HAL
open science

Time-Stepping Approximation of Rigid-Body Dynamics with Perfect Unilateral Constraints. I: The Inelastic Impact Case

Laetitia Paoli

To cite this version:

Laetitia Paoli. Time-Stepping Approximation of Rigid-Body Dynamics with Perfect Unilateral Constraints. I: The Inelastic Impact Case. Archive for Rational Mechanics and Analysis, 2010, 198 (2), pp.457-503. 10.1007/s00205-010-0311-0 . hal-01566929

HAL Id: hal-01566929

https://hal.science/hal-01566929

Submitted on 21 Jul 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Time-Stepping Approximation of Rigid-Body Dynamics with Perfect Unilateral Constraints. I: The Inelastic Impact Case

L. Paoli

We consider a discrete mechanical system with a non-trivial mass matrix, subjected to perfect unilateral constraints described by the geometrical inequalities $f_{\alpha}(q) \geqq 0, \alpha \in\{1, \ldots, v\}(v \geqq 1)$. We assume that the transmission of the velocities at impact is governed by Newton's Law with a coefficient of restitution $e=0$ (so that the impact is inelastic). We propose a time-discretization of the second order differential inclusion describing the dynamics, which generalizes the scheme proposed in Paoli (J Differ Equ 211:247-281, 2005) and, for any admissible data, we prove the convergence of approximate motions to a solution of the initial-value problem.

1. Introduction

We consider a discrete mechanical system subjected to perfect unilateral constraints. More precisely, let us denote by $u \in \mathbb{R}^{d}$ the generalized coordinates of a typical configuration of the system. We assume that the set K of admissible configurations is described by $v \geqq 1$ geometrical inequalities

$$
f_{\alpha}(u) \geqq 0, \quad \alpha \in\{1, \ldots, \nu\}
$$

where f_{α} is a smooth function (at least C^{1}) such that $\nabla f_{\alpha}(u)$ does not vanish in a neighbourhood of $\left\{u \in \mathbb{R}^{d} ; f_{\alpha}(u)=0\right\}$.

At each $u \in \mathbb{R}^{d}$ we define the set of active constraints $J(u)$ by

$$
J(u)=\left\{\alpha \in\{1, \ldots, \nu\} ; \quad f_{\alpha}(u) \leqq 0\right\} .
$$

In order to avoid some geometrical inconsistencies we assume, moreover, that the active constraints along ∂K are linearly independent, that is, $\left(\nabla f_{\alpha}(u)\right)_{\alpha \in J(u)}$ are linearly independent for all $u \in K$.

Then the dynamics is described by the following measure differential inclusion (see [17] or [6] for instance)

$$
\begin{equation*}
M(u) \ddot{u}-g(t, u, \dot{u}) \in-N_{K}(u) \tag{1}
\end{equation*}
$$

where $M(u)$ is the mass matrix of the system and $N_{K}(u)$ is the normal cone to K at u given by

$$
N_{K}(u)= \begin{cases}\{0\} & \text { if } u \in \operatorname{Int}(K) \\ \left\{\sum_{\alpha \in J(u)} \lambda_{\alpha} \nabla f_{\alpha}(u), \lambda_{\alpha} \leqq 0 \forall \alpha \in J(u)\right\} & \text { if } u \in \partial K \\ \emptyset & \text { if } u \notin K\end{cases}
$$

We also define the tangent cone to K at u

$$
T_{K}(u)=\left\{w \in \mathbb{R}^{d} ;\left(\nabla f_{\alpha}(u), w\right) \geqq 0 \quad \forall \alpha \in J(u)\right\}
$$

where (v, w) denotes the Euclidean scalar product of vectors v and w in \mathbb{R}^{d}. Since $u(s) \in K$ for all s, we infer that

$$
\dot{u}(t+0) \in T_{K}(u(t)), \quad \dot{u}(t-0) \in-T_{K}(u(t)) \quad(t>0)
$$

whenever $\dot{u}(t \pm 0)$ exists. It follows that the velocities are discontinuous at impacts if $\dot{u}(t-0) \notin T_{K}(u(t))$ and (1) implies that

