidmatin this paper we mainly think
at this configuration.

In order to take into account the model error and quantifyuieertainties associated with the
parameters identification, a Bayesian formali$sm [15] ispaeld in the following. The input
parameters are therefore modeled by random variables,eatéehe difference between the
outputs of the calibrated computer model and of the compbebe s modeled by a Gaussian
process. This latter hypothesis is widely used in compuienses ([16],[11/7],[[14],110] [111]),
as it allows a very good trade-off between error control, plaxity, and efficiency. Two central
issues of this approach, also called Kriging, concern tlmcehof the statistical properties of
the Gaussian process that is used, and the choice of a pstabdtion for the input parameters
([e],[22],[50). In this work, only non-informative prior idtributions will be discussed for the
input parameters|([1],117]), and, for the sake of concisiwa will assume that the Gaussian
process is centered and that its covariance function is kndwe interested reader may refer
to [2] for further details on the covariance function idénétion in calibration purposes.

The posterior distributions of the input parameters anchef Gaussian processes are condi-
tioned by the set of available observation points. The agtohchoice of the observation points
is therefore a way to improve the performance of calibratifthe parameters and of prediction
of the phenomenon. Concerning the case of a unique phenanseneral methods of Design
of Experiments exist and include methods of space-fillingigies and criterion-based designs

([16], [172], {41, [81]).

A lot of industrial issues involve multi-physics phenomghawever, the existing methods of
Kriging and designs often consider a unique phenomenon aula-pihysics phenomenon as
a unique phenomenon. In this paper we will focus on the casemhested phenomena, that
means that the studied complex phenomenon can be dividesiphenomena and the output
of the first phenomenon is an input of the second phenomenon.

In this paper methods to calibrate the input parameters aild & predictor of a nested phe-
nomenon are proposed. The choice of the observations istalded and sequential designs
specific for the case of a nested phenomenon are proposede @hsigns enable to improve
the performance of calibration and prediction by explgjtihe nested structure of the studied
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phenomenon.

The outline of this paper is the following. Sectibn 2 preseht background in Kriging and
sequential designs for a unique phenomenon and introdhedstmalism used for the nested
phenomenon. Sectidh 3 presents the studied methods ofataliband prediction :

1. The "parallel” method corresponds to the case where thenpeters and the predictors
of the phenomena 1 and 2 are first calibrated and built segdgrand then a predictor of
the nested phenomenon is obtained by coupling the prediofdahe two phenomena.

2. The linearized methods rely on the linearization of th&e@ phenomenon and enable to
build Gaussian predictors for all the phenomena (1, 2 antbdesThe posterior distribu-
tion of the parameters is also Gaussian.

Section# presents the studied sequential designs in casaested phenomenon. Existing
methods are adapted to select new observation points orh#r®mena 1 and 2 alone in or-
der to improve the performance of calibration and predictibthe nested phenomenon while
optimizing the computational budget. In sectldn 5 the pres# methods are applied to two
numerical examples.

2 Background in Kriging and sequential designs for a unique penomenon and formal-
ism used for the nested phenomenon

2.1 Kiriging of a unique phenomenon

In this part, we are interested in the modeling of a uniquenpheenon. Lek € D, be the
input vector that characterizes this phenomenon, wihgres assumed to be a compact subset
of R4, d > 1, and lety € L? (D4, R™) ,n > 1 be the quantity of interest that is used to analyze
the studied phenomenon, wheié (D,, R") is the space of the functions with valueslii
which are square integrable dp,. This quantity of interest is supposed to be a particular
realization of a Gaussian procegs such that :

Y(x)=f(x:8) +e(x), 1)
where :
e f(x;8): Dy x R — R™is a deterministic function, which is continuous Dy,

e 3 € R? is the parameters’ vector,

e c(x) ~GP (0, C(x,x)), whereGP (p, ) denotes a Gaussian process of mean
p and covariancé& andC (x,x') is a(n x n)-dimensional matrix-valued covariance
function, which is assumed continuous®p x Dj.

We suppose thaV observations of the studied phenomenon are available. WatelbySy the
c-algebra generated by these observatigiid) = (x(*),...,x™)) the vector of the inputs of
the observation ™) = (y (xV)) ...,y (x™)) the vector of the outputs of the observations.
In this paper we will consider the case where the funcifqx; 3) can be written (or approx-
imated thanks to a linearization) as a linear function withpect tg3 : f (x;8) = h (x)' 3.

So the formalism is as follows :

L(Y(x)|B)=GP(h(x)B, C(x,x)), (2)

3
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where

e h(x):R*— M,, (R)isa(p x n) -dimensional matrix of deterministic functions that are
continuous oDy,

e L (X |Y) denotes the conditional distribution &f givenY".

From Eq. [2) it can be inferred that, in case of a non informeagirior for the parameters, that
is the prior pdf of the parameters is proportional to 1 on é8rdtion space [[1],[16],[15]), the
posterior distributions of the parameters and of the Gang®iocess are Gaussian ([1]). In what
follows, the term predictor of the phenomenon correspoadké posterior distribution of the
Gaussian process associated with the phenomenon. If weéedeynd/ ( v, 3 ) the Gaussian
distribution of mearnu and covariancez, the posterior distributions of the parameters and of
the Gaussian process can be written as follows :
_ () (N)
LBIS)=N(n". vy"). o
LY (x) |Sy) =P (™ (x) , €V (x,x) ).

where :

_ -1

Ve - <<H<N>>t (R) 1H(N)) 7
t —1

pl = v < H<N>) ( R(N)) Y,

“(ﬁN) € RP’ V,(BN) € MILP (R) )

p™ (x) =h (x)' ,u,gv) +C (X,X(N)) (RN)_l (Y(N) — HN,u,gN)) ,

CM (x,x) = C (x,x) — C (x,X) (R(N))_l C (XM x') +u™ (x)! VIu™ (X,

B

u® (x) = b (x) ~ (HY) (RY) " 0 (x¥,x)
HN —h (X(N))t, R™ = C (XM, X)) |

H™ € My,, (R), R™) € My, nn(R).
(4)
The Gaussian process modeling provides therefore a famadb solve two problems given
these observations : the calibration of the computer moddltae prediction of the phe-
nomenon.
The calibration’s problem can be summarized as follows :

e The functionf (x; 3) denotes an available computer model, which is parametbyeah
unknown vectos.

e The centered Gaussian process) represents the model error of the computer model com-
pared to the phenomenon.
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e We suppose that there exists a unique and true valy@, fehich is denoted by3*. The goal
of the calibration is to estimaf@* and to add a measure of uncertainty to this estimation,
which is achieved by calculating the posterior distribotaf the parameters given the
observations.

e The performance of the calibration can therefore be asddsseomputing the following
error :

E[[|8*— BI* | Sv]
€ = ) 5
s ERE ©
The numerator of the fraction above can be divided in twospart
d N d N
Ellg-pl 15 = Y (- ms") + D (V). (6)

=1 =1

wV
error on the parameters’ mean variance of the parameters

The mean of the posterior distribution of the parametersadiest deterministic estima-
tion of 3* in the L? sense, and its variance characterizes the uncertaintis@fttimation.
The error of calibration integrates therefore the errorterhean and the uncertainty of
the mean.

