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Time discretization of vibro-impact
Laetitia  Paoli

Equipe d’Analyse Numérique de Saint Etienne et MAPLY UMR 5585 – CNRS,
Université Jean Monnet, 23 rue du Docteur Paul Michelon,

Saint Etienne 42023 Cedex 2, France

We consider vibro-impact problems, i.e. mechanical systems with a finite number
of degrees of freedom submitted to perfect unilateral constraints. The dynamics is
basically described by a second-order measure differential inclusion for the unknown
position completed with a constitutive impact law. Another formulation of the prob-
lem as a frictionless sweeping process is possible: the unknown velocity belongs to an
appropriate functional space and satisfies a first order measure differential inclusion.

The equivalence of these two formulations is studied. They lead to time-discretiza-
tions written in terms of positions or in terms of velocities, respectively. We present
these different schemes and we compare them on the simple test-problem of a bounc-
ing ball. We recall the convergence results in the single constraint case. Moreover,
an example of implementation of the scheme derived from the basic description of
the dynamics is presented. Finally, in the multi-constraint case, we point out some
theoretical and computational difficulties.

Keywords: vibro-impact; frictionless sweeping process; time discretization;
convergence; single/multi constraints

1. Introduction: the basic description of the dynamics

We consider a dynamical system with d degrees of freedom submitted to perfect (i.e.
frictionless) unilateral constraints. We denote by q ∈ R

d the representative point
of the system and we assume that the constraints are described by the following
inequalities,

ϕα(q) � 0, α ∈ {1, . . . , �},

with smooth functions ϕα (at least C1) such that dϕα does not vanish in a neigh-
bourhood of {q : ϕα(q) = 0}.

The set of admissible positions is given by

K = {q ∈ R
d : ϕα(q) � 0 ∀α ∈ {1, . . . , �}}. (1.1)

For all q ∈ R
d we define the set of active constraints by

J(q) = {α ∈ {1, . . . , �} : ϕα(q) � 0},

and we extend the definition of the tangent cone to K at q by setting

∀q ∈ R
d TK(q) = {w ∈ R

d : dϕα(q)w � 0 ∀α ∈ J(q)}.

We assume moreover that the active constraints are functionally independent, i.e.

∀q ∈ K (dϕα(q))α∈J(q) are linearly independent.
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Whenever q(t) belongs to Int(K) the motion is described by a second-order ordi-
nary differential equation (ODE),

M(q)q̈ = f(t, q, p), p = M(q)q̇,

where M(q) is the mass matrix of the system. We should note that dissipative terms
may be included in this formulation.

If q(t) ∈ Int(K) for all t ∈ (t0, t1) ∪ (t1, t2) with q(t1) ∈ ∂K, we obtain

q̇(t1 + 0) ∈ TK(q(t1)), −q̇(t1 − 0) ∈ TK(q(t1)).

Hence, if q̇(t1 − 0) �∈ TK(q(t1)), a discontinuity in the velocity will occur. We denote
ν the reaction of the constraints, we have

M(q)q̈ = f(t, q, p) + ν, p = M(q)q̇, (1.2)

and, since we expect discontinuities in the velocity at impacts, ν is a measure such
that

supp(ν) ⊂ {t : q(t) ∈ ∂K}. (1.3)

Moreover, the constraints are perfect and we get (Moreau 1963)

ν =
�∑

α=1

λα dϕα(q) with

{
λα � 0 if α ∈ J(q)
λα = 0 if α �∈ J(q)

(1.4)

are perfect.
These equations do not describe completely the motion, since the coefficients

(λα)α∈J(q) are unknown and we should add a constitutive law of impact.
In the case of a single active constraint, i.e. J(q(t)) = {α} with α ∈ {1, . . . , �}, we

decompose the momenta p(t ± 0) as

p(t ± 0) = pN(t ± 0) + pT(t ± 0)

with
pN(t ± 0) ∈ Rdϕα(q(t)),

dϕα(q(t))(M(q(t))−1pT(t ± 0)) = 0.

}
(1.5)

Let us denote by 〈., .〉q and 〈., .〉∗
q the inner products given by

〈ξ, η〉q = tξM(q)η (kinetic local metric),

〈ξ, η〉∗
q = tξM(q)−1η (momentum local metric).

The corresponding norms are |.|q and |.|∗q . Relations (1.5) define the normal and
tangential components of p(t ± 0) relative to the local momentum metric.

The inequality ϕα(q(s)) � 0 for all s and equation (1.4) imply that

pT(t + 0) = pT(t − 0),

pN(t + 0) ∈ R
+dϕα(q(t)), pN(t − 0) ∈ R

−dϕα(q(t)).

If we assume moreover that the kinetic energy does not increase at impacts, we obtain

2T (t + 0) = |pN(t + 0)|∗2
q(t) + |pT(t + 0)|∗2

q(t)

� |pN(t − 0)|∗2
q(t) + |pT(t − 0)|∗2

q(t) = 2T (t − 0)
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and thus
|pN(t + 0)|∗q(t) � |pN(t − 0)|∗q(t).

Hence, the constitutive law of impact is given by

pT(t + 0) = pT(t − 0), pN(t + 0) = −epN(t − 0) if q(t) ∈ ∂K, (1.6)

with a restitution coefficient e ∈ [0, 1].
The kinetic energy is conserved if and only if e = 1 (totally elastic shocks), and

for e = 0 we find the inelastic shocks defined in Moreau (1983), since (1.6) yields

q̇(t + 0) = Projq(t)(TK(q(t)), q̇(t − 0)),

where Projq(TK(q), z) is the projection of z on TK(q) relative to the local kinetic
metric at q. When e ∈ (0, 1), we obtain partly elastic shocks and the relation between
the restitution coefficient and the ‘dissipation index’ δ of Moreau (1988) is given by

e =
1 − δ

1 + δ
.

When the cardinal of J(q(t)) is greater than 1 we can decompose p(t ± 0) as

p(t ± 0) = pN(t ± 0) + pT(t ± 0)

with

pN(t ± 0) ∈ Span{dϕα(q(t)), α ∈ J(q(t))},

dϕα(q(t))(M(q(t))−1pT(t ± 0)) = 0 ∀α ∈ J(q(t)),

which is a generalization of (1.5) and we find again

pT(t + 0) = pT(t − 0), |pN(t + 0)|∗q(t) � |pN(t − 0)|∗q(t). (1.7)

But now (1.7) does not necessarily yield an impact law like (1.6) because pN(t + 0)
and pN(t − 0) are not necessarily collinear.