$$
M(u(t))(\dot{u}(t+0)-\dot{u}(t-0)) \in-N_{K}(u(t)) .
$$

This relation does not uniquely determine $\dot{u}(t+0)$, so we should add an impact law. Following Moreau ([6] and [7], see also [14] or [16]) we assume that

$$
\begin{equation*}
\dot{u}(t+0)=\operatorname{Proj}_{M(u(t))}\left(T_{K}(u(t)), \dot{u}(t-0)\right) \tag{2}
\end{equation*}
$$

where $\operatorname{Proj}_{M(u)}$ denotes the projection relative to the Riemannian metric defined by the inertia operator $M(u)$.

More precisely, for admissible initial data $\left(u_{0}, v_{0}\right) \in K \times T_{K}\left(u_{0}\right)$, we consider the following problem:
Problem (\mathbf{P}) Find $u:[0, \tau] \rightarrow \mathbb{R}^{d}(\tau>0)$ such that:
(P1) u is an absolutely continuous function from $[0, \tau]$ to K and $\dot{u} \in B V\left(0, \tau ; \mathbb{R}^{d}\right)$,
(P2) the differential inclusion

$$
M(u) \ddot{u}-g(t, u, \dot{u}) \in-N_{K}(u)
$$

is satisfied in the following sense: there exists a (non-unique) non-negative measure μ such that the Stieltjes measure $d \dot{u}=\ddot{u}$ and the usual Lebesgue measure $d t$ admit densities with respect to $d \mu$, that is, there exist two $d \mu$ integrable functions v_{μ}^{\prime} and t_{μ}^{\prime} such that $\ddot{u}=d \dot{u}=v_{\mu}^{\prime} d \mu, d t=t_{\mu}^{\prime} d \mu$, and such that
$M(u(t)) v_{\mu}^{\prime}(t)-g(t, u(t), \dot{u}(t)) t_{\mu}^{\prime}(t) \in-N_{K}(u(t)) d \mu$ almost everywhere,

```
    for all }t\in(0,\tau
```

$$
\dot{u}(t+0)=\operatorname{Proj}_{M(u(t))}\left(T_{K}(u(t)), \dot{u}(t-0)\right)
$$

$$
u(0)=u_{0}, \dot{u}(0+0)=v_{0} .
$$

Observe that the right-hand side of (3) is a cone, so that the differential inclusion remains true for any non-negative measure μ with respect to which $d \dot{u}$ and $d t$ admit densities (see [7]).

For this model of impact, a very complete theoretical study has been performed by Ballard in [1]: using existence results for both ordinary differential equations and variational inequalities, he proved the existence and uniqueness of a maximal solution for the initial value problem when the data are analytical. Some counterexamples show that uniqueness may be lost for less regular data (see [7] or [1] for instance) but existence results have still been established in the single constraint case (that is, $v=1$): see $[3,4]$ and $[9,12]$ for a trivial mass matrix (that is, $M(u) \equiv \mathrm{Id}_{\mathbb{R}^{d}}$), and $[18]$ and $[13,15]$ for a non-trivial mass matrix. All these results rely on the study of a sequence of approximate solutions constructed either by a penalty method [18] or by a time-stepping scheme [3,4,9,12,13,15].

For the multi-constraint case, these techniques encounter a new difficulty: in general, the motion is not continuous with respect to the data. Nevertheless, some sufficient conditions ensuring continuity on data have been established in [1] and [10]. In this framework, the convergence of the time-stepping scheme proposed in [9] has been extended to the multi-constraint case with inelastic shocks when the mass matrix is trivial and the set K is convex [11]. The aim of this paper is to relax these restricting conditions for the mass matrix and the set K, and to prove an analogous convergence result in a more general setting.