The prediction’s problem can be summarized as follows :

The functionf (x; 3) is seen as a model trend and is generally a priori chosen.

The centered Gaussian proce$s) can be seen as the learning process of the phenomenon.

The goal of the prediction is to predict the valuewpfx) in a non computed point and
to add a measure of uncertainty to this prediction, whicle&ched by calculating the
posterior distribution of the Gaussian proc&5s<) given the available information.

The performance of the prediction can therefore be evaluayethe computation of this

second error :
> Elly—YI7. [ Sy]
Y lyllZ:
where, for allu in L? (Dy, R"),[lu|72 = [5, lu (x) [*dx.

: (7)

The numerator of the fraction above can be divided in twospart

E [|ly — Y3 | Sx] = /D ly (x) = b™ (x) [Pdx + /D tr (C™ (x,x)) dx

J/

Vv Vv
integrated square error on the predictor's mean integrated variance of the predictor

(8)
where tr( M) denotes the trace of the matid .
The mean of the posterior distribution of the proc¥$%) is the best deterministic predic-
tion of y (x) and its variance allows us to characterize the uncertaifnlyi® prediction.
The error of prediction integrates therefore the error @rttean and the uncertainty of
the mean.
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2.2 Designs of Experiments in case of a unique phenomenon

The efficiency of prediction and calibration depends on trees filling properties of the set of
the available observations gf which is generally called Design of Experiments.

Hence, several methods exist ([16],][17], [4], [8]) to chetse Design of Experiments used for
the calibration or the prediction :

e methods based on the exploration of the inputs’ space : dpicg Latin Hypercube Sam-
pling, quasi-Monte-Carlo sampling...

e methods based on the minimization of a quantity associatddthe variance of the cali-
brated parametef®’,”,

e methods based on the minimization of a quantity associaitbdhe variance of the predictor
c™ (x,x).

2.3 Formalism used for the nested phenomenon

In this paper, we focus on the case of two nested phenomeraqdantities of interest;; and
12, are thus introduced to characterize these two phenomdnet) are supposed to be two real-
valued continuous functions on their respective definidlomainsD,;, andD,;, = R x D,,,.
The setsD,, andD,_, are moreover supposed to be two compact subse’ofind R%~!
respectively, wherd, andd, are two positive integers. Given these two functions, thetate
phenomenon is defined as follows :

Ye (Xc> = Y2 ((yl (Xcl> 7Xc2)) y Xe ™ (Xc17 Xc2) < Ddl X Dch' (9)

In theory, the definition domains may be unbounded, but tHeaton to compact sets enables
the square integrability of. on D,;, x D,_, and therefore the calculation of the performance
criterion defined in EqL{7).

In this work, we suppose that two parametrized computer msade available for the analysis
of these two phenomena, which are assumed to be linear vgipreceto their parameters. The
objective is to adapt the previously presented methodslibrate the parameters of the two
computer models and to build a predictor of the nested phenom As previously, a Gaussian
formalism is introduced, which consists in assuming thatdbterministic functiong,; andys
are the realizations of two Gaussian proced§eendYs, such that:

Y1 (xq) = ha (%) B1 + 1 (xq),

(10)
Yy (Xg) = ha (X,)" B2 + €2 (x3)

where :
e (3, € RP and3, € RP2 are the parameters’ vectors,
e p; andp, are positive integers that characterize the dimensioneoptitameter$; andg,,

e h;(x;) € Rt andh, (x,) € RP? are vectors of deterministic functions, which are supposed
to be knownx, — h; (x;) is continuous orD,,, X, — hs (X5) iS continuous orD,,
and(x,), — h2 (x,) is continuously differentiable,

6
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e ¢; ande, are real-valued centered Gaussian processes, definedibydvariance functions
C1 (x4,x;) andCs (x,,%5). C; is assumed to be Holder continuousBp x Dg,, SO
that the realizations of the process are Holder continuous, and, is assumed to be
continuous orD,, x Dy,.

According to Eq. [[P) and{10), the nested phenomenaix.) can therefore be seen as a
particular realization of the proce$s(x.), such that:

)/C (Xc) = )/2 ((}/1 (Xcl) 7Xc2)) (11)

It can be inferred from Eq[{10) and{11) that there are thiessible types of observations in
case of a nested phenomenon :

1. Observations of the phenomenon 1. Bhalgebra generated by the observations of the
inputsX!™) = <x(11), . ..,x(lNl)> and the outputy’{"") = <y1 <x(11)> T (x(lNl)»
will be denoted bySy,,

2. Observations of the phenomenon 2. Bhalgebra generated by the observations of the
inputsX{™ = <x(21), . ,X(zNQ)) and the output&’{"™? = (yg <x(21)) T (x(zNz)))
will be denoted bySy,,

3. Observations of the nested phenomenon. s-adégebra generated by the observations of
the inputsx(™) = (xﬁl), . ,x£N6)> and the outputy V) = (yc <x§,1)> e Ye <x£N°')>>
will be denoted bySy.,

3 Calibration and prediction of two nested phenomena

In this section, the objective is to calibrate the paransetéthe two computer models and to
build a predictor of a nested phenomenon for a given set agfrobtion points, which means to
determine the posterior distributions of the parametedsadithe process modeling the nested
phenomenon :

L (/Bc ‘ Sng) )

(12)
E (3/0 (XC) | Sng) ?

where :

e Sy, denotes the available information, which can be definedes-tiigebra generated by
the observations of the phenomena 1 and 2 in the paralleladethd by the observations
of the phenomena 1, 2 and nested in the linearized methods,

o
e 3.= .
B2
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According to Eq.[(I0) and(11) the process associated wimésted phenomenon is given by

Y, (%) = ha ((h1 (x¢1) B1 + €1 (x0) cZ)) B2+ €2 ((h1 (xe1) Br + €1 (Xeq) 1 X)) -
(13)

It can be inferred from Eq.[{13) that the distribution of thegessY, (x.) given 3. is not
Gaussian and its mean is not linear with respect to the paeasné&o the posterior distributions
of the parameters and of the process of Eql (12) are not GausEheir general formulation is,
according to the Bayes rule and the law of total probability :

r (Bc | Sng) x L[ <<Y§N1)7YgN2)’Y£NC)> ‘Bc) [ prior (B),
'C (YVC (XC) ‘ Sng) = f,@c ‘C (Y; (Xc) | /607 Sng) ‘C (/60 ‘ SNQP) dﬁc’

where£P™°" (3..) is the prior distribution of3, and £ stand in this equation for the densities of
the distribution by abuse of notation.