We will come back to this case in § 5, and in the next three sections we assume
that

∀t CardJ(q(t)) � 1. (1.8)

We are interested in the Cauchy problem: for given admissible initial data
(t0, q0, v0) ∈ R × K × TK(q0) we look for a solution of (1.2)–(1.4) and (1.6). More
precisely, we consider the following problem.

Problem (P). To find τ > 0 and a function q from [t0, t0 + τ ] to R
d satisfying

the following variational properties,

(i) q is continuous with values in K,

(ii) q̇ is a function of bounded variation,

}
(1.9)

such that (1.2)–(1.4) and (1.6) hold on (t0, t0 + τ) and

q(t0) = q0, q̇(t0 + 0) = v0. (1.10)

Remark 1.1. With the regularity assumption (1.9)(ii), q̇(t + 0) is defined for all
t ∈ [t0, t0 + τ), q̇(t − 0) is defined for all t ∈ (t0, t0 + τ ] and q̈ in (1.2) denotes the
Stieltjes measure of q̇.
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Under assumption (1.8) we can restrict ourselves, without loss of generality, to the
case of a set K given by

K = {q ∈ R
d : ϕ(q) � 0} (� = 1). (1.11)

In § 2 we recall briefly the mathematical background (existence and uniqueness
results) and the motivations for numerical methods based on time discretization.
In § 3 we present a scheme derived directly from problem (P) and we apply it to
compute the motion of a guided slender pipe. Then in § 4, we show that the basic
description of vibro-impact problems is equivalent to a frictionless sweeping process
and we present the time discretizations derived from this second formulation.

2. Single constraint case: mathematical background and
motivations for time discretization

The existence and uniqueness of solutions for the Cauchy problem (P) under assump-
tion (1.11) is still an open problem in the general case. One of the oldest contributions
in this field is due to Bressan (1959) with a counterexample to uniqueness. The first
existence results in the functional framework defined by (1.9) had been proved by
Schatzman (1977, 1978). She considered only the case of totally elastic shocks and
she assumed that the set of admissible positions is convex and the mass matrix is
trivial (thus the kinetic local metric is simply the Euclidean metric of R

d). She used
a penalty method which allows very weak regularity for ∂K.

For totally elastic shocks, more general results had been obtained by Buttazzo &
Percivale (1981, 1983) and Percivale (1986), uniqueness had been studied by Carriero
& Pascali (1982, 1985) in the one-dimensional case and by Percivale (1985, 1991) in
the general case.

For inelastic shocks, Monteiro Marques (1985, 1993) gave a proof of existence using
a time discretization under the assumption of a trivial mass matrix.

Since the beginning of the 1990s, all these results have been extended to the
case of partly elastic shocks. In Paoli & Schatzman (1993a, c) a generalization of
Schatzman (1978) is obtained for any restitution coefficient e belonging to (0, 1]. A
time discretization of the dynamics is proposed in Paoli & Schatzman (1993b, 1999a)
which allows the treatment of the case e = 0 as well as the general case of a non-
trivial mass matrix and/or a non-convex set of admissible positions. The convergence
of this scheme, which yields an existence result, is proved in Paoli (1993) and Paoli
& Schatzman (1999b).

Another discretization, inspired by Monteiro Marques (1993), is given in Mabrouk
(1998a), the convergence being established only when the mass matrix is trivial in
Mabrouk (1998b).

Finally, in the more general case of a restitution coefficient depending on t and
q, an existence result when all the data are analytic is stated in Ballard (1999).
Uniqueness is also studied and a generalization of a previous work of Schatzman
(1998) is obtained.

We can consider three different approaches to compute the solution.
1. Event-driven schemes: the idea is to integrate by any method (exact or approx-

imate solution) the ODE of the unconstrained motion, to determine the impact
times and to apply the impact law to restart the algorithm.

2. Compliant models: the idea is to relax the constraint in order to replace the
measure differential inclusion (1.2)–(1.4) by a (stiff) ODE.
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3. Time discretization: the idea is to provide a kind of Euler discretization of the
measure differential inclusion which describes the dynamics, including some
information about the restitution coefficient and avoiding the precise determi-
nation of the impact times.

The first approach is conceptually the most simple and is very convenient when
the motion can be decomposed into a finite number of intervals of regular motion.
Unfortunately, since the work of Delassus (1917), it is known that more complex
dynamical behaviours exist, with impacts accumulation, for instance. In such a case
the numerical detection of all the impacts is impossible and a threshold δ must be
chosen: we decide that the constraint is active is ϕ(q(t)) � δ. In order to keep a good
approximation of the global dynamics of the system, δ should be chosen to be small
enough and thus we still have to detect a lot of impacts. Since for each detection we
have to solve the equation ϕ(q(t)) = δ this approach may become very expensive.

The second approach (compliant models) is more sophisticated and is mechanically
and mathematically very attractive. From a mechanical point of view, a body is never
perfectly rigid and the system (1.2)–(1.4) and (1.6) describes a limit behaviour when
the stiffness tends to +∞. Hence it seems very natural to approximate the problem
by replacing the rigid boundary of K by an elastic one with a stiffness k 
 1.
From a mathematical point of view, this idea is substantiated by the convergence
of the penalized solutions which has been established in Schatzman (1978), Paoli &
Schatzman (1993c) and Paoli (2000).

But for the implementation of compliant models we have to fix the value of k,
which is a physical parameter depending on the stiffness of the impacting bod-
ies. The estimation of this stiffness is experimentally quite difficult but we should
expect large values: k = 1010 N m−1 for systems with joint clearance (Ravn 1998),
k = 5.5 × 107 N m−1 for an impacting bar (Stoianovici & Hurmuzlu 1996). Since
the penalized solutions leave K during a time of order O(1/

√
k) (Paoli & Schatz-

man 1993c), we should choose a time-step h � O(1/
√

k). Thus this approach is very
expensive too. Moreover, the collision outcome may be quite sensitive with respect
to these parameters (Brogliato 1999; Paoli & Schatzman 2000).