More precisely we assume the same kind of regularity for the data as in [10], that is,
(H1) g is a continuous function from $[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{d}(T>0)$ to \mathbb{R}^{d};
(H2) for all $\alpha \in\{1, \ldots, \nu\}$, the function f_{α} belongs to $C^{1}\left(\mathbb{R}^{d}\right), \nabla f_{\alpha}$ is locally Lipschitz continuous and does not vanish in a neighbourhood of $\left\{u \in \mathbb{R}^{d} ; f_{\alpha}(u)=0\right\} ;$
(H3) the set K is defined by

$$
K=\left\{u \in \mathbb{R}^{d} ; f_{\alpha}(u) \geqq 0, \quad \alpha \in\{1, \ldots, v\}\right\}
$$

and the active constraints along ∂K are functionally independent, that is, the vectors $\left(\nabla f_{\alpha}(u)\right)_{J(u)}$ are linearly independent for all $u \in K$;
(H4) $\quad M$ is a mapping of class C^{1} from \mathbb{R}^{d} to the set of symmetric positive definite $d \times d$ matrices.
With this last assumption, we may define $M^{-1}(u), M^{1 / 2}(u)$ and $M^{-1 / 2}(u)$ for all $u \in \mathbb{R}^{d}$; the corresponding mappings are of class C^{1} from \mathbb{R}^{d} to the set of symmetric positive definite $d \times d$ matrices.

Let F be a function such that
(H5) $\quad F$ is continuous from $[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{d} \times\left[0, h^{*}\right]\left(h^{*}>0\right)$ to \mathbb{R}^{d} and is consistent with respect to g, that is,

$$
F(t, u, v, 0)=M^{-1}(u) g(t, u, v) \quad \forall(t, u, v) \in[0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{d}
$$

For admissible initial data $\left(u_{0}, v_{0}\right) \in K \times T_{K}\left(u_{0}\right)$, we consider the initial-value problem (P) and we define a time-stepping scheme as follows:

- the initial positions U^{0} and U^{1} are given by

$$
\begin{equation*}
U^{0}=u_{0}, \quad U^{1} \in \operatorname{Argmin}_{Z \in K}\left\|u_{0}+h v_{0}+h z(h)-Z\right\|_{M\left(u_{0}\right)} \tag{5}
\end{equation*}
$$

with $\lim _{h \rightarrow 0} z(h)=0$,

- for all $n \in\left\{1, \ldots,\left\lfloor\frac{T}{h}\right\rfloor\right\}$, let

$$
\begin{equation*}
W^{n}=2 U^{n}-U^{n-1}+h^{2} F^{n}, \quad F^{n}=F\left(n h, U^{n}, \frac{U^{n}-U^{n-1}}{h}, h\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
U^{n+1} \in \operatorname{Argmin}_{Z \in K}\left\|W^{n}-Z\right\|_{M\left(U^{n}\right)} \tag{7}
\end{equation*}
$$

where $\|\cdot\|_{M(U)}$ is the norm associated to the kinetic metric at U defined by $\|Z\|_{M(U)}^{2}=(Z, Z)_{M(U)}$ with

$$
\left(Z, Z^{\prime}\right)_{M(U)}=\left(Z, M(U) Z^{\prime}\right)=\left(M(U) Z, Z^{\prime}\right)
$$

for all $\left(U, Z, Z^{\prime}\right) \in\left(\mathbb{R}^{d}\right)^{3}$.
In the initialization procedure given at formula (5), the mapping $h \mapsto z(h)$ can be chosen in such a way that the unconstrained dynamics is approximated at order p, with $p \geqq 1$, by $\tilde{U}^{1}=u_{0}+h v_{0}+h z(h)$ at $t_{1}=h$. For instance, the simplest choice $z(h) \equiv 0$ leads to $p=1$, while $z(h)=\frac{h}{2} M^{-1}\left(u_{0}\right) g\left(0, u_{0}, v_{0}\right)$ leads to $p=2$. Moreover we can observe that we obtain $U^{n+1}=W^{n}$ when $W^{n} \in K$ and thus

$$
\frac{U^{n+1}-2 U^{n}+U^{n-1}}{h^{2}}=F^{n} \quad \text { when } W^{n} \in K
$$

which is a centered time-discretization of the unconstrained dynamics. Furthermore, if $M(u) \equiv \operatorname{Id}_{\mathbb{R}^{\mathrm{d}}}$ for all $u \in \mathbb{R}^{d}$ and K is convex, we recognize the scheme introduced in [9] for the first time and whose convergence has been established in [9] when ∂K is smooth, and in [11] in the general case.

