Once again, since q may be discontinuous at impacts, relation (7) should be understood as a Measure Differential Inclusion. More precisely, the solutions of the corresponding Cauchy problem are defined as: Definition 1.1. Let (q 0 , u 0 ) ∈ K × T K (q 0 ). A solution of the Cauchy problem associated to (7) and the initial data (q 0 , u 0 ) is a couple (q, u) such that q, u : [0, τ ] → R d with τ > 0 and

with e 0. This relation can be rewritten as q+ (t) = -e q-(t) + (1 + e) proj q(t) T K q(t) , q-(t) [START_REF] Lemaire | About the convergence of the proximal method[END_REF] where proj q (T K (q), •) denotes the projection on T K (q) relatively to the kinetic metric at q, which is defined by the inner product (v, w) q = v, M(q)w = M(q)v, w ∀(v, w, q) ∈ R d 3 .

If Card( J (q(t))) > 1, i.e. when several constraints are saturated at q(t), we will still assume that the transmission of the velocities is given by ( 6) even though relations ( 4)-( 5) may allow for other constitutive impact laws (see [START_REF] Paoli | Time-discretization of vibro-impact[END_REF] for an example).

Let us observe that (6) yields the conservation of the tangential part of the velocity while the normal part is reversed and multiplied by e. Indeed, let N * K (q) = M -1 (q)N K (q) be the polar cone to T K (q) relatively to the kinetic metric at q. Then, for all v ∈ R d and q ∈ K we have the following decomposition [START_REF] Moreau | Décomposition orthogonale d'un espace hilbertien selon deux cônes mutuellement polaires[END_REF] v = proj q T K (q), v + proj q N * K (q), v .

It follows that ( 6) can be rewritten as a Newton's law:

q+ (t) = -e proj q(t) N * K q(t) , q-(t) + proj q(t) T K q(t) , q-(t) .

Furthermore, if e ∈ [0, 1] we have q+ (t) 2 q(t) = e 2 proj q(t) N * K q(t) , q-(t) 2 q(t) + proj q(t) T K q(t) , q-(t)

2 q(t)
q-(t)

2 q(t)
and the kinetic energy does not increase at impacts which ensures the mechanical consistency of the model. Following J.J. Moreau's ideas (see [START_REF] Moreau | Liaisons unilatérales sans frottement et chocs inélastiques[END_REF] or [START_REF] Moreau | Unilateral contact and dry friction in finite freedom dynamics[END_REF]), we will adopt in this paper a formulation of the problem at the velocity level by replacing (2)-( 3) and ( 6) by the following inclusion (see also [START_REF] Paoli | Time-discretization of vibro-impact[END_REF] for a discussion about the equivalence of the formulations) g(t, q, q) dt -M(q)q ∈ N T K (q) q+ + e q-

1 + e [START_REF] Mabrouk | A unified variational model for the dynamics of perfect unilateral constraints[END_REF] with

N T K (q) (v) = {z ∈ R d ; (z, w -v) 0 ∀w ∈ T K (q)} if v ∈ T K (q), ∅ otherwise. (i) u ∈ BV(0, τ ; R d ) such that u(t) = u + (t) + eu -(t)
1 + e ∀t ∈ (0, τ ), u + (0) = u 0 ;

(ii) for all t ∈ [0, τ ] q(t) = q 0 + t 0 u(s) ds;

(iii) (q, u) satisfies [START_REF] Mabrouk | A unified variational model for the dynamics of perfect unilateral constraints[END_REF] in the following sense g t, q(t), u(t) t μ (t) -M q(t) u μ (t) ∈ N T K (q(t)) u(t) dμ-a.e. on (0, τ ) [START_REF] Monteiro Marques | Differential Inclusions in Nonsmooth Mechanical Problems[END_REF] for all positive measure μ over I = (0, τ ) with respect to which the Lebesgue's measure dt and the Stieltjes measure du possess densities, respectively denoted t μ ∈ L 1 (I, dμ; R) and u μ ∈ L 1 (I, dμ; R d ).

Let us introduce here some comments about this definition. Using properties (i) and (ii), we can infer that q admits a right and left derivative (in the classical sense) at any point t ∈ (0, τ ) and q± (t) = u ± (t) ∀t ∈ (0, τ ).

It follows that, possibly modifying q on a countable subset of I , we have q = q+ ∈ BV(0, τ ; R d ) and the Stieltjes measure d q = q coincides with du. Then, properties (i) and (iii) imply that [START_REF] Mabrouk | A unified variational model for the dynamics of perfect unilateral constraints[END_REF] is satisfied and u(t) ∈ T K (q(t)) for almost every t ∈ I . Since q 0 ∈ K , it follows that q(t) ∈ K for all t ∈ [0, T ] (see [START_REF] Moreau | Standard inelastic shocks and the dynamics of unilateral constraints[END_REF]).

Furthermore we can recall that [START_REF] Monteiro Marques | Differential Inclusions in Nonsmooth Mechanical Problems[END_REF] does not depend on the "base" measure μ (see [START_REF] Moreau | Liaisons unilatérales sans frottement et chocs inélastiques[END_REF][START_REF] Moreau | Standard inelastic shocks and the dynamics of unilateral constraints[END_REF]) and that (8) is equivalent to the impact law (6) whenever t is a discontinuity point of the velocity u (see [START_REF] Paoli | Time-discretization of vibro-impact[END_REF]).

For this problem several existence results have already been proved in the single constraint case (i.e. ν = 1), by considering sequences of approximate solutions constructed by using either a penalty approach (see [START_REF] Schatzman | A class of nonlinear differential equations of second order in time[END_REF][START_REF] Paoli | Mouvement à un nombre fini de degrés de liberté avec contraintes unilatérales: Cas avec perte d'énergie[END_REF][START_REF] Schatzman | Penalty method for impact in generalized coordinates[END_REF]) or a time-stepping scheme formulated at the position level (see [START_REF] Paoli | Analyse numérique de vibrations avec contraintes unilatérales[END_REF][START_REF] Paoli | A numerical scheme for impact problems I and II[END_REF]) or at the velocity level (see [START_REF] Monteiro Marques | Differential Inclusions in Nonsmooth Mechanical Problems[END_REF][START_REF] Mabrouk | A unified variational model for the dynamics of perfect unilateral constraints[END_REF][START_REF] Dzonou | Sweeping process for inelastic impact problem with a general inertia operator[END_REF][START_REF] Dzonou | A convergence result for a vibro-impact problem with a general inertia operator[END_REF]). In the multi-constraint case (i.e. ν 2), an existence and uniqueness result has been proved by P. Ballard [START_REF] Ballard | The dynamics of discrete mechanical systems with perfect unilateral constraints[END_REF] when all the data are analytical, by combining existence results for ODE and variational inequalities. Another existence result has been proved in the multiconstraint case when the kinetic energy is conserved at impacts, via a penalty method [START_REF] Paoli | An existence result for vibrations with unilateral constraints: Case of a nonsmooth set of constraints[END_REF].

The time-discretizations of the problem at the position or velocity levels can also be considered in the multi-constraint case, but the study of their convergence meets a new difficulty, due to the lack of continuity with respect to the data in general. Nevertheless, following [START_REF] Ballard | The dynamics of discrete mechanical systems with perfect unilateral constraints[END_REF] and [START_REF] Paoli | Continuous dependence on data for vibro-impact problems[END_REF], we know that continuous dependence on the data holds under some geometrical assumptions on the active constraints and, in this framework, we can expect once again the convergence of the time-stepping schemes. A first step in this direction has been achieved in [START_REF] Paoli | An existence result for non-smooth vibro-impact problems[END_REF], where the convergence of timestepping schemes formulated at the position level is established when the mass matrix is trivial, the set K is convex and e = 0. The general case, i.e. e ∈ [0, 1], M(q) ≡ Id R d and/or K not convex, is considered in [START_REF] Paoli | Time-stepping approximation of rigid-body dynamics with perfect unilateral constraints I[END_REF], where the convergence is proved once again for time-stepping schemes formulated at the position level. Unfortunately, this position level algorithm requires to compute at each timestep t n+1 the Argmin of a known quantity W n with respect to K , which is not an easy task if K is not convex. Furthermore, when e = 0, the convergence proof relies on technical assumptions on the active constraints which are stronger that the ones proposed in [START_REF] Ballard | The dynamics of discrete mechanical systems with perfect unilateral constraints[END_REF] and [START_REF] Paoli | Continuous dependence on data for vibro-impact problems[END_REF].

Motivated by both computational and theoretical issues, we will focus in this paper on timestepping schemes formulated at the velocity level, which are much more easy to implement since they involve "simply" at each time-step a projection on a convex cone, and whose convergence will be established in the general case of a non-trivial mass matrix, a restitution coefficient e ∈ [0, 1] and/or a non-convex set K but under weaker assumptions than in [START_REF] Ballard | The dynamics of discrete mechanical systems with perfect unilateral constraints[END_REF] for the data and than in [START_REF] Paoli | Time-stepping approximation of rigid-body dynamics with perfect unilateral constraints I[END_REF] for the active constraints.

So, in the next section, we introduce a time-discretization of the Measure Differential Inclusion (7) directly inspired by the proximal methods for differential inclusions. Then we recall the geometrical assumptions ensuring continuous dependence on the data, and we state a convergence result for the approximate solutions, which leads to an existence result for the Cauchy problem. The rest of this paper is devoted to the proof. We establish first a local convergence and existence result. We begin in Section 3 by some local estimates on [0, τ ] (with τ ∈ (0, T ]) for the discrete velocities and accelerations. Then, in Section 4, we pass to the limit as the time-step h tends to zero: by using Ascoli's and Helly's theorems, we can extract a subsequence which converges uniformly x pointwise

in [0, τ ] to a limit (q, v) ∈ C 0 ([0, τ ]; R d ) × BV(0, τ ; R d ). Then we let u(t) = v + (t) + ev -(t) 1 + e ∀t ∈ [0, τ ] with the convention that v + (τ ) = v(τ ) and v -(0) = v(0). So u satisfies property (i) of Definition 1.1
and we prove that property (ii) of Definition 1.1 holds, and that the inclusion ( 8) is satisfied with dμ = |du| + dt at the continuity points of the velocity. Then, in Section 5, we study the transmission of the limit velocity at impacts. Finally, in Section 6, we use some a priori energy estimates for the solutions of the Cauchy problem to show that the convergence holds on a time interval [0, τ ] which depends only on the data.

Time-discretization scheme

Let h > 0 be a given time-step. Starting from [START_REF] Mabrouk | A unified variational model for the dynamics of perfect unilateral constraints[END_REF], we define the following algorithm:

q h,0 = q 0 , u h,0 = u 0 , (9) 
and, for all i ∈ {0, . . . ,

T /h -1} q h,i+1 = q h,i + hu h,i , ( 10 
)
g h,i+1 -M(q h,i+1 ) u h,i+1 -u h,i h ∈ N T K (q h,i+1 ) u h,i+1 + eu h,i 1 + e ( 11 
)
where g h,i+1 is an approximation of g(•, q, q) at t = t h,i+1 = (i + 1)h given by

g h,i+1 = g(t h,i+1 , q h,i+1 , u h, j(i) ) ( 12 
)
with j(i) = i in the "explicit" case and j(i) = i + 1 in the "implicit" one.

Interpreting u h,i as the approximate left velocity at time t h,i+1 and u h,i+1 as the approximate right velocity at time t h,i+1 , (10)-( 11) is a very natural discretization of [START_REF] Mabrouk | A unified variational model for the dynamics of perfect unilateral constraints[END_REF]. We can point out that,

whenever q h,i+1 ∈ Int(K ), T K (q h,i+1 ) = R d and (11) reduces to q h,i+2 -2q h,i+1 + q h,i h 2 = u h,i+1 -u h,i h = M -1 (q h,i+1 )g h,i+1
which is a centered scheme for the ODE q = M -1 (q)g(t, q, q)

which describes the unconstrained dynamics of the system.

Moreover, using classical properties of convex analysis, we can rewrite [START_REF] Moreau | Standard inelastic shocks and the dynamics of unilateral constraints[END_REF] as

u h,i+1 = -eu h,i + (1 + e) proj q h,i+1 T K (q h,i+1 ), u h,i + h 1 + e M -1 (q h,i+1 )g h,i+1 (13) 
and we recognize a discrete version of the impact law [START_REF] Lemaire | About the convergence of the proximal method[END_REF].