(14)

3.1 Coupling of predictors : the parallel method

According to the previous section, the most intuitive wagdbbrate the parameters and to build
a predictor of the nested phenomenon is to first consider hleeg@mena 1 and 2 separately,
calibrate the parameters and build a Gaussian predicteaidr of them and then to couple the
predictors of the two phenomena to obtain a predictor of ttsted phenomenon. So the steps
of the so-called parallel method are :

1. Calibration and prediction for the phenomena 1 and 2 séglgr

2. The predictors of the phenomena 1 and 2 are coupled to adwyledictor of the nested
phenomenon.

3. The moments of order 1 and 2 of the coupled predictor are@te.

3.1.1 Calibration and prediction of the phenomena 1 and 2

The phenomena 1 and 2 are considered separately. The paraiaretcalibrated and a predictor
is built for each phenomenon independently. According to &), (3) and[(ID), we have for
i€ {1,2} andx; € Dy :

LB Sn) =N (5. Ve ).

’L

(15)
L¥i(x) |8w) =GP (™ (x ch (x::%3) )
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where fori € {1,2} :

-1
Vi (< Hgm))t ( R(,N»)—l Hgm))

V) D) ()N () T (V)
p’ﬁi _V,Bi (H )(Rz ) Yi s

)

ngi) = Rpi’ ngl) S Mpi,lh‘ (R) )

| A _ N -1 _ A A

)

CZ.(Ni) (xi,x/i) =C; (XiaX;) -G <Xi>X§Ni)) (Rz('Ni))_l C; <X§Ni)axg) + M) (Xi)t V(ﬁ]ji)ui(m) (Xt) )

1

M (x) e R, O (x;,x)) €R,

H(Ni) = h; (X(Ni))t R(Ni) = C; (X(Ni) X(Ni))
HENi) S MNi,Pi (R) ) RENi) S MNi,Ni (R) :
(16)
At this step, the parameters are calibrated but there isedigior of the nested phenomenon.

3.1.2 Coupling of the predictors of the phenomena 1 and 2

According to Eq. [(ID) and(15), a predictor of the nested phemon is obtained by coupling
the predictors of the phenomena 1 and 2. For a gkien= (x.,,X.,) € Dy., the coupled
predictor can be written :

M () ) xca) ) = ™ (6% (tea) + 0™ () 0 x5 )
L ) an
+o8™ (1) (xea) + 01 () %2 ) v

where :

o YZ.(N” (x;) denotes a process which has the conditional distributidn of,) givenSy,,

d Uz‘(Ni) (x;) = \V Cz'(Ni) (%, %3),

e y andv are independent standard Gaussian random variables.

According to Eq. [(1I7), the predictor of the nested phenomésoon Gaussian. However, we
will focus on the mean and the variance of this predictorpediag to the following considera-
tions :

1. the mean of the nested predictor is the best predictioheohested phenomenon in the
L? sense,
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2. the variance of the nested predictor is an interestingatdr of the uncertainty of this
prediction .

3.1.3 Estimation of the moments of order 1 and 2

The general formulation of the moments of order 1 and 2 of #stad predictor can be inferred
from Eq. [I1T), according to the standard normality and tldejpendence af andv :

E [ (1 () ) [Sw,] = B[V (V) () 1) )|

(18)
9 (4t o 102

B[V 0 (o) x| S,] = [ (5 () %)) ]
= [ (1 xa) o™ ) uxa) ) | 29

N N N 2
+EU |:0-§ 2) <<:ug 1) (Xcl> +U§ 1) (Xcl)u7xc:2>> :| .

According to Eq.[[I8) and(19), the estimates of the momeaotadr 1 and 2 are the calculations
of two one-dimensional integrals with a Gaussian measuris.¢an be done by quadrature rules
or by Monte-Carlo methods/([3]).

Theorem 1. If the following assumptions are verified :

1. The computer model of the phenomenon 2 can be written agearlcombination of
products of a polynomial by an exponential of order less thathat is :

(h2 (x5)); = g ((xa)y 3 Ji @i, bi) mi ((32) 1) (20)

where

1€ {]_ .. .pg},
m; 1S a deterministic function,

g (.Z'Q;j, a, b) = ‘T% €xXp (CL.CEQ + blf%)’
Xg = ((X2)1 ) (Xz)—1)’

2. The covariance functio@’, is a tensor product of a Gaussian covariance fay,), by
any covariance function fox,) ,, thatis :

Cy <X27X/2> =exp | — (%) Cs ((Xz)_1 5 (X/z)_l) ) (21)

wherel, is the correlation length associated witk, ), andCs is the covariance function
associated withix,) ,,

3. The conditior); < —x~——, i€ {1...p,} is verified,

2U§Nl ) (xcl ) v

10
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then the conditional moments of order 1 and 2f(Y] (x.;) , X)) €an be calculated analyt-
ically.

In other words, if the Gaussian process modeling the phenom2 has a trend which is a linear
combination of products of polynomials by exponentials ifes 2, and a covariance function
which is a tensor product of a Gaussian covariancésfgj, and some covariance function for
(x4)_,, then conditionally to some integration criteria on thettethe moments of order 1 and
2 of the coupling of the predictors of the phenomena 1 and beatomputed analytically.

Hence, two methods for obtaining the moments of order 1 anftiegpredictor of the nested
phenomenon can be used : the Monte-Carlo one and the aahtytie.

In the Monte-Carlo method the computational cost can be,légpecially for the moment of
order 2 but the approach can be generalized to the couplingcé than two phenomena.

The computational cost of the analytical method is almosb eit the approach cannot be
generalized to the coupling of more than two phenomena amddliariance function of the
Gaussian process modeling the phenomenon 2 has to presanssi@ expression with respect
to (x3);.

3.2 Linearized method

In this section we propose another approach to calibratpalemeters and build a predictor of
the nested phenomenon by taking into account the obsenvatimts of the three phenomena
(1, 2 and nested).