We now define the approximate solutions u_{h} by

$$
u_{h}(t)=U^{n}+(t-n h) \frac{U^{n+1}-U^{n}}{h} \quad \forall t \in[n h,(n+1) h] \cap[0, T]
$$

for all $n \in\{0, \ldots,\lfloor T / h\rfloor\}$ and $h \in\left(0, h^{*}\right]$.

Since the impact law (2) leads to some discontinuity with respect to the data if the active constraints at impacts create an obtuse angle (see [10]), we cannot expect convergence of the approximate motions unless we add some assumptions on the geometry of active constraints along ∂K.

So, for all $u \in K$ and $\alpha \in J(u)$, let us define

$$
e_{\alpha}(u)=\frac{M^{-1 / 2}(u) \nabla f_{\alpha}(u)}{\left|M^{-1 / 2}(u) \nabla f_{\alpha}(u)\right|}
$$

where $|\cdot|$ denotes the Euclidean norm in \mathbb{R}^{d}, and assume that the "angle condition" given in [10], which ensures continuity on data in the case of inelastic shocks, holds. That is,
(H6) for all $u \in \partial K$, for all $(\alpha, \beta) \in J(u)^{2}$, such that $\alpha \neq \beta$, we have

$$
\left(e_{\alpha}(u), e_{\beta}(u)\right) \leqq 0
$$

This inequality can be interpreted geometrically: in the local momentum metric, defined by the matrix $M^{-1}(u)$, the active constraints create right or acute angles.

Then, under assumptions (H1)-(H6) we prove the convergence of a subsequence of the approximate solutions $\left(u_{h}\right)_{h^{*} \geqq h>0}$ to a solution of problem (P).

The paper is organized as follows. In the next sections we establish a priori estimates for the discrete velocities and accelerations on a non-trivial time interval $[0, \tau]$, with $0<\tau \leqq T$. Then we pass to the limit when h tends to zero on $[0, \tau]$: using Ascoli's and Helly's theorems we obtain the convergence of a subsequence of $\left(u_{h}\right)_{h^{*} \geqq h>0}$ to a limit u which satisfies (P1) and (P2). Next, for any instant t such that $\bar{u}(t) \in \partial K$, we perform a precise local study of the approximate motions and we prove that the limit u also satisfies (P3) and (P4). Finally, we conclude the proof with some energy estimates which allow us to obtain global results.

2. A priori estimates for the discrete velocities

Let us begin with a priori estimates for the discrete velocities. Let \mathcal{B} be a given convex compact subset of \mathbb{R}^{d} such that $\mathcal{B} \cap K \neq \emptyset$. Possibly decreasing h^{*}, we may assume without loss of generality that

$$
|z(h)| \leqq 1 \quad \forall h \in\left(0, h^{*}\right] .
$$

In this section we consider a more general scheme for which the initialization procedure involves an initial time $t_{0 h} \in[0, T)$ depending on h. This modification will allow us, in the last section of the paper, to extend the a priori estimates of the discrete velocities by considering as "new" initial data the already constructed approximate positions at some time steps $t_{0 h}$ and $t_{0 h}+h$.

So, let $h \in\left(0, h^{*}\right], t_{0 h} \in[0, T), U^{0}$ and U^{1} be given in $\mathcal{B} \cap K$ and K respectively, and for all $n \in\left\{1, \ldots,\left\lfloor\frac{T-t_{0 h}}{h}\right\rfloor\right\}$

$$
U^{n+1} \in \operatorname{Argmin}_{Z \in K}\left\|W^{n}-Z\right\|_{M\left(U^{n}\right)}
$$

with

$$
W^{n}=2 U^{n}-U^{n-1}+h^{2} F^{n}, \quad F^{n}=F\left(t_{0 h}+n h, U^{n}, \frac{U^{n}-U^{n-1}}{h}, h\right) .
$$

