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Time-Stepping Approximation of Rigid-Body
Dynamics with Perfect Unilateral Constraints.

I: The Inelastic Impact Case

L. Paoli

We consider a discrete mechanical system with a non-trivial mass matrix, sub-
jected to perfect unilateral constraints described by the geometrical inequalities
fα(q) � 0, α ∈ {1, . . . , ν}(ν � 1). We assume that the transmission of the veloci-
ties at impact is governed by Newton’s Law with a coefficient of restitution e = 0
(so that the impact is inelastic). We propose a time-discretization of the second
order differential inclusion describing the dynamics, which generalizes the scheme
proposed in Paoli (J Differ Equ 211:247–281, 2005) and, for any admissible data,
we prove the convergence of approximate motions to a solution of the initial-value
problem.

1. Introduction

We consider a discrete mechanical system subjected to perfect unilateral con-
straints. More precisely, let us denote by u ∈ R

d the generalized coordinates of
a typical configuration of the system. We assume that the set K of admissible
configurations is described by ν � 1 geometrical inequalities

fα(u) � 0, α ∈ {1, . . . , ν}
where fα is a smooth function (at least C1) such that ∇ fα(u) does not vanish in a
neighbourhood of {u ∈ R

d ; fα(u) = 0}.
At each u ∈ R

d we define the set of active constraints J (u) by

J (u) = {α ∈ {1, . . . , ν}; fα(u) � 0
}
.

In order to avoid some geometrical inconsistencies we assume, moreover, that the
active constraints along ∂K are linearly independent, that is, (∇ fα(u))α∈J (u) are
linearly independent for all u ∈ K .



Then the dynamics is described by the following measure differential inclusion
(see [17] or [6] for instance)

M(u)ü − g(t, u, u̇) ∈ −NK (u) (1)

where M(u) is the mass matrix of the system and NK (u) is the normal cone to K
at u given by

NK (u) =

⎧
⎪⎪⎨

⎪⎪⎩

{0} if u ∈ Int(K ),{∑
α∈J (u) λα∇ fα(u), λα � 0 ∀α ∈ J (u)

}
if u ∈ ∂K ,

∅ if u �∈ K .

We also define the tangent cone to K at u

TK (u) =
{
w ∈ R

d ; (∇ fα(u), w) � 0 ∀α ∈ J (u)
}

where (v,w) denotes the Euclidean scalar product of vectors v and w in R
d . Since

u(s) ∈ K for all s, we infer that

u̇(t + 0) ∈ TK (u(t)) , u̇(t − 0) ∈ −TK (u(t)) (t > 0)

whenever u̇(t ± 0) exists. It follows that the velocities are discontinuous at impacts
if u̇(t − 0) �∈ TK (u(t)) and (1) implies that

M (u(t)) (u̇(t + 0) − u̇(t − 0)) ∈ −NK (u(t)) .

This relation does not uniquely determine u̇(t + 0), so we should add an impact
law. Following Moreau ([6] and [7], see also [14] or [16]) we assume that

u̇(t + 0) = ProjM(u(t)) (TK (u(t)) , u̇(t − 0)) (2)

where ProjM(u) denotes the projection relative to the Riemannian metric defined
by the inertia operator M(u).

More precisely, for admissible initial data (u0, v0) ∈ K × TK (u0), we consider
the following problem:
Problem (P) Find u : [0, τ ] → R

d (τ > 0) such that:

(P1) u is an absolutely continuous function from [0, τ ] to K and u̇ ∈ BV (0, τ ; R
d),

(P2) the differential inclusion

M(u)ü − g(t, u, u̇) ∈ −NK (u)

is satisfied in the following sense: there exists a (non-unique) non-negative
measure μ such that the Stieltjes measure du̇ = ü and the usual Lebesgue
measure dt admit densities with respect to dμ, that is, there exist two dμ-
integrable functions v′

μ and t ′μ such that ü = du̇ = v′
μdμ, dt = t ′μdμ, and

such that

M (u(t)) v′
μ(t) − g (t, u(t), u̇(t)) t ′μ(t) ∈ −NK (u(t)) dμ almost everywhere,

(3)



(P3) for all t ∈ (0, τ )

u̇(t + 0) = ProjM(u(t)) (TK (u(t)) , u̇(t − 0)) (4)

(P4) u(0) = u0, u̇(0 + 0) = v0.

Observe that the right-hand side of (3) is a cone, so that the differential inclu-
sion remains true for any non-negative measure μ with respect to which du̇ and dt
admit densities (see [7]).

For this model of impact, a very complete theoretical study has been performed
by Ballard in [1]: using existence results for both ordinary differential equations
and variational inequalities, he proved the existence and uniqueness of a maximal
solution for the initial value problem when the data are analytical. Some counter-
examples show that uniqueness may be lost for less regular data (see [7] or [1]
for instance) but existence results have still been established in the single con-
straint case (that is, ν = 1): see [3,4] and [9,12] for a trivial mass matrix (that is,
M(u) ≡ IdRd ), and [18] and [13,15] for a non-trivial mass matrix. All these results
rely on the study of a sequence of approximate solutions constructed either by a
penalty method [18] or by a time-stepping scheme [3,4,9,12,13,15].

For the multi-constraint case, these techniques encounter a new difficulty: in
general, the motion is not continuous with respect to the data. Nevertheless, some
sufficient conditions ensuring continuity on data have been established in [1] and
[10]. In this framework, the convergence of the time-stepping scheme proposed
in [9] has been extended to the multi-constraint case with inelastic shocks when
the mass matrix is trivial and the set K is convex [11]. The aim of this paper is to
relax these restricting conditions for the mass matrix and the set K , and to prove
an analogous convergence result in a more general setting.

More precisely we assume the same kind of regularity for the data as in [10],
that is,

(H1) g is a continuous function from [0, T ] × R
d × R

d (T > 0) to R
d ;

(H2) for all α ∈ {1, . . . , ν}, the function fα belongs to C1(Rd), ∇ fα is lo-
cally Lipschitz continuous and does not vanish in a neighbourhood of{
u ∈ R

d; fα(u) = 0
}
;

(H3) the set K is defined by

K =
{

u ∈ R
d ; fα(u) � 0, α ∈ {1, . . . , ν}

}

and the active constraints along ∂K are functionally independent, that is, the
vectors (∇ fα(u))J (u) are linearly independent for all u ∈ K ;

(H4) M is a mapping of class C1 from R
d to the set of symmetric positive definite

d × d matrices.
With this last assumption, we may define M−1(u), M1/2(u) and M−1/2(u)

for all u ∈ R
d ; the corresponding mappings are of class C1 from R

d to the
set of symmetric positive definite d × d matrices.



Let F be a function such that
(H5) F is continuous from [0, T ] × R

d × R
d × [0, h∗] (h∗ > 0) to R

d and is
consistent with respect to g, that is,

F(t, u, v, 0) = M−1(u)g(t, u, v) ∀(t, u, v) ∈ [0, T ] × R
d × R

d .

For admissible initial data (u0, v0) ∈ K ×TK (u0), we consider the initial-value
problem (P) and we define a time-stepping scheme as follows:

• the initial positions U 0 and U 1 are given by

U 0 = u0, U 1 ∈ ArgminZ∈K ‖u0 + hv0 + hz(h) − Z‖M(u0) (5)

with limh→0 z(h) = 0,
• for all n ∈ {1, . . . , � T

h }, let

W n = 2U n − U n−1 + h2 Fn, Fn = F

(
nh, U n,

U n − U n−1

h
, h

)
(6)

and

U n+1 ∈ ArgminZ∈K ‖W n − Z‖M(U n) (7)

where ‖ · ‖M(U ) is the norm associated to the kinetic metric at U defined by
‖Z‖2

M(U ) = (Z , Z)M(U ) with

(Z , Z ′)M(U ) = (Z , M(U )Z ′) = (M(U )Z , Z ′)

for all (U, Z , Z ′) ∈ (Rd)3.

In the initialization procedure given at formula (5), the mapping h �→ z(h) can
be chosen in such a way that the unconstrained dynamics is approximated at order
p, with p � 1, by Ũ 1 = u0 + hv0 + hz(h) at t1 = h. For instance, the simplest

choice z(h) ≡ 0 leads to p = 1, while z(h) = h

2
M−1(u0)g(0, u0, v0) leads to

p = 2. Moreover we can observe that we obtain U n+1 = W n when W n ∈ K and
thus

U n+1 − 2U n + U n−1

h2 = Fn when W n ∈ K ,

which is a centered time-discretization of the unconstrained dynamics. Further-
more, if M(u) ≡ IdRd for all u ∈ R

d and K is convex, we recognize the scheme
introduced in [9] for the first time and whose convergence has been established in
[9] when ∂K is smooth, and in [11] in the general case.

We now define the approximate solutions uh by

uh(t) = U n + (t − nh)
U n+1 − U n

h
∀t ∈ [nh, (n + 1)h] ∩ [0, T ]

for all n ∈ {0, . . . , �T/h} and h ∈ (0, h∗].



Since the impact law (2) leads to some discontinuity with respect to the data if
the active constraints at impacts create an obtuse angle (see [10]), we cannot expect
convergence of the approximate motions unless we add some assumptions on the
geometry of active constraints along ∂K .

So, for all u ∈ K and α ∈ J (u), let us define

eα(u) = M−1/2(u)∇ fα(u)

|M−1/2(u)∇ fα(u)|
where | · | denotes the Euclidean norm in R

d , and assume that the “angle condition”
given in [10], which ensures continuity on data in the case of inelastic shocks, holds.
That is,

(H6) for all u ∈ ∂K , for all (α, β) ∈ J (u)2, such that α �= β, we have
(
eα(u), eβ(u)

)
� 0.

This inequality can be interpreted geometrically: in the local momentum metric,
defined by the matrix M−1(u), the active constraints create right or acute angles.

Then, under assumptions (H1)–(H6) we prove the convergence of a subse-
quence of the approximate solutions (uh)h∗�h>0 to a solution of problem (P).

The paper is organized as follows. In the next sections we establish a priori
estimates for the discrete velocities and accelerations on a non-trivial time interval
[0, τ ], with 0 < τ � T . Then we pass to the limit when h tends to zero on [0, τ ]:
using Ascoli’s and Helly’s theorems we obtain the convergence of a subsequence
of (uh)h∗�h>0 to a limit u which satisfies (P1) and (P2). Next, for any instant t
such that u(t) ∈ ∂K , we perform a precise local study of the approximate motions
and we prove that the limit u also satisfies (P3) and (P4). Finally, we conclude the
proof with some energy estimates which allow us to obtain global results.

2. A priori estimates for the discrete velocities

Let us begin with a priori estimates for the discrete velocities. Let B be a given
convex compact subset of R

d such that B ∩ K �= ∅. Possibly decreasing h∗, we
may assume without loss of generality that

|z(h)| � 1 ∀h ∈ (0, h∗].
In this section we consider a more general scheme for which the initialization

procedure involves an initial time t0h ∈ [0, T ) depending on h. This modification
will allow us, in the last section of the paper, to extend the a priori estimates of
the discrete velocities by considering as “new” initial data the already constructed
approximate positions at some time steps t0h and t0h + h.

So, let h ∈ (0, h∗], t0h ∈ [0, T ), U 0 and U 1 be given in B ∩ K and K respec-
tively, and for all n ∈ {1, . . . , � T −t0h

h }
U n+1 ∈ ArgminZ∈K ‖W n − Z‖M(U n)



with

W n = 2U n − U n−1 + h2 Fn, Fn = F

(
t0h + nh, U n,

U n − U n−1

h
, h

)
.

For all h ∈ (0, h∗] and n ∈
{

0, . . . , � T −t0h
h 
}

, we define

V n = U n+1 − U n

h
.

First let us observe that

Lemma 1. For all h ∈ (0, h∗] and n ∈ {1, . . . , �(T − t0h)/h}, we have

M(U n)(V n−1 − V n + hFn) ∈ NK (U n+1).

Proof. Let h ∈ (0, h∗] and n ∈ {1, . . . , �(T − t0h)/h}. By definition of U n+1 we
have

‖W n − U n+1‖2
M(U n) � ‖W n − Z‖2

M(U n)

� ‖W n − U n+1‖2
M(U n) + 2(W n − U n+1, U n+1 − Z)M(U n)

+‖U n+1 − Z‖2
M(U n)

for all Z ∈ K , which yields

(W n − U n+1, Z − U n+1)M(U n) � 1

2
‖U n+1 − Z‖2

M(U n) ∀Z ∈ K . (8)

If U n+1 ∈ Int(K ), we deduce from (8) that

W n − U n+1 = h(V n−1 − V n + hFn) = 0

and

M(U n)(V n−1 − V n + hFn) ∈ NK (U n+1) = {0}.
Assume now that U n+1 ∈ ∂K and let

T̃K (U n+1) =
{
w ∈ R

d ;
(
∇ fα(U n+1), w

)
> 0 ∀α ∈ J (U n+1)

}
.

For all w ∈ T̃K (U n+1) there exists a smooth curve t �→ ϕ(t) such that ϕ(0) =
U n+1, ϕ′(0) = w and ϕ(t) ∈ K for all t in a right neighbourhood of 0. By choosing
Z = ϕ(t) we infer that

(W n − U n+1, w)M(U n) � 0 ∀w ∈ T̃K (U n+1).

Then the density of T̃K (U n+1) in TK (U n+1) leads to

(V n−1 − V n + hFn, w)M(U n) � 0 ∀w ∈ TK (U n+1).

Finally, observing that TK (u) = NK (u)⊥ for all u ∈ K , we are able to conclude
the proof. ��



Let us introduce some notation. We define

λmax(u) = ‖M(u)‖, λmin(u) = 1

‖M−1(u)‖ ∀u ∈ R
d .

Since u �→ M(u) is continuous with values in the set of symmetric positive defi-
nite matrices, the mappings u �→ λmax(u) and u �→ λmin(u) are well defined and
continuous from R

d to R
∗+. Moreover

λmin(u)|w|2 � ‖w‖2
M(u) � λmax(u)|w|2 ∀w ∈ R

d , ∀u ∈ R
d .