Observing that

N T K (q) (v) = ∂ψ T K (q) (v) for all v ∈ R d , where ψ T K (q)
is the indicator function of T K (q), this scheme can be interpreted as a proximal-like algorithm for the differential inclusion [START_REF] Mabrouk | A unified variational model for the dynamics of perfect unilateral constraints[END_REF] (see e.g. [START_REF] Lemaire | About the convergence of the proximal method[END_REF] and the references therein).

Then we define the sequence of approximate solutions (q h , u h ) h>0 by considering piecewise constant velocities and a linear interpolation of the q h,i 's, i.e. for all t ∈ [t h,i , t h,i+1 )

q h (t) = q h,i + (t -ih)u h,i , u h (t) = u h,i .
In order to ensure continuous dependence on the data we will assume that the active constraints create right or acute angles with respect to the local co-variant metric (see [START_REF] Paoli | Continuous dependence on data for vibro-impact problems[END_REF]), i.e.

(H1) for all q ∈ K , for all (α, β) ∈ J (q) 2 such that α = β

∇ f α (q), M -1 (q)∇ f β (q) 0 if e = 0, ∇ f α (q), M -1 (q)∇ f β (q) = 0 if e ∈ (0, 1].
We introduce also some regularity assumptions on the data: (H4) for all α ∈ {1, . . . , ν}, the function f α belongs to C 1 (R d ), ∇ f α is locally Lipschitz continuous and does not vanish in a neighbourhood of {q ∈ R d ; f α (q) = 0}; (H5) the active contraints are functionally independent, i.e. (∇ f α (q)) α∈ J (q) is linearly independent for all q ∈ K .

(H2) the function g : [0, T ] × R d × R d → R d (T > 0) is
Then we obtain Theorem 2.1. Let us assume that (H1)-(H5) hold. Let (q 0 , u 0 ) ∈ K × T K (q 0 ) be admissible initial data. Then there exist τ ∈ (0, T ] and (q, u)

∈ C 0 ([0, τ ]; R d ) × BV(0, τ ; R d ) such that we can extract from (q h , u h ) h>0 a
subsequence, still denoted (q h , u h ) h>0 , which converges in the following sense:

q h → q strongly in C 0 [0, τ ]; R d , u h → u possibly except on a countable subset of [0, τ ],
and (q, u) is a solution of problem (P). Furthermore, the time interval [0, τ ] depends only on the data and does not depend on the approximate solutions (q h , u h ) h>0 .

Let us observe that, in this case, uniqueness is not true in general (for counter-examples see [START_REF] Schatzman | A class of nonlinear differential equations of second order in time[END_REF] or [START_REF] Ballard | The dynamics of discrete mechanical systems with perfect unilateral constraints[END_REF]), so that the convergence will hold only for subsequences of the approximate solutions.

The proof of Theorem 2.1 is decomposed into several steps corresponding to the forthcoming Sections 3-6. Since the different lemmas and propositions are often quite technical, a short outline of the contents will be given at the beginning of each section.

A priori estimates for the discrete velocities and accelerations

In this section we establish first that the sequence of approximate positions (q h ) h>0 is uniformly Lipschitz continuous on a non-trivial time interval by using the same techniques as in [START_REF] Dzonou | A convergence result for a vibro-impact problem with a general inertia operator[END_REF] (see Lemma 3.1 and Proposition 3.2). Then we pass to the limit by using Ascoli's theorem and we prove that the limit q satisfies the constraints at each instant t (see Proposition 3.3). Finally, we show that the sequence (u h ) h>0 has uniformly bounded variation by using a decomposition of the jump of the discrete velocities along the active constraints (see Lemma 3.5 and Proposition 3.6).

We observe first that in the "implicit" case, when j(i) = i + 1 in [START_REF] Moreau | Unilateral contact and dry friction in finite freedom dynamics[END_REF], Eq. ( 13) can be rewritten as

u h,i+1 = Φ i (u h,i+1 ) (14) with Φ i (v) = -eu h,i + (1 + e) proj q h,i+1 T K (q h,i+1 ), u h,i + h 1 + e M -1 (q h,i+1 )g(t h,i+1 , q h,i+1 , v)
and we have to prove the existence of a fixed point for this mapping Φ i .

Let R > |u 0 | q 0 and V = B(q 0 , R). Using assumption (H3) we know that there exists α V > 0 and

β V > 0 such that α V |v| 2 |v| 2 q = t v M(q)v β V |v| 2 ∀v ∈ R d , ∀q ∈ V .
Next we define the compact set W R by

W R = [0, T ] × V × Ṽ with Ṽ = B 0, √ β V α V R + 1
and the real number C g,W R by C g,W R = sup g(t, q, v) ; (t, q, v) ∈ W R .

Let us assume that q h,i+1 ∈ V and u h,i ∈ B(0, R/ √ α V ). We denote by N * K (q h,i+1 ) the polar cone to T K (q h,i+1 ) relatively to the kinetic metric at q h,i+1 . Then, observing that proj q h,i+1 T K (q h,i+1 ), xe proj q h,i+1 N * K (q h,i+1 ),

x q h,i+1 |x| q h,i+1 ∀x ∈ R d we get Φ i (v) q h,i+1 = proj q h,i+1 T K (q h,i+1 ), x i -e proj q h,i+1 N * K (q h,i+1 ), x i + eh 1 + e M -1 (q h,i+1 )g(t h,i+1 , q h,i+1 , v) q h,i+1 |x i | q h,i+1 + eh 1 + e M -1/2 (q h,i+1 ) g(t h,i+1 , q h,i+1 , v) |u h,i | q h,i+1 + h √ α V g(t h,i+1 , q h,i+1 , v) β V α V R + h √ α V C g,W R
for all v ∈ Ṽ , where

x i = u h,i + h 1+e M -1 (q h,i+1 )g(t h,i+1 , q h,i+1 , v). Moreover, for all (v 1 , v 2 ) ∈ Ṽ 2 Φ i (v 1 ) -Φ i (v 2 ) q h,i+1 h M -1 (q h,i+1 ) g(t h,i+1 , q h,i+1 , v 1 ) -g(t h,i+1 , q h,i+1 , v 2 ) q h,i+1
and thus

Φ i (v 1 ) -Φ i (v 2 ) h L g,W R α V |v 1 -v 2 | where L g,W R is the Lipschitz constant of g on W R . Let h * R ∈ (0, min( α V C g,W R , α V L g,W R
)) and h ∈ (0, h * R ], we obtain that Φ i ( Ṽ ) ⊂ Ṽ and Φ i is a contraction on Ṽ . Thus [START_REF] Paoli | An existence result for vibrations with unilateral constraints: Case of a nonsmooth set of constraints[END_REF] possesses a solution in Ṽ . Furthermore, we can prove the following estimate for u h,i+1 .

Lemma 3.1. Let R > |u 0 | q 0 and V = B(q 0 , R). Let i ∈ {0, . . . , T /h -1} and h ∈ (0, h * R ].
Assume that q h, j ∈ V for j = i, i + 1 and u h,i ∈ B(0, R/ √ α V ). Then the system (11)-( 12) possesses a solution u h,i+1 ∈ Ṽ and

|u h,i+1 | q h,i+1 |u h,i | q h,i + hL V ,2 α V |u h,i | 2 q h,i + h √ α V |g h,i+1 |
where L V ,2 is the Lipschitz constant of the mapping q → M 1/2 (q) on V .

Proof. Observing that u h,i+1 = Φ i (u h, j(i) ) and B(0, R/ √ α V ) ⊂ Ṽ , we can reproduce the same computations as above which imply the existence of u h,i+1 ∈ Ṽ and

|u h,i+1 | q h,i+1 |u h,i | q h,i+1 + h √ α V |g h,i+1 | |u h,i | q h,i + M 1/2 (q h,i+1 ) -M 1/2 (q h,i ) |u h,i | + h √ α V |g h,i+1 | |u h,i | q h,i + hL V ,2 α V |u h,i | 2 q h,i + h √ α V |g h,i+1 |. 2 
Then we obtain: Proposition 3.2. Let R > |u 0 | q 0 and V = B(q 0 , R). There exists τR ∈ (0, T ] such that, for all h ∈ (0, h * R ] and for all ih ∈ [0, τR ], (q h,i , u h,i ) is defined and satisfy (q

h,i , u h,i ) ∈ B(q 0 , R) × B(0, R √ α V ).
Proof. We infer immediately from Lemma 3.1 that

|u h,i+1 | q h,i+1 |u h,i | q h,i + hL V ,2 α V |u h,i | 2 q h,i + hC g,W R √ α V ( 15 
)
if q h, j ∈ V for j ∈ {i, i + 1} and u h,i ∈ B(0, R/ √ α V ). But [START_REF] Paoli | Time-discretization of vibro-impact[END_REF] can be compared to the explicit Euler

discretization of the ODE ⎧ ⎨ ⎩ ż = L V ,2 α V z 2 + C g,W R √ α V , z(0) = |u 0 | q 0
which solution is given by

z(t) = √ α V C g,W R L V ,2 tan L V ,2 C g,W R α 3/2 V t + c , c = Arctan L V ,2 √ α V C g,W R |u 0 | q 0 .
So, with an immediate induction we obtain that

|u h,i | q h,i z(ih) R and |q h,i -q h,0 | = |q h,i -q 0 | i-1 j=0 h|u h, j | R for all ih ∈ [0, τR ], with τR ∈ (0, T ] such that τR √ α V and z( τR ) R. 2
We infer that the sequence

(u h ) h * R h>0 is uniformly bounded in L ∞ (0, τR ; R d ) and (q h ) h * R h>0 is
uniformly Lipschitz continuous. Possibly extracting a subsequence (q h n , u h n ) n∈N , with (h n ) n∈N decreasing to zero, the following convergences hold:

q h n → n→+∞ q strongly in C 0 [0, τR ]; R d , u h n n→+∞ v weakly * in L ∞ 0, τR ; R d .
Let us prove now that the limit q satisfies the constraints.

Proposition 3.3. For all t ∈ [0, τR ] we have q(t) ∈ K .

Proof. Let us argue by contradiction and assume that there exists t 0 ∈ (0, τR ) such that q(t 0 ) / ∈ K .

Let α ∈ {1, . . . , ν} such that f α (q(t 0 )) < 0. Since f α • q is continuous on [0, τR ], we may define

t 1 ∈ [0, t 0 ) such that t 1 = inf s ∈ [0, t 0 ); f α q(t) 1 2 f α q(t 0 ) ∀t ∈ (s, t 0 ] .
Since q(0) = q 0 ∈ K , we get t 1 > 0 and f α (q(t 1 )) = 1 2 f α (q(t 0 )). Moreover, assumption (H4) implies that f α is Lipschitz continuous on any closed ball of R d . Since

q h n (t) ∈ B(q 0 , R √ α V T ) for all t ∈ [0, τR ],
we infer that f α • q h n converges uniformly to f α • q on [0, τR ] and there exists h * ∈ (0, h * R ] such that, for all h n ∈ (0, h * ]

f α q h n (t) 1 4 f α q(t 0 ) < 0 ∀t ∈ [t 1 , t 0 ] and thus α ∈ J (q h n ,i ) for all ih n ∈ [t 1 , t 0 ]. Now, let h n ∈ (0, min( h * , t 0 -t 1 4 , t 1 2 , τR -t 0 2 )). For all t h n ,i ∈ [t 1 , t 0 ] we have f α q h n (t h n ,i+1 ) = f α q h n (t h n ,i ) + t hn ,i+1 t hn ,i ∇ f α (q h n (s)), u h n ,i ds = f α q h n (t h n ,i ) + h n ∇ f α (q h n ,i ), u h n ,i + t hn ,i+1 t hn ,i ∇ f α q h n (s) -∇ f α (q h n ,i ), u h n ,i ds.
Thus

f α q h n (t h n ,i+1 ) + ef α q h n (t h n ,i ) = f α q h n (t h n ,i ) + ef α q h n (t h n ,i-1 )
+ h n ∇ f α (q h n ,i ), u h n ,i + eu h n ,i-1 + t hn ,i+1 t hn ,i ∇ f α q h n (s) -∇ f α (q h n ,i ), u h n ,i ds + e t hn ,i t hn ,i-1 ∇ f α q h n (s) -∇ f α (q h n ,i ), u h n ,i-1 ds. But u h n ,i + eu h n ,i-1 ∈ T K (q h n ,i ) and α ∈ J (q h n ,i ), so ∇ f α (q h n ,i ), u h n ,i + eu h n ,i-1 0.
Let us denote by ω α the modulus of continuity of