For all $h \in\left(0, h^{*}\right]$ and $n \in\left\{0, \ldots,\left\lfloor\frac{T-t_{0 h}}{h}\right\rfloor\right\}$, we define

$$
V^{n}=\frac{U^{n+1}-U^{n}}{h}
$$

First let us observe that
Lemma 1. For all $h \in\left(0, h^{*}\right]$ and $n \in\left\{1, \ldots,\left\lfloor\left(T-t_{0 h}\right) / h\right\rfloor\right\}$, we have

$$
M\left(U^{n}\right)\left(V^{n-1}-V^{n}+h F^{n}\right) \in N_{K}\left(U^{n+1}\right)
$$

Proof. Let $h \in\left(0, h^{*}\right]$ and $n \in\left\{1, \ldots,\left\lfloor\left(T-t_{0 h}\right) / h\right\rfloor\right\}$. By definition of U^{n+1} we have

$$
\begin{aligned}
\left\|W^{n}-U^{n+1}\right\|_{M\left(U^{n}\right)}^{2} \leqq & \left\|W^{n}-Z\right\|_{M\left(U^{n}\right)}^{2} \\
\leqq & \left\|W^{n}-U^{n+1}\right\|_{M\left(U^{n}\right)}^{2}+2\left(W^{n}-U^{n+1}, U^{n+1}-Z\right)_{M\left(U^{n}\right)} \\
& +\left\|U^{n+1}-Z\right\|_{M\left(U^{n}\right)}^{2}
\end{aligned}
$$

for all $Z \in K$, which yields

$$
\begin{equation*}
\left(W^{n}-U^{n+1}, Z-U^{n+1}\right)_{M\left(U^{n}\right)} \leqq \frac{1}{2}\left\|U^{n+1}-Z\right\|_{M\left(U^{n}\right)}^{2} \quad \forall Z \in K \tag{8}
\end{equation*}
$$

If $U^{n+1} \in \operatorname{Int}(K)$, we deduce from (8) that

$$
W^{n}-U^{n+1}=h\left(V^{n-1}-V^{n}+h F^{n}\right)=0
$$

and

$$
M\left(U^{n}\right)\left(V^{n-1}-V^{n}+h F^{n}\right) \in N_{K}\left(U^{n+1}\right)=\{0\} .
$$

Assume now that $U^{n+1} \in \partial K$ and let

$$
\tilde{T}_{K}\left(U^{n+1}\right)=\left\{w \in \mathbb{R}^{d} ;\left(\nabla f_{\alpha}\left(U^{n+1}\right), w\right)>0 \forall \alpha \in J\left(U^{n+1}\right)\right\} .
$$

For all $w \in \tilde{T}_{K}\left(U^{n+1}\right)$ there exists a smooth curve $t \mapsto \varphi(t)$ such that $\varphi(0)=$ $U^{n+1}, \varphi^{\prime}(0)=w$ and $\varphi(t) \in K$ for all t in a right neighbourhood of 0 . By choosing $Z=\varphi(t)$ we infer that

$$
\left(W^{n}-U^{n+1}, w\right)_{M\left(U^{n}\right)} \leqq 0 \quad \forall w \in \tilde{T}_{K}\left(U^{n+1}\right)
$$

Then the density of $\tilde{T}_{K}\left(U^{n+1}\right)$ in $T_{K}\left(U^{n+1}\right)$ leads to

$$
\left(V^{n-1}-V^{n}+h F^{n}, w\right)_{M\left(U^{n}\right)} \leqq 0 \quad \forall w \in T_{K}\left(U^{n+1}\right)
$$

Finally, observing that $T_{K}(u)=N_{K}(u)^{\perp}$ for all $u \in K$, we are able to conclude the proof.