Since B is compact, there exists δ > 0 such that, for all (q, q ′) ∈ B × R
d such that

|q − q ′| � δ, we have:

∣
∣λmin(q) − λmin(q

′)
∣
∣ � 1

2
inf
u∈B

λmin(u),

∣
∣λmax(q) − λmax(q

′)
∣
∣ � 1

2
sup
u∈B

λmax(u).

We define

B0 =
{

u ∈ R
d; dist(u,B) � δ

}
. (9)

Then B0 is also a convex compact subset of R
d and we have

1

2
inf
u∈B

λmin(u) � inf
u∈B0

λmin(u), sup
u∈B0

λmax(u) � 3

2
sup
u∈B

λmax(u).

We let

λmin = 1

2
inf
u∈B

λmin(u), λmax = 3

2
sup
u∈B

λmax(u). (10)

Of course we have

0 < λmin|w|2 � ‖w‖2
M(u) � λmax|w|2 ∀w ∈ R

d \ {0}, ∀u ∈ B0.

Let C0 > 0 and CF be given by

CF = sup
{|F(t, u, v, h)| ; t ∈ [0, T ], u ∈ B0 ∪ B1, |v| � C0, h ∈ [0, h∗]} ,

(11)

where B1 = B(u0, C0T + 1). Since the mappings M , M−1, M1/2 and M−1/2 are
of class C1 on R

d , they are Lipschitz continuous on B0 ∪ B1 and we denote by
L M , L M−1 , L M1/2 and L M−1/2 the corresponding Lipschitz constants. Moreover,
the functions ∇ fα , 1 � α � ν, are locally Lipschitzian and there exists also a
positive real number L f such that
∣
∣∇ fα(Z)−∇ fα(Z ′)

∣
∣� L f |Z − Z ′| ∀(Z , Z ′)∈(B0 ∪ B1)

2, ∀α∈{1, . . . , ν}.
Next, we obtain some rough estimates on the discrete velocities. More precisely,

let us assume that

|V l | � C0 ∀l ∈ {0, . . . , n − 1}
for some n � 1. We obtain the following estimate on V n :



Proposition 1. Let C0 > 0 and h∗
0 ∈ (0, h∗] such that

h∗
0 � min

(
C0

CF
,

δ

8C0

√
λmin

λmax

)

where CF is defined by (11), and λmin, λmax are defined by (10). Let h ∈ (0, h∗
0],

τh = min(δ/(2C0), T − t0h) and assume that there exists n ∈ {1, . . . , �τh/h}
such that

|V l | � C0 ∀l ∈ {0, . . . , n − 1}.
Then

|V n| � 4

√
λmax

λmin
C0.

Moreover, for all l ∈ {0, . . . , n} such that J (Ul+1) �= ∅,

(
∇ fα(Ul+1), V l

)
� L f h

2
|V l |2 ∀α ∈ J (Ul+1).

Proof. For all l ∈ {0, . . . , n} we have Ul ∈ B0, since

|Ul − U 0| �
l−1∑

k=0

h|V k | � lhC0 � τhC0 � δ ∀ l ∈ {0, . . . , n}.

By definition of U n+1 we have

‖W n − U n+1‖M(U n) � ‖W n − U n‖M(U n)

since U n ∈ K and

W n − U n+1 = h(V n−1 − V n + hFn),

W n − U n = h(V n−1 + hFn).

Hence

‖V n‖M(U n) � 2‖V n−1‖M(U n) + 2h‖Fn‖M(U n)

and

|V n| �
√

λmax

λmin
(2C0 + 2hCF ) � 4

√
λmax

λmin
C0.

Now, we infer that U n+1 ∈ B0. Indeed

|U n+1 − U 0| � |U n − U 0| + h|V n| � C0τh + 4h

√
λmax

λmin
C0 � C0τh + δ

2
� δ.



Let l ∈ {0, . . . , n} such that J (Ul+1) �= ∅. For all α ∈ J (Ul+1), we have

0 � fα(Ul) − fα(Ul+1) =
∫ 1

0

(
∇ fα

(
Ul+1 + t (Ul − Ul+1)

)
, Ul − Ul+1

)
dt

and thus

(
∇ fα(Ul+1), V l

)
�−
∫ 1

0

(
∇ fα

(
Ul+1+t

(
Ul −Ul+1

))
−∇ fα

(
Ul+1

)
, V l
)

dt

�
∫ 1

0

∣
∣
∣∇ fα

(
Ul+1+t

(
Ul −Ul+1

))
−∇ fα

(
Ul+1

)∣∣
∣
∣
∣
∣V l
∣
∣
∣ dt.

It follows that
(
∇ fα(Ul+1), V l

)
� L f h

2
|V l |2.

��
Now we prove a more precise estimate on the discrete velocities. We have the

following result:

Proposition 2. Let C0 > 0 and assume that there exist C∗
0 > 0 and h∗

0 ∈ (0, h∗]
such that

h∗
0 � min

(
C0

CF
,

δ

8C0

√
λmin

λmax

)

,

|V 0| =
∣
∣
∣
∣
U 1 − U 0

h

∣
∣
∣
∣ � C∗

0 <

√
λmin

λmax
C0 ∀h ∈ (0, h∗

0],

where CF is defined by (11) and λmin, λmax are defined by (10). Then, there exists
τ0 > 0, depending only on B, C0, C∗

0 and the data, such that

|V n| =
∣
∣
∣
∣
U n+1 − U n

h

∣
∣
∣
∣ � C0 ∀nh ∈ [0, min(τ0, T − t0h)] , ∀h ∈ (0, h∗

0].

Proof. Let us assume that h ∈ (0, h∗
0] and n ∈ {1, . . . , �τh/h} such that

∣
∣
∣V l
∣
∣
∣ � C0 ∀l ∈ {0, . . . , n − 1}

with τh = min(δ/(2C0), T − t0h). Then, with Proposition 1, we know that Ul ∈ B0
for all l ∈ {0, . . . , n + 1} and

|V n| � 4

√
λmax

λmin
C0.

Moreover, from Lemma 1 we know that

M(U n)
(

V n−1 − V n + hFn
)

∈ NK (U n+1).



It follows that

V n = V n−1 + hFn if J (U n+1) = ∅.

Let us assume now that J (U n+1) �= ∅.
Using once again, Proposition 1, for all α ∈ J (U n+1) we have also

(
∇ fα(U n+1), V n

)
� L f h

2
|V n|2

and thus, with Lemma 7 (see Appendix),

(
eα(U n+1), M1/2(U n+1)V n

)
� L f h

2

|V n|2
∣
∣M−1/2(U n+1)∇ fα(U n+1)

∣
∣ � L f h

2m B0

|V n|2.

For sake of simplicity, denote Jn = J (U n+1) and en
α = eα(U n+1) for all α ∈ Jn .

From assumption (H3) we know that (∇ fα(U n+1))α∈Jn is linearly independent.
Thus (en

α)α∈Jn is also linearly independent and, using Lemma 7, we know that
there exist two dual bases (v j (U n+1))1� j�d and (w j (U n+1))1� j�d such that

∣
∣
∣v j (U

n+1)

∣
∣
∣ = 1 ∀ j ∈ {1, . . . , d}, v j (U

n+1) = en
j ∀ j ∈ Jn

and
∣
∣
∣w j (U

n+1)

∣
∣
∣ � C∗,B0 ∀ j ∈ {1, . . . , d}

where C∗,B0 depends only on the compact set B0 and the mappings fα , α ∈
{1, . . . , ν}, and M .

Now, we define

wn = −V n + L f h

2m B0

|V n|2
∑

α∈Jn

M−1/2(U n+1)wα(U n+1).

For all α ∈ Jn we have clearly
(
∇ fα(U n+1),−wn

)

=
∣
∣
∣M−1/2(U n+1)∇ fα(U n+1)

∣
∣
∣
((

en
α, M1/2(U n+1)V n

)
− L f h

2m B0

|V n|2
)

� 0,

that is, wn ∈ TK (U n+1). With Lemma 1 we get
(

V n−1 − V n + hFn, wn
)

M(U n)
� 0

which yields
⎛

⎝V n −V n−1−hFn, V n − L f h

2m B0

|V n|2
∑

α∈Jn

M−1/2(U n+1)wα(U n+1)

⎞

⎠

M(U n)

� 0.

(12)



It follows that

‖V n‖2
M(U n) � − L f h

2m B0

|V n |2
∑

α∈Jn

(
M−1/2(U n+1)wα(U n+1), V n−1−V n +hFn)

M(U n)

+(V n, V n−1 + hFn)M(U n) � ‖V n‖M(U n)‖V n−1 + hFn‖M(U n)

+ L f h

2m B0

λmax

λmin
|V n |‖V n‖M(U n)

∑

α∈Jn

∣
∣wα(U n+1)

∣
∣ |V n−1 − V n + hFn |.

Using Proposition 1 we get

|V n|
∑

α∈Jn

∣
∣
∣wα(U n+1)

∣
∣
∣ |V n−1 − V n + hFn|

� 4

√
λmax

λmin
νC0C∗,B0

(

C0

(

1 + 4

√
λmax

λmin

)

+ hCF

)

if Jn �= ∅. Recalling that

V n = V n−1 + hFn if Jn = ∅
we obtain finally that

‖V n‖M(U n) � ‖V n−1‖M(U n) + h
√

λmaxCF

+ 2L f h

m B0

(
λmax

λmin

)3/2

νC∗,B0 C2
0

(

2 + 4

√
λmax

λmin

)

whenever Jn = ∅ or Jn �= ∅.
By using the Lipschitz property of M1/2 on B0, we also have
∥
∥
∥V n−1

∥
∥
∥

M(U n)
�
∥
∥
∥V n−1

∥
∥
∥

M(U n−1)
+
∥
∥
∥M1/2(U n) − M1/2(U n−1)

∥
∥
∥
∣
∣
∣V n−1

∣
∣
∣

�
∥
∥
∥V n−1

∥
∥
∥

M(U n−1)
+ L M1/2 h

∣
∣
∣V n−1

∣
∣
∣
2
.

We infer that
∥
∥V n
∥
∥

M(U n)
�
∥
∥
∥V n−1

∥
∥
∥

M(U n−1)
+ C1h (13)

with

C1 = √λmaxCF + L M1/2C2
0 + 2L f

m B0

(
λmax

λmin

)3/2

νC∗,B0 C2
0

(

2 + 4

√
λmax

λmin

)

.

It follows that

|V n| �
√

λmax

λmin

∣
∣
∣V 0
∣
∣
∣+ nC1h√

λmin
.



Then, choosing τ0 ∈ (0, δ/(2C0)] such that
√

λmax

λmin
C∗

0 + τ0C1√
λmin

� C0

and observing that

|V 0| � C∗
0 <

√
λmin

λmax
C0 � C0 ∀h ∈ (0, h∗

0]

we may conclude the proof by induction on n. ��
Let us now consider the initialization procedure given by formula (5), that is,

let t0h = 0 and U 0 and U 1 be given by

U 0 = u0, U 1 ∈ ArgminZ∈K ‖u0 + hv0 + hz(h) − Z‖M(u0) , lim
h→0

z(h) = 0,

for all h ∈ (0, h∗]. We can choose B = B(u0, C +1) with C � 0, and the previous
results lead to an uniform estimate of the discrete velocities on a non-trivial time
interval. More precisely, we obtain

Theorem 1. For all C∗
0 � 2

√
λmax
λmin

(|v0|+1) and for all C0 >

√
λmax
λmin

C∗
0 , there exist

h∗
0 ∈ (0, h∗] and τ0 > 0, depending only on B, C0, C∗

0 and the data, such that

|V n| =
∣
∣
∣
∣
U n+1 − U n

h

∣
∣
∣
∣ � C0 ∀nh ∈ [0, min(τ0, T )] , ∀h ∈ (0, h∗

0].

Proof. Let C∗
0 � 2

√
λmax
λmin

(|v0| + 1), C0 >

√
λmax
λmin

C∗
0 and h∗

0 ∈ (0, h∗] such that

h∗
0 � min

(
C0

CF
,

δ

8C0

√
λmin

λmax

)

where CF is defined by (11) and λmin, λmax are defined by (10).
By definition of U 1, we have
∥
∥
∥u0 + hv0 + hz(h) − U 1

∥
∥
∥

M(u0)
� ‖u0 + hv0 + hz(h) − Z‖M(u0) ∀Z ∈ K

and by choosing Z = u0 = U 0 we get

‖V 0‖M(U 0) =
∥
∥
∥
∥

U 1 − U 0

h

∥
∥
∥
∥

M(u0)

� 2 ‖v0 + z(h)‖M(u0) .

Thus,

|V 0| � 2

√
λmax

λmin
|v0 + z(h)| � 2

√
λmax

λmin
(|v0| + 1) ∀h ∈ (0, h∗]

and

|V 0| � C∗
0 <

√
λmin

λmax
C0 ∀h ∈ (0, h∗

0].

It follows that we may apply Proposition 2, which yields the announced result. ��



3. Convergence of the approximate solutions (uh)h∗�h>0

Before passing to the limit as h tends to zero in the sequence (uh)h∗�h>0, we
prove an estimate for the discrete accelerations.

Proposition 3. Let us now assume that there exist C0 > 0, τ0 > 0, h∗
0 ∈ (0, h∗]

and a sequence (hi )i∈N, decreasing to zero, such that

|V n| � C0 ∀nhi ∈ [0, min(τ0, T )] , ∀hi ∈ (0, h∗
0]. (14)

Then there exist h∗
1 ∈ (0, h∗

0] and C ′
0 > 0 such that, for all hi ∈ (0, h∗

1]
N∑

n=1

∣
∣
∣V n − V n−1

∣
∣
∣ � C ′

0 with N =
⌊

min(τ0, T )

hi

⌋
.