The third approach is interesting for theoretical and computational reasons. The
time discretizations proposed in Paoli & Schatzman (1993b, 1999a), Monteiro Mar-
ques (1985, 1993) and Mabrouk (1998a, b) deal directly with the constraint and the
impact law: they do not require a systematic detection of impacts and no refinement
near the boundary of K is needed. Thus they avoid the computational drawbacks of
the previous approaches. Moreover, their convergence is stated in Paoli (1993), Paoli
& Schatzman (1999b), Monteiro Marques (1985, 1993) and Mabrouk (1998b).

In the next two sections we describe successively these two schemes. We do not
present in this paper the time discretization proposed by Stewart (1997, 1998), since
it only allows the treatment of inelastic impacts.

3. Time discretization of problem (P)

(a) Description of the scheme

This discretization of equations (1.2)–(1.4) and (1.6) is written in terms of positions
only. Thus the relevant metric is the kinetic metric of the system. In order to be
able to define, at least locally, the projection PK on K relative to this metric, we
introduce the following technical assumptions:

5



(H1) the function ϕ is of class C3,

(H2) the mapping q �→ M(q) is of class C3 from R
d to the set of symmetric positive

definite matrices.

We assume moreover that

(H3) the function f is continuous from [0, T ]×R
d ×R

d (T > 0) to R
d, and is locally

Lipschitz continuous with respect to its last two arguments.

Let F be a continuous function from [0, T ]× R
d × R

d × R
d × [0, h∗] (h∗ > 0) to R

d

such that

(H4) F is locally Lipschitz continuous with respect to its second, third and fourth
arguments and

∀(t, q, v) ∈ [0, T ] × (Rd)2 F (t, q, q, v, 0) = M(q)−1f(t, q, M(q)v).

For given initial data (t0, q0, v0) ∈ [0, T )×K×TK(q0) we define the following approx-
imation of the Cauchy problem (P):

q0 = q0, q1 = q0 + hv0 + hz(h) with lim
h→0

z(h) = 0, (3.1)

and, for all i � 1,

qi+1 = −eqi−1 + (1 + e)PK

(
2qi − (1 − e)qi−1 + h2F i

1 + e

)
, (3.2)

with

F i = F

(
t0 + ih, qi, qi−1,

qi+1 − qi−1

2h
, h

)
, (3.3)

provided that qi+1 is uniquely defined in a neighbourhood of qi.
At first glance this discretization does not seem much related to problem (P) and

it is necessary to explain its construction. This scheme has been proposed first in
the case of a trivial mass matrix (i.e. M(q) ≡ IdRd) with a convex set of admissible
positions (Paoli & Schatzman 1993b). Under these assumptions equations (1.2)–(1.4)
can be rewritten as

q̈ + ∂ψK(q) � f(t, q, q̇),

where ψK denotes the indicatrix function of K and ∂ψK is its subdifferential (Rock-
afellar 1970). The idea is to apply a centred scheme to the ODE q̈ = f(t, q, q̇) and to
add a discretization of the term ∂ψK(q). Thus we propose

qi+1 − 2qi + qi−1

h2 + ∂ψK

(
qi+1 + eqi−1

1 + e

)
� F i,

which we rewrite as equation (3.2) by using the classical properties of convex analysis.
The constraint is satisfied at each time-step by the average position

q̄i =
qi+1 + eqi−1

1 + e
,
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and whenever q̄i belongs to Int(K) equation (3.2) reduces to

qi+1 = 2qi − qi−1 + h2F i,

which is a second-order discretization of the unconstrained dynamics. Moreover, the
weights involved in this average position yield a correct reflection of the velocities
at impacts. Let us illustrate this property with the test-problem of a bouncing ball:
d = 1, K = R

+, M(q) ≡ 1, f ≡ 0 and (t0, q0, v0) = (0, 1,−1). The solution is defined
by

q(t) =

{
1 − t for all t ∈ [0, 1],
e(t − 1) for all t � 1.

We choose F ≡ 0, q0 = 1 and q1 = 1 − h. The algorithm is given by

∀i � 1 qi+1 = −eqi−1 + max(2qi − (1 − e)qi−1, 0). (3.4)

Let h < (1 + e)/2; there exists a greatest integer p � 2 such that

∀i ∈ {1, . . . , p − 1} 2qi − (1 − e)qi−1 � 0.

With (3.4) we obtain

∀i ∈ {1, . . . , p − 1} qi+1 − qi = qi − qi−1 = −h,

and, by definition of p, qp+1 = −eqp−1. It follows that

2qp+1 − (1 − e)qp = −2eqp−1 − (1 − e)(2qp−1 − qp−2)

= −(2qp−1 − (1 − e)qp−2) � 0,

and thus qp+2 = −eqp. Moreover,

2qp+2 − (1 − e)qp+1 = −e(2qp − (1 − e)qp−1) � 0,

and we obtain by induction that

∀i � p + 2 qi = qp+2 + eh(i − p − 2).

Hence the velocity is reversed in two time-steps and the approximate impact time
tp = ph satisfies

1 − 1 − e

1 + e
h < tp � 1 +

2eh

1 + e
.

It follows that the constraints are violated during at most two time-steps.

(b) Convergence result

The convergence of this scheme has been proved first in the case of a convex
set of constraints with a trivial mass matrix in Paoli (1993), then an extension to
non-convex constraints (but still trivial mass matrix) has been proposed in Paoli
& Schatzman (1998) and finally the general case has been considered in Paoli &
Schatzman (1999b). Let us describe the sketch of the proof.

First we show that there exists τ > 0 such that the discrete velocities and acceler-
ations remain uniformly bounded on [t0, t0 +τ ]. We define the approximate solutions
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qh by linear interpolation of the qi. The Ascoli–Arzela theorem and Helly’s theorem
imply that there exists a subsequence, still denoted qh, such that

qh → q strongly in C0([t0, t0 + τ ]; Rd),
q̇h → q̇ pointwise in [t0, t0 + τ ],

q̈h ⇀ q̈ weakly* in M1((t0, t0 + τ); Rd).

We use here the classical notation of the ‘weak*’ topology for measures, i.e. conver-
gence relative to the duality product with continuous functions. Then we establish
that the function q takes its values in K and that equations (1.2)–(1.4) and (1.6)
and (1.10) are satisfied.

The main difficulties are the proof of uniform estimates for the discrete velocities
and the study of transmission of energy at impacts. In both cases we use systemat-
ically local coordinates which transform K into a half-space. This is a very natural
geometrical idea. Unfortunately, curvature effects create quadratic terms which inter-
act with the unilateral constraint.