Let us introduce some notation. We define

$$
\lambda_{\max }(u)=\|M(u)\|, \quad \lambda_{\min }(u)=\frac{1}{\left\|M^{-1}(u)\right\|} \quad \forall u \in \mathbb{R}^{d}
$$

Since $u \mapsto M(u)$ is continuous with values in the set of symmetric positive definite matrices, the mappings $u \mapsto \lambda_{\max }(u)$ and $u \mapsto \lambda_{\min }(u)$ are well defined and continuous from \mathbb{R}^{d} to \mathbb{R}_{+}^{*}. Moreover

$$
\lambda_{\min }(u)|w|^{2} \leqq\|w\|_{M(u)}^{2} \leqq \lambda_{\max }(u)|w|^{2} \quad \forall w \in \mathbb{R}^{d}, \quad \forall u \in \mathbb{R}^{d} .
$$

Since \mathcal{B} is compact, there exists $\delta>0$ such that, for all $\left(q, q^{\prime}\right) \in \mathcal{B} \times \mathbb{R}^{d}$ such that $\left|q-q^{\prime}\right| \leqq \delta$, we have:

$$
\begin{aligned}
\left|\lambda_{\min }(q)-\lambda_{\min }\left(q^{\prime}\right)\right| & \leqq \frac{1}{2} \inf _{u \in \mathcal{B}} \lambda_{\min }(u) \\
\left|\lambda_{\max }(q)-\lambda_{\max }\left(q^{\prime}\right)\right| & \leqq \frac{1}{2} \sup _{u \in \mathcal{B}} \lambda_{\max }(u)
\end{aligned}
$$

We define

$$
\begin{equation*}
B_{0}=\left\{u \in \mathbb{R}^{d} ; \operatorname{dist}(u, \mathcal{B}) \leqq \delta\right\} \tag{9}
\end{equation*}
$$

Then B_{0} is also a convex compact subset of \mathbb{R}^{d} and we have

$$
\frac{1}{2} \inf _{u \in \mathcal{B}} \lambda_{\min }(u) \leqq \inf _{u \in B_{0}} \lambda_{\min }(u), \quad \sup _{u \in B_{0}} \lambda_{\max }(u) \leqq \frac{3}{2} \sup _{u \in \mathcal{B}} \lambda_{\max }(u) .
$$

We let

$$
\begin{equation*}
\lambda_{\min }=\frac{1}{2} \inf _{u \in \mathcal{B}} \lambda_{\min }(u), \quad \lambda_{\max }=\frac{3}{2} \sup _{u \in \mathcal{B}} \lambda_{\max }(u) \tag{10}
\end{equation*}
$$

Of course we have

$$
0<\lambda_{\min }|w|^{2} \leqq\|w\|_{M(u)}^{2} \leqq \lambda_{\max }|w|^{2} \quad \forall w \in \mathbb{R}^{d} \backslash\{0\}, \quad \forall u \in B_{0}
$$

Let $C_{0}>0$ and C_{F} be given by
$C_{F}=\sup \left\{|F(t, u, v, h)| ; t \in[0, T], u \in B_{0} \cup B_{1},|v| \leqq C_{0}, h \in\left[0, h^{*}\right]\right\}$,
where $B_{1}=\bar{B}\left(u_{0}, C_{0} T+1\right)$. Since the mappings $M, M^{-1}, M^{1 / 2}$ and $M^{-1 / 2}$ are of class C^{1} on \mathbb{R}^{d}, they are Lipschitz continuous on $B_{0} \cup B_{1}$ and we denote by $L_{M}, L_{M^{-1}}, L_{M^{1 / 2}}$ and $L_{M^{-1 / 2}}$ the corresponding Lipschitz constants. Moreover, the functions $\nabla f_{\alpha}, 1 \leqq \alpha \leqq v$, are locally Lipschitzian and there exists also a positive real number L_{f} such that

$$
\left|\nabla f_{\alpha}(Z)-\nabla f_{\alpha}\left(Z^{\prime}\right)\right| \leqq L_{f}\left|Z-Z^{\prime}\right| \quad \forall\left(Z, Z^{\prime}\right) \in\left(B_{0} \cup B_{1}\right)^{2}, \quad \forall \alpha \in\{1, \ldots, v\}
$$

Next, we obtain some rough estimates on the discrete velocities. More precisely, let us assume that

$$
\left|V^{l}\right| \leqq C_{0} \quad \forall l \in\{0, \ldots, n-1\}
$$

for some $n \geqq 1$. We obtain the following estimate on V^{n} :