∇ f α on V . Since (q h n , j , u h n , j ) ∈ V × B(0, R √ α V ) for all jh n ∈ [0, τR ], we get f α q h n (t h n ,i+1 ) + ef α q h n (t h n ,i ) f α q h n (t h n ,i ) + ef α q h n (t h n ,i-1 ) -(1 + e)h n ω α Rh n √ α V R √ α V . By summing now from i = i 1 = t 1 h n + 1 to i = i 0 = t 0 h n we obtain f α q h n (i 0 h n + h n ) + ef α q h n (i 0 h n ) f α q h n (i 1 h n ) + ef α q h n (i 1 h n -h n ) -(1 + e)(t 0 -t 1 + h n )ω α Rh n √ α V R √ α V . ( 16 
)
Now let h n tends to zero. Since |i 0 h nt 0 | h n and |i 1 h nt 1 | h n , the uniform Lipschitz continuity of the sequence (q h n ) n∈N combined with its uniform convergence to q on [0, τR ] imply that

lim n→+∞ q h n (i 0 h n ) = lim n→+∞ q h n (i 0 h n + h n ) = q(t 0 ), lim n→+∞ q h n (i 1 h n ) = lim n→+∞ q h n (i 1 h n -h n ) = q(t 1 )
and by passing to the limit in ( 16)

f α q(t 0 ) f α q(t 1 ) = 1 2 f α q(t 0 )
which is absurd since f α (q(t 0 )) < 0. It follows that q(t) ∈ K for all t ∈ (0, τR ) and by continuity of q we may conclude that the same result holds on the whole interval [0, τR ]. 2

Let us observe that assumptions (H3)-(H5) combined with a compactness argument imply that Lemma 3.4. For all compact subset B of R d , there exists r B > 0 such that for all q ∈ KB = {q ∈ R d ;

dist(q, K ∩ B) r B }, for all α ∈ J (q), we can define e α (q) = M -1/2 (q)∇ f α (q) |M -1/2 (q)∇ f α (q)| . ( 17 
)
Furthermore, for all q ∈ KB , the family (e α (q)) α∈ J (q) is linearly independent and can be completed as a basis (v j (q)) 1 j d . Let us denote by (w j (q)) 1 j d the dual basis. Then there exists C * ,B > 0 such that

v j (q) = 1, w j (q) C * ,B ∀ j ∈ {1, . . . , d}, ∀q ∈ KB .
Proof. Let B be a compact subset of R d and q ∈ K ∩ B be given. With assumption (H4) we know that

M -1/2 (q)∇ f α (q) = 0 for all α ∈ J (q)
. By continuity of the mappings M -1/2 and ∇ f α , α ∈ {1, . . . , ν}, we infer that there exists r q > 0 such that

M -1/2 q ∇ f α q 1 2 M -1/2 (q)∇ f α (q) > 0 ∀q ∈ B(q, r q ), ∀α ∈ J (q)
and we can define

e α q = M -1/2 (q )∇ f α (q ) |M -1/2 (q )∇ f α (q )| ∀q ∈ B(q, r q ), ∀α ∈ J (q).
With assumption (H5) we infer also that (e α (q)) α∈ J (q) is linearly independent and there exists a family of vectors (e β ) β∈{1,...,d}\ J (q) such that |e β | = 1 for all β ∈ {1, . . . , d} \ J (q) and {e α (q); α ∈

J (q)} ∪ {e β ; β ∈ {1, . . . , d} \ J (q)} is a basis of R d .
Let us define now the mappings v β , β ∈ {1, . . . , d}, by

v β q = e β q if β ∈ J (q), v β q = e β otherwise
for all q ∈ B(q, r q ). Let (δ j ) 1 j d be the canonical basis of R d and define (a ij (q )) 1 i, j d as the coordinates of v i (q ), 1 i d, in the canonical basis (δ j ) 1 j d , i.e.

v i q = d j=1 a ij q δ j ∀i ∈ {1, . . . , d}.

We denote by

A(q ) = (A ij (q ) = a ij (q )) 1 i, j d . Since (v j (q)) 1 j d is a basis of R d , we have A(q) ∈ GL(R d ) and, since GL(R d ) is an open subset of M d,d (R), there exists ρ q > 0 such that Q ∈ GL(R d ) for all Q ∈ M d,d (R) such that Q -A(q) ρ q .
Observing that the mappings v j , j ∈ {1, . . . , d}, are Lipschitz continuous on B(q, r q ) we infer that the mapping A is also Lipschitz continuous on B(q, r q ) and, possibly decreasing r q , A(q ) ∈ B( A(q), ρ q ) ⊂ GL(R d ) for all q ∈ B(q, r q ). It follows that the family (v j (q )) 1 j d is a basis of R d for all q ∈ B(q, r q ). Moreover, using the continuity of the mappings f α , α ∈ {1, . . . , ν}, and possibly decreasing once again r q , we have also J q ⊂ J (q) ∀q ∈ B(q, r q ). Hence v α q = e α q ∀α ∈ J q , ∀q ∈ B(q, r q ).

Let us denote by (w j (q )) 1 j d the dual basis of (v j (q )) 1 j d for all q ∈ B(q, r q ). Then, the mappings w j , j ∈ {1, . . . , d}, are Lipschitz continuous on B(q, r q ). Indeed, let (b ij (q )) 1 i, j d be the coordinates of w i (q ), 1 i d, in the canonical basis (δ j ) 1 j d , i.e.

w i q = d j=1 b ij q δ j ∀i ∈ {1, . . . , d}. We denote by B(q ) = (B ij (q ) = b ji (q )) 1 i, j d .
Then, by the definition of dual bases, we have

∀(i, j) ∈ {1, . . . , d} 2 v i q , w j q = d k=1 a ik q b jk q = 1 if i = j,
0 otherwise, and thus A(q )B(q ) = Id R d . We infer that B(q ) = A -1 (q ). But, the mapping

I: GL(R d ) → GL(R d ), Q → Q -1 is of class C ∞ on GL(R d
), and the mapping q → A(q ) is Lipschitz continuous on B(q, r q ) with values in B( A(q), ρ q ) ⊂ GL(R d ). It follows that q → B(q ) is also Lipschitz continuous on B(q, r q ) and we infer that the mappings w j , j ∈ {1, . . . , d}, (which are the columns of B) are also Lipschitz continuous on B(q, r q ).

It follows that we can define C * ,q = max w j q ; q ∈ B(q, r q ) . Now, using the compactness of K ∩ B, we infer that there exists a finite set of points

(q k ) 1 k such that q k ∈ K ∩ B for all k ∈ {1, . . . , } and K ∩ B ⊂ k=1 B q k , r q k 4 .
Then the conclusion follows with

C * ,B = max 1 k C * ,q k and r B = min 1 k r q k 4 .
2

With the previous results, possibly modifying the sequence (h n ) n∈N , we may assume without loss of generality that

q h n (t) ∈ KB ∀t ∈ [0, τR ], ∀n ∈ N, with B = B(q 0 , R √ α V T ).
Next we will obtain an estimate for the discrete accelerations. First we establish that Lemma 3.5. Let R > |u 0 | q 0 and τR be defined as in Proposition 3.2. Then, for all n ∈ N and i ∈ {0, . . . , τR /h n -1}, there exist non-positive real numbers (μ α h n ,i+1 ) α∈ J (q hn ,i+1 ) such that

M(q h n ,i+1 )(u h n ,i -u h n ,i+1 ) + h n g h n ,i+1 = α∈ J (q hn ,i+1 ) μ α h n ,i+1 M 1/2 (q h n ,i+1
)e α (q h n ,i+1 ) [START_REF] Paoli | Time-stepping approximation of rigid-body dynamics with perfect unilateral constraints I[END_REF] and there exists a constant C > 0 (independent of n and i) such that |μ

α h n ,i+1 | C .
Proof. This is a direct consequence of the definition of the scheme. Indeed, for all n ∈ N and for all i ∈ {0, . . . , τR /h n -1} we have

u h n ,i+1 + eu h n ,i 1 + e = proj q hn ,i+1 T K (q h n ,i+1 ), u h n ,i + h n 1 + e M -1 (q h n ,i+1 )g h n ,i+1
i.e.

u hn ,i+1 +eu hn ,i 1+e ∈ T K (q h n ,i+1
) and for all v ∈ T K (q h n ,i+1 )

u h n ,i + h n 1 + e M -1 (q h n ,i+1 )g h n ,i+1 - u h n ,i+1 + eu h n ,i 1 + e , v - u h n ,i+1 + eu h n ,i 1 + e q hn ,i+1
0.

Since T K (q h n ,i+1 ) is a cone, this inequality is equivalent to

h n g h n ,i+1 -M(q h n ,i+1 )(u h n ,i+1 -u h n ,i ), v 0 ∀v ∈ T K (q h n ,i+1 ), h n g h n ,i+1 -M(q h n ,i+1 )(u h n ,i+1 -u h n ,i ), u h n ,i+1 + eu h n ,i = 0. ( 19 
)
It follows that

h n g h n ,i+1 -M(q h n ,i+1 )(u h n ,i+1 -u h n ,i ) ∈ T ⊥ K (q h n ,i+1 )
where T ⊥ K (q) denotes the polar cone to T K (q) relatively to the Euclidean metric. Observing that (∇ f α (q)) α∈ J (q) is linearly independent for all q ∈ KB , we infer that

T ⊥ K (q) = α∈ J (q) x α ∇ f α (q), x α 0 ∀q ∈ KB
and there exist non-positive real numbers (μ α h n ,i+1 ) α∈ J (q hn ,i+1 ) such that (18) holds. Next, using the basis (w β (q h n ,i+1 )) 1 β d defined at the previous lemma, we infer that for all β ∈ J (q h n ,i+1 ) we have

- α∈ J (q hn ,i+1 ) μ α h n ,i+1 M 1/2 (q h n ,i+1 )e α (q h n ,i+1 ), M -1/2 (q h n ,i+1 )w β (q h n ,i+1 ) = -μ β h n ,i+1 = M(q h n ,i+1 )(u h n ,i+1 -u h n ,i ) -h n g h n ,i+1 , M -1/2 (q h n ,i+1 )w β (q h n ,i+1 ) M 1/2 (q h n ,i+1 ) |u h n ,i+1 | + |u h n ,i | + h n M -1/2 (q h n ,i+1 ) |g h n ,i+1 | w β (q h n ,i+1 ) 2 β V R √ α V + h * R C g,W R √ α V C * ,B := C . 2
Now we can prove an estimate for the discrete accelerations:

Proposition 3.6. There exist h * 1 ∈ (0, h * R ] and C 1 > 0 such that, for all h n ∈ (0, h * 1 ] N j=1 |u h n , j -u h n , j-1 | C 1 with N = τR h n . Proof. Let (q k ) 1 k be defined as in Lemma 3.4 with B = B(q 0 , R √ α V T
). We know that the mappings v j and w j , 1 j d, are Lipschitz continuous on B(q k , r q k ). So there exists L > 0 such that, for all k ∈ {1, . . . , } and for all j ∈ {1, . . . , d}:

v j q 1 -v j q 2 L q 1 -q 2 , w j q 1 -w j q 2 L q 1 -q 2 ∀ q 1 , q 2 ∈ B(q k , r q k ) 2 . Let h * 1 ∈ (0, min(h * R , r B √ α V 2R )) and h n ∈ (0, h * 1 ]. Let p = r B √ α V Rh n
and let i ∈ {0, . . . , N -1}.

Then, there exists k ∈ {1, . . . , } such that q h n ,i ∈ B(q k , r q k

2 ) and q h n , j ∈ B(q k , r q k ) for all j ∈ {i, . . . , min(N, i + p)}.

Let j ∈ {i + 1, . . . , min(N, i + p)}. With Lemma 3.5 we have

M(q h n , j )(u h n , j-1 -u h n , j ) + h n g h n , j = α∈ J (q hn , j ) μ α
h n , j M 1/2 (q h n , j )e α (q h n , j ).