3.2.1 Linearization of the nested model

According to Eq.[(IB) and the following assumptions :
1. B~ B =0(9),
2. ¢, =01(0),i€{1,2},

3. Jis small,

11
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we can get a linear approximation of the process modelingéiséeed phenomenon by a Taylor
expansion of order 1 with:

Yo(x) = ha ((ha (xa)' B+ 1 (%er) :%2)) Ba + 2 (R (xer)' Br+ 1 (Xea) 1 Xea))
= hy ((hy (x00)' By + ha (x0)' (B — Br) + 1 (Xe1) . X2)) ' B
+65 ((ha (Xer)' BrsXe2) )
(h1 (%) BiXea)) Ba + €2 ((ha (xe1)' Brr Xe2))
o (ha (%) B1)' Bz (ha (%) (B — Bi) + 1 (x21))
= ha ((h1 (%) B1.Xe2))' B2
o, ((ha (%e1) Bi:%e2)) By (P (xe1)' (B1 = B1))

_'_8?:22) ((Pa (Xcl)t/BlJXc2)) Baer (Xe1) + €2 ((ha (Xcl)tﬁl,xcz))

(22)
So the a priori linearized model of the process modeling #etad phenomenon can be written
as follows :

}/Clb (Xc) = hClb (Xc:)t /Bc + €Clb (Xc) ’ (23)
wheree,, (x.) is the proposed model error :
€y (Xc> - ( Xe) 50) €1 ( ) + € ((hl (Xcl)t Bl? XcZ)) ) (24)
and : .
Yo, (x0) = Yo (%) + heyy (%) Bis (25)
_ B
/Bc - [ _ ] 5 (26)
B2
AF, 3.) = 2 (1 e 27
c (Xcaﬁ(:) - 8(1’2)1 (( 1 (Xcl) ﬁ 1> c2)) ﬁ27 ( )

(28)

Thanks to the Gaussianity and independeneeg ahde, we thus have a Gaussian process model
for the nested phenomenon :

£V, () | B) = GP (hey (x0)'B.» Coy, (xe%0) ). (29)

12
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where the covariance function of the Gaussian process isedkdis follows :
Cep (XC, x;) = AF, (XC, Bc) 4 (xcl, xiﬂ) AF, (X;, Bc)
+C <<h1 (Xcl)t/BchZ) ) <h1 (Xi:l)tBlecZ)) .

Given Eqg. [ID) and(23) and the independence ahde, a joint model for the three phenomena
(1, 2 and nested) is proposed :

(30)

L (Y (x,) | Be) = GP (hww (x1)' B, Cui (Xyp, X)) (31)
where :
Xy Y1 (xq)
Xp= | X2 |,  Yi(xp)=| Ya(xz) |, (32)
X, Ye, (Xe)
h1 (xq) 0 hgy, (%)
P ) =0 By () ey, (%) | 43
Cu <X1baxib> =
Ch (x4, %) 0 C1 (x1,%¢1) AF, (x,, Be)
0 Ch (x5, %5) Co <x2, (hl (x,)" Bl,x;2>)
AF, (x¢:Be) C1 (X1, %1)  Co ((Pa (%)’ By Xe2) 1 X2) Ce (%er %)
(34)

3.2.2 Calibration of the computer models’ parameters anst@aor predictive distributions

We suppose that we have observation points of the studiedopiena. Given Eq.[{31), we
can infer from Eq. [[2) and3) that, in case of a non infornmatimiform prior oveiR?:*72 for
the parameters.., the posterior distributions of the parameters and of thesGan processes
associated with the three phenomena are Gaussian. We have :

L(Be| Sy, USn, USN,) =N < “’(BJZM) ’ Vglfzb) ) :

(35)
L (Y (xp,) | Sy, USN, USN,) =GP ( Nlb(Nlb) (X1p) Cz(évw) (X1p» X1, ) )

13
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where :

(Nip)
Vﬁclb

N\ () " i)\
((Hl(blb)) (RY™) Hl(blb)) |

t -1
“’(BJZM) _ V’(BJZZb) <Hl(lf)Vzb)> <Rl(£\71b)> Yl(l])vw)’

N, N, N ! N, Ni) (N
Hlb(N”’) (xp) = hu (le)t ul(Bczb) +Cy (le’ Xl(b lb)) <Rl(b lb)) (Yl(b w) Hl(b lb)u(ﬁclb)) :
-1
Cz(l];Vlb) (X Xp') = C (Xpp5 Xp,") — Cl <X1b> Xz(lj)vw)> (Rz(zfvw)) Cup (Xl(zi\hb)a le/)

t
+ (ulb(Nlb) (le)) V’(Bflflb)ulb(sz) (le’) 7

t -1
™) (xy) = Pap (Xy) — < H%vw) (Rgévm) Cu (Xz(év“’),xlb>>

Hl(évlb) — hy <Xl(évlb))t, Rl(évlb) —Cy (Xl(évlb)’ Xl(é\fzb)) ‘
(36)
This method thus enables to obtain Gaussian posterioristms for the parameters and for
the Gaussian processes associated with all the phenomenever, the linearization assump-
tion has to be validated, which can be done by cross-vatidagichniques([7].[13]).

3.3 A posteriori linearized method

This method of calibration and prediction is also based oimeatization of the nested phe-
nomenon, but instead of considering the initial Gaussiacgss modeling the phenomenon 1,
we consider the predictor of the phenomenon 1, whose ersanadler. So this enables to reduce
the risks posed by the linearization of the process modétiagested phenomenon. Moreover,
because the posterior distributions of the parameters fathe @& aussian process modeling the
phenomenon 1 are estimated separately, the risk of erropeosation on the parametgds is
also reduced.

The steps of the method can be summarized as follows :

1. Calibration of the parameters of the first computer moddl@nstruction of a predictor
of the phenomenon 1 given the observation points of this gimemon.

2. The process modeling the nested phenomenon is linedoyzesgplacing the phenomenon
1 by its predictor, this enables to write the joint distribatof the processes modeling the
phenomena 2 and nested as a multi-dimensional Gaussiagsgroc

3. Calibration of the parameters of the second computer hamaleconstruction of a predic-
tor for the phenomena 2 and nested given the observatiotspafithese phenomena.

3.3.1 Linearization of the nested model

We suppose that we have observation points of the phenonfenehich are denoted by,
and that the prior distribution ¢8; is uniform overR?*. According to the method presented in

14
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sectior 2 the posterior distributions of the parametersoditise Gaussian process modeling the
phenomenon 1 are Gaussian.