Proposition 1. Let $C_{0}>0$ and $h_{0}^{*} \in\left(0, h^{*}\right]$ such that

$$
h_{0}^{*} \leqq \min \left(\frac{C_{0}}{C_{F}}, \frac{\delta}{8 C_{0}} \sqrt{\frac{\lambda_{\min }}{\lambda_{\max }}}\right)
$$

where C_{F} is defined by (11), and $\lambda_{\min }, \lambda_{\max }$ are defined by (10). Let $h \in\left(0, h_{0}^{*}\right]$, $\tau_{h}=\min \left(\delta /\left(2 C_{0}\right), T-t_{0 h}\right)$ and assume that there exists $n \in\left\{1, \ldots,\left\lfloor\tau_{h} / h\right\rfloor\right\}$ such that

$$
\left|V^{l}\right| \leqq C_{0} \quad \forall l \in\{0, \ldots, n-1\} .
$$

Then

$$
\left|V^{n}\right| \leqq 4 \sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}} C_{0}
$$

Moreover, for all $l \in\{0, \ldots, n\}$ such that $J\left(U^{l+1}\right) \neq \emptyset$,

$$
\left(\nabla f_{\alpha}\left(U^{l+1}\right), V^{l}\right) \leqq \frac{L_{f} h}{2}\left|V^{l}\right|^{2} \quad \forall \alpha \in J\left(U^{l+1}\right)
$$

Proof. For all $l \in\{0, \ldots, n\}$ we have $U^{l} \in B_{0}$, since

$$
\left|U^{l}-U^{0}\right| \leqq \sum_{k=0}^{l-1} h\left|V^{k}\right| \leqq l h C_{0} \leqq \tau_{h} C_{0} \leqq \delta \quad \forall l \in\{0, \ldots, n\}
$$

By definition of U^{n+1} we have

$$
\left\|W^{n}-U^{n+1}\right\|_{M\left(U^{n}\right)} \leqq\left\|W^{n}-U^{n}\right\|_{M\left(U^{n}\right)}
$$

since $U^{n} \in K$ and

$$
\begin{aligned}
W^{n}-U^{n+1} & =h\left(V^{n-1}-V^{n}+h F^{n}\right), \\
W^{n}-U^{n} & =h\left(V^{n-1}+h F^{n}\right)
\end{aligned}
$$

Hence

$$
\left\|V^{n}\right\|_{M\left(U^{n}\right)} \leqq 2\left\|V^{n-1}\right\|_{M\left(U^{n}\right)}+2 h\left\|F^{n}\right\|_{M\left(U^{n}\right)}
$$

and

$$
\left|V^{n}\right| \leqq \sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}}\left(2 C_{0}+2 h C_{F}\right) \leqq 4 \sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}} C_{0} .
$$

Now, we infer that $U^{n+1} \in B_{0}$. Indeed
$\left|U^{n+1}-U^{0}\right| \leqq\left|U^{n}-U^{0}\right|+h\left|V^{n}\right| \leqq C_{0} \tau_{h}+4 h \sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}} C_{0} \leqq C_{0} \tau_{h}+\frac{\delta}{2} \leqq \delta$.

Let $l \in\{0, \ldots, n\}$ such that $J\left(U^{l+1}\right) \neq \emptyset$. For all $\alpha \in J\left(U^{l+1}\right)$, we have $0 \leqq f_{\alpha}\left(U^{l}\right)-f_{\alpha}\left(U^{l+1}\right)=\int_{0}^{1}\left(\nabla f_{\alpha}\left(U^{l+1}+t\left(U^{l}-U^{l+1}\right)\right), U^{l}-U^{l+1}\right) \mathrm{d} t$ and thus

$$
\begin{aligned}
\left(\nabla f_{\alpha}\left(U^{l+1}\right), V^{l}\right) & \leqq-\int_{0}^{1}\left(\nabla f_{\alpha}\left(U^{l+1}+t\left(U^{l}-U^{l+1}\right)\right)-\nabla f_{\alpha}\left(U^{l+1}\right), V^{l}\right) \mathrm{d} t \\
& \leqq \int_{0}^{1}\left|\nabla f_{\alpha}\left(U^{l+1}+t\left(U^{l}-U^{l+1}\right)\right)-\nabla f_{\alpha}\left(U^{l+1}\right)\right|\left|V^{l}\right| \mathrm{d} t
\end{aligned}
$$