More precisely, for all q̄ ∈ ∂K, we define locally a diffeomorphism Φ such that

PK(q) = Φ−1
(

S(q)
max(Y (q), 0)

)
with Φ(q) =

(
S(q)
Y (q)

)
∈ R

d−1 × R

and we apply Φ to equations (3.2)–(3.3). We obtain

si+1 = 2si − si−1 + h2κi,

yi+1 = −eyi−1 + max(2yi − (1 − e)yi−1, 0) + h2λi,

with

Φ(qi) =
(

si

yi

)
and we have the following lemma.

Lemma 3.1 (the heart of the estimates). Let ηi = (yi+1 − yi)/h. We have

|ηi| � max(|ηi−1|, e|ηi−2|) + h|λi| + h|λi−1|. (3.5)

We prove that (|κi|)0�i��τ/h�−1 and (|λi|)0�i��τ/h�−1 remain uniformly bounded
for some τ > 0: these estimates are rather technical since κi and λi depend on F i,
qi+1, qi, qi−1 and Φ.

Lemma 3.1 also plays an essential role in the study of the velocity reflection at
impacts. Let t̄ be such that q( t̄ ) ∈ ∂K and pN(t̄ − 0) �= pN(t̄ + 0). By using the local
coordinates and lemma 3.1 we obtain that pN(t̄ − 0) �= 0. Then, applying the same
ideas as in the example of the bouncing ball, we prove that the discrete velocities
are correctly reversed in two time-steps.

(c) Implementation

In this subsection we present an example of computation. We consider a clamped
free tube excited by a shaker and guided (see figure 1). Let us denote by ρ the mass
density, E the Young’s modulus of elasticity, S the cross-sectional area, L the length
and I the cross-sectional moment of inertia of the pipe. We assume that the external
excitement g(x, t) is a concentrated force parallel to the y-axis.
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x

y

x0

g(x,t)

z

Figure 1. The mechanical system.

Let u : [0, T ] × [0, L] → R (T > 0) be the deflection along the y-axis. The uncon-
strained motion is described by the following partial differential equation (Landau
& Lifschitz 1959)

ρS
∂2u

∂t2
+ EI

∂4u

∂x4 = g(x, t) (3.6)

with

∀t ∈ [0, T ]

⎧⎪⎪⎨
⎪⎪⎩

u(0, t) =
∂u

∂x
(0, t) = 0 (clamped end),

∂2u

∂x2 (L, t) =
∂3u

∂x3 (L, t) = 0 (free end).
(3.7)

If we assume that the guide abscissa is x0, we have the constraint

∀t ∈ [0, T ] u(x0, t) ∈ [φ−, φ+]. (3.8)

First we discretize in space the system (3.6), (3.7) by using finite differences. Let
k2 = EI/ρS, d = �L/Δx� and

AΔx =
1

Δx4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 −4 1 0 · · · · · · · · · · · · 0
−4 6 −4 1 0 · · · · · · · · · 0
1 −4 6 −4 1 0 · · · · · · 0
0 1 −4 6 −4 1 0 · · · 0
...

...
0 · · · 0 1 −4 6 −4 1 0
0 · · · · · · 0 1 −4 6 −4 1
0 · · · · · · · · · 0 1 −4 5 −2
0 · · · · · · · · · · · · 0 1 −2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Md,d(R).

The system (3.6), (3.7) yields the following ODE,

d2

dt2
UΔx + k2AΔxUΔx = GΔx, (3.9)

where GΔx is an approximation of g/ρS at the spatial nodes. We define K by

K =
( d∏

j=1,j �=j0

R

)
× [φ−, φ+] (3.10)
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with |j0Δx−x0| = min1�j�d |jΔx−x0| and the constraint (3.8) is approximated by

∀t ∈ [0, T ] UΔx(t) ∈ K. (3.11)

We discretize in time the vibro-impact problem (3.9)–(3.11) by using the scheme.
We choose F as follows: for all (t, u1, u2, v, h) ∈ R × (Rd)3 × [0, 1]

F (t, u1, u2, v, h) = 1
4(GΔx(t − h) + 2GΔx(t) + GΔx(t + h)) − 1

2k2AΔx(u1 + hv + u2).

With this choice, equation (3.2) reduces to a stable, second-order, Newmark’s scheme
for (3.6) whenever

U i+1
Δx + eU i−1

Δx

1 + e

belongs to Int(K). Moreover, the usual properties of projections yield an explicit
formulation of the algorithm: for all i � 1

(IdRd +1
4h2k2AΔx)(U i+1

Δx + eU i−1
Δx ) + h2∂ψK

(
U i+1

Δx + eU i−1
Δx

1 + e

)
� Xi (3.12)

with

Xi = 1
4h2(GΔx((i + 1)h) + 2GΔx(ih) + GΔx((i − 1)h))

+ 2U i
Δx − 1

2k2h2AΔxU i
Δx − (1 − e)(IdRd +1

4h2k2AΔx)U i−1
Δx . (3.13)

In order to solve (3.12) we use the following lemma.

Lemma 3.2. Let M be a symmetric definite matrix, X ∈ R
d and δ > 0. The

inclusion
Mu + δ∂ψK(u) � X (3.14)

has a unique solution u given by

uj0 = P[φ−,φ+]((M−1X)j0),

(Mu)j = Xj ∀j ∈ {1, . . . , d} \ {j0}.

}
(3.15)

Proof . We denote by (., .) the Euclidean inner product of R
d. By definition of ∂ψK

we have

∂ψK(u) = {z ∈ R
d : (z, v − u) � 0 ∀v ∈ K} if u ∈ K, ∂ψK(u) = ∅ if u �∈ K.

Thus we infer that u solves (3.14) if and only if u ∈ K and (Mu − X, v − u) � 0 for
all v ∈ K, i.e. if and only if u is the unique solution of the problem

find u ∈ K such that
1
2(Mu, u) − (X, u) = min

v∈K

1
2(Mv, v) − (X, v).

}
(3.16)

Then we just have to check that the vector u given by (3.15) satisfies (3.16) (Paoli
1993). �

Consequently, we have to solve at most two linear systems at each time-step of the
algorithm (3.12), (3.13).
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Figure 2. The mapping t �→ u(xob, t): numerical results with h = 10−4.