Lete™ (x,) be a process with distributiaf® < 0, ™ (x,,x,) ) ,then the procegs™ (x,)+

egNl) (x,) has the conditional distribution df; (x,) givenSy,. Furthermore, the conditional

distribution ofY, (x.) givenSy, is the distribution ofY; ((Yl(Nl) (Xc1) ,xc2)). This process
has the form :

Vo () xa) xea) ) = o (8 () + ™) (xa) xc2) ) B

(37)
té2 <<M§Nl) (Xe1) + EgNl) (Xe1) 7Xc2>> :

Assuming thathl) (x,) is small, we can linearize the previous equation :

Yy <<Y1(Nl) (Xe1) ,Xcz>> = hy <<M§Nl) (Xe1) ,X02>>tﬂ2
+%’31 ((HgNl) (Xe1) >Xc2>>tﬂ2 EgNl) (Xc1) (38)

+é2 ((NgNl) (Xe1) 7Xc:2>> :

Thanks to the Gaussianity and independence%f) (x,) ande; (x,), the process modeling
the nested phenomenon is Gaussian, so the joint distribofidhe processes modeling the
phenomena 2 and nested can be written :

£ (Yia (x1) | B2, Sn) = GP (hia (%10)" Bs » Cla (%10, %14) ) (39)

where : . Ya (x,)
Xy = [ . ] v Yia(x,) = Y, (x) ] , (40)
hia (%) = (P2 (x2)  Ba (1" (xe1) 1 %e2) )| (41)

The error&ﬁN ) (x,) ande; (x,) are independent centered Gaussian processes, so thexnoeari

functionC|, (x,,, x;,") is defined by :

Cy (Xz,X/2> Cy <X2> <M§Nl) (ch1) >ch2>>

Ca i X1a') = Cy ((MgNl) (Xe1) >Xc2) >X/2> Co <<M§Nl) (Xe1) >Xc2) ) <M§Nl) (X::l) >X::2))
(42)

3.3.2 Calibration of the parameters of the second computsiehand posterior predictive
distribution

We suppose that we have observation points of the phenomamé2ested, which are denoted
by Sy, U Sy, and that the prior distribution g8, is uniform overR?2.

15
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Given Eqg. [(3D), we can infer from Ed1(2) arid (3) that the pastelistributions of3, and of
the process modeling the phenomena 2 and nested are Gaarsgiare defined as follows :

€3 8w 08w Sw) =N (# VB ),
(43)
£ (na (Xla) | SN2 U SNc7 SN1) =gP < l’l’la(Nla) (Xla) ) Cl(ivm) (X1a7 Xla) ) ’

where :
¢ -1 -1
V(B]Zla) _ ((Hl(c]lea)> (Rl(é\/la)> Hl(ivla)) :

Nia Nia N\ M)\ T (Vi
ul(azz):V(BZl)<H( l)) <R( z)) Yl(al)’

la la

1
“la(Nla) (Xla) = hy, (X1a>t “(ﬁ];[la) +Cy <Xla7 X(Nla)) <Rl(¢]1Vla)) <Yl(Nla) . Hl(ivla)u(ﬂ];[la)) ’

la a

la

—1
Cl(c]lea) (Xla? Xla/) - Cla (Xla? Xla,) - Cla <Xla’ XUVLG)) <Rl(cjzvm)> Cla <Xl(c]1\7la)7 Xla/>

t
+ (wa™) (31)) Vi ™) (x4,

t —1
o) (x3,) = hua (%) = (HE) (RE) ™ €0, (X0 5,).

HY — by, (X}jfl“))t, RN — o, (Xz(ivl“)a Xl(évla)) '
(44)
As mentioned earlier, the posterior distributions of theap@eters3; and of process modeling
the phenomenon 1 are Gaussian ([Ef). (2), (3) (10)), sottisod enables to obtain Gaus-

sian posterior distributions for the parameters and Gangsiedictors for all the phenomena.

4 Adaptive sequential design

In the previous section, methods of calibration and premhcbf a nested phenomenon have
been presented. These methods require that observatiots pbithe phenomena 1, 2 and/or
nested are available. These methods have the followingestiag properties :

1. They enable to take into account the partial informatibat is the observation points of
the phenomena 1 or 2 alone.

2. The moments of order 1 and 2 of the posterior distributmfrthe parameters, and of
the process modeling the nested phenoménds,.) given the observation points can be
computed analytically.

The performance of calibration and prediction is therefmaditioned by the Design of Ex-
periments. In this section methods of DoE suited for the ads® nested phenomenon are
studied.
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4.1 Definition of a reference Design of Experiments

A reference method to choose the observation points in the ega nested phenomenon is to
build a maximin Latin Hypercube Design (LHS) on the input@p®,, and then to generate
the observations of the three phenomena (1, 2 and nested) :

1
(Xc)
Wherey2 ((yl (Xcl) >Xc2)) = Ye (Xc) according to Eqmg)

So if the Latin Hypercube Design dp,, contains N samples, the set of available observations
is defined as follows :

Y = () andn ) = (5 (x8) o ().

2 57— (0 () ) o <) ) o
viY = <y2 (y ( & ) XQ) Y (yl (xiﬁ“),x@)),

3K = () and ) = (g (<) o ()

Throughout this paper, this method of Design of Experimerilisbe referred as the chained
Latin Hypercube Design.

4.2 Sequential designs in the case of a nested phenomenon

In this section we will study methods of sequential (step tep}kchoice of additional obser-
vation points. In order to improve the computational paerfance, the new observation points
are chosen in one of the phenomena 1 and 2. There are two nffiggnlties to choose a new
observation point:

1. on which phenomenon to add a new observation point,
2. for a given phenomenon, which new observation point tmsho

If we denote by c D,, the set of candidates in the input space of the phenomgnehen
there are alreadyv; observations of the phenomengp the new candidates can be chosen
according to the following criteria :

o for the methods based on the covariance matrix of the postistribution of the parameters

— the partial A-Optimal criterion is an alternate method vehesich new observation point
is alternately chosen on the phenomenon 1 or 2. The new @ig®m\point is se-
lected in order to minimize the trace of the covariance matithe posterior distri-
bution of the parameters of the first computer model (respdgtsecond computer
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model) given the existing observation points of the phenmmel (respectively 2)
plus the new candidate for the phenomenon 1 (respectively 2)

argmin tr(V(8i| Sy, Uxy)), (45)
X C QN i=(niter %2)+1
wheren%?2 is equal ta) if n is even and td otherwise,

— the A-Optimal criterion is a global method (in contrast toadternate method) which
selects the best candidate among the candidates of thempbeadl and 2 in order
to minimize the trace of the covariance matrix of the postgoint distribution of
the parameters of the two computer models :

argmin tr (V (ﬁc | SNoy (xl))) , (46)

x; C QN ie{1,2}
e for the methods based on the variance of the predictor ofékted phenomenon :

— the patrtial I-Optimal criterion is an alternate method véheach new observation point
is alternately chosen on the phenomenon 1 or 2. The new aigerpoint is
selected in order to minimize the integrated variance ofpteglictor of the phe-
nomenon 1 (respectively 2) given the existing observatmntp of the phenomenon
1 (respectively 2) plus the new candidate for the phenomér(oespectively 2) :

argmin / V(Y (x;) | S, Uxs) dx;, (47)
)+1 X.€Dgq,.