Proof. The main ideas of the proof are the same as in proposition 2.4 in [11]. More
precisely, let B = B(u0, C + 1) with C � 0, B0 be defined by (9) and CF be
defined by (11). Without loss of generality, possibly decreasing h∗

0, we assume that
C0h∗

0 � 1 and CF h∗
0 � C0. We denote K1 = K ∩ B1 = K ∩ B(u0, C0T + 1) and

λmin,B1 = inf
u∈B1

λmin(u) = 1

supu∈B1
‖M−1(u)‖ ,

λmax,B1 = sup
u∈B1

λmax(u) = sup
u∈B1

‖M(u)‖.
(15)

Let hi ∈ (0, h∗
0]. By definition of the scheme, we have U n ∈ K for all n ∈

{0, . . . , �T/hi + 1}. Assumption (14) implies that

∣
∣
∣U n − U 0

∣
∣
∣ � hi

n−1∑

k=0

∣
∣
∣V k
∣
∣
∣ � nhi C0 � C0T + 1 ∀n ∈ {0, . . . , N + 1}

thus U n ∈ K1 for all n ∈ {0, . . . , N + 1}.
By Lemma 8 (see Appendix), we infer that, for all q ∈ K1, there exist aq ∈ R

d

and two strictly positive numbers δq and rq such that, for all q ′ ∈ B(q, 2δq)

B(aq , rq) ⊂ TK (q ′). (16)

It is obvious that K1 ⊂ ⋃q∈K1
B(q, δq), and a compactness argument implies

that there exists (q j )1� j�
 such that q j ∈ K1 for all j ∈ {1, . . . , 
} and

K1 ⊂

⋃

j=1

B(q j , δq j ).

In the remainder of the proof we will simply write δ j , a j and r j instead of δq j , aq j

and rq j . We define

r = min
1� j�


r j , δ′ = min
1� j�


δ j , τ1 = δ′

C0
.



Let h∗
1 ∈ (0, min(h∗

0, τ1/2)), hi ∈ (0, h∗
1] and n ∈ {0, . . . , N }. Let j ∈

{1, . . . , 
} be such that U n+1 ∈ B(q j , δ j ). Then, for all m ∈ {n + 1, . . . , p}
with p = min(N , n + �τ1/hi), we have

|U m+1 − q j | � |U m+1 − U n+1| + |U n+1 − q j |

�
∣
∣
∣
∣
∣

m∑

k=n+1

hi V k

∣
∣
∣
∣
∣
+ δ j � hi C0(m − n) + δ j � δ′ + δ j � 2δ j .

By applying (16), we obtain that, for all m ∈ {n + 1, . . . , p}, we have B(a j , r j ) ⊂
TK (U m+1). Thus

B M(U m )(a j ,
√

λmin,B1r j )=
{

z ∈R
d; ‖z−a j‖M(U m ) �

√
λmin,B1r j

}
⊂ B(a j , r j ).

Then, we use a classical result about contractions on Hilbert spaces due to Moreau
[5] and we infer that, for all z ∈ R

d

∥
∥
∥z − ProjM(U m )(TK (U m+1), z)

∥
∥
∥

M(U m )

� 1

2
√

λmin,B1r j

(
‖z − a j‖2

M(U m )−
∥
∥
∥ProjM(U m )(TK (U m+1), z) − a j

∥
∥
∥

2

M(U m )

)
.

With Lemma 1 we know that

M(U m)(V m−1 − V m + hi Fm) ∈ NK (U m+1).

Since NK (U m+1) and TK (U m+1) are two closed convex polar cones, we get

ProjM(U m )

(
TK (U m+1), V m−1 − V m + hi Fm

)
= 0.

Hence

‖V m−1 − V m + hi Fm‖M(U m )

� 1

2
√

λmin,B1r j

(∥
∥
∥(V m−1 − V m + hi Fm) − a j

∥
∥
∥

2

M(U m )
− ‖a j‖2

M(U m )

)

� 1

2
√

λmin,B1r j

(∥
∥
∥V m−1 − V m + hi Fm

∥
∥
∥

2

M(U m )

− 2
(

a j , V m−1 − V m + hi Fm
)

M(U m )

)
.

It follows that

‖V m−1 − V m‖M(U m ) � hi‖Fm‖M(U m ) + 1

2
√

λmin,B1r j

(
‖V m−1 − V m‖2

M(U m )

+ 2hi

(
Fm, V m−1 − V m

)

M(U m )
+ h2

i ‖Fm‖2
M(U m )

− 2
(

a j , V m−1 − V m + hi Fm
)

M(U m )

)
. (17)



If Jm �= ∅, we can reproduce the same computations as in Propositions 1 and 2
to obtain (see (12))
⎛

⎝V m −V m−1−hi Fm, V m − L f hi

2m B1

|V m |2
∑

α∈Jm

M−1/2(U m+1)wα(U m+1)

⎞

⎠

M(U m )

�0

which yields

−
(

V m−1, V m
)

M(U m )
� −‖V m‖2

M(U m ) + hi
(
Fm, V m)

M(U m )

+ L f hiλmax,B1

2m B1

√
λmin,B1

νC∗,B1 |V m |2|V m−1 − V m + hi Fm |
(18)

where C∗,B1 is the constant defined at Lemma 7.
Otherwise, if Jm = ∅, we have V m = V m−1 + hi Fm , hence

−
(

V m−1, V m
)

M(U m )
= (−V m + hi Fm, V m)M(U m )

= −‖V m‖2
M(U m ) + hi (Fm, V m)M(U m )

and (18) is still true.
Thus

‖V m−1 − V m‖2
M(U m ) � ‖V m−1‖2

M(U m ) − ‖V m‖2
M(U m ) + 2hi

(
Fm, V m)

M(U m )

+ L f hiλmax,B1

m B1

√
λmin,B1

νC∗,B1C2
0 (2C0 + hi CF ).

Going back to (17) and using the Lipschitz property of M on B1, we obtain

‖V m−1 − V m‖M(U m ) � hi C
′
1 + 1

2
√

λmin,B1r

(
‖V m−1‖2

M(U m−1)
− ‖V m‖2

M(U m )

− 2
(

a j , V m−1
)

M(U m−1)
+ 2
(
a j , V m)

M(U m )

)

for all m ∈ {n + 1, . . . , p}, where

C ′
1 = √λmax,B1CF

(

1 +
√

λmax,B1(C0 + a)
√

λmin,B1r

)

+ C2
F

h∗
0λmax,B1

2
√

λmin,B1r

+ C0 + 2a

2
√

λmin,B1r
C2

0 L M + 3
L f λmax,B1

2rm B1λmin,B1

νC∗,B1C3
0

and a = max1� j�
 |a j |. By summation we get

p∑

m=n+1

‖V m−1 − V m‖M(U m ) � (p − n)hi C
′
1

+ 1

2
√

λmin,B1r

(
‖V n‖2

M(U n) − ‖V p‖2
M(U p)

+ 4λmax,B1C0a
)

.



Recalling that p = min (N , n + �τ1/hi), we infer that

N∑

m=1

‖V m−1 − V m‖M(U m ) � Nhi C
′
1 + 1

2
√

λmin,B1r

(
‖V 0‖2

M(U 0)
− ‖V N ‖2

M(U N )

)

+ (k1 + 1)
2λmax,B1C0a
√

λmin,B1r

where k1 ∈ N is such that

1 + k1

⌊
τ1

hi

⌋
� N < (k1 + 1)

⌊
τ1

hi

⌋
.

Observing that k1 � min(τ0, T )/(τ1 − hi ) for all hi ∈ (0, h∗
1], and

|V m−1 − V m | � 1
√

λmin,B1

‖V m−1 − V m‖M(U m ) ∀m ∈ {1, . . . , N },

we can conclude the proof with

C ′
0 = 1

√
λmin,B1

(

T C ′
1 + λmax,B1C2

0√
λmin,B1r

+ 2λmax,B1C0a
√

λmin,B1r

(
T

τ1 − h∗
1

+ 1

))

.

��
With these results we can now pass to the limit as h tends to zero. Let us recall

the definition of the approximate solutions (uh)h∗�h>0:

uh(t) = U n + (t − nh)
U n+1 − U n

h
∀t ∈ [nh, (n + 1)h] ∩ [0, T ] (19)

and let us define

vh(t) = V n = U n+1 − U n

h
∀t ∈ [nh, (n + 1)h) ∩ [0, T ] (20)

for all n ∈ {0, . . . , �T/h} and h ∈ (0, h∗].
Let us assume from now on that

(H7) there exist C0 > 0, τ0 > 0, h∗
0 ∈ (0, h∗] and a subsequence (hi )i∈N,

decreasing to zero, such that

|V n| � C0 ∀nhi ∈ [0, min(τ0, T )] ∀hi ∈ (0, h∗
0].

We define B = B(u0, C + 1) with C � 0. Let B0 and CF be defined by (9)
and (11), respectively. We assume (without loss of generality) that C0h∗

0 � 1 and
CF h∗

0 � C0. Let us denote τ = min(τ0, T ). From assumption (H7) and Proposi-
tion 3 we know that (uhi )h∗

1�hi >0 is uniformly C0-Lipschitz continuous on [0, τ ]
and (vhi )h∗

1�hi >0 is uniformly bounded in L∞(0, τ ; R
d)∩ BV (0, τ ; R

d). It follows
that (uhi )h∗

1�hi >0 is equicontinuous and, using Ascoli’s and Helly’s theorems, we



infer that there exists a subsequence, still denoted (hi )i∈N, u ∈ C0
([0, τ ]; R

d
)

and
v ∈ BV (0, τ ; R

d), such that

uhi → u strongly in C0
([0, τ ]; R

d
)
, (21)

and

vhi → v pointwise in [0, τ ]. (22)

Moreover, we have

uhi (t) = u0 +
∫ t

0
vhi (s) ds ∀t ∈ [0, T ], ∀hi ∈ (0, h∗].

Thus, with Lebesgue’s theorem, we get

u(t) = lim
hi →0

(
u0 +

∫ t

0
vhi (s) ds

)
= u0 +

∫ t

0
v(s) ds ∀t ∈ [0, τ ]. (23)

We infer that u is C0-Lipschitz continuous and

uhi (t), u(t) ∈ B(u0, C0τ) ⊂ B1 = B(u0, C0T + 1) ∀t ∈ [0, τ ], ∀hi ∈ (0, h∗
1].

Moreover, u is absolutely continuous on [0, τ ], thus u admits a derivative (in the
classical sense) almost everywhere on [0, τ ] and u̇ ∈ L1(0, τ ; R

d). From (23) we
infer that u̇(t) = v(t) for all t ∈ [0, τ ] such that v is continuous at t . Possibly mod-
ifying u̇ on a countable subset of [0, τ ], we may assume without loss of generality
that u̇ = v.

As usual, we adopt the convention

u̇(0 − 0) = v(0 − 0) = v(0) = u̇(0),

u̇(τ + 0) = v(τ + 0) = v(τ) = u̇(τ ).
(24)

Then we observe that

Lemma 2. For all t ∈ [0, τ ], u(t) ∈ K .

Proof. Let t ∈ [0, τ ]. For all hi ∈ (0, h∗
1] there exists n ∈ {0, . . . , � τ

hi
} such that

t ∈ [nhi , (n + 1)hi ). Then, observing that U n ∈ K we get

dist (u(t), K ) �
∣
∣u(t) − U n

∣
∣ �
∣
∣u(t) − uhi (t)

∣
∣+ ∣∣uhi (t) − U n

∣
∣

�
∣
∣u(t)−uhi (t)

∣
∣+(t − nhi )|V n|�∥∥u−uhi

∥
∥

C0([0,τ ];Rd)
+C0hi .

By passing to the limit as hi tends to zero, we obtain dist(u(t), K ) � 0, that is,
u(t) ∈ K . ��



3.1. Study of property (P2)

Now let us prove that u satisfies property (P2), that is, the differential inclusion
(3). First, we observe that there exists at least one non-negative measure μ such
that the Stieltjes measure ü = du̇ = dv and the usual Lebesgue measure dt admit
densities with respect to μ. Indeed, let μ be defined by dμ = |du̇| + dt : μ is
non-negative and the measures ü = du̇ and dt are both absolutely continuous with
respect to μ.

Now, let μ = |du̇| + dt . We denote by v′
μ and t ′μ the densities of du̇ = dv and

dt with respect to dμ. We have to prove that

M (u(t)) v′
μ(t) − g (t, u(t), u̇(t)) t ′μ(t) ∈ −NK (u(t)) dμ almost everywhere.

By Jeffery’s theorem (see [2] or [4]) we know that there exists a dμ-negligible
set N ⊂ [0, τ ] such that, for all t ∈ [0, τ ] \ N :

v′
μ(t) = lim

ε→0+
du̇ (Iε)

dμ (Iε)
, t ′μ(t) = lim

ε→0+
dt (Iε)

dμ (Iε)

with Iε = [t, t + ε] ∩ [0, τ ].
We define

N ′ = {t ∈ [0, τ ]; u̇(t + 0) = u̇(t − 0) �= u̇(t)}
(we may observe that the convention (24) implies that 0 �∈ N ′ and τ �∈ N ′). Since
u̇ = v belongs to BV (0, τ ; R

d), N ′ is, at most, a countable subset of [0, τ ] and is
negligible with respect to |du̇|.

Finally, let N0 = {t ∈ {0} ∪ {τ }; u̇ is continuous at t}. The set N0 is finite (it
contains at most the two points t = 0 and t = τ ), so it is negligible with respect
to |du̇|, and it follows that N ∪ N ′ ∪ N0 is also negligible with respect to dμ. We
have:

Proposition 4. Let t ∈ [0, τ ] \ (N ∪ N ′ ∪ N0) such that u̇ is continuous at t . Then

M (u(t)) v′
μ(t) − g (t, u(t), u̇(t)) t ′μ(t) ∈ −NK (u(t)) . (25)

Proof. Let t ∈ [0, τ ]\(N ∪ N ′ ∪ N0) such that u̇ is continuous at t . Then t ∈ (0, τ );
for simplicity we will denote ū = u(t) in the remainder of the proof. By definition
of NK (ū), (25) is equivalent to

(
g (t, ū, u̇(t)) t ′μ(t) − M(ū)v′

μ(t), w
)

� 0

for all w ∈ TK (ū) = {w ∈ R
d ; (∇ fα(ū), w) � 0, ∀α ∈ J (ū)

}
.

First, let us observe that there exists rū > 0 such that

J (q) ⊂ J (ū) ∀q ∈ B(ū, rū).