The numerical results have been compared with experimental results obtained by
the AMV Department (Département Acoustique et Mécanique Vibratoire) of Elec-
tricité De France (EDF), Clamart (see also Jacquart & Gay (1992) for the description
of a numerical code based on compliant models for impact and friction). The numer-
ical and experimental values of the mapping t �→ u(xob, t) (xob is the observation
abscissa) are plotted in figures 2 and 3. We have also compared the reaction force ν
given by

ν = −g(x0, .) + EI
∂4u

∂x4 (x0, .) + ρS
∂2u

∂t2
(x0, .).

The value of ν at ti = ih is approximated by

(ρS)−1νi
Δx = −(1

4GΔx,j0(ti+1) + 2GΔx,j0(ti) + GΔx,j0(ti−1))

+
U i+1

Δx,j0
− 2U i

Δx,j0
+ U i−1

Δx,j0

h2 + 1
4k2AΔx(U i+1

Δx,j0
+ 2U i

Δx,j0 + U i−1
Δx,j0

)

for 1 � i � �T/h� − 1.

The numerical and experimental results are plotted in figures 4 and 5.
In both cases we obtain good agreement. We should note that very close impacts

occur: for this example the approximation of the motion by event-driven schemes or
compliant models would be very expensive.

This time discretization has been implemented on other examples. In Panet et
al . (1995) and Paoli & Schatzman (1995, 2000) a model of a tight joint with one
degree of freedom is studied, and Paoli & Schatzman (1999c) consider a slender
bar in large deformations (the mass matrix is no longer trivial). The results are
compared with those obtained by other numerical methods (event-driven scheme

11
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Figure 3. The mapping t �→ u(xob, t): experimental results (Reproduced
with permission from Electricité De France, Clamart, France).
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Figure 4. The reaction force ν: numerical results with h = 10−4.

in Panet et al . (1995) and Paoli & Schatzman (1995, 1999c), compliant models in
Paoli & Schatzman (2000)) and also with experimental results in the last example
(Stoianovici & Hurmuzlu 1996).

4. Time discretization of the frictionless sweeping process

The time discretizations presented in this section rely on another formulation of
the problem, first introduced by Moreau to describe inelastic shocks (Moreau 1983,
1985). The general case, with a restitution coefficient e ∈ [0, 1], has been considered
in Moreau (1988) and Jean & Moreau (1992).
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Figure 5. The reaction force ν: experimental results (Reproduced with permission
from the AMV Department, Electricité De France, Clamart, France).

In the next subsection we recall Moreau’s formulation and we establish that it is
equivalent to the basic description of the dynamics when assumption (1.11) holds.
Then we focus on the time discretization derived by Monteiro Marques and Mabrouk,
the convergence of which has been proved in Monteiro Marques (1985, 1993) and
Mabrouk (1998b).

A more sophisticated time discretization, with a mid-point approximation of the
velocity, has been proposed by Moreau (1986, 1988, 1999) and Jean & Moreau (1992).
Moreover, with some appropriate modifications, frictional contact can be considered
too. These algorithms have been successfully used to simulate granular matter prob-
lems (Moreau 1994, 1995), but their convergence has never been completely studied.
Thus we will not describe them in this paper.

(a) Moreau’s sweeping process

Let τ be a non-negative number. We define the functional space bvem([t0, t0 + τ ])
by the following definition.

Definition 4.1. A function u : [t0, t0 + τ ] → R
d belongs to bvem([t0, t0 + τ ]) if

and only if u is a function of bounded variation and

u(t) =
u(t + 0) + eu(t − 0)

1 + e

for all t ∈ (t0, t0 + τ).

Let us denote ψTK(q) the indicatrix function of the convex set TK(q) and ∂ψTK(q) its
subdifferential and let (t0, q0, v0) be admissible initial data. We consider the following
problem.

Problem (P′) (Moreau’s sweeping process). To find τ > 0 and a function
u ∈ bvem([t0, t0 + τ ]) with u(t0) = u(t0 + 0) = v0 such that, putting

q(t) = q0 +
∫ t

t0

u(s) ds

13



for all t ∈ [t0, t0 + τ ] we have

∀t ∈ [t0, t0 + τ ] u(t) ∈ TK(q(t)) (4.1)

and
f(t, q(t), M(q(t))u(t)) − M(q(t))u̇(t) ∈ ∂ψTK(q(t))(u(t))

in the following sense: there exists a non-negative measure μ on [t0, t0 + τ ] such
that the Lebesgue’s measure and the Stieltjes measure u̇ are absolutely continu-
ous with respect to μ and the respective densities t′μ ∈ L1([t0, t0 + τ ]; R; dμ) and
u′

μ ∈ L1([t0, t0 + τ ]; Rd; dμ) satisfy the differential inclusion

f(t, q(t), M(q(t))u(t))t′μ(t) − M(q(t))u′
μ(t) ∈ ∂ψTK(q(t))(u(t)) dμ a.e. (4.2)

In order to compare problems (P) and (P′) let us come back to the basic description
of the dynamics. Let q be a solution of problem (P) and assume that (1.11) holds.
Then equations (1.2)–(1.4) can be rewritten as

M(q)q̈ − f(t, q, p) = ν = λ dϕ(q), (4.3)

where λ is a non-negative measure satisfying

supp(λ) ⊂ {t : q(t) ∈ ∂K}. (4.4)

Moreover, whenever q(t) ∈ ∂K, (1.6) implies that

dϕ(q(t))(q̇(t + 0) + eq̇(t − 0)) = 〈p(t + 0) + ep(t − 0),dϕ(q(t))〉∗
q(t)

= 〈(1 + e)pT(t − 0),dϕ(q(t))〉∗
q(t) = 0

and we infer that
q̇(t + 0) + eq̇(t − 0)

1 + e
∈ ∂TK(q(t)). (4.5)

But, for all q ∈ ∂K, TK(q) is a half-space and it follows that

∀q ∈ ∂K, ∀z ∈ ∂TK(q) ∂ψTK(q)(z) = R
− dϕ(q). (4.6)

If q belongs to Int(K), TK(q) = R
d and we have

∀z ∈ R
d ∂ψTK(q)(z) = {0}. (4.7)

Taking into account (4.5)–(4.7) we obtain that

−M(q)q̈ + f(t, q, p) ∈ ∂ψTK(q)

(
q̇(t + 0) + eq̇(t − 0)

1 + e

)
.