N; .
X C Q% i=niter %2

— the I-Optimal criterion is a global method which selectslieet among the candidates
of the phenomena 1 and 2 in order to minimize the integratedmnee of the pre-
dictor of the nested phenomenon :

agnin [V (Vo) | Sw., (x0) dx, (48)
XCEDdC

x; C QN ie{1,2}

where :

e n,., IS the iteration of the sequential design,

e Sy.., (x;) denotes the available information including the new caaidid TabldIl summa-
rizes the way to take into account the available informatiepending on the method of
calibration and prediction and the design criterion. Intipatar, some cases require to
have an estimate of;, (x;). In this work, inspired by the Kriging Believer strategy pro
posed in[[9], we will replace the unknown response of the phemony; (x;) by the

expectation of its kriging predictquN ) (x1).

5 Applications

In this section, the methods presented in the secfibns Blane #lustrated on two examples :
the first one is analytical and one-dimensional and the skopa is an hydrodynamic example,
which is the coupling of two codes, a CFD code and a balistitiecand is multidimensional.
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Method Candidate on phenomenon1 | Candidate on phenomenon 2
Parallel, A-optimal Sn, Uxy U Sy, Sy, USn, Uxo

Parallel, l-optimal Sny 5 Sny U {xxq, ™ (x1)} Sy, UXz , Sy

A priori linearized, A-| Sy, Ux; U Sy, U S, Sny U Sy, Uxa USy,

optimal or I-optimal
A posteriori linearized| Sy, USy. , Sy, U{xy, u\™ (x1)} | Sy UX2 USN, , S,
A-optimal or I-optimal

Table 1: Definition of the informatio®y,,, (x;) depending on the calibration and prediction
method and the design criterion

5.1 Definition of the reference method for the calibration gmediction

For the calibration and the prediction the black-box metiwdtbe considered as a reference.
This method corresponds to the case where the nested pheoonseconsidered as a unique
phenomenon. The nested computer model is linearized initigty of 3.. The process ob-
tained has the same mean than in the a priori linearized gl the model error is different.
According to Eq. [[2B) and(25), in the black-box method, thecpssY. (x.) is defined as
follows :

Yo (%) + Py (%) B1 = Py, (%) Be + € (xc) (49)

wheree. (x,) is a Gaussian process whose covariance function is suppmbedstationary.
According to Eq. [[R) and(49), the calibration and the pridiicare done according to the
method presented in sectibh 2.

5.2 Observation points choice and associated computaltmrst

In the reference design, the observation points are drasording to chained Latin Hypercube
Designs (see sectign #.1) of increasing size®gn

In the sequential designs, an initial small dimensionalrddLatin Hypercube Design is cho-
sen and new observation points are added one by one on therpbea 1 or 2.

Each chained Latin Hypercube Design is repeated 50 timetharfijure§ 3, 4.16 arld 7 present
therefore the median of the results obtained for the 50 iteget of the design.

In the presented examples the computational cost is caeside be 1 for the phenomena 1 and
2 such that it is equal to 2 for the nested phenomenon. Theotasthained Latin Hypercube
Design of n observation points is therefore 2n.

5.3 Covariance function

The covariance functions ef, ¢, ande, are chosen in a parametric family. Except for the figure
@, the covariance functions are Mat'e}nln figure[4 the covariance functions gf ande, are
Gaussian.

Identifying the covariance parameters is a key issue whigig tise Gaussian process regression.
However, to focus on the interest of exploiting the nestedcstire of the codes in terms of
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prediction and calibration, we decided to fix the parametétbe covariance functions from a
preliminary study. In the following examples, the covagarunctions are thus supposed to be
known.

5.4 Characteristics of the examples
5.4.1 Analytic example

For the analytic example, the properties of the computeraisoghd of the phenomena are :

1 —2

hi(x)=1| z |, By=1| 025 |, y1 () = hy (2)" BF — 0.25 cos (27z), (50)

x? 0.0625
1 6
* =5 *

@)= | 5| =] 0| m@) =ha(e) B - 025c0s (2mr),  (5D)
3 1

Ddl = Dd(; = [_7a 7]a DdQ = [_274] : (52)

Figurell presents for the phenomena 1, 2 and nested, the tamnpodel and its error and the
prediction and its error (which are characterized by theddmnal mean and variance of the
process modeling the phenomenon). It can be seen how thetforedvhich has the condi-
tional distribution of the process modeling the phenomeroiables to reduce the uncertainty
of prediction of a phenomenon. It can be seen that the erfdtseccomputer models for the
phenomena 1 and 2 are regular, the assumption of statiprsacibrrect. The error for the com-
puter model of the nested phenomenon is more chaotic and/fiahesis of stationarity does
not seem to be valid.

5.4.2 Hydrodynamical example

This example consists in the coupling of two computer codies. objective is to determine the
impact point of a conical projectile.

In what follows the term phenomenon refers to a computer emdiethe term computer model
refers to the analytic approximation of a computer code.

The phenomenon 1 computes the drag coefficient of a coneedivogl the height of the cone.
The dimension of the inputs, is 2. These inputs are the height and the half-angle of the.con

The phenomenon 2 is the distance between the beginning arhthof the ballistic trajectory
of the cone. FigurEl2 presents an example of ballistic ttajgcThe dimension of the inpuss,
is 3. These inputs are the output of the phenomenon 1, thal métlocity and the initial angle
of the ballistic trajectory of the cone.
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(@) Phenomenon 1 : computer model (initia(b) Phenomenon 1 : estimator (conditional
process)

>
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Y2 (x2) /ha ()
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Y2 (x5) /Y3 (x,)

process)

(c) Phenomenon 2 : computer model (initia{d) Phenomenon 2 : estimator (conditional
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o
N
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tial process)

N
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process)
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Figure 1: The figures concern the analytical example. On theds in the left-hand column
the lines represent the computer models alone and the geaytlae 95% prediction intervals
associated with their errorsg, ¢; or ¢.. On the figures in the right-hand column the lines
represent the predictions of the studied phenomena givepudllg spaced observation points
onD,,, D,, andD,, and their errors. In both columns the dots represent obisengaof the
true phenomena that were not used to build the predictorc®@iance functions of the model
errors are Matérg.
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400 600 800

Vertical distance

200

T T
0 500 1000 1500 2000 2500 3000

Horizontal distance

(&) Phenomenon 1 : drag coefficient {b) Phenomenon 2 : distance of a ballistic tra-
height of the cone jectory

Figure 2: Characteristics of the two phenomena in the hydrachic example

The input space is defined as follows :
D4, = [5°,45°] x [0.2,2],
Da,, = [1500,3000] x [15°,35°],
D4, = y1 (Da4y) X Da,,,
Dy, = Dy, X Dy,

Figured B presents the evolution of the outputs of the phemam and 2 with respect to their
inputs. The sensitivity of the inputs is variable. In pautar the output of the phenomenon 2 is
very sensitive to its first input.