Since J (q h n , j ) ⊂ J (q k ) we may define μ α h n , j = 0 for all α ∈ J (q k ) \ J (q h n , j ) and we get

M(q h n , j )(u h n , j-1 -u h n , j ) + h n g h n , j = α∈ J (q k ) μ α h n , j M 1/2 (q h n , j )v α (q h n , j ), with -C μ α h n , j 0 for all α ∈ J (q k ).
Then,

M 1/2 (q h n , j )(u h n , j-1 -u h n , j ) + h n M -1/2 (q h n , j )g h n , j = α∈ J (q k ) μ α h n , j v α (q h n , j ) α∈ J (q k ) μ α h n , j = α∈ J (q k ) - β∈ J (q k ) μ β h n , j v β (q h n , j ), w α (q h n , j ) = α∈ J (q k ) M 1/2 (q h n , j )(u h n , j -u h n , j-1 ) -h n M -1/2 (q h n , j )g h n , j , w α (q h n , j ) = α∈ J (q k ) M 1/2 (q h n , j )u h n , j , w α (q h n , j ) - α∈ J (q k ) + α∈ J (q k ) M 1/2 (q h n , j-1 ) -M 1/2 (q h n , j ) u h n , j-1 , w α (q h n , j-1 ) + α∈ J (q k ) M 1/2 (q h n , j )u h n , j-1 , w α (q h n , j-1 ) -w α (q h n , j ) + α∈ J (q k ) -h n M -1/2 (q h n , j )g h n , j , w α (q h n , j ) α∈ J (q k ) M 1/2 (q h n , j )u h n , j , w α (q h n , j ) - α∈ J (q k ) M 1/2 (q h n , j-1 )u h n , j-1 , w α (q h n , j-1 ) + α∈ J (q k ) L V ,2 h n R 2 α V w α (q h n , j ) + ν β V R 2 α V Lh n + α∈ J (q k ) C g,W R √ α V h n w α (q h n , j ) .
So, by summation we get:

min(N,i+p) j=i+1 M 1/2 (q h n , j )(u h n , j-1 -u h n , j ) p h n C g,W R √ α V (νC * ,B + 1) + ν p h n R 2 α V (L V ,2 C * ,B + L β V ) + α∈ J (q k ) M 1/2 (q h n , j )u h n , j , w α (q h n , j ) | j=min(N,i+p) -M 1/2 (q h n , j )u h n , j , w α (q h n , j ) | j=i p h n C g,W R √ α V (νC * ,B + 1) + ν p h n R 2 α V (L V ,2 C * ,B + L β V ) + 2ν R √ β V √ α V C * ,B
with p = min(N, i + p)i.

Hence N j=1 |u h n , j -u h n , j-1 | N/p -1 k=0 (k+1)p m=kp+1 |u h n , j -u h n , j-1 | + N N/p p+1 |u h n , j -u h n , j-1 | N p + 1 2ν R √ β V α V C * ,B + Nh n C g,W R α V (νC * ,B + 1) + νNh n R 2 α 3/2 V (L V ,2 C * ,B + L β V )
which allows us to conclude. 2

Convergence of the approximate solutions (q h , u h ) h *

R h>0

Starting from the previous estimate, we can now apply Helly's theorem to get a pointwise convergence for the approximate velocities. Then, possibly modifying this pointwise limit on a countable set of points (see formula ( 20)), we define a limit velocity u which satisfies properties (i) and (ii) of Definition 1.1. Next we establish that the limit couple (q, u) satisfies property (iii) of Definition 1.1 with dμ = |du| + dt on the set of continuity points of u (see Proposition 4.3). To do so, we apply the "sweeping process" techniques developed by M. Monteiro-Marques in [START_REF] Monteiro Marques | Differential Inclusions in Nonsmooth Mechanical Problems[END_REF] which consists in proving first a kind of integral formulation of the differential inclusion [START_REF] Mabrouk | A unified variational model for the dynamics of perfect unilateral constraints[END_REF] (see Proposition 4.2) and then in applying Jeffery's theorem.

More precisely, Proposition 3.6 implies that the sequence (u h n ) n∈N has uniformly bounded variation on [0, τR ]. Hence, using Helly's theorem, and possibly extracting a subsequence still denoted (u h n ) n∈N , we obtain that (u h n ) n∈N converges pointwise to a function of bounded variation. Since we have already established the convergence of (u h n ) n∈N to v in L ∞ (0, τR ; R d ) weak*, we infer that, possibly modifying v on a negligible subset of [0, τR ], we have

u h n (t) → v(t) ∀t ∈ [0, τR ] and v ∈ BV(0, τR ; R d ).
Then we define

u(t) = v + (t) + ev -(t) 1 + e ∀t ∈ [0, τR ] (20) 
with the usual convention v

-(0) = v(0) and v + ( τR ) = v( τR ). Thus u ∈ BV(0, τR ; R d ).
Let us observe that u ± (t) = v ± (t) for all t ∈ (0, τR ) and

u(t) = u + (t) + eu -(t) 1 + e ∀t ∈ (0, τR ).
Moreover, u(t) = v(t) possibly except on a countable subset of [0, τR ]. Furthermore, by definition of (q h , u h ) h>0 , we have

q h n (t) = q 0 + t 0 u h n (s) ds ∀t ∈ [0, τR ], ∀n ∈ N.
So, in the limit as n tends to +∞, we get

q(t) = q 0 + t 0 u(s) ds ∀t ∈ [0, τR ].
Then, following the same ideas as in [START_REF] Dzonou | A convergence result for a vibro-impact problem with a general inertia operator[END_REF], we will prove a "variational inequality" for the limit (q, v).

Let us begin with a technical lemma. 

ũn (t) = u h n (t) if t ∈ [0, τR ], 0 i ft ∈ R \ [0, τR ], ũ(t) = u(t) if t ∈ [0, τR ], 0 ift ∈ R \ [0, τR ].
We already know that (u h n (t)) n∈N is bounded independently of t and n (see Proposition 3.2) and converges to u(t) for almost every t in [0, τR ], thus (u h n ) n∈N converges to u strongly in L 1 (0, τR ; R d ).

It follows that ( ũn

) n∈N converges to ũ in L 1 (R; R d ).
Using the classical characterization of compact subsets of L 1 (R) [START_REF] Dunford | Linear Operators, Part II[END_REF], we infer that ( ũn (• + h n )) n∈N converges also strongly to ũ in L 1 (R; R d ) and possibly extracting a subsequence, still denoted ( ũn ) n∈N , we have ũn (t + h n ) → ũ(t) a.e. on R.

But, for all t ∈ (0, τR ) and for all h n ∈ (0, τRt), we have ũ(t) = u(t) and ũn (t

+ h n ) = u h n (t + h n ),
which allows us to conclude. 2

Then we get Proposition 4.2. Let 0 s < t τR and assume that z ∈ T K (y) for all y in a neighbourhood ω of q([s, t]).

Then t s g σ , q(σ ), u(σ ) , z -v(σ ) dσ + t s dM dq (q) • v (σ )v(σ ), z - 1 2 v(σ ) dσ M q(t) v(t) -M q(s) v(s), z - 1 2 v(t) 2 q(t) -v(s) 2 q(s) ( 21 
)
and t s g σ , q(σ ), u(σ ) , z dσ + t s dM dq (q) • v (σ )v(σ ), z dσ M q(t) v(t) -M q(s) v(s), z . ( 22 
)
Proof. The uniform convergence of (q h n ) n∈N to q implies that there exists n 1 ∈ N such that 0 < h n < (ts)/3 and q h n ([s, t]) ⊂ ω for all n n 1 .

For the sake of notational simplicity, let us denote from now on by t n,i the discretization nodes and by q n,i , u n,i the approximate positions and velocities i.e.

t n,i = t h n ,i = ih n , q n,i = q h n ,i = q h n (t n,i ), u n,i = u h n ,i = u h n (t n,i )
for all i ∈ {0, . . . , τR h n }.

Let us define the indexes j and k by

t n, j-1 s < t n, j < • • • < t n,k t < t n,k+1 .
Then, q n,i+1 ∈ q h n ([s, t]) ⊂ ω and z ∈ T K (q n,i+1 ) for all i ∈ { j -1, . . . ,k -1}. By definition of the scheme, we have

u n,i+1 + eu n,i 1 + e = proj q n,i+1 T K (q n,i+1 ), u n,i + h n 1 + e M -1 n,i+1 g n,i+1
where

M -1 n,i+1 = M -1 (q n,i+1 ). It follows that u n,i+1 +eu n,i 1+e ∈ T K (q n,i+1
) and for all v ∈ T K (q n,i+1 )

h n 1 + e M -1 n,i+1 g n,i+1 + u n,i - u n,i+1 + eu n,i 1 + e , v - u n,i+1 + eu n,i 1 + e q n,i+1 0. ( 23 
)
Starting from this inequality, we reproduce the same computations as in the proof of Proposition 2 of [START_REF] Dzonou | A convergence result for a vibro-impact problem with a general inertia operator[END_REF] to obtain [START_REF] Schatzman | A class of nonlinear differential equations of second order in time[END_REF].

Moreover, recalling that T K (q n,i+1 ) is a cone, we have also

h n 1 + e M -1 n,i+1 g n,i+1 + u n,i - u n,i+1 + eu n,i 1 + e , v q n,i+1 0 ( 24 
)
for all v ∈ T K (q n,i+1 ). Hence we have

(h n g n,i+1 , z) (u n,i+1 -u n,i , z) q n,i+1 = (M n,i+1 u n,i+1 -M n,i u n,i , z) -(M n,i+1 -M n,i )u n,i , z
and by summation for i = j -1 to k -1:

k-1 i= j-1 (h n g n,i+1 , z) + k-1 i= j-1 (M n,i+1 -M n,i )u n,i , z (M n,k u n,k -M n, j-1 u n, j-1 , z). ( 25 
)
Then, observing that u h n is constant on the subintervals [t n,i , t n,i+1 ) we get

(M n,i+1 -M n,i )u n,i , z = t n,i+1 t n,i d dσ M(q h n ) (σ )u n,i , z dσ = t n,i+1 t n,i d dσ M(q h n ) (σ )u h n (σ ), z dσ = t n,i+1 t n,i dM dq (q h n ) • u h n (σ )u h n (σ ), z dσ . So k-1 i= j-1 (M n,i+1 -M n,i )u n,i , z = t n,k t n, j-1 dM dq (q h n ) • u h n (σ )u h n (σ ), z dσ .
Using the previous convergence results and Lebesgue's theorem, we obtain

t n,k t n, j-1 dM dq (q h n ) • u h n (σ )u h n (σ ), z dσ → t s dM dq (q) • v (σ )v(σ ), z dσ .
On the other hand, combining the regularity properties of g, the previous convergence results and Lebesgue's theorem, we get

k-1 i= j-1 (h n g n,i+1 , z) → t s g σ , q(σ ), u(σ ) , z dσ .
Finally, the continuity of the mapping q → M(q), the uniform convergence of (q h n ) n∈N and the pointwise convergence of (u h n ) n∈N on [0, τR ] allow us to pass to the limit in the right-hand side of (25), i.e.

(M n,k u n,k -M n, j-1 u n, j-1 , z) = M q h n (t n,k ) u h n (t) -M q h n (t n, j-1 ) u h n (s), z → M q(t) v(t) -M q(s) v(s), z
which yields [START_REF] Schatzman | Penalty method for impact in generalized coordinates[END_REF]. 2

As in [START_REF] Dzonou | A convergence result for a vibro-impact problem with a general inertia operator[END_REF] we consider now the measure μ given by dμ = |du| + dt and we denote by u μ and t μ the densities of the Stieltjes measure du and Lebesgue's measure dt with respect to dμ.

Let us prove that the differential inclusion (8) holds at the continuity points of u.

Proposition 4.3.

There exists a dμ-negligible set A such that, for all t ∈ (0, τR ) \ A such that u is continuous at t, we have g t, q(t), u(t) t μ (t) -M q(t) u μ (t) ∈ N T K (q(t)) u(t) .