Let us define u by

∀t ∈ (t0, t0 + τ) u(t) =
q̇(t + 0) + eq̇(t − 0)

1 + e
,

u(t0) = q̇(t0 + 0), u(t0 + τ) = q̇(t0 + τ − 0).

⎫⎬
⎭ (4.8)

Since q̇ is a function of bounded variation, we have u(t) = q̇(t) except perhaps on
a countable subset of [t0, t0 + τ ] and thus u ∈ bvem([t0, t0 + τ ]) and u̇ = q̈. It follows
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that u is a solution of problem (P′): the differential inclusion (4.2) is satisfied with
the choice dμ = |du| + dt for instance.

Inversely, let u be a solution of problem (P′) and let q be defined by

∀t ∈ [t0, t0 + τ ] q(t) = q0 +
∫ t

t0

u(s) ds. (4.9)

It is clear that q is continuous and q̇ is a function of bounded variation such that
q̇(t) = u(t) except perhaps on a countable subset of [t0, t0 + τ ]. Moreover, (4.1)
implies that

dϕ(q(t))u(t) � 0 if q(t) �∈ Int(K).

Since ϕ(q0) = ϕ(q(t0)) � 0 we infer that ϕ(q(t)) � 0, i.e. q(t) ∈ K for all t ∈
[t0, t0 + τ ]. We define the measure ν by

ν = M(q)q̈ − f(t, q, M(q)q̇).

Relation (4.2) implies that ν admits the following density with respect to μ

ν′
μ(t) = M(q(t))u′

μ(t) − f(t, q(t), M(q(t)))t′μ(t) ∈ −∂ψTK(q(t))(u(t)) dμ a.e.

Then, using (4.6) and (4.7) we obtain

supp(ν) ⊂ {t : q(t) ∈ ∂K}
and we infer that there exists a non-negative measure λ such that

ν = λdϕ(q).

Furthermore, we have the following lemma.

Lemma 4.2. Let t ∈ (t0, t0 + τ) be a discontinuity point of q̇. Then q(t) ∈ ∂K
and the impact law (1.6) is satisfied.

Proof . Let t ∈ (t0, t0 + τ) be such that q̇(t− 0) �= q̇(t+0). Then (4.9) implies that
u(t − 0) = q̇(t − 0), u(t + 0) = q̇(t + 0) and u̇ has an atom at t. Since u̇ is absolutely
continuous with respect to μ we deduce that μ has also an atom at t and

0 �= u(t + 0) − u(t − 0) = u′
μ(t)μ({t}) with μ({t}) > 0.

From relation (4.2) we infer that

0 �= M(q(t))
u(t − 0) − u(t + 0)

μ({t})
∈ ∂ψTK(q(t))(u(t)),

which implies that TK(q(t)) �= R
d and u(t) ∈ ∂TK(q(t)). It follows that q(t) belongs

to ∂K and with (4.6) we obtain

p(t − 0) − p(t + 0) ∈ R
−dϕ(q(t)),

dϕ(q(t))u(t) = dϕ(q(t))M(q(t))−1
(

p(t + 0) + ep(t − 0)
1 + e

)
= 0,

and (1.6) follows. �
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In order to conclude let us remark that, for all t ∈ (t0, t0 + τ) such that q(t) ∈ ∂K
with q̇(t + 0) = q̇(t − 0), we have

q̇(t + 0) = q̇(t − 0) ∈ −TK(q(t)) ∩ TK(q(t)) = ∂TK(q(t))

and thus

pN(t ± 0) =
〈p(t ± 0),dϕ(q(t))〉∗

q(t)

〈dϕ(q(t)),dϕ(q(t))〉∗
q(t)

dϕ(q(t))

=
dϕ(q(t))q̇(t ± 0)

〈dϕ(q(t)),dϕ(q(t))〉∗
q(t)

dϕ(q(t)) = 0.

Hence the impact law (1.6) holds for all t such that q(t) ∈ ∂K. Consequently, we
have proved the following proposition.

Proposition 4.3. Let us assume (1.11). For all admissible initial data (t0, q0, v0)
the following properties are equivalent:

(i) (τ, q) is a solution of problem (P),

(ii) (τ, u) is a solution of problem (P′),

with u and q given by (4.8) and (4.9).

(b) Monteiro Marques and Mabrouk time discretization

On the contrary of Paoli and Schatzman scheme, this time discretization is written
in terms of velocities. For given (t0, q0, v0) the algorithm is defined by

q0 = q0, hf(t0, q0, M(q0)v0) − M(q0)(v0 − v0) ∈ ∂ψTK(q0)

(
v0 + ev0

1 + e

)
(4.10)

and, for all i � 0,
qi+1 = qi + hvi, (4.11)

hf(t0 + (i + 1)h, qi+1, M(qi+1)vi+1) − M(qi+1)(vi+1 − vi)

∈ ∂ψTK(qi+1)

(
vi+1 + evi

1 + e

)
. (4.12)

If we denote qh the linear interpolation of the qi, then vi and vi+1 are respectively
the right and left velocities at ti+1 = t0 + (i + 1)h and (4.12) is a very natural
discretization of the differential inclusion (4.2). Moreover, we could remark that,
whenever qi belongs to Int(K), the algorithm reduces to a centred scheme of order
2 for the ODE M(q)q̈ = f(t, q, M(q)q̇). More precisely, if qi ∈ Int(K), we have
TK(qi) = R

d, thus (4.12) implies that

vi = vi−1 + hM(qi)−1f(ti, qi, M(qi)vi)

and using (4.11) we get

qi+1 − 2qi + qi−1

h2 = M(qi)−1f

(
ti, q

i, M(qi)
qi+1 − qi

h

)
. (4.13)

16



Remark 4.4. The choice

F (t, u1, u2, v, h) = M(u1)−1f(t, u1, M(u1)(2v + (u2 − u1)/h))

in (3.3) yields also (4.13) whenever (qi+1 + eqi−1)/(1 + e) belongs to Int(K).

Since, for all q ∈ R
d, TK(q) is a closed, non-empty, convex set we can rewrite

(4.10)–(4.12) as follows:

q0 = q0,

v0 = −ev0 + (1 + e) Projq0

(
TK(q0), v0 +

h

1 + e
M(q0)−1f(t0, q0, M(q0)v0)

)⎫⎬
⎭
(4.14)

and, for all i � 0,

qi+1 = qi + hvi,

vi+1 = −evi + (1 + e) Projqi+1

(
TK(qi+1), vi

+
h

1 + e
M(qi+1)−1f(ti+1, q

i+1, M(qi+1)vi+1)
)

.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.15)

Remark 4.5. We recall that Projq(TK(q), .) denotes the projection on TK(q) for
the kinetic metric frozen at q, i.e. for the distance defined by

∀(z, z′) ∈ (Rd)2 dist(z, z′) = [t(z − z′)M(q)(z − z′)]1/2.