Indeed, for all α ∈ {1, . . . , ν} \ J (ū) we have fα(ū) > 0 and, by continuity of the
mappings fα (1 � α � ν), there exists rū > 0 such that

fα(q) � fα(ū)

2
∀q ∈ B(ū, rū), ∀α ∈ {1, . . . , ν} \ J (ū).
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Let us consider T̃K (ū) defined by

T̃K (ū) =
{{

w ∈ R
d; (∇ fα(ū), w) > 0 ∀α ∈ J (ū)

}
if J (ū) �= ∅,

R
d otherwise.

Let w ∈ T̃K (ū). If J (ū) �= ∅, the continuity of the mappings ∇ fα (1 � α � ν)
implies that there exists rw ∈ (0, rū] such that

(∇ fα(q), w) � 0 ∀α ∈ J (ū), ∀q ∈ B(ū, rw),

and thus w ∈ TK (q) for all q ∈ B(ū, rw). If J (ū) = ∅, we still have w ∈ TK (q)

for all q ∈ B(ū, rw) if we choose rw = rū .
Using the continuity of u and the uniform convergence of (uhi )i∈N to u on

[0, τ ], there exists ε̃w ∈ (0, min(t,
τ − t

2
)) such that, for all ε ∈ (0, ε̃w], there

exists hε ∈ (0, h∗
1] such that

u(s) ∈ B
(

ū,
rw

3

)
∀s ∈ [t, t + ε],

hε � min

(
rw

3C0
,
ε

3

)
, ‖u − uhi ‖C0([0,τ ];Rd) � rw

3
∀hi ∈ (0, hε].

It follows that for all ε ∈ (0, ε̃w] and for all hi ∈ (0, hε]

uhi (s) ∈ B

(
ū,

2rw

3

)
∀s ∈ [t, t + ε],

and

U n+1 ∈ B(ū, rw) ∀nhi ∈ [t, t + ε].
Now let ε ∈ (0, ε̃w] and hi ∈ (0, hε]. We define j and k by

j =
⌊

t

hi

⌋
, k =

⌊
t + ε

hi

⌋
.

We have

0 < t j = jhi � t < t j+1 < · · · < tk = khi � t + ε < tk+1 < τ.

From Lemma 1 we know that, for all n ∈ { j + 1, . . . , k}, we have
(

V n−1 − V n + hi Fn, w
)

M(U n)
� 0

since w ∈ TK (U n+1), and by summation

k∑

n= j+1

hi
(
M(U n)Fn, w

)+
k∑

n= j+1

(
M(U n−1)V n−1 − M(U n)V n, w

)

+
k∑

n= j+1

(
M(U n)V n−1 − M(U n−1)V n−1, w

)
� 0. (26)



The last term can be easily estimated as O(ε + hi ). Indeed, the Lipschitz prop-
erty of the mapping M on B1 implies that

∥
∥
∥M(U n) − M(U n−1)

∥
∥
∥ � L M hi |V n−1| � hi L M C0.

It follows that
∣
∣
∣
∣
∣
∣

k∑

n= j+1

(
M(U n)V n−1 − M(U n−1)V n−1, w

)
∣
∣
∣
∣
∣
∣

�
k∑

n= j+1

∥
∥
∥M(U n) − M(U n−1)

∥
∥
∥C0|w|

� (k − j)L M hi C
2
0 |w| � (ε + hi )L M C2

0 |w|.
The second term of the left-hand side of (26) is a telescopic sum which can be

rewritten as
(

M(U j )V j − M(U k)V k, w
)

= (M (uhi (t)
) (

vhi (t) − vhi (t + ε)
)
, w
)

+
((

M(U j ) − M
(
uhi (t)

))
V j , w

)

+
((

M
(
uhi (t)

)− M(U k)
)

V k, w
)

.

Once again, the last two terms can be estimated by using the Lipschitz property of
M on B1:
∣
∣
∣
((

M(U j ) − M
(
uhi (t)

))
V j +

(
M
(
uhi (t)

)− M(U k)
)

V k, w
)∣∣
∣

� L M C0|w| (|uhi ( jhi )−uhi (t)
∣
∣+|uhi (t) − uhi (khi )

∣
∣) � L M C2

0 |w|(hi +ε).

Moreover, with (21) and (22), we have

lim
hi →0

M
(
uhi (t)

) (
vhi (t) − vhi (t + ε)

) = M (u(t)) (v(t) − v(t + ε))

= M (u(t)) (u̇(t) − u̇(t + ε)) .

Let us prove now that

lim
hi →0

k∑

n= j+1

hi
(
M(U n)Fn, w

) =
∫ t+ε

t
(g (s, u(s), u̇(s)) , w) ds

for all ε ∈ (0, ε̃w].
Indeed, let ε ∈ (0, ε̃w]. For all hi ∈ (0, hε] and n ∈ { j + 1, . . . , k}, we have

Fn = F(nhi , U n, V n−1, hi ) and with (H5)

F(nhi , U n, V n−1, 0)= M−1(U n)g
(
nhi , uhi (nhi ), vhi (s)

) ∀s ∈[(n−1)hi , nhi ).



It follows that

k∑

n= j+1

hi
(
M(U n)Fn, w

)−
k∑

n= j+1

∫ nhi

(n−1)hi

(
g
(
nhi , uhi (nhi ), vhi (s)

)
, w
)

ds

=
k∑

n= j+1

hi

(
F(nhi , U n, V n−1, hi ) − F(nhi , U n, V n−1, 0), w

)

M(U n)
(27)

In order to estimate the right-hand side of (27), we denote by ωF the modulus of
continuity of F on the compact set [0, T ] × B1 × B(0, C0) × [0, h∗] and we get

∣
∣
∣
∣
∣
∣

k∑

n= j+1

hi

(
F(nhi , U n, V n−1, hi ) − F(nhi , U n, V n−1, 0), w

)

M(U n)

∣
∣
∣
∣
∣
∣

�
k∑

n= j+1

hi
∥
∥M(U n)

∥
∥ωF (hi )|w| � (ε + hi )λmax,B1ωF (hi )|w|. (28)

Furthermore

k∑

n= j+1

∫ nhi

(n−1)hi

(
g
(
nhi , uhi (nhi ), vhi (s)

)
, w
)

ds

−
∫ t+ε

t

(
g
(
s, uhi (s), vhi (s)

)
, w
)

ds

=
k∑

n= j+1

∫ nhi

(n−1)hi

(
g
(
nhi , uhi (nhi ), vhi (s)

)− g
(
s, uhi (s), vhi (s)

)
, w
)

ds

−
∫ t+ε

khi

(
g
(
s, uhi (s), vhi (s)

)
, w
)

ds +
∫ t

jhi

(
g
(
s, uhi (s), vhi (s)

)
, w
)

ds.

(29)

Recalling that (uhi (s), vhi (s)) ∈ B1 × B(0, C0) for all s ∈ [0, τ ] and for all
hi ∈ (0, h∗

1], we obtain the following estimates for the second and third terms of
the right-hand side of (29):

∣
∣
∣
∣

∫ t+ε

khi

(
g
(
s, uhi (s), vhi (s)

)
, w
)

ds

∣
∣
∣
∣ � |t + ε − khi |Cg|w| � hi Cg|w|,

∣
∣
∣
∣

∫ t

jhi

(
g
(
s, uhi (s), vhi (s)

)
, w
)

ds

∣
∣
∣
∣ � |t − jhi |Cg|w| � hi Cg|w|,

with Cg = sup{|g(s, q, v)|; (s, q, v) ∈ [0, T ] × B1 × B(0, C0)}.
In order to estimate the first term of the right-hand side of (29), we introduce

ωg the modulus of continuity of g on [0, T ] × B1 × B(0, C0). Observing that
∣
∣uhi (nhi ) − uhi (s)

∣
∣ � C0|nhi − s| � C0hi



for all s ∈ [(n − 1)hi , nhi ) and for all n ∈ { j + 1, . . . , k}, we get
∣
∣g
(
nhi , uhi (nhi ), vhi (s)

)− g
(
s, uhi (s), vhi (s)

)∣∣ � ωg(C0hi ) + ωg(hi )

for all s ∈ [(n − 1)hi , nhi ) and for all n ∈ { j + 1, . . . , k}.
Hence

∣
∣
∣
∣
∣
∣

k∑

n= j+1

∫ nhi

(n−1)hi

(
g
(
nhi , uhi (nhi ), vhi (s)

)
, w
)

ds

−
∫ t+ε

t

(
g(s, uhi (s), vhi (s)

)
, w
)

ds

∣
∣
∣
∣
∣
∣

� 2hi Cg|w| + (ωg(C0hi ) + ωg(hi )
)
(k − j)hi |w|

� 2hi Cg|w| + (ωg(C0hi ) + ωg(hi )
)
(ε + hi )|w|. (30)

Then recalling that

uhi (s) →hi →0 u(s) for all s ∈ [0, τ ],
and

vhi (s) →hi →0 v(s) = u̇(s) for a.a. s ∈ [0, τ ],
we infer from Lebesgue’s theorem that

lim
hi →0

∫ t+ε

t

(
g
(
s, uhi (s), vhi (s)

)
, w
)

ds =
∫ t+ε

t
(g (s, u(s), u̇(s)) , w) ds.

(31)

Finally, combining (31), (30) and (29), we obtain

lim
hi →0

k∑

n= j+1

∫ nhi

(n−1)hi

(
g
(
nhi , uhi (nhi ), vhi (s)

)
, w
)

ds

=
∫ t+ε

t
(g (s, u(s), u̇(s)) , w) ds

and with (27) and (28) we may conclude that

lim
hi →0

k∑

n= j+1

hi
(
M(U n)Fn, w

) =
∫ t+ε

t
(g (s, u(s), u̇(s)) , w) ds.

Then, passing to the limit as hi tends to zero in (26), we get
∫ t+ε

t
(g (s, u(s), u̇(s)) , w) ds + (M (u(t)) (u̇(t) − u̇(t + ε)) , w)

� 2L MεC2
0 |w| (32)



for all ε ∈ (0, ε̃w]. Since u̇ is continuous at t , we have u̇(t) = u̇(t − 0) = u̇(t + 0).
Moreover, since u̇ = v and v is continuous, except perhaps on a countable subset
of [0, τ ], we may choose a sequence (εi )i∈N decreasing to zero such that

εi ∈ (0, ε̃w], v(t + εi ) = u̇(t + εi ) = u̇(t + εi + 0) ∀i ∈ N.

It follows that

u̇(t) − u̇(t + εi ) = u̇(t − 0) − u̇(t + εi + 0) = −du̇ ([t, t + εi ]) ∀i ∈ N.

Multiplying (32) by 1
dμ([t,t+εi ]) and passing to the limit as εi tends to zero, we

obtain

(g (t, u(t), u̇(t)) , w) t ′μ(t) − (M (u(t)) v′
μ(t), w

)
� 0 ∀w ∈ T̃K (ū).

Finally, observing that T̃K (ū) is dense in TK (ū) we may conclude. ��
Let us now consider t ∈ [0, τ ] \ (N ∪ N ′ ∪ N0) such that u̇ is discontinuous at

t . Then u̇(t − 0) �= u̇(t + 0) and du̇ possesses a Dirac mass at t . Thus {t} is not
negligible anymore with respect to dμ and (3) is equivalent to

M (u(t)) (u̇(t + 0) − u̇(t − 0)) ∈ −NK (u(t)) .

This property is a direct consequence of the following proposition:

Proposition 5. For all t ∈ [0, τ ] we have

M (u(t)) (u̇(t + 0) − u̇(t − 0)) ∈ −NK (u(t)) .

Proof. Let t ∈ [0, τ ] and denote, for simplicity, ū = u(t). Thanks to the density
of T̃K (ū) in TK (ū), we only need to prove that

(M(ū) (u̇(t − 0) − u̇(t + 0)) , w) � 0 ∀w ∈ T̃K (ū).

Let w ∈ T̃K (ū). As in the proof of the previous proposition, we define rw > 0
such that

J (q) ⊂ J (ū) and w ∈ TK (q) for all q ∈ B(ū, rw).

We also define ε̃w ∈ (0, τ/2) such that for all ε ∈ (0, ε̃w] we have

u(s) ∈ B
(

ū,
rw

3

)
∀s ∈ [t − ε, t + ε] ∩ [0, τ ],

and there exists hε ∈ (0, min
(
h∗

1, rw/(3C0), ε/3
)]

such that

uhi (s) ∈ B

(
ū,

2rw

3

)
∀s ∈ [t − ε, t + ε] ∩ [0, τ ], ∀hi ∈ (0, hε],

and

U n+1 ∈ B(ū, rw) ∀nhi ∈ [t − ε, t + ε] ∩ [0, τ ], ∀hi ∈ (0, hε].



Let ε ∈ (0, ε̃w] and hi ∈ (0, hε]. We define t−ε = max(t −ε, 0), t+ε = min(t +ε, τ )

and

j =
⌊

t−ε
hi

⌋
, k =

⌊
t+ε
hi

⌋

that is, we have

0 � t j = jhi � t−ε < t j+1 < · · · < tk = khi � t+ε � τ.

It follows that

vhi (t
−
ε ) = V j , vhi (t

+
ε ) = V k .

We have
(
M
(
uhi (t

−
ε )
)
vhi (t

−
ε ) − M

(
uhi (t

+
ε )
)
vhi (t

+
ε ), w

)

=
(

M(U j )V j − M(U k)V k, w
)

+
((

M
(
uhi (t

−
ε )
)− M(U j )

)
V j , w

)
+
((

M(U k)−M
(
uhi (t

+
ε )
))

V k, w
)
.

(33)

Following the same ideas as in the previous proof, we use the Lipschitz continuity
of M on B1 to estimate the last two terms of (33). More precisely,
∣
∣
∣
((

M
(
uhi (t

−
ε )
)−M(U j )

)
V j , w

)∣∣
∣� |w||V j |L M

∣
∣
∣uhi (t

−
ε )−U j

∣
∣
∣� L M |w|C2

0 hi ,

and with similar computations
∣
∣
∣
((

M(U k) − M
(
uhi (t

+
ε )
))

V k, w
)∣∣
∣ � L M |w|C2

0 hi .