(53)

The two phenomena, which are non-linear computer codespgm@ximated by analytic func-
tions. The analytic approximations of the phenomena 1 ame @efined by their basis functions
hy (x;) andh; (x,) and the associated optimal values of the paramedgrand 3;. On the
figure[3 the graphs enable to defihe (x,) andh, (x,). The optimal valuegd; and3; of
the parameter8; and3, are obtained by maximum likelihood estimation on two set2Qf
observation points drawn according to Latin Hypercube @esonD,, andD,,, considering
a nugget covariance function. Table 2 summarizes the irgfute two phenomena and of the
analytic approximations of these phenomena.

5.5 Results

Figurel4 compares the parallel methods with the linearizethods in the case of observation
points drawn according to chained LHD. Regarding the cafibn’s performance the parallel
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(e) Phenomenon 2 : initial angle from the hor-
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Figure 3: The figures represent the variation of the outptithe® phenomena 1 and 2 with
respect to their inputs for sets of observation points draagording to two Latin Hypercube
Designs of 200 points 0B, andDy, .
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Phenomenon | Input variables Analytic approximation
1
[ J hl (Xl) = (Xl)l )
e (x,), : Half-angle of the 1
Phenomenon 1 cone ()
¢ (x,), : Height of the cone —0.3738757
o 37 = 0.9035255
0.4554474
1
e (x,), : Output of the phei ® h2 (x;) = 1 where
nomenon 1 _ n}ﬁ’f(("z)pylo)
Y1, IS the minimal value of the set
Phenomenon 2 e (x,), : Initial velocity of observations of the phenomenpn
1,
e (x,), : Initial angle to the
horizontal . 62.99668
[ J = .
2] 352.94021

Table 2: Input of the two studied phenomena and polynomiai@pmations of these phenom-
ena
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Methods

—— Parallel with Monte-Carlo (10 000 draws)
Parallel analytical method (Gaussian covariance)
A priori linearized
A posteriori linearized

1e-02
\ 1e-02 - |
1 \
1 \
i 1
i A
1e=02 | | oo =
N \ ’ IR 1
w \ L
. - ‘\\_Q_
1e-03 - S~ \\
~— N
T T T T j = _\ 2e_03 1 T T T T \/\
20 30 40 50 60 20 30 40 50 60
Computational cost Computational cost
(a) Analytic example : Calibration (b) Analytic example : Prediction

Figure 4: The figures represent the performance of caldmatnd prediction for the previously
presented approaches (parallel with Monte-Carlo, pdnalte analytical formula, a priori and
a posteriori linearized). The observations are drawn aiegrto chained Latin Hypercube

designs (LHS) of increasing size. The observations’ chisioepeated 50 times. The covariance
functions ofe; ande, are Gaussian.

methods and the a posteriori linearized method give verylaimesults, which are very good
when the number of observations increases. In contrastietbther methods, the calibration’s
error of the a priori linearized method slowly decreases wie number of observations. Con-

cerning the prediction’s performance the different methgide similar results. Once again the
evolution is slightly different for the a priori linearizedethod.

Figure[® presents the performance of calibration and piedior the linearized methods and
the black-box method in the two studied examples. Regartiagalibration, the black-box
method performs poorly compared to the a posteriori lirzegrimethod. In the analytic exam-
ple the calibration’s performance of the two linearized moells are similar, whereas in the hy-
drodynamic example the a priori linearized method perfgpowly to calibrate the parameters.
This emphasizes the interest of the a posteriori lineaomatn both examples the prediction’s
performance of the linearized methods is relatively sinalad the black-box method performs

poorly when the number of observations is low and tends tditlearized methods when the
number of observations increases.

Figure[® presents an example of predictors of the nestedphemon of the analytical example

for the black-box and the a posteriori linearized methodk @iand 20 observations . Concern-
ing the mean of the predictor :
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Methods

Black-box
A priori linearized
A posteriori linearized
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(a) Analytic example : Calibration
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1e+03 -
1e+00 -

R 1e+02 o N>
- le-01 -
1e+01 - ot .
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60

(c) Hydrodynamic example : Calibration

Computational cost

(b) Analytic example : Prediction

20 30 40 50
Computational cost

(d) Hydrodynamic example : Prediction

Figure 5: The figures represent the performance of caldmmatnd prediction for the linearized

approaches and the existing reference (black-box). Theredison points are drawn accord-
ing to chained Latin Hypercube Designs of increasing siziee dbservation points’ draw is

repeated 50 times. The black-box method takes into accaimtlte observations of the nested
phenomenon. The covariance functionsQfe; ande, are Matérng.
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e the mean values are very close for the black-box and the apasiinearized method,
o for both methods the mean is more accurate when the numbésefations increases.

It can be seen that because of the stationarity of the Gaugsiaess modeling the nested phe-
nomenon in the black-box method, which means that the caveei function of the process
depends only on the distance between two inputs, the 95%cpmdinterval is the same be-
tween each regularly spaced observation points. On theazgnivith the a posteriori linearized
method the 95% prediction interval between each reguladyged observation points depends
on the value ok_ and appears to be more suitable to the variations of thechphEnomenon.
The 95% prediction interval obtained with the a posterimearized method is more accurate
than the one obtained with the black-box method. The hypihe stationarity of the nested
phenomenon is not valid, so in the black-box method the 95&diption interval is too small
or too high depending on the valuexf. This is particularly true when looking at the figures
associated with the 20 observations.

According to the previously presented results the a pastdinearized method is very efficient
to calibrate the parameters and build a predictor of theedgs#tenomenon. In what follows we
will now study methods of sequential designs for the a pasidinearized method.

Figurel presents the performance of calibration and pieditor the chained Latin Hypercube
Design (LHS) and the sequential designs : partial A-optjrpaitial I-optimal, A-optimal and
l-optimal. The A-optimal sequential design is particweefficient to calibrate the parameters
in both examples. The I-optimal sequential design perfdirasest to build a predictor of the
nested phenomenon in both examples. In both cases thetitéalbc(A-optimal and I-optimal)
perform better than the partial criteria (partial A-optiraad partial I-optimal). The total crite-
ria are not adapted to the parallel working but they enabbgtonize the computational budget
by choosing adequately on which phenomenon to add a newwalbieer point.