In order to understand how the constraint on positions and the impact law are
taken into account by this time discretization, let us consider once again the very
simple test-problem introduced in § 3 a: d = 1, K = R

+, M(q) ≡ 1, f ≡ 0,
(t0, q0, v0) = (0, 1,−1). We obtain

q0 = 1, v0 = −1,

and, for all i � 0,

qi+1 = qi + hvi, vi+1 = −evi + (1 + e) Projqi+1(TK(qi+1), vi),

with

∀z ∈ R
d Projqi+1(TK(qi+1), z) =

{
z if qi+1 > 0,
max(z, 0) if qi+1 � 0.

Let us assume that h ∈ (0, 1) and define p = max{i : qk > 0 ∀k ∈ {0, . . . , i}}. We
have p � 1 and

∀i ∈ {0, . . . , p} qi+1 = 1 − (i + 1)h, vi = −1.

By definition of p we have qp+1 � 0 and thus

vp+1 = −evp + (1 + e) max(vp, 0) = e.

By an immediate induction we infer that

∀n � 1 qp+1+n = 1 − (p + 1)h + neh, vp+n = e.
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Figure 6. Comparison between the exact solution and the time discretization algorithms:
the bouncing ball test-problem with e = 0.3.

The velocity is reversed and multiplied by e instantaneously at tp+1 ∈ [1, 1 + h], but
the number of approximate positions which do not satisfy the constraint depends on
e. The results obtained with this algorithm are compared with those obtained with
the scheme (3.1)–(3.3) in figure 6.

Remark 4.6. With the scheme (3.1)–(3.3) the discrete velocity is not reversed
instantaneously (two time-steps are needed) but at most two approximate positions
are outside K. Although (3.1)–(3.3) discretize directly the constraints by means of
the average position q̄i = (qi+1 + eqi−1)/(1+ e), the scheme (4.14), (4.15) discretizes
the constraints at the velocity level since

∀i � 0
vi+1 + evi

1 + e
∈ TK(qi+1),

which implies

dϕ(qi+1)
(

vi+1 + evi

1 + e

)
� 0 if qi+1 �∈ Int(K).

(c) Convergence result

The convergence of the scheme (4.14), (4.15) is proved in Mabrouk (1998b) under
the following assumptions:

(H′1) ϕ ∈ C1,β with β > 1/2;

(H′2) the kinetic metric can be locally identified to the usual Euclidean metric of R
d;

(H′3) the function f is globally continuous and uniformly Lipschitzian in its third
variable.
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The approximate velocity vh is defined by

∀t ∈ [t0 + ih, t0 + (i + 1)h) vh(t) = vi.

We have the following theorem.

Theorem 4.7 (Mabrouk 1998b). Assume (H′1)–(H′3). There exists τ > 0 such
that

(i) the sequence (qh, vh) possesses a subsequence which converges uniformly ×
pointwise on [t0, t0 + τ ] to a limit (q, v), where v is a function of bounded
variation and

q(t) = q0 +
∫ t

t0

v(s) ds for all t ∈ [t0, t0 + τ ],

(ii) the couple (τ, u) with

∀t ∈ (t0, t0 + τ) u(t) =
v(t + 0) + ev(t − 0)

1 + e
,

u(t0) = v(t0 + 0), u(t0 + τ) = v(t0 + τ − 0),

is a solution of problem (P′).

This is a generalization of the convergence result obtained by Monteiro Marques
in the case of inelastic shocks (e = 0) and a bounded function f depending only on
t and q (Monteiro Marques 1985, 1993).

The sketch of the proof is the same as in Paoli & Schatzman (1999b). First, uni-
form estimates for the discrete velocities and accelerations are obtained and the
Ascoli–Arzela theorem and Helly’s theorem imply (i). Then the differential inclusion
(4.2) is established with dμ = |du| + dt. Contrary to Paoli & Schatzman (1999b),
general properties of convex analysis play an essential role throughout the proof, in
particular, the two following lemmas.

Lemma 4.8 (‘lemma of the two cones’ (Moreau 1962)). Let V and N be
a pair of mutually polar closed convex cones in a real Hilbert space E. Then, for all
(x, y, z) ∈ E3 we have{

x = Proj(V, z),
y = Proj(N, z),

if and only if
{

z = x + y,

x ∈ V, y ∈ N, x · y = 0.

Lemma 4.9 (Moreau 1978). Let C be a closed convex cone of a Hilbert space
E, C containing a ball B̄(a, r). Then

∀x ∈ E |x − Proj(C, x)| � 1
2r

(|x − a|2 − |Proj(C, x) − a|2).

Note that the mapping q �→ TK(q) is lower semi-continuous, which ensures that
there exists δ > 0 and a fixed ball B̄(a, r) such that

∀q ∈ B̄(q0, δ) B̄(a, r) ⊂ TK(q).

For a more detailed presentation of this proof, see the review paper of Kunze &
Monteiro Marques (2000).
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5. The multi-constraint case

Let us assume now that assumption (1.8) does not hold any more, i.e.

∃t s.t. CardJ(q(t)) � 2. (5.1)

As we have already explained at § 1, the decomposition of the momenta p(t ± 0) as
p(t ± 0) = pN(t ± 0) + pT(t ± 0) with

pN(t ± 0) ∈ Span{dϕα(q(t)), α ∈ J(q(t))},

dϕα(q(t))(M(q(t))−1pT(t ± 0)) = 0 ∀α ∈ J(q(t)),

does not necessarily yield a simple relation between p(t + 0) and pN(t − 0), pT(t − 0)
when (5.1) holds. In order to generalize easily the impact law (1.6) we rewrite it in
terms of velocities. When J(q(t)) = {α} the impact law is given by

p(t + 0) = p(t − 0) − (1 + e)pN(t − 0)

with

pN(t − 0) =
〈p(t − 0),dϕα(q(t))〉∗

q(t)

〈dϕα(q(t)),dϕα(q(t))〉∗
q(t)

dϕα(q(t)),

which is equivalent to

q̇(t + 0) = q̇(t − 0) − (1 + e)
dϕα(q(t))q̇(t − 0)

|dϕα(q(t))|∗2
q(t)

M(q(t))−1 dϕα(q(t)). (5.2)

For all q ∈ R
d, let us denote by N(q) the polar cone of TK(q) for the kinetic metric,

i.e.
N(q) = {w ∈ R

d : 〈w, z〉q = twM(q)z � 0 ∀z ∈ TK(q)}.