Proof. Using Jeffery's theorem (see [START_REF] Jeffery | Non-absolutely convergent integrals with respect to functions of bounded variations[END_REF] or [START_REF] Monteiro Marques | Differential Inclusions in Nonsmooth Mechanical Problems[END_REF]), we infer that there exists a dμ-negligible set N such that, for all t ∈ (0, τR ) \ N:

t μ (t) = lim ε→0 + dt([t, t + ε]) dμ([t, t + ε]) = lim ε→0 + ε dμ([t, t + ε]) , u μ (t) = lim ε→0 + du([t, t + ε]) dμ([t, t + ε]) . Furthermore, let N = {t ∈ [0, τR ]; v + (t) = v -(t) = v(t)}.
It is a negligible set with respect to the measure dμ. Then, let us define A = N ∪ N and consider t ∈ (0, τR ) \ A such that u is continuous at t. Now, let z ∈ Int(T K (q(t))). If q(t) ∈ Int(K ), then there exists ρ > 0 such that B(q(t), ρ) ⊂ Int(K ). It follows that z ∈ T K (y) for all y ∈ B(q(t), ρ).

The same property holds if q(t) ∈ ∂ K . Indeed, (∇ f α (q(t)), z) > 0 for all α ∈ J (q(t)) and by continuity of the mappings f α and ∇ f α , α ∈ {1, . . . , ν} we infer that there exists ρ > 0 such that J (y) ⊂ J (q(t)) and (∇ f α (y), z) > 0 for all α ∈ J (q(t)) and for all y ∈ B(q(t), ρ). Hence, z ∈ T K (y) for all y ∈ B(q(t), ρ). Then, using the continuity of the mapping q, we obtain that there exists ε > 0 such that q(s) ∈ B(q(t), ρ/2) for all s ∈ [t, t + ε]. It follows that B(q(t), ρ) is a neighbourhood of q([t, t + ε]) and we can apply the variational inequality on

J ε = [t, t + ε] i.e. t+ε t g σ , q(σ ), u(σ ) , z -v(σ ) dσ + t+ε t dM dq (q) • v (σ )v(σ ), z - 1 2 v(σ ) dσ M q(t + ε) v(t + ε) -M q(t) v(t), z - 1 2 v(t + ε) 2 q(t+ε) -v(t) 2 q(t) .
Then, with the same computations as in the proof of Proposition 3 in [START_REF] Dzonou | A convergence result for a vibro-impact problem with a general inertia operator[END_REF] we may conclude. 2

Transmission of the velocities at impacts

It remains now to prove that the inclusion ( 8) is also satisfied at the discontinuity points of u. In such a case the measure μ has a Dirac mass and since the right-hand side of ( 8) is a cone, (8) is equivalent to the impact law (6) (see [START_REF] Paoli | Time-discretization of vibro-impact[END_REF] for a more detailed discussion about this equivalence).

Starting from [START_REF] Schatzman | Penalty method for impact in generalized coordinates[END_REF] we observe that the jumps of the limit velocity belongs to -M -1 (q)N K (q), i.e. the property ( 5) is satisfied (see Lemma 5.1). It follows that u may be discontinuous only if q belongs to ∂ K and t > 0. Furthermore we can decompose the jump u +u -as follows

u + -u -= - α∈ J (q) μ α M -1 (q)∇ f α (q) |M -1/2 (q)∇ f α (q)| , μ α 0 ∀α ∈ J (q)
and the impact law is satisfied if and only if the following complementarity conditions hold 0 -μ α ⊥ ∇ f α (q), u + + eu - 0 ∀α ∈ J (q).

If μ α = 0 we will say that the constraint numbered α is strictly active and we show first that the same property holds at the discrete level at least for one discrete instant t n,i+1 in any neighbourhood of t whenever h n is small enough (see Lemma 5.2). It follows that

∇ f α (q n,i+1 ), u n,i+1 + eu n,i = 0 ∀α ∈ J (q n,i+1 )
and the goal of the rest of this technical section is to pass to the limit in this equality. This is the main difficulty of the proof, which is encompassed by performing a precise study of the discrete velocities u n,i 's in the neighbourhood of the impact instant t. Of course, if e = 0 the situation is simpler since Proposition 3.3 implies that u + ∈ T K (q) so that we only need to prove that ∇ f α (q), u + 0 for all strictly active constraint α (see Lemma 5.3). Otherwise, when e ∈ (0, 1], we prove first that ∇ f α (q), u + + eu - 0 for all strictly active constraint α (see Lemma 5.4) and then that ∇ f α (q), u + + eu - 0 for all strictly active constraint α (see Lemma 5.5).

Let us go into the details. We observe first that Lemma 5.1. For all t ∈ (0, τR ), we have

M q( t) v -( t) -v + ( t) ∈ T ⊥ K q( t) = N K q( t) . Moreover, if v -( t) ∈ T K (q( t)), then v -( t) = v + ( t).
Proof. Indeed, let z ∈ Int(T K (q( t))). Then, with the same arguments as in Proposition 4.3, we know that z ∈ T K (y) for all y in a neighbourhood of q([ t -ε, t + ε]) for ε > 0 small enough, and we may apply ( 22) on [ t -ε, t + ε]. Passing to the limit as ε tends to zero, we get

M q( t) v -( t) -v + ( t) , z 0
and the announced result follows by density. Using [START_REF] Schatzman | A class of nonlinear differential equations of second order in time[END_REF], we obtain also

M q( t) v + ( t) -v -( t) , z - 1 2 v + ( t) 2 q( t) -v -( t) 2 q( t) 0 for all z ∈ Int(T K (q( t))).
By density the same inequality holds for all z ∈ T K (q( t)). Let us assume now that v

-( t) ∈ T K (q( t)). With z = v -( t) we get v + ( t) -v -( t) 2 q( t) 0 i.e. v -( t) = v + ( t). 2
Of course we can reproduce the same computations if t = 0 by considering the time interval

[ t, t + ε]. Since v -(0) = v(0) = lim n→+∞ u h n (0) = u 0 ∈ T K (q 0 ), we may conclude that v + (0) = v -(0) = u 0
and the initial data are satisfied.

Let us consider now t ∈ (0, τR

) such that u is discontinuous at t. Then u -( t) = v -( t) = v + ( t) = u + ( t).
For the sake of simplicity let us denote q = q( t),

v + = v + ( t) and v -= v -( t). We have to prove that v + = -ev -+ (1 + e) proj q T K (q), v -. ( 26 
)
With the previous lemma, we infer that v -/ ∈ T K (q) and q ∈ ∂ K . Moreover

M(q) v --v + ∈ N K (q)
and there exists non-positive real numbers (μ α ) α∈ J (q) such that

M 1/2 (q) v --v + = α∈ J (q)
μ α e α (q)

where we recall that

e α (q) = M -1/2 (q)∇ f α (q) |M -1/2 (q)∇ f α (q)| ∀α ∈ J (q).
Then (26) reduces to

v + + ev -∈ T K (q), v --v + , v + + ev - q = 0
which is equivalent to the following complementarity conditions 0 -μ α ⊥ e α (q), M 1/2 (q) v + + ev - 0 ∀α ∈ J (q).

(

) 27 
Let q k ∈ K ∩ B and r q k > 0, k ∈ {1, . . . , }, be defined as in Lemma 3.4 with B = B(q 0 , R

√ α V T ). We know that K ∩ B ⊂ k=1 B q k , r q k 4 and q(t) ∈ KB , q h n (t) ∈ KB ∀t ∈ [0, τR ], ∀n ∈ N with KB = q ∈ R d ; dist(q, K ∩ B) r B , r B = min 1 k r q k 4 .
We infer that there exists k ∈ {1, . . . , } such that q = q( t) ∈ B(q k , r q k

2 ). By continuity of the mappings f α , α ∈ {1, . . . , ν}, we know that there exists also r q > 0 such that J (q ) ⊂ J (q) for all q ∈ B(q, r q).

Without loss of generality, we may assume that r q r q k /2.

From the continuity of q and the uniform convergence of (q h n ) n∈N to q on [0, τR ], we infer that there exist ε ∈ (0, min( t, τRt)/2) and h * 2 ∈ (0, min(h * 1 , ε 3 ,

r q √ α V 4R )] such that q(t) ∈ B q, r q 4 ∀t ∈ [ t -ε, t + ε], q -q h n C 0 ([0, τR ];R d ) r q 4 ∀h n ∈ 0, h * 2 .
It follows that

q n,i-1 , q n,i ∈ B(q, r q) ∩ B(q k , r q k ) ∀t n,i = ih n ∈ [ t -ε, t + ε], ∀h n ∈ 0, h * 2 . ( 28 
)
Let us recall that, with Lemma 3.5, we already have

M(q n,i+1 )(u n,i -u n,i+1 ) + h n g n,i+1 = α∈ J (q n,i+1 ) μ α n,i+1 M 1/2 (q n,i+1 )e α (q n,i+1 )
and there exists C > 0, independent of n and i, such that

-C μ α n,i+1 0 ∀i ∈ 0, . . . , τR /h n -1 , ∀n ∈ N.
Using again Lemma 3.4 we know that there exist d Lipschitz continuous mappings v j , j ∈ {1, . . . , d}, such that, for all q ∈ B(q k , r q k ), (v j (q )) j∈{1,...,d} is a basis of R d , with |v j (q )| = 1 for all j ∈ {1, . . . , d} and v α (q ) = e α (q ) for all α ∈ J (q ). We define the dual basis (w j (q )) 1 j d for all q ∈ B(q k , r q k ). The mappings w j , j ∈ {1, . . . , d}, are bounded by the constant C * ,B and are also Lipschitz continuous on B(q k , r q k ). We let L q k ∈ R + * be such that, for all j ∈ {1, . . . , d} and for all (q 1 , q 2 ) ∈ B(q k , r q k ) 2 v j q 1v j q 2 L q k q 1q 2 , w j q 1w j q 2 L q k q 1q 2 .

We complete the family (μ α n,i+1 ) α∈ J (q n,i+1 ) by μ α n,i+1 = 0 for all α ∈ {1, . . . , d} \ J (q n,i+1 ). Hence, for all (i + 1)h n ∈ [ tε, t + ε], and for all h n ∈ (0, h * 2 ]:

M(q n,i+1 )(u n,i -u n,i+1 ) + h n g n,i+1 = d α=1 μ α n,i+1 M 1/2 (q n,i+1 )v α (q n,i+1
).

Furthermore, using the basis (w β (q n,i+1 )) 1 β d , there exist real numbers (λ

β n,i+1 ) 1 β d such that u n,i+1 + eu n,i = d β=1 λ β n,i+1 M -1/2 (q n,i+1 )w β (q n,i+1 ) (29)
and since u n,i+1 + eu n,i ∈ T K (q n,i+1 )

M 1/2 (q n,i+1 )v α (q n,i+1 ), u n,i+1 + eu n,i = λ α n,i+1
0 for all α ∈ J (q n,i+1 ). But we have also (see ( 19)) 

h n g n,i+1 -M(q n,i+1 )(u n,i+1 -u n,i ), u n,i+1 + eu n,i = 0 which yields d α=1 λ α n,i+1 μ α n,i+1 = 0 so that λ α n,i+1 μ α n,
0 λ α n,i+1 ⊥ -μ α n,i+1 0 ∀α ∈ J (q n,i+1 ) (30) 
for all (i + 1)h n ∈ [ tε, t + ε] and for all h n ∈ (0, h * 2 ].

We may observe that (30) can be interpreted as a discrete version of the complementarity conditions (27).