We rewrite the first term of (33) as

(
M(U j )V j − M(U k)V k, w

)
=

k∑

n= j+1

M(U n)(V n−1 − V n, w)

+
k∑

n= j+1

((
M(U n−1) − M(U n)

)
V n−1, w

)
,

and, observing that w ∈ TK (U n+1) for all n ∈ { j + 1, . . . , k}, we infer from
Lemma 1 that

k∑

n= j+1

M(U n)(V n−1 − V n, w) �
k∑

n= j+1

−hi
(
M(U n)Fn, w

)

� (k − j)hiλmax,B1CF |w|
� (2ε + hi )λmax,B1CF |w|.



It follows that

(
M(U j )V j − M(U k)V k, w

)
�

k∑

n= j+1

∣
∣
∣
((

M(U n−1) − M(U n)
)

V n−1, w
)∣∣
∣

+ (2ε + hi )λmax,B1CF |w|
and, using once again the Lipschitz property of M , we get
(

M(U j )V j − M(U k)V k, w
)

� (2ε + hi )|w|
(
λmax,B1CF + L M C2

0

)
.

Finally, we obtain
(
M
(
uhi (t

−
ε )
)
vhi (t

−
ε ) − M

(
uhi (t

+
ε )
)
vhi (t

+
ε ), w

)

� 2L M |w|C2
0 hi + (2ε + hi )|w|

(
λmax,B1CF + L M C2

0

)
,

for all hi ∈ (0, hε] and for all ε ∈ (0, ε̃w].
Now, passing to the limit as hi tends to zero, then as ε tends to zero, we may

conclude. ��

3.2. Transmission of the velocity at impacts

With the previous proposition, we observe that u̇(t + 0) = u̇(t − 0) for all
t ∈ [0, τ ] such that J (u(t)) = ∅. That is, u̇ is continuous at t if u(t) ∈ Int(K ) and,
in this case, the impact law (4) is satisfied. Thus it remains only to prove that

u̇(t̄ + 0) = ProjM(u(t̄))

(
TK
(
u(t̄)
)
, u̇(t̄ − 0)

)
(34)

for all t̄ ∈ (0, τ ) such that J
(
u(t̄)
) �= ∅.

In order to also obtain some information on u̇(0+0), we now consider t̄ ∈ [0, τ )

such that J
(
u(t̄)
) �= ∅. For simplicity, we denote ū = u(t̄) and u̇+ = u̇(t̄ + 0),

u̇− = u̇(t̄ −0). With Proposition 5 we already know that M(ū)(u̇−−u̇+) ∈ NK (ū),
that is, there exist non-positive real numbers (μα)α∈J (ū) such that

M1/2(ū)
(
u̇− − u̇+) =

∑

α∈J (ū)

μαeα(ū),

where we recall that

eα(ū) = M−1/2(ū)∇ fα(ū)
∣
∣M−1/2(ū)∇ fα(ū)

∣
∣ ∀α ∈ J (ū).

Moreover, since u(t) ∈ K for all t ∈ [0, τ ], we have u̇+ ∈ TK (ū) and (34) reduces
to

(
u̇− − u̇+, u̇+)

M(ū)
= 0,

that is,
(

eα(ū), M1/2(ū)u̇+) = 0 for all α ∈ J (ū) such that μα �= 0.



From assumption (H3) we know that (∇ fα(ū))α∈J (ū) is linearly indepen-
dent. It follows that (eα(ū))α∈J (ū) is also linearly independent and there exist
(eβ)β∈{1,...,d}\J (ū) such that {eα(ū);α ∈ J (ū)} ∪ {eβ;β ∈ {1, . . . , d} \ J (ū)} is
a basis of R

d and |eβ | = 1 for all β ∈ {1, . . . , d} \ J (ū).
Using Lemma 7 (see Appendix) we know that there exists rū ∈ (0, rB1 ] such

that

J (q) ⊂ J (ū) ∀q ∈ B(ū, rū) (35)

and
∣
∣
∣M−1/2(q)∇ fα(q)

∣
∣
∣ � m B1 > 0 ∀q ∈ B(ū, rū), ∀α ∈ J (ū).

Thus, for all α ∈ {1, . . . , d} and for all q ∈ B(ū, rū) we define

vα(q) =

⎧
⎪⎨

⎪⎩

M−1/2(q)∇ fα(q)
∣
∣M−1/2(q)∇ fα(q)

∣
∣ if α ∈ J (ū),

eα if α �∈ J (ū).

From (35) we infer that vα(q) = eα(q) for allα ∈ J (q), for all q ∈ B(ū, rū)∩K .
Moreover, the continuity of M−1/2 and ∇ fα (1 � α � ν) implies that, possibly
decreasing rū , (vα(q))1�α�d is a basis of R

d for all q ∈ B(ū, rū). We define the

dual basis (wα(q))1�α�d for all q ∈ B(ū, rū). From Lemma 7, we know that the
vectors (wα(q))1�α�d are bounded independently of q by a constant C∗,ū and,

since the mappings M−1/2 and ∇ fα (1 � α � ν) are locally Lipschitz continuous,
the mappings vα and wα (1 � α � d) are also Lipschitz continuous on B(ū, rū);
we let Lū ∈ R

+∗ be such that, for all α ∈ {1, . . . , d} and for all (q, q ′) ∈ B(ū, rū)2

∣
∣vα(q) − vα(q ′)

∣
∣ � Lū |q − q ′|, ∣

∣wα(q) − wα(q ′)
∣
∣ � Lū |q − q ′|.

Finally, from the continuity of u and the uniform convergence of (uhi )i∈N to u on
[0, τ ], we infer that there exist ε̄ ∈ (0, τ−t̄

2 ] and h∗
2 ∈ (0, min(h∗

1,
ε̄
3 ,

rū
3C0

)] such
that

u(t) ∈ B
(

ū,
rū

3

)
∀t ∈ [t̄ − ε̄, t̄ + ε̄] ∩ [0, τ ],

‖u − uhi ‖C0([0,τ ];Rd) � rū

3
∀hi ∈ (0, h∗

2].

It follows that

U n+1, U n ∈ B(ū, rū) ∀nhi ∈ [t − ε̄, t + ε̄] ∩ [0, τ ], ∀hi ∈ (0, h∗
2]. (36)

We begin with the following lemma.

Lemma 3. Let α ∈ J (ū) such that μα �= 0. Then, for all ε1 ∈ (0, ε̄] there exists
hε1 ∈ (0, min(h∗

2, ε1/3)] such that for all hi ∈ (0, hε1 ], there exists nhi ∈ [t̄ − ε1,

t̄ + ε1] ∩ [0, τ ] such that fα(U n+1) � 0.



Proof. Let us assume that the announced result does not hold, that is, assume that
there exists ε1 ∈ (0, ε̄] such that, for all hε1 ∈ (0, min(h∗

2, ε1/3)] there exists
hi ∈ (0, hε1 ] such that fα(U n+1) > 0 for all nhi ∈ [t̄ − ε1, t̄ + ε1] ∩ [0, τ ].

Hence, we can extract from (hi )i∈N a subsequence denoted (hϕ(i))i∈N such that
hϕ(i) ∈ (0, min(h∗

2, ε1/3)], (hϕ(i))i∈N decreases to zero and

fα(U n+1) > 0 ∀nhϕ(i) ∈ [t̄ − ε1, t̄ + ε1] ∩ [0, τ ] (37)

for all i ∈ N.
For all ε ∈ (0, ε1], let us establish the following estimate:
∣
∣
∣
(

M1/2 (uhϕ(i) (t
−
ε )
)
vhϕ(i) (t

−
ε ) − M1/2 (uhϕ(i) (t

+
ε )
)
vhϕ(i) (t

+
ε ), wα(ū)

)∣∣
∣

� O
(
ε + hϕ(i) + ‖u − uhϕ(i)‖C0([0,τ ];Rd)

)

where t−ε = max(t̄ − ε, 0) and t+ε = min(t̄ + ε, τ ). Then, by passing to the limit
when i tends to +∞, we will infer with (21) and (22) that

∣
∣
∣
(

M1/2 (u(t−ε )
)
v(t−ε ) − M1/2 (u(t+ε )

)
v(t+ε ), wα(ū)

)∣∣
∣ � O(ε)

and, when ε tends to zero, we will obtain
∣
∣
∣
(

M1/2(ū)
(
u̇(t̄ − 0) − u̇(t̄ + 0)

)
, wα(ū)

)∣∣
∣ = |μα| � 0

which gives a contradiction.
Let ε ∈ (0, ε1]. There exists iε ∈ N such that, for all i � iε we have hϕ(i) ∈

(0, ε/2) and we define

ni =
⌊

t−ε
hϕ(i)

⌋
, pi =

⌊
t+ε

hϕ(i)

⌋
.

Then, ni + 1 < pi and for all n ∈ {ni + 1, . . . , pi } we have nhϕ(i) ∈ [t−ε , t+ε ]. We
infer from Lemma 1 that, for all n ∈ {ni + 1, . . . , pi }

M(U n)
(

V n−1 − V n + hϕ(i)Fn
)

∈ NK (U n+1).

If J (U n+1) �= ∅, there exist non-positive real numbers (μn
β)β∈J (U n+1) such that

M(U n)
(

V n−1 − V n + hϕ(i)Fn
)

=
∑

β∈J (U n+1)

μn
β M1/2(U n+1)eβ(U n+1).

From (36), we obtain eβ(U n+1) = vβ(U n+1) for all β ∈ J (U n+1) and

|μn
β | =

∣
∣
∣
(

M(U n)(V n−1 − V n + hϕ(i)Fn), M−1/2(U n+1)wβ(U n+1)
)∣∣
∣

� λmax,B1√
λmin,B1

(2C0 + h∗
2CF )C∗,ū � 3

λmax,B1√
λmin,B1

C0C∗,ū ∀β ∈ J (U n+1).



From now on, let us denote

C ′
2 = 3

λmax,B1√
λmin,B1

C0C∗,ū .

With (37) we know that α �∈ J (U n+1), thus

∣
∣(M1/2(U n+1)

(
V n−1 − V n + hϕ(i) Fn) , wα(U n+1)

)∣∣

=
∣
∣
∣
∣
∣
∣

∑

β∈J (U n+1)

μn
β

(
M1/2(U n+1)M−1(U n)M1/2(U n+1)vβ(U n+1), wα(U n+1)

)
∣
∣
∣
∣
∣
∣

�
∑

β∈J (U n+1)

∣
∣
∣μn

β

∣
∣
∣
∥
∥M1/2(U n+1)

∥
∥2 ∥∥M−1(U n+1) − M−1(U n)

∥
∥
∣
∣vβ(U n+1)

∣
∣
∣
∣wα(U n+1)

∣
∣

� νC ′
2C∗,ūλmax,B1 L M−1 |U n+1 − U n | � νC ′

2C0C∗,ūλmax,B1 L M−1 hϕ(i)

for all n ∈ {ni + 1, . . . , pi }, if J (U n+1) �= ∅.
If J (U n+1) = ∅, this last inequality remains true since V n−1−V n+hϕ(i)Fn =0

if J (U n+1) = ∅.
It follows that, for all n ∈ {ni + 1, . . . , pi }

(
M1/2(U ni +1)V ni − M1/2(U pi +1)V pi , wα(ū)

)

=
pi∑

n=ni +1

(
M1/2(U n)V n−1 − M1/2(U n+1)V n, wα(ū)

)

=
pi∑

n=ni +1

(
M1/2(U n+1)(V n−1 − V n + hϕ(i)Fn), wα(U n+1)

)

+
pi∑

n=ni +1

((
M1/2(U n) − M1/2(U n+1)

)
V n−1, wα(ū)

)

−
pi∑

n=ni +1

hϕ(i)

(
M1/2(U n+1)Fn, wα(U n+1)

)

+
pi∑

n=ni +1

(
M1/2(U n+1)(V n−1 − V n), wα(ū) − wα(U n+1)

)

which yields

∣
∣
∣
(

M1/2(U ni +1)V ni − M1/2(U pi +1)V pi , wα(ū)
)∣∣
∣

�
pi∑

n=ni +1

νC ′
2C0C∗,ūλmax,B1 L M−1 hϕ(i)



+
pi∑

n=ni +1

C0C∗,ū L M1/2 hϕ(i)|V n| +
pi∑

n=ni +1

hϕ(i)C∗,ūCF
√

λmax,B1

+
pi∑

n=ni +1

√
λmax,B1 |V n − V n−1|

∣
∣
∣wα(ū) − wα(U n+1)

∣
∣
∣ .

Then, observing that for all n ∈ {ni + 1, . . . , pi }
|ū − U n+1| �

∣
∣u(t̄) − uhϕ(i) (t̄)

∣
∣+ ∣∣uhϕ(i) (t̄) − uhϕ(i) (nhϕ(i))

∣
∣+ hϕ(i)|V n|

�
∥
∥u − uhϕ(i)

∥
∥

C0([0,τ ];Rd)
+ C0(ε + hϕ(i)),

we can estimate |wα(ū) − wα(U n+1)| as

Lū

(∥
∥u − uhϕ(i)

∥
∥

C0([0,τ ];Rd)
+ C0(ε + hϕ(i))

)
.

Hence, with the estimate of the discrete accelerations obtained at Proposition 3,
we get

∣
∣(M1/2(U ni +1)V ni − M1/2(U pi +1)V pi , wα(ū)

)∣∣

� (pi − ni )hϕ(i)C∗,ū

(
νC ′

2C0λmax,B1 L M−1 + C2
0 L M1/2 + CF

√
λmax,B1

)

+√λmax,B1 Lū

(∥
∥u − uhϕ(i)

∥
∥

C0([0,τ ];Rd)
+ C0(ε + hϕ(i))

) pi∑

n=ni +1

|V n − V n−1|

= O
(
ε + hϕ(i) + ∥∥u − uhϕ(i)

∥
∥

C0([0,τ ];Rd)

)
. (38)

But V ni = vhϕ(i) (t
−
ε ), V pi = vhϕ(i) (t

+
ε ) and

∣
∣
∣
(

M1/2 (uhϕ(i) (t
−
ε )
)
vhϕ(i) (t

−
ε ) − M1/2 (uhϕ(i) (t

+
ε )
)
vhϕ(i) (t

+
ε ), wα(ū)

)

−
(

M1/2(U ni +1)V ni − M1/2(U pi +1)V pi , wα(ū)
)∣∣
∣

�
(∣∣
∣M1/2 (uhϕ(i) (t

−
ε )
)− M1/2(U ni +1)

∣
∣
∣

+
∣
∣
∣M1/2 (uhϕ(i) (t

+
ε )
)− M1/2(U pi +1)

∣
∣
∣
)

C0C∗,ū

� 2L M1/2C2
0 C∗,ūhϕ(i). (39)

Finally, from (38), (39) we obtain

∣
∣
∣
(

M1/2 (uhϕ(i) (t
−
ε )
)
vhϕ(i) (t

−
ε ) − M1/2 (uhϕ(i) (t

+
ε )
)
vhϕ(i) (t

+
ε ), wα(ū)

)∣∣
∣

= O
(
ε + hϕ(i) + ∥∥u − uhϕ(i)

∥
∥

C0([0,τ ];Rd)

)

for all i � iε and for all ε ∈ (0, ε1], which enables us to conclude. ��



Let us now prove that

(
eα(ū), M1/2(ū)u̇+) = 0 for all α ∈ J (ū) such that μα �= 0.