Then relation (5.2) can be rewritten as follows,

q̇(t + 0) = q̇(t − 0) − (1 + e) Projq(t)(N(q(t)), q̇(t − 0)), (5.3)

where Projq(N(q), z) is the projection of z on N(q) relative to the kinetic metric
frozen at q. Whenever CardJ(q(t)) = 1, the impact law (1.6) is equivalent to (5.3)
and we assume that (5.3) still holds if CardJ(q(t)) � 2.

We should note that (5.3) is energetically consistent: if q(t) ∈ ∂K let us denote

q̇−
T = Projq(t)(TK(q(t)), q̇(t − 0)), q̇−

N = Projq(t)(N(q(t)), q̇(t − 0)).

By using lemma 4.8 we get

2T (t − 0) = tq̇(t − 0)M(q(t))q̇(t − 0) = |q̇−
T |2q(t) + |q̇−

N |2q(t)
� |q̇−

T |2q(t) + e2|q̇−
N |2q(t) = 2T (t + 0).

Moreover, if q(t) ∈ ∂K, we have

ν({t}) = M(q(t))(q̇(t + 0) − q̇(t − 0)) = −(1 + e)M(q(t))q̇−
N

∈
{ ∑

α∈J(q(t))

λα dϕα(q(t)), λα � 0
}

and relation (1.4) still holds.
Thus, for given initial data (t0, q0, v0), the problem (P) is generalized as follows.
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Problem (P1). To find τ > 0 and a function q from [t0, t0 + τ ] to R
d satisfying

the variational properties (1.9), the initial data (1.10) and such that (1.2)–(1.4) and
(5.3) hold on (t0, t0 + τ).

Assuming that all the data are analytic, Ballard has performed a complete theo-
retical study of problem (P1) (Ballard 1999): an existence and uniqueness theorem
is proved, including also the more general case of a restitution coefficient depending
on t and q.

Furthermore, Moreau’s formulation encompass the multi-constraint case and we
can prove that problem (P1) is equivalent to problem (P′). This result relies on the
same arguments as proposition 4.3 completed with the following.

Lemma 5.1. Let t ∈ (t0, t0 + τ) such that q(t) ∈ ∂K. Then (5.3) is equivalent to

M(q(t))(q̇(t − 0) − q̇(t + 0)) = −ν({t}) ∈ ∂ψTK(q(t))

(
q̇(t + 0) + eq̇(t − 0)

1 + e

)
.

Proof . We just have to remark that (5.3) is equivalent to

q̇−
N =

q̇(t − 0) − q̇(t + 0)
1 + e

, q̇−
T =

q̇(t + 0) + eq̇(t − 0)
1 + e

,

and that N(q(t)) and TK(q(t)) are mutually polar convex cones for the kinetic metric
at q(t). �

As a consequence, the time discretizations of frictionless sweeping process allow to
treat the multi-constraint case too (Moreau 1988, 1999; Jean & Moreau 1992) but
the convergence is not proved: the assumption (H′1) on the regularity of ∂K plays
an essential role in the proof of theorem 4.7 and it seems difficult to weaken it.

Let us point out that equations (1.2)–(1.4) and the decay of kinetic energy at
impacts do not necessarily yield the impact law (5.3). Consider for instance the
following example: d = 2, K = {(x, y) ∈ R

2 : x � 0, y � 0}, M(q) ≡ IdR2 , f ≡ 0,
q0 = (−1, 0) and v0 = (1, 0). The motions given by

q1(t) =

{
(−1 + t, 0) ∀t ∈ [0, 1]
(0, t − 1) ∀t � 1

and q2(t) =

{
(−1 + t, 0) ∀t ∈ [0, 1]
(1 − t, 0) ∀t � 1

are two energy-conserving solutions of (1.2)–(1.4). But only q2 satisfies (5.3) (with
e = 1 of course).

Consequently, when the kinetic energy is conserved at impacts we should replace
(5.3) by the more general impact law

|q̇(t + 0)| = |q̇(t − 0)| if q(t) ∈ ∂K.

An existence result has been proved in Paoli (2000) by using a penalty method under
the following assumptions: K is a convex set and the mass matrix is trivial. Although
the time discretization (3.1)–(3.3) still makes sense, its convergence does not seem
easy to prove due to the lack of regularity of ∂K.

Moreover, in the multi-constraint case, a new difficulty occurs in the computation
of approximate solutions: the motion is not continuous with respect to initial data in
general. Even when the convergence of approximate solutions is proved the round-up
errors may lead to a kind of unpredictibility. We refer the reader to Paoli (2000) for
an illustration of this bad property.
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6. Conclusion

In this article we have presented the time discretizations of vibro-impact problems
derived from the basic description of the dynamics and from Moreau’s sweeping
process. We have recalled the associated convergence results and a qualitative com-
parison has been performed on a very simple test-problem. But nothing is said about
the convergence order of these methods, which could seem surprising! Two reasons
can be recalled. Firstly, the study of the test-problem shows that all the methods
presented here are at most of order 1 but the determination of the convergence order
in the general case seems very difficult and there is no theoretical result. Secondly,
the dynamics of vibro-impact problems is often complex: sensitivity to initial data
and chaotic behaviour may occur even for low-dimensional systems (see, for example,
Guckenheimer & Holmes 1983; Shaw & Rand 1989). In this setting the convergence
order is not an essential point since any precision in the computation of individual
motions is lost in finite time. On the contrary, it is crucial to check that the mean
values and the dynamical invariants (like attractors) are correctly approximated by
the schemes. Consequently, the comparison of numerical methods for vibro-impact
problems (event-driven scheme, compliant methods as well as time discretization
algorithms) would require suitable benchmarks corresponding to various dynamical
situations.
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Sci. Paris Séri. A 256, 871–874.
Moreau, J. J. 1978 Un cas de convergence des itérés d’une contraction d’un espace hilbertien.
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