Let us consider now α ∈ J (q) such that μ α = 0. We will prove that, for any neighbourhood [ tε 1 , t + ε 1 ] of t (with ε 1 ∈ (0, ε]), the constraint numbered α is saturated by at least one approximate position. More precisely we have Lemma 5.2. Let α ∈ J (q) such that μ α = 0. Then, for all ε 1 ∈ (0, ε], there exists h

ε 1 ∈ (0, h * 2 ] such that, for all h n ∈ (0, h ε 1 ], there exists (i + 1)h n ∈ [ t -ε 1 , t + ε 1 ] such that μ α n,i+1 < 0.
Proof. Let us argue by contradiction and assume that this result does not hold. So let α ∈ J (q) such that μ α = 0, and assume that there exists ε 1 ∈ (0, ε] such that, for all

h ε 1 ∈ (0, h * 2 ] there exists h n ∈ (0, h ε 1 ] such that μ α n,i+1 0 for all (i + 1)h n ∈ [ t -ε 1 , t + ε 1 ]. It follows that there exists a subsequence (h ϕ(n) ) n∈N decreasing to zero such that, for all n ∈ N, h ϕ(n) ∈ (0, h * 2 ] and μ α ϕ(n),i+1 0 ∀(i + 1)h ϕ(n) ∈ [ t -ε 1 , t + ε 1 ]. ( 31 
)
More precisely,

μ α ϕ(n),i+1 = 0 ∀(i + 1)h ϕ(n) ∈ [ t -ε 1 , t + ε 1 ]. Let ε ∈ (0, ε 1 ]. There exists n ε ∈ N such that, for all n n ε , h ϕ(n) ∈ (0, ε/2) and we define i -,ϕ(n) = t -ε h ϕ(n) , i +,ϕ(n) = t + ε h ϕ(n) . Since h ϕ(n) < ε/2, we have i -,ϕ(n) + 1 < i +,ϕ(n) and ih ϕ(n) ∈ [ t -ε, t + ε] for all i ∈ {i -,ϕ(n) + 1, . . . , i +,ϕ(n) }.
For all i ∈ {i -,ϕ(n) , . . . , i +,ϕ(n) -1}, we have

M(q ϕ(n),i+1 )(u ϕ(n),i -u ϕ(n),i+1 ) + h ϕ(n) g ϕ(n),i+1 = d β=1 μ β ϕ(n),i+1 M 1/2 (q ϕ(n),i+1 )v β (q ϕ(n),i+1
).

We infer that

M 1/2 (q ϕ(n),i+1 )(u ϕ(n),i -u ϕ(n),i+1 ), w α (q ϕ(n),i+1 ) = -h ϕ(n) M -1/2 (q ϕ(n),i+1 )g ϕ(n),i+1 , w α (q ϕ(n),i+1 ) + d β=1 μ β ϕ(n),i+1 v β (q ϕ(n),i+1 ), w α (q ϕ(n),i+1 ) = -h ϕ(n) M -1/2 (q ϕ(n),i+1 )g ϕ(n),i+1 , w α (q ϕ(n),i+1 )
and thus

M 1/2 (q ϕ(n),i+1 )(u ϕ(n),i -u ϕ(n),i+1 ), w α (q ϕ(n),i+1 ) h ϕ(n) C g,W R C * ,B √ α V . It follows that M 1/2 (q ϕ(n),i -,ϕ(n) +1 )u ϕ(n),i -,ϕ(n) -M 1/2 (q ϕ(n),i +,ϕ(n) +1 )u ϕ(n),i +,ϕ(n) , w α (q) = i +,ϕ(n)-1 i=i -,ϕ(n) M 1/2 (q ϕ(n),i+1 )u ϕ(n),i -M 1/2 (q ϕ(n),i+2 )u ϕ(n),i+1 , w α (q) = i +,ϕ(n)-1 i=i -,ϕ(n) M 1/2 (q ϕ(n),i+1 )(u ϕ(n),i -u ϕ(n),i+1 ), w α (q ϕ(n),i+1 ) + i +,ϕ(n)-1 i=i -,ϕ(n) M 1/2 (q ϕ(n),i+1 )(u ϕ(n),i -u ϕ(n),i+1 ), w α (q) -w α (q ϕ(n),i+1 ) + i +,ϕ(n)-1 i=i -,ϕ(n) M 1/2 (q ϕ(n),i+1 ) -M 1/2 (q ϕ(n),i+2 ) u ϕ(n),i+1 , w α (q) which yields M 1/2 (q ϕ(n),i -,ϕ(n) +1 )u ϕ(n),i -,ϕ(n) -M 1/2 (q ϕ(n),i +,ϕ(n) +1 )u ϕ(n),i +,ϕ(n) , w α (q) (i +,ϕ(n) -i -,ϕ(n) )h ϕ(n) C g,W R C * ,B √ α V + i +,ϕ(n)-1 i=i -,ϕ(n) M 1/2 (q ϕ(n),i+1 ) |u ϕ(n),i -u ϕ(n),i+1 | w α (q) -w α (q ϕ(n),i+1
)

+ (i +,ϕ(n) -i -,ϕ(n) )h ϕ(n) L V ,2 |u ϕ(n),i+1 | 2 w α (q) (2ε + h ϕ(n) ) C g,W R C * ,B √ α V + R 2 α V C * ,B L V ,2 + i +,ϕ(n)-1 i=i -,ϕ(n) M 1/2 (q ϕ(n),i+1 ) |u ϕ(n),i -u ϕ(n),i+1 | w α (q) -w α (q ϕ(n),i+1 ) (32) 
where we recall that L V ,2 is the Lipschitz constant of M 1/2 on the compact set V . But we can estimate

|w α (q) -w α (q ϕ(n),i+1 )| by w α (q) -w α q ϕ(n),i+1 L q k |q -q ϕ(n),i+1 | L q k q -q h ϕ(n) C 0 ([0, τR ];R d ) + ε R √ α V
and the last term of (32) can be estimated by using Proposition 3.6 as

i +,ϕ(n)-1 i=i -,ϕ(n) M 1/2 (q ϕ(n),i+1 ) |u ϕ(n),i -u ϕ(n),i+1 | w α (q) -w α (q ϕ(n),i+1 ) β V L q k q -q h ϕ(n) C 0 ([0, τR ];R d ) + ε R √ α V i +,ϕ(n)-1 i=i -,ϕ(n) |u ϕ(n),i -u ϕ(n),i+1 | β V C 1 L q k q -q h ϕ(n) C 0 ([0, τR ];R d ) + ε R √ α V . ( 33 
)
Finally, we observe that u ϕ(n

),i -,ϕ(n) = u h ϕ(n) ( t -ε), u ϕ(n),i +,ϕ(n) = u h ϕ(n) ( t + ε) and M 1/2 q h ϕ(n) ( t -ε) u h ϕ(n) ( t -ε) -M 1/2 q h ϕ(n) ( t + ε) u h ϕ(n) ( t + ε) -M 1/2 (q ϕ(n),i -,ϕ(n) +1 )u ϕ(n),i -,ϕ(n) + M 1/2 (q ϕ(n),i +,ϕ(n) +1 )u ϕ(n),i +,ϕ(n) , w α (q) R √ α V M 1/2 q h ϕ(n) ( t -ε) -M 1/2 (q ϕ(n),i -,ϕ(n) +1 ) + M 1/2 q h ϕ(n) ( t + ε) -M 1/2 (q ϕ(n),i +,ϕ(n) +1 ) C * ,B 2h ϕ(n) C * ,B L V ,2 R 2 α V .
Using (32) and (33) we may conclude that

M 1/2 (q n,i +,n )u n,i +,n , v α (q n,i +,n ) O ε + q -q h n C 0 ([0, τR ];R d ) (35) 
and we will pass to the limit as n tends to +∞, then as ε tends to zero.

With the previous lemma, we know that there exists h ε ∈ (0, h * 2 ] such that, for all h n ∈ (0, h ε ]

there exists (i + 1)h n ∈ [ t -ε, t + ε] such that μ α n,i+1 < 0.
Let us consider now h n ∈ (0, h ε ] and define i max,n as the last time-step in [ t -ε, t + ε] such that the constraint numbered α is strictly active i.e.

i max,n = max i ∈ N; (i + 1)h n ∈ [ t -ε, t + ε] and μ α n,i+1 < 0 .
By using (29), we infer that

u n,i max,n +1 = d β=1 λ β n,i max,n +1 M -1/2 (q n,i max,n +1 )w β (q n,i max,n +1 ) with 0 λ β n,i max,n +1 ⊥ -μ β n,i max,n +1 0 ∀β ∈ J (q n,i max,n +1 )
and thus λ α n,i max,n +1 = 0 = u n,i max,n +1 , M 1/2 (q n,i max,n +1 )v α (q n,i max,n +1 ) .

Observing that i max,n + 1 i +,n , we obtain immediately (35

) if i max,n + 1 = i +,n . Otherwise M 1/2 (q n,i +,n )u n,i +,n , v α (q n,i +,n ) = M 1/2 (q n,i max,n +1 )u n,i max,n +1 , v α (q n,i +,n ) -v α (q n,i max,n +1 ) + i +,n -1 i=i max,n +1 M 1/2 (q n,i+1 )u n,i+1 , v α (q n,i +,n ) -M 1/2 (q n,i )u n,i , v α (q n,i +,n ) = M 1/2 (q n,i max,n +1 )u n,i max,n +1 , v α (q n,i +,n ) -v α (q n,i max,n +1 ) + i +,n -1 i=i max,n +1 M 1/2 (q n,i+1 ) u n,i+1 -u n,i -h n M -1 (q n,i+1 )g n,i+1 , v α (q n,i +,n ) + i +,n -1 i=i max,n +1 h n M -1/2 (q n,i+1 )g n,i+1 , v α (q n,i +,n ) + i +,n -1 i=i max,n +1 M 1/2 (q n,i+1 ) -M 1/2 (q n,i ) u n,i , v α (q n,i +,n ) . ( 36 
)
The last two terms in (36) can be estimated as follows

i +,n -1 i=i max,n +1 h n M -1/2 (q n,i+1 )g n,i+1 , v α (q n,i +,n ) h n (i +,n -i max,n -1) C g,W R √ α V 2ε C g,W R √ α V (37) and i +,n -1 i=i max,n +1 M 1/2 (q n,i+1 ) -M 1/2 (q n,i ) u n,i , v α (q n,i +,n ) h n (i +,n -i max,n -1)L V ,2 R 2 α V 2εL V ,2 R 2 α V . ( 38 
)
Using the Lipschitz property of v α on B(q k , r q k ), we can also estimate the first term of the right-hand side of (36)

M 1/2 (q n,i max,n +1 )u n,i max,n +1 , v α (q n,i +,n ) -v α (q n,i max,n +1 ) h n (i +,n -i max,n -1)L q k √ β V R 2 α V 2εL q k √ β V R 2 α V . ( 39 
)
There remains to estimate

i +,n -1 i=i max,n +1 M 1/2 (q n,i+1 )(u n,i+1 -u n,i -h n M -1 (q n,i+1 )g n,i+1 ), v α (q n,i +,n ) = i +,n -1 i=i max,n +1 β∈ J (q n,i+1 ) -μ β n,i+1 v β (q n,i+1 ), v α (q n,i +,n ) .
By definition of i max,n , we have μ α n,i+1 = 0 for all i ∈ {i max,n + 1, . . . , i +,n -1}. Moreover J (q n,i+1 ) ⊂ J (q) for all (i + 1)h n ∈ [ tε, t + ε] and by assumption (H1) we have v β (q), v α (q) 0 ∀β ∈ J (q) \ {α}.

So, for all i ∈ {i max,n + 1, . . . , i +,n -1} and for all β ∈ J (q n,i+1 ) \ {α} we have

v β (q n,i+1 ), v α (q i +,n ) = v β (q n,i+1 ) -v β (q), v α (q n,i +,n ) + v β (q), v α (q) + v β (q), v α (q n,i +,n ) -v α (q) L q k |q n,i+1 -q| + L q k |q -q n,i +,n | 2L q k ε R √ α V + q -q h n C 0 ([0, τR ];R d ) .
Hence, recalling that for all i ∈ {i max,n + 1, . . . , i +,n -1} and for all β ∈ J (q n,i+1 ) we have 0 -μ

β n,i+1 = M(q n,i+1 )(u n,i+1 -u n,i ) -h n g n,i+1 , M -1/2 (q n,i+1 )w β (q n,i+1 ) β V |u n,i+1 -u n,i | + h n C g,W R √ α V C * ,B
we infer from Proposition 3.6 that

i +,n -1 i=i max,n +1 M 1/2 (q n,i+1 ) u n,i+1 -u n,i -h n M -1 (q n,i+1 )g n,i+1 , v α (q n,i +,n ) = i +,n -1 i=i max,n +1 β∈ J (q n,i+1 ) -μ β n,i+1 v β (q n,i+1 ), v α (q n,i +,n ) i +,n -1 i=i max,n +1 β∈ J (q n,i+1 )\{α} 2L q k -μ β n,i+1 ε R √ α V + q -q h n C 0 ([0, τR ];R d ) 2ν L q k C * ,B β V C 1 + 2ε C g,W R √ α V ε R √ α V + q -q h n C 0 ([0, τR ];R d ) .
Inserting this estimate in (36) and using (37), ( 38) and (39), we get

M 1/2 (q n,i +,n )u n,i +,n , v α (q n,i +,n ) O ε + q -q h n C 0 ([0, τR ];R d )
which allows us to conclude. 2

Case 2: e ∈ (0, 1].