Lemma 4. Let α ∈ J (ū) be such that μα �= 0. Then

(
eα(ū), M1/2(ū)u̇+) = 0.

Proof. Let α ∈ J (ū) such that μα �= 0. Since u̇+ ∈ TK (ū) we have (M1/2(ū)u̇+,

eα(ū)) = (M1/2(ū)u̇+, vα(ū)) � 0 and it remains to prove that (M1/2(ū)u̇+, vα(ū))

� 0. The main idea of the proof is to obtain an estimate of (M1/2(u(t̄ + ε))

v(t̄ + ε), vα(u(t̄ + ε))) and to pass to the limit when ε tends to zero.
More precisely, let ε ∈ (0, ε̄]. Then

v(t̄ + ε) = lim
hi →0

vhi (t̄ + ε) = lim
hi →0

V pi

with pi = � t̄+ε
hi

 for all i ∈ N. Observing that

∣
∣
∣u(t̄ + ε) − U pi +1

∣
∣
∣ �
∣
∣u(t̄ + ε) − uhi (t̄ + ε)

∣
∣+ ∣∣uhi (t̄ + ε) − uhi ((pi + 1)hi )

∣
∣

� ‖u − uhi ‖C0([0,τ ];Rd) + C0hi

the continuity of vα and M1/2 on B(ū, rū) implies that

(
M1/2 (u(t̄ + ε)

)
v(t̄ + ε), vα

(
u(t̄ + ε)

))

= lim
hi →0

(
M1/2(U pi +1)vhi (t̄ + ε), vα(U pi +1)

)

= lim
hi →0

(
M1/2(U pi +1)V pi , vα(U pi +1)

)
,

and we will prove that

(
M1/2(U pi +1)V pi , vα(U pi +1)

)
� O

(
ε + hi + ‖u − uhi ‖C0([0,τ ];Rd)

)
. (40)

Let us apply Lemma 3: for all i such that hi ∈ (0, hε] we define Ni as the last
time step in [t̄ − ε, t̄ + ε] ∩ [0, τ ] where the constraint fα is active, that is,

Ni = max
{

n ∈ N; nhi ∈ [t̄ − ε, t̄ + ε] ∩ [0, τ ] and fα(U n+1) � 0
}

.

Since α ∈ J (U Ni +1), we infer, as in Proposition 1, that

(
vα(U Ni +1), M1/2(U Ni +1)V Ni

)
=
(

eα(U Ni +1), M1/2(U Ni +1)V Ni
)

� L f hi

2m B1

|V Ni |2 � L f C2
0

2m B1

hi .



Moreover, with the same computations as in Lemma 3, for all nhi ∈ [t̄ − ε,

t̄ + ε] ∩ [0, τ ] such that n � 1 we have

M(U n)(V n−1 − V n + hi Fn) =
∑

β∈J (U n+1)

μn
β M1/2(U n+1)vβ(U n+1) (41)

with

− 3
λmax,B1√
λmin,B1

C0C∗,ū = −C ′
2 � μn

β � 0 ∀β ∈ J (U n+1). (42)

Thus, for all hi ∈ (0, hε] we get

(
M1/2(U pi +1)V pi , vα(U pi +1)

)

=
(

M1/2(U Ni +1)V Ni , vα(U Ni +1)
)

+
(

M1/2(U Ni +1)V Ni , vα(U pi +1) − vα(U Ni +1)
)

+
pi∑

n=Ni +1

(
M1/2(U n+1)V n − M1/2(U n)V n−1, vα(U pi +1)

)

� L f C2
0

2m B1

hi +
(

M1/2(U Ni +1)V Ni , vα(U pi +1) − vα(U Ni +1)
)

+
pi∑

n=Ni +1

((
M1/2(U n+1) − M1/2(U n)

)
V n−1, vα(U pi +1)

)

+
pi∑

n=Ni +1

hi

(
M1/2(U n+1)Fn, vα(U pi +1)

)

+
pi∑

n=Ni +1

(
M1/2(U n+1)(V n − V n−1 − hi Fn), vα(U pi +1)

)
.

Using the Lipschitz property of M1/2 on B1 and recalling that the mappings vα

(α ∈ {1, . . . , ν}) are Lū-Lipschitz continuous on B(ū, rū), we get

(
M1/2(U pi +1)V pi , vα(U pi +1)

)

�
pi∑

n=Ni +1

hi (L M1/2 C2
0 +√λmax,B1 CF ) + L f C2

0

2m B1

hi

+ 2ε
√

λmax,B1 C2
0 Lū +

pi∑

n=Ni +1

(
M1/2(U n+1)(V n − V n−1 − hi Fn), vα(U pi +1)

)
.

(43)



There remains the task of estimating the last term. Using (41) and (42) we
rewrite it as follows

pi∑

n=Ni +1

∑

β∈J (U n+1)

(−μn
β)
(
M1/2(U n+1)M−1(U n)M1/2(U n+1)vβ(U n+1), vα(U pi +1)

)

�
pi∑

n=Ni +1

∑

β∈J (U n+1)

C ′
2

∥
∥M1/2(U n+1)

∥
∥2 ∥∥M−1(U n+1) − M−1(U n)

∥
∥

+
pi∑

n=Ni +1

∑

β∈J (U n+1)

(−μn
β)
(
vβ(U n+1), vα(U pi +1)

)
. (44)

By definition of Ni we have α �∈ J (U n+1) for all n ∈ {Ni + 1, . . . , pi }. Moreover,
from assumption (H6) we have

(
vβ(ū), vα(ū)

) = (eβ(ū), eα(ū)
)

� 0 ∀β ∈ J (ū) \ {α}

and (35) and (36) imply that J (U n+1) ⊂ J (ū) for all nhi ∈ [t̄ − ε, t̄ + ε] ∩ [0, τ ].
It follows that

pi∑

n=Ni +1

∑

β∈J (U n+1)

(−μn
β)
(
vβ(U n+1), vα(U pi +1)

)

�
pi∑

n=Ni +1

∑

β∈J (U n+1)

(−μn
β)
((

vβ(U n+1), vα(U pi +1)
)

− (vβ(ū), vα(ū)
))

�
pi∑

n=Ni +1

∑

β∈J (U n+1)

|μn
β |Lū

(
|U n+1 − ū| + |U pi +1 − ū|

)
.

Hence,

pi∑

n=Ni +1

∑

β∈J (U n+1)

(−μn
β)
(
M1/2(U n+1)M−1(U n)M1/2(U n+1)vβ(U n+1), vα(U pi +1)

)

�
pi∑

n=Ni +1

∑

β∈J (U n+1)

C ′
2λmax,B1 L M−1 C0hi

+
pi∑

n=Ni +1

∑

β∈J (U n+1)

2
∣
∣
∣μn

β

∣
∣
∣ Lū

(
‖u − uhi ‖C0([0,τ ];Rd) + C0(ε + hi )

)
.

But
∣
∣
∣μn

β

∣
∣
∣ =
∣
∣
∣
(

M−1/2(U n+1)M(U n)(V n−1 − V n + hi Fn), wβ(U n+1)
)∣∣
∣

� λmax,B1√
λmin,B1

(
|V n−1 − V n| + hi CF

)
C∗,ū



for all β ∈ J (U n+1), for all n ∈ {Ni + 1, . . . , pi }. Hence, with the estimate of the
discrete accelerations obtained at Proposition 3

pi∑

n=Ni +1

∑

β∈J (U n+1)

(−μn
β)
(
M1/2(U n+1)M−1(U n)M1/2(U n+1)vβ(U n+1), vα(U pi +1)

)

� 2ν
λmax,B1√
λmin,B1

C∗,ū
(
C ′

0 + 2εCF
)

Lū

(
‖u − uhi ‖C0([0,τ ];Rd) + C0(ε + hi )

)

+ 2ενC ′
2λmax,B1 L M−1 C0. (45)

Finally, combining (43), (44) and (45), we obtain
(

M1/2(U pi +1)V pi , vα(U pi +1)
)

� L f C2
0

2m B1

hi + 2εC2
0

√
λmax,B1 Lū

+ 2ε(L M1/2 C2
0 +√λmax,B1CF + νC ′

2λmax,B1 L M−1C0)

+ 2ν
λmax,B1√
λmin,B1

C∗,ū
(
C ′

0 + 2εCF
)

Lū

(
‖u − uhi ‖C0([0,τ ];Rd) + C0(ε + hi )

)

for all hi ∈ (0, hε], for all ε ∈ (0, ε̄], which proves (40). Passing to the limit as hi

tends to zero, then when ε tends to zero, we may conclude the proof. ��

3.3. Study of the initial conditions

We can now prove quite easily that property (P4) is satisfied.

Lemma 5. The initial conditions (u0, v0) are satisfied in the following sense:
u(0) = u0, u̇(0 + 0) = v0.

Proof. Since the sequence (uhi )i∈N converges uniformly to u on [0, τ ], we have

u(0) = lim
hi →0

uhi (0).

But uhi (0) = U 0 = u0 for all hi ∈ (0, h∗], and thus u(0) = u0. From the results
of the previous subsection we already know that

u̇(0 + 0) = ProjM(u(0)) (TK (u(0)) , u̇(0 − 0))

where u̇(0 − 0) = u̇(0) = v(0) (see (24)). It follows that

u̇(0 + 0) = ProjM(u0) (TK (u0), v(0)) . (46)

Since the sequence (vhi )i∈N converges pointwise to v on [0, τ ] we have

v(0) = lim
hi →0

vhi (0).



Let us prove now that limhi →0 vhi (0) = v0. For all hi ∈ (0, h∗] we have

vhi (0) = V 0 = U 1 − U 0

hi

and the definition of U 1 implies that

hi
∥
∥v0 + z(hi ) − vhi (0)

∥
∥

M(u0)
� ‖u0 + hiv0 + hi z(hi ) − Z‖M(u0) ∀Z ∈ K ,

which yields
∥
∥v0 − vhi (0)

∥
∥

M(u0)
� 2 ‖z(hi )‖M(u0) + ‖v0 − v‖M(u0)

for all v ∈ R
d such that u0 + hiv ∈ K .

If u0 ∈ Int(K ), we infer that there exists ru0 > 0 such that u0 + hiv0 ∈ K for
all hi ∈ (0,

ru0|v0|+1 ] and thus

∥
∥v0 − vhi (0)

∥
∥

M(u0)
� 2 ‖z(hi )‖M(u0) ∀hi ∈

(
0, min

(
ru0

|v0| + 1
, h∗
)]

.

Since limh→0 z(h) = 0, we get limhi →0 vhi (0) = v(0) = v0.
Let us assume now that u0 ∈ ∂K . Since v0 ∈ TK (u0) and T̃K (u0) is dense in

TK (u0), we may consider a sequence (vp)p∈N∗ converging to v0 and such that

vp ∈ T̃K (u0) =
{
w ∈ R

d ; (∇ fα(u0), w) > 0 ∀α ∈ J (u0)
}

∀p ∈ N
∗.

It follows that (|vp|)p∈N∗ remains bounded, and we consider M ∈ R
∗+ such that

M � |vp| for all p ∈ N
∗. Using the continuity of the mappings fα , α ∈ {1, . . . , ν},

there exists ru0 > 0 such that

fα(q) � fα(u0)

2
∀α �∈ J (u0), ∀q ∈ B(u0, ru0).

Let p ∈ N
∗. From the definition of ru0 , we infer that

fα(u0 + tvp) � 0 ∀α �∈ J (u0), ∀t ∈
(

0,
ru0

M

)
.

Moreover, if α ∈ J (u0)

fα(u0 + tvp)

= fα(u0) + t
(∇ fα(u0), vp

)+ t
∫ 1

0

(∇ fα(u0 + stvp) − ∇ fα(u0), vp
)

ds.

If t ∈ (0, 1/M], we get |tvp| � 1 and thus u0 + stvp ∈ B1 for all s ∈ [0, 1], which
yields

fα(u0 + tvp) � t
(∇ fα(u0), vp

)− t2 L f |vp|2
2

∀α ∈ J (u0).



It follows that there exists tp ∈ (0, min(1, ru0)/M)
]

such that fα(u0 + tvp) � 0
for all α ∈ {1, . . . , ν} and for all t ∈ (0, tp]. Thus

∥
∥v0 − vhi (0)

∥
∥

M(u0)
� 2 ‖z(hi )‖M(u0) + ‖v0 − vp‖M(u0)

∀hi ∈ (0, min(h∗, tp)
]
, ∀p ∈ N

∗.

Then, passing to the limit when hi tends to zero, we get

‖v0 − v(0)‖M(u0) � ‖v0 − vp‖M(u0) ∀p ∈ N
∗

and recalling that the sequence (vp)p∈N∗ converges to v0, we obtain v0 = v(0).
Finally, using (46) and recalling that v0 ∈ TK (u0), we get

u̇(0 + 0) = ProjM(u0) (TK (u0), v0) = v0.