Figurd® presents the number of observations of the pheramfand 2 at a given computational
cost for the different studied designs. It can be seen tlesetimumbers are very different for
the sequential design adapted for calibration (A-optiraat) the one for prediction (I-optimal).
In the analytic example, the sequential I-optimal desigri$eto a design where there are ten
times more new observations of the phenomenon 1 than newwaltisas of the phenomenon
2. The sequential A-optimal design leads to a design whexgethre almost as many new
observations of the phenomenon 1 as new observations ohdreomenon 2.

In the hydrodynamic example, the sequential I-optimal gle$eads to a design where there
are five times more new observations of the phenomenon 1 #a&rohservations of the phe-
nomenon 2. The sequential A-optimal design leads to a degigne there are new observations
of the phenomenon 2 only.

6 Conclusions and further work

In this paper, methods have been proposed to calibrate tampgers and build a predictor of a
nested phenomenon whatever the type of available obsemgaimong the phenomena 1, 2 and
nested. The proposed methods enable to estimate andlytltmimoments of order 1 and 2 of
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Figure 6: The figures present examples of the predictor ai¢lséed phenomenon of the analytic
example for the black-box and the a posteriori linearizethwed The predictors are built with
8 and 20 equally spaced observation pointsgn The observation points used to build the
predictors are the same for the two methods and are repeesbwptvertical lines. The dots
represent the real values of the nested phenomenon. THhelinlacepresents the mean of the
predictor. The grey area represents the 95% predictionvaitef the predictor. The covariance
functions ofe; ande, for the a posteriori linearized method, for the black-box method are
Matérn3.
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Figure 7: The figures represent the performance of caltmaind prediction for the a poste-
riori linearized method with different types of designs. eTinitial designs of the sequential
approaches are drawn according to chained LHD. The obsamyaaints’ choice is repeated 50

times. The covariance functions are Mat@rn
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Figure 8: The figures represent the number of observatiottsegbhenomena 1 and 2 for the
different studied designs.

30



S0pnie iviargue-rucneu, Gulllaume Ferrin ana Josselin eiarni

all the phenomena.

The methods have been compared to the case where the nestemhm@non is considered as
a unique phenomenon. The results obtained in the examphesrdstrate the interest of using
all the available information, that means not only the obesgons of the nested phenomenon
but also the observations of the phenomena 1 or 2 alone. g perticularly significant for the
calibration of the parameters and for the prediction whenglare few observation points.
Among the presented methods, the a posteriori linearizatladebrings the best results for a
given set of observations.

The choice of the observation points impacts the performariccalibration and prediction.
Thus, methods to enrich step by step the set of observateneslieen studied. The sequential
designs presented are criterion-based. They can be baskd parformance of calibration or
of prediction. They are compared to a reference design whiahmaximin LHD on the input
space of the nested phenomenon. In all cases the globalamHeased designs perform better
than the reference design. The fact of taking into accounjdimt distribution of the Gaussian
processes modeling the nested phenomenon and the phenbmaet2 enables to optimize the
computational budget by adding new observation points epttenomena 1 and 2 alone while
improving the performance of calibration or of predictidrttte nested phenomenon.

The presented calibration and prediction methods takedntmunt a non informative prior
distribution for the parameters. However these method®aaity be extended to the case of a
Gaussian prior distribution for the parameters.

In this paper, the case of two phenomena coupled by a scaddvden studied. However the
case of a coupling by a functional seems promising for fuiumek.
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A Proof of the theorem

Proof. According to Eq.[(#), the mean of the predictor of the phenumne2 can be written :
1 (%5) = ha (x5) gz, + 120 (35)" v, (54)

where :

o 72 (x,) = Cy (X5, )

t
o vp = VP g (509 ),

According to Eq.[20) and{21), we have :
1), = (o)
=y ((Xz)l;O, @ —é) exp (— <<X%]:>1)2> Ca <<X(zj))_1 : (Xz)_1) :
(P2 (x9)); = g ((Xg)y 3> @i bi) mi ((x2)_4) 5

We can infer from Eq.[[34) and{b5) thﬁf\' (x,) can be written as a linear combination of
functionsg :

No+p2

ps" (x0) = Y g ((xa)y 15 ai,bi) i ((x5) ) (56)

=1
wherej;, a;, b; are deterministic known coefficients anddeterministic functions.
According to Eq.[(#), it can be written :

s (x5)7 + 08 (x)" = O (g, %) + b (x5)" Mahs (),

+2h2 (Xz)t N2T2(N2) (X2) + 7"2(N2) (Xz)t Pz’l"z(N2) (Xz) s
(57)
where :

N: N: N»)
° M= “5322) <“§322)) V,£322 '
t -1
o« Nz =g vst = Vg (X07) G (X0, x0)

o P2= vavy' — O <X;N2)a XgNQ))_I
40y (5, 50) g (X2 VG, (X0 € (3 30)
From Eq. [5F) and(35) and the fact that forall,,, j,., am, a,, by, by, INR
9 (25 Jms @m, m) G (5 G, @ny bn) = G (%3 Jim + Jiny G + Any by + bn)

it can be inferred thamgN2 (x4)° + a§N2) (x,)? can be written as a linear combination of func-
tionsyg :

(Na+p2)2+1

B 00) 4 o™ (o) = Y gtk an b (k) ) (58)

k=1
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whereji, ay, b, are deterministic known coefficients andare deterministic functions.
Furthermore, if(x,), ~ N ( ugNl) (xq) , U§Nl) (x,)° ) the mean of ((x,),;J,a,b) can be
calculated analytically conditionally to an integratianterion :

E, [g ( §N1> (xq) + U%Nl) (xq) u; 7, a, b)] =

g 2 J j N j — N
) > <k)u§ D (% o (x,) B [XE]
B (59)

N N
exp (™ () + o™ (%) +

N[

where

o X, ~ N( (a+2b“§N1)(x1))”§Nl)(x1) 1 )

1—2bU§N1) (x1)2 ’ 1—2bU§N1) (x1)2

e under the condition of integrability < m that has to be verified.

91 X1
It can be inferred from Eq.[{18)[{1L9), (56}, (58) ahdl(59)tthfathe process modeling the
phenomenon 2 has a covariance function which presents ssf@awexpression with respect to
(x,), and has a trend which is a linear combination of products byfrfmnials by exponentials
of order 1 and 2, then the moments of order 1 and 2 of the coygkstictor can be calculated
analytically conditionally to some integration criteria.

|
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