According to assumption (H1) we have now an orthogonality property for the active constraints at q relatively to the local momentum metric, i.e.

∇ f α (q), M -1 (q)∇ f β (q) = 0 for all (α, β) ∈ J (q) 2 such that α = β. Hence v α (q), v β (q) = 0 ∀(α, β) ∈ J (q) 2 , α = β and the family (v α (q)) α∈ J (q) is orthonormal.

Let us decompose v -and v + on the basis (M -1/2 (q)w β (q)) β∈{1,...,d} as follows

v ± = d β=1 λ β ± M -1/2 (q)w β (q)
with λ α + 0 and λ α -0 for all α ∈ J (q) since v + ∈ T K (q) and v -∈ -T K (q).

Then M 1/2 (q) v --v + = d β=1 λ β --λ β + w β (q) = α∈ J (q) μ α v α (q) and i max,n i=i -,n +1 M 1/2 (q n,i+1 )u n,i -M 1/2 (q n,i )u n,i-1 , v α (q n,i max,n +1 ) = i max,n -1 i=i -,n M 1/2 (q n,i+2 ) u n,i+1 -u n,i -h n M -1 (q n,i+1 )g n,i+1 , v α (q n,i max,n +1 ) + i max,n -1 i=i -,n h n M 1/2 (q n,i+2 )M -1 (q n,i+1 )g n,i+1 , v α (q n,i max,n +1 ) + i max,n -1 i=i -,n M 1/2 (q n,i+2 ) -M 1/2 (q n,i+1 ) u n,i , v α (q n,i max,n +1 ) . ( 42 
)
The second term of the right-hand side of (41) can be estimated by using the Lipschitz properties of v α :

M 1/2 (q n,i -,n +1 )u n,i -,n , v α (q n,i max,n +1 ) -v α (q n,i -,n +1 ) L q k √ β V R 2 α V (i max,n -i -,n )h n 2εL q k √ β V R 2 α V . ( 43 
)
For the two last terms of the right-hand side of (42) we have:

i max,n -1 i=i -,n
h n M 1/2 (q n,i+2 )M -1 (q n,i+1 )g n,i+1 , v α (q i max,n +1 )

h n (i max,n -i -,n ) √ β V C g,W R α V 2ε √ β V C g,W R α V ( 44 
)
and

i max,n -1 i=i -,n M 1/2 (q n,i+2 ) -M 1/2 (q n,i+1 ) u n,i , v α (q i max,n +1 ) h n (i max,n -i -,n )L V ,2 R 2 α V 2εL V ,2 R 2 α V . ( 45 
)
There remains to estimate the first term of the right-hand side of (42). By using Lemma 3.5 we rewrite it as follows

i max,n -1 i=i -,n M 1/2 (q n,i+2 ) u n,i+1 -u n,i -h n M -1 (q n,i+1 )g n,i+1 , v α (q n,i max,n +1 ) = i max,n -1 i=i -,n β∈ J (q n,i+1 ) -μ β n,i+1 v β (q n,i+1 ), v α (q n,i max,n +1 ) + M 1/2 (q n,i+2 ) -M 1/2 (q n,i+1 ) u n,i+1 -u n,i -h n M -1 (q n,i+1 )g n,i+1 , v α (q n,i max,n +1 ) i max,n -1 i=i -,n β∈ J (q n,i+1 ) -μ β n,i+1 v β (q n,i+1 ), v α (q n,i max,n +1 ) -2εL V ,2 R √ α V 2 R √ α V + h n C g,W R α V .
With assumption (H1) we have

v β (q), v α (q) = δ β α ∀β ∈ J (q)
and we know that J (q n,i+1 ) ⊂ J (q) for all (i + 1)h n ∈ [ tε, t + ε]. So, for all i ∈ {i -,n , . . . , i max,n -1} and for all β ∈ J (q n,i+1 ) we have

v β (q n,i+1 ), v α (q n,i max,n +1 ) = v β (q n,i+1 ) -v β (q), v α (q n,i max,n +1 ) + v β (q), v α (q n,i max,n +1 ) -v α (q) + δ β α δ β α -2L q k ε R √ α V + q -q h n C 0 ([0, τR ];R d ) .
Since 0 -μ

β n,i+1 ( √ β V |u n,i+1 -u n,i | + h n C g,W R √ α V
)C * ,B , we get finally

i max,n -1 i=i -,n β∈ J (q n,i+1 ) -μ β n,i+1 v β (q n,i+1 ), v α (q n,i max,n +1 ) - i max,n -1 i=i -,n β∈ J (q n,i+1 ) -μ β n,i+1 2L q k ε R √ α V + q -q h n C 0 ([0, τR ];R d ) -2ν L q k C * ,B β V C 1 + 2ε C g,W R √ α V ε R √ α V + q -q h n C 0 ([0, τR ];R d ) .
Inserting this estimate in (42) and using (43), ( 44) and (45), we get with (41)

M 1/2 (q n,i max,n +1 )u n,i max,n , v α (q n,i max,n +1 ) M 1/2 (q n,i -,n +1 )u n,i -,n , v α (q n,i -,n +1 ) -O ε + q -q h n C 0 ([0, τR ];R d )
which yields with (40)

M 1/2 (q n,i +,n )u n,i +,n , v α (q n,i +,n ) -e M 1/2 (q n,i -,n +1 )u n,i -,n , v α (q n,i -,n +1 ) + O ε + q -q h n C 0 ([0, τR ];R d ) .
(

) But u n,i -,n = u h n ( t -ε), u n,i +,n = u h n ( t + ε) and 46 
q n,i -,n +1 -q( t -ε)

q n,i -,n +1 -q h n ( t -ε) + q h n ( t -ε) -q( t -ε) R √ α V h n + q -q h n C 0 ([0, τR ];R d )
and q n,i +,n -q( t + ε) q n,i +,n -q h n ( t + ε)

+ q h n ( t + ε) -q( t + ε) R √ α V h n + q -q h n C 0 ([0, τR ];R d ) .
Then, by passing to the limit in (46) as n tends to +∞ we get

M 1/2 q( t + ε) v( t + ε), v α q( t + ε) -e M 1/2 q( t -ε) v( t -ε), v α q( t -ε) + O(ε).
Then, observing that the set D is countable, we can pass to the limit as ε tends to zero, which allows us to conclude. 2

Let us establish now that Lemma 5.5. Let α ∈ J (q) such that μ α = 0. Then,

v α (q), M 1/2 (q) v + + ev - 0. Proof. Once again let ε ∈ (0, ε] \ D and i -,n = t -ε h n , i +,n = t + ε h n ∀h n ∈ 0, h * 2 .
For all h n ∈ (0, h ε ] we consider now the first time-step in [ tε, t + ε] such that the constraint numbered α is strictly active i.e.

i min,n = min i ∈ N;

(i + 1)h n ∈ [ t -ε, t + ε] and μ α n,i+1 < 0 .
We have

λ α n,i min,n +1 = 0 = u n,i min,n +1 + eu n,i min,n , M 1/2 (q n,i min,n +1 )v α (q n,i min,n +1 ) (47) and, if i min,n > i -,n , for all i ∈ {i -,n , . . . , i min,n -1}, μ α n,i+1 = 0. First let us prove that M 1/2 (q n,i -,n )u n,i -,n , v α (q n,i -,n ) -M 1/2 (q n,i min,n )u n,i min,n , v α (q n,i min,n ) O ε + h n + q -q h n C 0 ([0, τR ];R d ) .
Clearly this result is immediate if i min,n = i -,n . Otherwise,

M 1/2 (q n,i -,n )u n,i -,n , v α (q n,i -,n ) -M 1/2 (q n,i min,n )u n,i min,n , v α (q n,i min,n ) = M 1/2 (q n,i min,n )u n,i min,n , v α (q n,i -,n ) -v α (q n,i min,n ) - i min,n -1 i=i -,n M 1/2 (q n,i+1 )u n,i+1 -M 1/2 (q n,i )u n,i , v α (q n,i -,n ) . ( 48 
)
The right-hand side of (48) can be estimated by using the same tricks as in the previous lemmas. More precisely

M 1/2 (q n,i -,n )u n,i -,n , v α (q n,i -,n ) -M 1/2 (q n,i min,n )u n,i min,n , v α (q n,i min,n ) 2εL q k √ β V R 2 α V + 2ε C g,W R √ α V + L V ,2 R 2 α V + i min,n -1 i=i -,n M 1/2 (q n,i+1 ) u n,i+1 -u n,i -h n M -1 (q n,i+1 )g n,i+1 , v α (q n,i -,n ) and i min,n -1 i=i -,n M 1/2 (q n,i+1 ) u n,i+1 -u n,i -h n M -1 (q n,i+1 )g n,i+1 , v α (q n,i -,n ) = i min,n -1 i=i -,n β∈ J (q n,i+1 ) -μ β n,i+1 v β (q n,i+1 ), v α (q n,i -,n ) .
For all β ∈ J (q n,i+1 ) \ {α}, we get as in the previous lemmas

v β (q n,i+1 ), v α (q n,i -,n ) 2L q k (ε + h n ) R √ α V + q -q h n C 0 ([0, τR ];R d ) and since μ α n,i+1 = 0 for all i ∈ {i -,n , . . . , i min,n -1} i min,n -1 i=i -,n M 1/2 (q n,i+1 ) u n,i+1 -u n,i -h n M -1 (q n,i+1 )g n,i+1 , v α (q n,i -,n ) 2ν L q k C * ,B β V C 1 + 2ε C g,W R √ α V (ε + h n ) R √ α V + q -q h n C 0 ([0, τR ];R d ) .
So we obtain

M 1/2 (q n,i -,n )u n,i -,n , v α (q n,i -,n ) -M 1/2 (q n,i min,n )u n,i min,n , v α (q n,i min,n ) O ε + h n + q -q h n C 0 ([0, τR ];R d ) .
(

) Furthermore M 1/2 (q n,i min,n +1 )u n,i min,n , v α (q n,i min,n +1 ) -M 1/2 (q n,i min,n )u n,i min,n , v α (q n,i min,n ) M 1/2 (q n,i min,n +1 ) -M 1/2 (q n,i min,n ) u n,i min,n , v α (q n,i min,n +1 ) + M 1/2 (q n,i min,n )u n,i min,n , v α (q n,i min,n +1 ) -v α (q n,i min,n ) L V ,2 R 2 α V + L q k √ β V R 2 α V h n . ( 49 
) 50 
On the other hand let us prove now that

M 1/2 (q n,i +,n )u n,i +,n , v α (q n,i +,n ) M 1/2 (q n,i min,n +1 )u n,i min,n +1 , v α (q n,i min,n +1 ) -O ε + q -q h n C 0 ([0, τR ];R d ) .
(51)

If i min,n + 1 = i +,n , the result is immediate, otherwise we reproduce the same computations as previously i.e.

M 1/2 (q n,i +,n )u n,i +,n , v α (q n,i +,n ) -M 1/2 (q n,i min,n +1 )u n,i min,n +1 , v α (q n,i min,n +1 ) = M 1/2 (q n,i min,n +1 )u n,i min,n +1 , v α (q n,i +,n ) -v α (q n,i min,n +1 ) + i +,n -1 i=i min,n +1 M 1/2 (q n,i+1 ) -M 1/2 (q n,i ) u n,i , v α (q n,i +,n ) + i +,n -1 i=i min,n +1 h n M -1/2 (q n,i+1 )g n,i+1 , v α (q n,i +,n ) + i +,n -1 i=i min,n +1 M 1/2 (q n,i+1 ) u n,i+1 -u n,i -h n M -1 (q n,i+1 )g n,i+1 , v α (q n,i +,n ) .
The first, second and third terms of the right-hand side can be estimated as O(ε).