��

With the previous results, we can state the following theorem:

Theorem 2. Let us assume that there exist C0 > 0, τ0 > 0, h∗
0 ∈ (0, h∗] and a

subsequence of the approximate positions defined by (5)–(7) such that

|V n| =
∣
∣
∣
∣
U n+1 − U n

hi

∣
∣
∣
∣ � C0 ∀nhi ∈ [0, min(τ0, T )] , ∀hi ∈ (0, h∗

0]

with (hi )i∈N decreasing to zero. Let uh and vh be defined by (19) and (20). Then,
there exist a subsequence still denoted (hi )i∈N and (u, v) ∈ C0([0, min(τ0, T )];
R

d) × BV (0, min(τ0, T ); R
d) such that

uhi → u strongly in C0
(
[0, min(τ0, T )] ; R

d
)
,

vhi → v pointwise in [0, min(τ0, T )],

with

u(t) = u0 +
∫ t

0
v(s) ds for all t ∈ [0, min(τ0, T )],

and u is a solution of problem (P) on [0, min(τ0, T )].

By combining Theorem 2 with the a priori estimate of the discrete velocities
obtained in Theorem 1, we immediately obtain a local convergence result for the
numerical scheme, and thus a local existence result for problem (P).



4. Energy estimates and global results

In order to establish global convergence results, we now state an energy estimate
for the solutions of problem (P).

Proposition 6. Let C > ‖v0‖M(u0). Then there exists τ(C) > 0 such that, for any
solution u of problem (P) defined on [0, τ ] (with τ ∈ (0, T ]), we have

|u(t) − u0| � C ∀t ∈ [0, min(τ (C), τ )] ,

‖u̇(t)‖M(u(t)) � C dt almost everywhere on [0, min(τ (C), τ )].

Proof. Let us define the kinetic energy E by

E = 1

2
(u̇, M(u)u̇) .

Since u̇ ∈ BV (0, τ ; R
d) and u is absolutely continuous from [0, τ ] to R

d , E
belongs to BV (0, τ ; R

d). Moreover (see [8])

d E =
(

du̇, M(u)

(
u̇+ + u̇−

2

))
+ 1

2
(u̇, (d M(u)u̇) u̇) dt.

Let [t1, t2] ⊂ [0, τ ). Then

E(t2 + 0) − E(t1 + 0) =
∫

(t1,t2]

(
du̇, M(u)

(
u̇+ + u̇−

2

))

+ 1

2

∫ t2

t1
(u̇(t), (d M (u(t)) u̇(t)) u̇(t)) dt.

Let us define D = {t ∈ (t1, t2]; u̇(t + 0) �= u̇(t − 0)}. The set D is at most
denumerable and
∫

(t1,t2]

(
du̇, M(u)

(
u̇+ + u̇−

2

))
=
∫

(t1,t2]\D

(
du̇, M(u)u̇+)

+
∑

t∈D

1

2

(∥∥
∥u̇(t + 0)‖2

M(u(t))−
∥
∥
∥ u̇(t − 0)‖2

M(u(t))

)
.

But, with property (P2), we have also

M (u(t)) v′
μ(t) − g (t, u(t), u̇(t)) t ′μ(t) ∈ −NK (u(t))

dμ almost everywhere on [0, τ ]
where dμ = |du̇| + dt and v′

μ and t ′μ are, respectively, the densities of du̇ and dt
with respect to μ. Thus

∫

(t1,t2]\D

(
du̇, M(u)u̇+) =

∫

(t1,t2]\D

(
g(t, u, u̇), u̇+) t ′μdμ

+
∫

(t1,t2]\D

(
M(u)v′

μ − g(t, u, u̇)t ′μ, u̇+) dμ.



Since u̇(t + 0) = u̇(t − 0) ∈ (TK (u(t))) ∩ (−TK (u(t))) for all t ∈ (t1, t2] \ D, the
last term vanishes and we get

E(t2 + 0) − E(t1 + 0) = 1

2

∫ t2

t1
(u̇(t), (d M (u(t)) u̇(t)) u̇(t)) dt

+
∫

(t1,t2]\D

(
g(t, u, u̇), u̇+) t ′μdμ

+
∑

t∈D

1

2

(
‖u̇(t + 0)‖2

M(u(t)) − ‖u̇(t − 0)‖2
M(u(t))

)
.

But, with property (P3), we know that

2E(t + 0) = ‖u̇(t + 0)‖2
M(u(t)) � ‖u̇(t − 0)‖2

M(u(t)) = 2E(t − 0) ∀t ∈ (0, τ )

and finally

E(t2 + 0) − E(t1 + 0) �
∫ t2

t1
(g (t, u(t), u̇(t)) , u̇(t)) dt

+ 1

2

∫ t2

t1
(u̇(t), (d M (u(t)) u̇(t)) u̇(t)) dt.

In particular, for all t ∈ [0, τ )

E(t + 0) � E(0 + 0) +
∫ t

0
(g (s, u(s), u̇(s)) , u̇(s)) ds

+ 1

2

∫ t

0
(u̇(s), (d M (u(s)) u̇(s)) u̇(s)) ds.

Observing that C2 > 2E(0+0), the continuity of u on [0, τ ] and the right continuity
of E(· + 0) on [0, τ ) imply that there exists τ̄ ∈ (0, τ ) such that

|u(t) − u(0)| � C, E(t + 0) � C2

2
∀t ∈ [0, τ̄ ]. (47)

We define

τmax = sup {τ̄ ∈ (0, τ ) such that (47) holds} .

Since u is continuous on [0, τ ], we have

|u(t) − u(0)| � C ∀t ∈ [0, τmax], (48)

and

E(t + 0) = 1

2

∣
∣
∣M1/2 (u(t)) u̇(t + 0)

∣
∣
∣
2

� C2

2
∀t ∈ [0, τmax). (49)

It follows that

‖u̇(t)‖2
M(u(t)) =

∣
∣
∣M1/2 (u(t)) u̇(t)

∣
∣
∣
2

� C2 dt almost everywhere on [0, τmax].



If τmax = τ there is nothing to prove. Otherwise, we define

α = sup
{∣∣(g

(
t, q, M−1/2(q)w

)
, M−1/2(q)w

)∣∣ ; t ∈ [0, T ], q ∈ B(u0, C), w ∈ B(0, C)
}
,

β = sup

{
1

2

∥
∥M−1/2(q)

(
d M(q)M−1/2(q)w

)
M−1/2(q)

∥
∥ , q ∈ B(u0, C), w ∈ B(0, C)

}

γ = sup
{∥∥M−1/2(q)

∥
∥ , q ∈ B(u0, C)

}

With (48) and (49) we obtain that for all t ∈ [0, τmax ]

E(t + 0) − E(0 + 0) �
∫ t

0

(
α + β

∣
∣
∣M1/2 (u(s)) u̇(s)

∣
∣
∣
2
)

ds �
(
α + βC2

)
t

and

|u(t) − u0| �
∫ t

0
|u̇(s)| ds �

∫ t

0
γ

∣
∣
∣M1/2 (u(s)) u̇(s)

∣
∣
∣ ds � γ Ct.

Then, the continuity of u on [0, τ ] and the right continuity of E(· + 0) on [0, τ )

imply that τmax � min(τ, τ (C)) where τ(C) is defined by

τ(C) =

⎧
⎪⎪⎨

⎪⎪⎩

min

(
1

γ
,

C2 − 2E(0 + 0)

2(α + βC2)

)
if α �= 0 or β �= 0,

1

γ
if α = 0 and β = 0.

��
Now we can prove that

Theorem 3. Let C > ‖v0‖M(u0) and τ(C) > 0 such that, for any solution u of
problem (P) defined on [0, τ ] (with τ ∈ (0, T ]), we have

|u(t) − u0| � C ∀t ∈ [0, min(τ (C), τ )] ,

‖u̇(t)‖M(u(t)) � C dt almost everywhere on [0, min(τ (C), τ )].

Let uh and vh be the approximate positions and velocities defined by (19) and
(20). Then, there exists a subsequence (uhi , vhi )i∈N, τ ∈ [min(τ (C), T ), T ] and
(u, v) ∈ C0([0, τ ]; R

d) × BV (0, τ ; R
d) such that

uhi → u strongly in C0
([0, τ ]; R

d
)
,

vhi → v pointwise in [0, τ ],
with

u(t) = u0 +
∫ t

0
v(s) ds ∀t ∈ [0, τ ]

and u is a solution of problem (P) on [0, τ ].



Proof. Let C > ‖v0‖M(u0). We define B = B(u0, C + 1) and B0, λmin, λmax by
(9) and (10), respectively. Let us choose C0 such that

C0 >

√
λmax

λmin
C∗

0

with

C∗
0 = max

(

2

√
λmax

λmin
(|v0| + 1) , C ′

)

C ′ = (C + 1) sup
{∥∥
∥M−1/2(q)

∥
∥
∥ ; q ∈ B(u0, C + 1)

}

and let CF be defined by (11).
Then, from Theorem 1, we know that there exists h∗

0 ∈ (0, h∗] and τ0 > 0,
depending only on B, C0, C∗

0 and the data, such that

|V n| =
∣
∣
∣
∣
U n+1 − U n

h

∣
∣
∣
∣ � C0 ∀nh ∈ [0, min(τ0, T )] , ∀h ∈ (0, h∗

0].
(50)

Moreover, from Proposition 2, we know also that, for all t0h ∈ [0, T ) and for all
(Û 0, Û 1) ∈ (B ∩ K ) × K such that

∣
∣
∣Û 1 − Û 0

∣
∣
∣ � hC∗

0 ∀h ∈ (0, h∗
0]

the approximate positions defined by

Û n+1 ∈ ArgminZ∈K ‖Ŵ n − Z‖M(Û n)

with

Ŵ n = 2Û n − Û n−1 + h2 F̂n, F̂n = F

(

t0h + nh, Û n,
Û n − Û n−1

h
, h

)

for all n ∈ {1, . . . , � T −t0h
h } and for all h ∈ (0, h∗

0], satisfy

∣
∣
∣
∣
∣
Û n+1 − Û n

h

∣
∣
∣
∣
∣
� C0 ∀nh ∈ [0, min(τ0, T − t0h)] , ∀h ∈ (0, h∗

0].

Let τ(h) = m(h)h be the maximal discrete time step such that estimate (50)
holds, that is, for all h ∈ (0, h∗

0]

m(h) = max
{

n ∈ {0, . . . , �T/h}; |V k | � C0 ∀k ∈ {0, . . . , n}
}

.

We define τ1 = lim infh→0 τ(h) = lim infh→0 m(h)h. Theorem 1 implies that
τ1 � τ ′ = min(τ0, T ). Let us now distinguish two subcases.



Case 1: τ(C) < T .
Let us prove that τ1 > τ(C) = min(τ (C), T ). Indeed, assume that τ1 � τ(C)

and let ε ∈ (0, τ ′/8). Then, there exists a subsequence (hi )i∈N, decreasing to zero,
such that (τ (hi ))i∈N converges to τ1 and there exists h∗

ε ∈ (0, min(h∗
0, τ

′/8)] such
that m(hi )hi � τ1 − ε for all hi ∈ (0, h∗

ε ]. We may apply theorem 2 with h∗
0 := h∗

ε

and τ0 := τ1 − ε; we infer that there exists a subsequence, still denoted (hi )i∈N,
such that (uhi , vhi )i∈N converges to a solution of problem (P) on [0, τ1 − ε]. Thus,
with Proposition 6 we get

|u(t) − u0| � C ∀t ∈ [0, τ1 − ε],
‖u̇(t)‖M(u(t)) � C dt almost everywhere on [0, τ1 − ε].

Now we prove that:

Lemma 6. We have

lim sup
hi →0+

sup
{∥
∥V n
∥
∥

M(U n)
, 0 � nhi � τ1 − ε

}

� ess sup
{‖u̇(t)‖M(u(t)) , 0 � t � τ1 − ε

}
.

Proof. Let us prove this result by contradiction. Assume that

lim sup
hi →0+

sup
{∥
∥V n
∥
∥

M(U n)
, 0 � nhi � τ1 − ε

}
> S

with S = ess sup
{‖u̇(t)‖M(u(t)) , 0 � t � τ1 − ε

}
. Then, there exist γ > 0, h̃∗

ε ∈
(0, h∗

ε ] and a subsequence (hϕ(i))i∈N decreasing to zero such that

sup
{∥
∥V n
∥
∥

M(U n)
, 0 � nhϕ(i) � τ1 − ε

}
� S + γ ∀hϕ(i) ∈ (0, h̃∗

ε ].

It follows that there exists nϕ(i) ∈ {0, . . . ,
⌊
(τ1 − ε)/hϕ(i)

⌋}
such that

∥
∥V nϕ(i)

∥
∥

M(U nϕ(i) )
� S + γ ∀hϕ(i) ∈ (0, h̃∗

ε ].
Possibly extracting another subsequence, still denoted (hϕ(i))i∈N, we may assume
without loss of generality that the sequence (nϕ(i)hϕ(i))i∈N converges to a limit
τ̃ ∈ [0, τ1 − ε].

First, we observe that τ̃ > 0. Indeed, with the same computations as in Propo-
sition 2 (see (13)), we obtain that, for all hi ∈ (0, h∗

ε ] and for all nhi ∈ [0, τ1 − ε]
‖V n‖M(U n) � ‖V n−1‖M(U n−1) + C2hi � ‖V 0‖M(U 0) + C2nhi (51)

with

C2 = √λmax,B1CF + L M1/2C2
0 + 3L f

2m B1

λmax,B1

λmin,B1

νC∗,B1C2
0 ,

B1 = B(u0, C0T + 1) and λmax,B1 , λmin,B1 given by (15).



Thus, for all hϕ(i) ∈ (0, h̃∗
ε ]

S + γ � ‖V nϕ(i)‖M(U nϕ(i) ) �
∥
∥vhϕ(i) (0)

∥
∥

M(u0)
+ C2nϕ(i)hϕ(i)

and at the limit when i tends to +∞, we get

S + γ � ‖v(0)‖M(u0) + C2τ̃ = ‖v0‖M(u0) + C2τ̃ .

On the other hand, the right continuity of ‖u̇(·+0)‖M(u) implies that, for all ρ > 0,
there exists τρ ∈ (0, τ1 − ε] such that, for all t ∈ [0, τρ]

∣
∣‖u̇(t + 0)‖M(u(t)) − ‖u̇(0 + 0)‖M(u0)

∣
∣ � ρ.