For the fourth term we obtain

i +,n -1 i=i min,n +1 M 1/2 (q n,i+1 ) u n,i+1 -u n,i -h n M -1 (q n,i+1 )g n,i+1 , v α (q n,i +,n ) = i +,n -1 i=i min,n +1 β∈ J (q n,i+1 ) -μ β n,i+1 v β (q n,i+1 ), v α (q n,i +,n )
and, for all i ∈ {i min,n + 1, . . . , i +,n -1} and for all β ∈ J (q n,i+1 ) we have

v β (q n,i+1 ), v α (q i +,n ) = δ β α + v β (q n,i+1 ) -v β (q), v α (q n,i +,n ) + v β (q), v α (q n,i +,n ) -v α (q) δ β α -2L q k ε R √ α V + q -q h n C 0 ([0, τR ];R d ) . Thus i +,n -1 i=i min,n +1 M 1/2 (q n,i+1 ) u n,i+1 -u n,i -h n M -1 (q n,i+1 )g n,i+1 , v α (q n,i +,n ) -2ν L q k C * ,B β V C 1 + 2ε C g,W R √ α V ε R √ α V + q -q h n C 0 ([0, τR ];R d ) = -O ε + q -q h n C 0 ([0, τR ];R d ) .
Then (51) together with (49), ( 50) and (47) imply

M 1/2 (q n,i +,n )u n,i +,n , v α (q n,i +,n ) -e M 1/2 (q n,i -,n )u n,i -,n , v α (q n,i -,n ) -O ε + h n + q -q h n C 0 ([0, τR ];R d )
and the conclusion will follow by passing to the limit as n tends to +∞ and ε to zero. 2

From local to global convergence

Since we have assumed only local Lipschitz properties for the mappings M and g, we can not expect a global convergence result in general. Indeed, some finite time explosion may occur for the solutions of the Measure Differential Inclusion, even if the constraints are never saturated. Nevertheless, observing that impacts lead to a loss of energy, it is possible to establish energy estimates for the solutions of ( 7) and thus to show that the convergence/existence result holds on a time interval which depends only on the data. More precisely, we have the following result: Theorem 6.1. Let C > |u 0 | q 0 , there exists τ (C) ∈ (0, T ] such that, for any solution (q, u) of the Cauchy problem defined on [0, τ ], τ ∈ (0, T ] we have q(t)q 0 C ∀t ∈ 0, min τ (C), τ , u(t) q(t) C , dt-a.e. on 0, min τ (C), τ .

Proof. Observing that N T K (q) (v) ⊂ T ⊥ K (q) for all v ∈ R d and for all q ∈ R d , we reproduce the same proof as in [START_REF] Paoli | Time-stepping approximation of rigid-body dynamics with perfect unilateral constraints I[END_REF]part I,Proposition 6]. 2

So we can expect a convergence result on the time interval [0, τ (C)] where C > |u 0 | q 0 characterizes a given energy level and τ (C) is given by the previous result. More precisely, Theorem 6.2. Let C > |u 0 | q 0 and τ (C) ∈ (0, T ] be such that, for any solution of (7) defined on [0, τ ] (τ ∈ (0, T ]) and satisfying q(0) = q 0 and u + (0) = u 0 , we have q(t)q 0 C ∀t ∈ 0, min τ (C), τ , u(t) q(t) C , dt-a.e. on 0, min τ (C), τ .

Then there exists h C > 0 and a sequence (h n ) n∈N decreasing to zero such that the system (10)-( 12) admits a solution for all ih n ∈ [0, τ (C)], for all h n ∈ (0, h C ] and the sequence of approximate solutions (q h , u h ) h n ∈(0,h C ] converges to a solution of the Cauchy problem associated to [START_REF] Mabrouk | A unified variational model for the dynamics of perfect unilateral constraints[END_REF] and the initial data (q 0 , u 0 ).

Proof. Let C > |u 0 | q 0 and choose R = C + 1. We already know, thanks to the previous convergence results, there exist τR ∈ (0, T ] and h * R ∈ (0, h * ] such that, for all h ∈ (0, h * R ] and for all ih ∈ [0, τR ],

the system (10)-( 12) admits a solution and there exists a subsequence of approximate solutions (q h , u h ) h∈(0,h * R ] which converges to a solution of the Cauchy problem associated to [START_REF] Mabrouk | A unified variational model for the dynamics of perfect unilateral constraints[END_REF] and the initial data (q 0 , u 0 ). 

+ i-1 j=0 h n L V ,2 α V |u n, j | 2 q n, j + h n √ α V |g n, j+1 | |u 0 | q 0 + τ n L V ,2 β V R 2 α 2 V + C g,W R √ α V . Thus, S + ε |u 0 | q 0 + t * L V ,2 β V R 2 α 2 V + C g,W R √ α V .
But |u 0 | q 0 = |u + (0)| q(0) S and it follows that t * > 0.

Furthermore, Lemma 3.1 and Proposition 3.2 imply also that, for all t n, j = jh n ∈ [0, τ n ] |u h n , j | q hn , j |u h n ,i | q hn ,i -(τ nt n, j )

L V ,2 β V R 2 α 2 V + C g,W R √ α V .
As a consequence |u h n , j | q hn , j S + ε 2 (52) for all t n, j ∈ [max(0,

τ n -ε 2M ), τ n ] with M = L V ,2 β V R 2 α 2 V + C g,W R √ α V
. Since (τ n ) n∈N converges to t * ∈ (0, min(τ (C), τR )], we infer that there exists an interval I with a non-empty interior such that, for ∀h n ∈ 0, h * R .

n
Since (q h n ) n∈N converges uniformly to q on [0, τR ], we may assume that, for all t ∈ [0, τR ] q h n (t)q 0 q h n (t)q(t)

+ C C + 1 2
∀h n ∈ 0, h * R .

Then, let t n,i 0 ∈ (0, τR ). By using the same arguments as in Lemma 3.1 and Proposition 3.2, we obtain that there exists τ C > 0 such that we can construct (q h n ,i , u h n ,i ) for all ih n ∈ [t n,i 0 , min(t n,i 0 + τ C , T )] by q n,i 0 = q h n (t n,i 0 ), u n,i 0 = u h n (t n,i 0 ), and for all ih n , (i + 1)h n ∈ [t n,i 0 , min(t n,i 0 + τ C , T )] q n,i+1 = q n,i + h n u n,i u n,i+1 = -eu n,i + (1 + e) proj q n,i+1 T K (q n,i+1 ), u n,i + h n

1 + e M(q n,i+1 ) -1 g n,i+1 .

Indeed, if q n, j ∈ V for j ∈ {i, i + 1} and u n,i ∈ B(0, R/ √ α V ) we have |u n,i+1 | q n,i+1 |u n,i | q n,i +

h n L V ,2 α V |u n,i | 2 q n,i + h n C g,W R √ α V .
As in Proposition 3.2 we define 

z(t) = √ α V C g,W R L V ,2 tan L V ,2 C g,W R α 3/2 V t + c , c = Arctan L V ,2 √ α V C g,W R C + 1 
(q h n , u h n ) h n ∈(0, h * R ]
will converge to a solution of the Cauchy problem on [0, min(T , τR + τ C /2)]. If min(T , τR + τ C /2) τ (C) the conclusion follows. Otherwise, observing that τ C depends only on C and the data, we will be able to conclude by applying the previous arguments a finite number of times. 2

  continuous and is locally Lipschitz continuous with respect to its second and third arguments; (H3) the mapping M is of class C 1 from R d to the set of symmetric positive definite d × d matrices;

  i+1 = 0 for all α ∈ {1, . . . , d}. The previous inequalities for the real numbers (μ α n,i+1 ) 1 α d and (λ β n,i+1 ) 1 β d can be summarized in the following complementarity condition:

  If τR τ (C) the conclusion follows immediately with h C = h * R . Otherwise, we observe that Theorem 6.1 implies that for almost every t ∈ [0, τR ] we havelim n→+∞ u h n (t) q hn (t) = u(t) q(t) C . Let R = C + 1 and τR , h * R be defined as in Proposition 3.2. Then lim sup n→+∞ sup |u n,i | q n,i ; t n,i ∈ 0, min τ (C), τR essup u(t) q(t) ; t ∈ 0,min τ (C), τR Let us argue by contradiction and assume that lim sup n→+∞ sup |u n,i | q n,i ; t n,i ∈ 0, min τ (C), τR > S It follows that there existε > 0, h * ε ∈ (0, h * R ] and a subsequence still denoted (h n ) n∈N such that sup |u n,i | q n,i ; t n,i ∈ 0, min τ (C), τRPossibly extracting another subsequence, we may assume without loss of generality that (τ n ) n∈N converges to t * ∈ [0, min(τ (C), τR )]. First let us observe that t * = 0. Indeed, with Lemma 3.1 and Proposition 3.2, we infer that S + ε |u n,i | q n,i |u n,0 | q n,0

	But we can prove a stronger result:
	Lemma 6.3.

C .

Proof.

with S = essup{|u(t)| q(t) ; t ∈ [0, min(τ (C), τR )]}. S + ε ∀h n ∈ 0, h * ε i.e. there exists τ n = ih n ∈ [0, min(τ (C), τR )] such that

|u n,i | q n,i S + ε.

  large enough, I ⊂ [max(0, τ n -ε 2M ), τ n ] ⊂ [0, min(τ (C), τR )] and u h n (t) q hn (t) S + (t) q hn (t) = v(t) q(t) = u(t) q(t) S which gives a contradiction. 2 It follows that there exists h * R ∈ (0, h * R ] such that sup |u n,i | q n,i ; t n,i ∈ 0, min τ (C), τR

		ε 4	∀t ∈ I.
	But, for almost every t ∈ I	
	lim n→+∞	u h n

C + 1 2

  2and by induction we get|u n,i | q n,i z (ii 0 )h n R, |q n,iq n,i 0 | i 0 )h n ∈ [0, τ C ] with τ C > 0 such that τ C √ α V /2R and z(τ C ) R.By choosing t n,i 0 ∈ ( τR -τ C /2, τR ) we can extend the construction of (q n,i , u n,i ) to the interval [0, min(T , τR + τ C /2)]. Moreover, we still have|q n,iq 0 | R, |u n,i | q n,i R for all ih n ∈ [0, min(T , τR + τ C /2)].It follows that a subsequence of the approximate solutions

	i-i 0 -1 j=0	h n |u n, j+i 0 |	1 2
	for all (i		

Passing first to the limit as n tends to +∞, we get M 1/2 q( t -ε) v( tε) -M 1/2 q( t + ε) v( t + ε), w α (q) O(ε).

Then passing to the limit as ε tends to zero

Let us emphasize that the property μ α n,i+1 < 0 implies that f α (q n,i+1 ) 0, i.e. the constraint numbered α is saturated at t n,i+1 but it is a little bit more restrictive condition and we will say in such a case that the constraint numbered α is strictly active at t n,i+1 .

We distinguish now the cases e = 0 and e = 0.

Case 1: e = 0.

Let us recall that the active constraints satisfy assumption (H1):

for all strictly active constraint α.

So, in order to conclude, it remains to establish that

Following the same ideas as in the previous lemma, we will prove that and we infer that, for all α ∈ J (q)

+ since (w β (q)) β∈{1,...,d} and (v α (q)) α∈{1,...,d} are dual bases and the vectors (v α (q)) α∈ J (q) are orthonormal.

If we assume that μ α = 0 we obtain 0 λ α -= λ α + 0.

So λ α -= λ α + = 0 and the complementarity condition ( 27) is satisfied since

Let us assume now that μ α = 0. We decompose the study in two steps by proving first that

Proof. We begin with the same kind of computations as in the previous lemma. More precisely, let

For all h n ∈ (0, h ε ], we define i max,n as previously i.e.

i max,n = max i ∈ N; (i + 1)h n ∈ [ t -ε, t + ε] and μ α n,i+1 < 0 .

So using (29) we have now

and with the same computations as previously we obtain

(40)

There remains now to compare (M 1/2 (q n,i max,n +1 )u n,i max,n , v α (q n,i max,n +1 )) and (M 1/2 (q n,i -,n +1 )u n,i -,n , v α (q n,i -,n +1 )). If i max,n = i -,n there is not anything to prove. Otherwise, by using the same decomposition as in formula (36) we get M 1/2 (q n,i max,n +1 )u n,i max,n , v α (q n,i max,n +1 )

= M 1/2 (q n,i -,n +1 )u n,i -,n , v α (q n,i -,n +1 ) + M 1/2 (q n,i -,n +1 )u n,i -,n , v α (q n,i max,n +1 )v α (q n,i -,n +1 )

M 1/2 (q n,i+1 )u n,i -M 1/2 (q n,i )u n,i-1 , v α (q n,i max,n +1 ) (41)