It follows that

‖u̇(0 + 0)‖M(u0) − ρ = ‖v0‖M(u0) − ρ � ‖u̇(t)‖M(u(t)) almost everywhere on [0, τρ ],
and thus

‖v0‖M(u0) − ρ � S ∀ρ > 0.

Hence ‖v0‖M(u0) � S and τ̃ > 0.
Then, once again using the estimate (51), we obtain

S + γ � ‖V nϕ(i)‖M(U nϕ(i) ) � ‖V nϕ(i)−p‖M(U nϕ(i)−p
)
+ C2 phϕ(i)

for all p ∈ {0, . . . , nϕ(i)}, for all hϕ(i) ∈ (0, h̃∗
ε ]. It follows that

S + γ

2
� ‖V k‖M(U k )

for all khϕ(i) ∈ [max(0, nϕ(i)hϕ(i) − γ
2C2

), nϕ(i)hϕ(i)]. Moreover, for all t ∈
[khϕ(i), (k + 1)hϕ(i)),

∣
∣
∣‖vhϕ(i) (t)‖M(U k ) − ‖vhϕ(i) (t)‖M(uhϕ(i) (t))

∣
∣
∣ � L M1/2

∣
∣
∣U k − uhϕ(i) (t)

∣
∣
∣C0

� L M1/2C2
0 hϕ(i).

Since (nϕ(i)hϕ(i))i∈N converges to τ̃ > 0, we infer that there exists an interval
I ⊂ [0, τ1 − ε] with a non-empty interior, such that

I ⊂
[

max

(
0, (nϕ(i) + 1)hϕ(i) − γ

2C2

)
, nϕ(i)hϕ(i)

]

and

S + γ

4
� ‖vhϕ(i) (t)‖M(uhϕ(i) (t))

∀t ∈ I

for all hϕ(i) small enough.
Then, passing to the limit as i tends to +∞, we obtain

S + γ

4
� ‖v(t)‖M(u(t)) ∀t ∈ I

But v(t) = u̇(t) almost everywhere on I , and

S � ess sup
{‖u̇(t)‖M(u(t)); t ∈ I

}

which yields a contradiction. ��



With the previous lemma, possibly decreasing h∗
ε we get

U n ∈ B(u0, C + 1), ‖V n‖M(U n) � C + 1 ∀nhi ∈ [0, τ1 − ε], ∀hi ∈ (0, h∗
ε ].

It follows that

|V n| � (C + 1) sup
{∥∥
∥M−1/2(q)

∥
∥
∥ ; q ∈ B(u0, C + 1)

}
= C ′ � C∗

0 < C0.

We choose now l(hi ) ∈ {0, . . . , �T/h} such that

l(hi )hi ∈
[
τ1 − τ ′

2
, τ1 − τ ′

4

]
∀hi ∈ (0, h∗

ε ]

and let

Û 0 = Ul(hi ), Û 1 = Ul(hi )+1, t0hi = l(hi )hi .

We have

|Û 1 − Û 0| = hi

∣
∣
∣V l(hi )

∣
∣
∣ � C∗

0 hi

and Û 0, Û 1 belong to B ∩ K for all hi ∈ (0, h∗
ε ].

Then, for all n ∈ {l(hi ), . . . , � T
hi

}, U n = Û n−l(hi ) and with Proposition 2, we
obtain

|V n| =
∣
∣
∣
∣
∣
Û n−l(hi )+1 − Û n−l(hi )

hi

∣
∣
∣
∣
∣
� C0

for all (n − l(hi ))hi ∈ [0, min(τ0, T − l(hi )hi )], for all hi ∈ (0, h∗
ε ].

Hence

m(hi )hi > l(hi )hi + min (τ0, T − l(hi )hi ) − hi = min (l(hi )hi + τ0, T ) − hi

for all hi ∈ (0, h∗
ε ]. But l(hi )hi � τ1 − τ ′

2
and τ ′ = min(τ0, T ) = τ0, so

m(hi )hi � min

(
τ1 + τ ′

2
, T

)
− hi ∀hi ∈ (0, h∗

ε ]

and, at the limit, we get

τ1 = lim
hi →0

m(hi )hi � min

(
τ1 + τ ′

2
, T

)

which is absurd.
Thus τ1 = limhi →0 m(hi )hi > τ(C) and there exists h̃∗

0 ∈ (0, h∗
0] such that

m(hi )hi = τ(hi ) � τ1 − τ1 − τ(C)

2
= τ1 + τ(C)

2
> τ(C) ∀hi ∈ (0, h̃∗

0].

Then we apply Theorem 2 with τ0 replaced by τ = τ1+τ(C)
2 and h∗

0 by h̃∗
0, which

yields the announced result.



Case 2: τ(C) � T .
Since m(h)h = τ(h) � T , we have τ1 � T . We consider once again ε ∈

(0, τ ′/8), and we define as previously h∗
ε and l(hi ) for all hi ∈ (0, h∗

ε ]. Then, we
have again

m(hi )hi > l(hi )hi + min (τ0, T − l(hi )hi ) − hi � min

(
τ1 + τ ′

2
, T

)
− hi

(52)

for all hi ∈ (0, h∗
ε ]. Thus, if τ1 < T , min(τ1+ τ ′

2 , T ) ∈ (τ1, T ] and (52) yields a con-
tradiction with the definition of τ1 = limhi →0 m(hi )hi . We infer that τ1 = T and
(52) implies that m(hi )hi > T − hi , that is, m(hi ) � �T/hi for all hi ∈ (0, h∗

ε ].
Hence, we may apply Theorem 2 to obtain the convergence of a subsequence of
(uhi , vhi )i∈N, still denoted (uhi , vhi )i∈N, to a solution of problem (P) on [0, T ].

��

Appendix

Lemma 7. For all compact subset B of R
d , there exist mB > 0 and rB > 0 such

that for all q ∈ K ∩ B and for all α ∈ J (q) we have

|M−1/2(q ′)∇ fα(q ′)| � mB ∀q ′ ∈ B(q, rB).

Furthermore, for all q ∈ K ∩ B, the family (eα(q))α∈J (q) is linearly independent
and can be completed as a basis (v j (q))1� j�d . Let us denote by (w j (q))1� j�d
the dual basis. Then there exists C∗,B > 0 such that

∣
∣v j (q)

∣
∣ = 1,

∣
∣w j (q)

∣
∣ � C∗,B ∀ j ∈ {1, . . . , d}, ∀q ∈ K ∩ B.

Proof. Let B be a given compact subset of R
d . For all α ∈ {1, . . . , ν} we define

Bα = B ∩ {q ∈ R
d; fα(q) � 0} ∩ K .

Then Bα is also a compact subset of R
d and, for all q ∈ Bα , we have fα(q) = 0.

Hence, with (H2)

∇ fα(q) �= 0 ∀q ∈ Bα, ∀α ∈ {1, . . . , ν}.
It follows that there exists mα > 0 such that

mα = inf
q∈Bα

∣
∣
∣M−1/2(q)∇ fα(q)

∣
∣
∣ .

By continuity of the mappings M−1/2 and ∇ fα , we infer that

∀q ∈ Bα, ∃ρq > 0 /

∣
∣
∣M−1/2(q ′)∇ fα(q ′)

∣
∣
∣ �

mα

2
∀q ′ ∈ B

(
q, ρq

)
.

Since Bα is compact and Bα ⊂ ⋃q∈Bα
B(q,

ρq
2 ), there exists a finite set of points

{q1, . . . , qp} ∈ B p
α such that Bα =⋃p

i=1 B(qi ,
ρqi
2 ).



By defining ρα = min
1�i�p

ρqi
2 we obtain that

∀q ∈ Bα,

∣
∣
∣M−1/2(q ′)∇ fα(q ′)

∣
∣
∣ �

mα

2
∀q ′ ∈ B (q, ρα) .

Finally, with

mB = min
1�α�ν

mα

2
, rB = min

1�α�ν
ρα,

we get the first part of the announced result.
As a consequence, for all q ∈ K ∩ B, we can define

vα(q ′) = M−1/2(q ′)∇ fα(q ′)
∣
∣M−1/2(q ′)∇ fα(q ′)

∣
∣ ∀q ′ ∈ B (q, rB) , ∀α ∈ J (q).

Let q ∈ K ∩ B be given. From assumption (H3) we infer that (eα(q))α∈J (q) is
linearly independent, and there exists a family of vectors (eβ)β∈{1,...,d}\J (q) such
that |eβ | = 1 for all β ∈ {1, . . . , d} \ J (q) and {eα(q); α ∈ J (q)} ∪ {eβ; β ∈
{1, . . . , d} \ J (q)} is a basis of R

d .
Let us now define the mappings vβ , β ∈ {1, . . . , d} \ J (q), by

vβ(q ′) = eβ ∀q ′ ∈ B (q, rB) .

The mappings v j , j ∈ {1, . . . , d}, are continuous on B(q, rB) and there exists
rq ∈ (0, rB] such that (v j (q ′))1� j�d is a basis of R

d for all q ′ ∈ B(q, rq). More-
over, using the continuity of the mappings fα , α ∈ {1, . . . , ν}, and possibly decreas-
ing rq , we also have

J (q ′) ⊂ J (q) ∀q ′ ∈ B(q, rq).

It follows that

vα(q ′) = eα(q ′) ∀α ∈ J (q ′), ∀q ′ ∈ B(q, rq) ∩ K .

Let us denote by (w j (q ′))1� j�d the dual basis of (v j (q ′))1� j�d for all q ′ ∈
B(q, rq). Then, the mappings w j , j ∈ {1, . . . , d}, are continuous on B(q, rq).
Indeed, let (δ j )1� j�d be the canonical basis of R

d and define (ai j (q ′))1�i, j�d

and (bi j (q ′))1�i, j�d as the coordinates of vi (q ′) and wi (q ′), 1 � i � d, in the
canonical basis (δ j )1� j�d . That is,

vi (q
′) =

d∑

j=1

ai j (q
′)δ j , wi (q

′) =
d∑

j=1

bi j (q
′)δ j ∀i ∈ {1, . . . , d}.

We denote by A(q ′) = (Ai j (q ′) = ai j (q ′))1�i, j�d and B(q ′) = (Bi j (q ′) =
b ji (q ′))1�i, j�d . Then, by the definition of dual bases, we have

∀(i, j) ∈ {1, . . . , d}2 (
vi (q

′), w j (q
′)
) =

d∑

k=1

aik(q
′)b jk(q

′) =
{

1 if i = j,

0 otherwise,



and thus A(q ′)B(q ′) = IdRd . We infer that B(q ′) = A−1(q ′). But, the mapping

I :
{

GL(Rd) → GL(Rd)

Q �→ Q−1

is continuous, and the mapping q ′ �→ A(q ′) is continuous on B(q, rq) with values
in GL(Rd). It follows that q ′ �→ B(q ′) is also continuous on B(q, rq) and we
infer that the mappings w j , j ∈ {1, . . . , d}, (which are the columns of B) are also
continuous on B(q, rq).

It follows that we can define

C∗,q = max
{∣∣w j (q

′)
∣
∣ ; q ′ ∈ B(q, rq)

}
.

Now, using the compactness of K ∩B, we infer that there exists a finite set of points
(qk)1�k�
 such that qk ∈ K ∩ B for all k ∈ {1, . . . , 
} and

K ∩ B ⊂

⋃

k=1

B
(
qk, rqk

)
.

Then, the conclusion follows with C∗,B = max1�k�
 C∗,qk . ��
Lemma 8. Let us recall the definition of TK (q):

TK (q) =
{
w ∈ R

d ; (∇ fα(q), w) � 0 ∀α ∈ J (q)
}

∀q ∈ R
d

with

J (q) = {α ∈ {1, . . . , ν}; fα(q) � 0
}
.

Then for all q0 ∈ K , there exist δ > 0, r > 0 and a ∈ R
d such that, for all

q ∈ B(q0, 2δ):

B(a, r) ⊂ TK (q). (53)

Proof. Let q0 be in K .
Since the functions ( fα)α=1,...,ν are continuous, we infer that there exists δ1 > 0

such that, for all α �∈ J (q0), we have

fα(q) > 0 if |q − q0| � δ1.

It follows that J (q) ⊂ J (q0) for all q ∈ B(q0, δ1).
Consequently, if J (q0) = ∅, we have J (q) = ∅ for all q ∈ B(q0, δ1) and (53)

is satisfied for δ = δ1/2 and for all a ∈ R
d and r > 0.

Let us assume now that J (q0) �= ∅. For all α ∈ J (q0) we define φα : R
d×R

d →
R by

φα(q, y) = (∇ fα(q), y) ∀(q, y) ∈ R
d × R

d

and φ : R
d × R

d → R by

φ(q, y) = min
α∈J (q0)

φα(q, y) ∀(q, y) ∈ R
d × R

d .



Since fα ∈ C1(Rd) for all α ∈ {1, . . . , ν}, we obtain that the mappings are con-
tinuous. Moreover, since (∇ fα(q0))α∈J (q0) is linearly independent, we can define
a basis (ξi )1�i�d of R

d such that

ξα = ∇ fα(q0) ∀α ∈ J (q0).

Let us denote by (ζi )1�i�d the dual basis of (ξi )1�i�d and let

a =
∑

α∈J (q0)

ζα.

Then, for all α ∈ J (q0), we have

φα(q0, a) = (∇ fα(q0), a) =
⎛

⎝ξα,
∑

β∈J (q0)

ζβ

⎞

⎠ = 1

and φ(q0, a) = 1. By continuity, it follows that there exist r > 0 and δ2 > 0 such
that

φ(q, y) > 0 ∀(q, y) ∈ B(q0, δ2) × B(a, r).

Let δ = 1
2 min(δ1, δ2). For all q ∈ B(q0, 2δ) we have

J (q) ⊂ J (q0), φ(q, y) = min
α∈J (q0)

(∇ fα(q), y) > 0 ∀y ∈ B(a, r)

which implies that

B(a, r) ⊂ TK (q) =
{

y ∈ R
d; (∇ fα(q), y) � 0 ∀α ∈ J (q)

}

and (53) is satisfied. ��
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