It follows that

$$
\left(\nabla f_{\alpha}\left(U^{l+1}\right), V^{l}\right) \leqq \frac{L_{f} h}{2}\left|V^{l}\right|^{2}
$$

Now we prove a more precise estimate on the discrete velocities. We have the following result:

Proposition 2. Let $C_{0}>0$ and assume that there exist $C_{0}^{*}>0$ and $h_{0}^{*} \in\left(0, h^{*}\right]$ such that

$$
\begin{aligned}
h_{0}^{*} & \leqq \min \left(\frac{C_{0}}{C_{F}}, \frac{\delta}{8 C_{0}} \sqrt{\frac{\lambda_{\min }}{\lambda_{\max }}}\right), \\
\left|V^{0}\right| & =\left|\frac{U^{1}-U^{0}}{h}\right| \leqq C_{0}^{*}<\sqrt{\frac{\lambda_{\min }}{\lambda_{\max }}} C_{0} \quad \forall h \in\left(0, h_{0}^{*}\right],
\end{aligned}
$$

where C_{F} is defined by (11) and $\lambda_{\min }, \lambda_{\max }$ are defined by (10). Then, there exists $\tau_{0}>0$, depending only on $\mathcal{B}, C_{0}, C_{0}^{*}$ and the data, such that

$$
\left|V^{n}\right|=\left|\frac{U^{n+1}-U^{n}}{h}\right| \leqq C_{0} \quad \forall n h \in\left[0, \min \left(\tau_{0}, T-t_{0 h}\right)\right], \quad \forall h \in\left(0, h_{0}^{*}\right]
$$

Proof. Let us assume that $h \in\left(0, h_{0}^{*}\right]$ and $n \in\left\{1, \ldots,\left\lfloor\tau_{h} / h\right\rfloor\right\}$ such that

$$
\left|V^{l}\right| \leqq C_{0} \quad \forall l \in\{0, \ldots, n-1\}
$$

with $\tau_{h}=\min \left(\delta /\left(2 C_{0}\right), T-t_{0 h}\right)$. Then, with Proposition 1, we know that $U^{l} \in B_{0}$ for all $l \in\{0, \ldots, n+1\}$ and

$$
\left|V^{n}\right| \leqq 4 \sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}} C_{0}
$$

Moreover, from Lemma 1 we know that

$$
M\left(U^{n}\right)\left(V^{n-1}-V^{n}+h F^{n}\right) \in N_{K}\left(U^{n+1}\right)
$$

It follows that

$$
V^{n}=V^{n-1}+h F^{n} \quad \text { if } J\left(U^{n+1}\right)=\emptyset
$$

Let us assume now that $J\left(U^{n+1}\right) \neq \emptyset$.
Using once again, Proposition 1, for all $\alpha \in J\left(U^{n+1}\right)$ we have also

$$
\left(\nabla f_{\alpha}\left(U^{n+1}\right), V^{n}\right) \leqq \frac{L_{f} h}{2}\left|V^{n}\right|^{2}
$$

and thus, with Lemma 7 (see Appendix),

$$
\left(e_{\alpha}\left(U^{n+1}\right), M^{1 / 2}\left(U^{n+1}\right) V^{n}\right) \leqq \frac{L_{f} h}{2} \frac{\left|V^{n}\right|^{2}}{\left|M^{-1 / 2}\left(U^{n+1}\right) \nabla f_{\alpha}\left(U^{n+1}\right)\right|} \leqq \frac{L_{f} h}{2 m_{B_{0}}}\left|V^{n}\right|^{2}
$$

For sake of simplicity, denote $J_{n}=J\left(U^{n+1}\right)$ and $e_{\alpha}^{n}=e_{\alpha}\left(U^{n+1}\right)$ for all $\alpha \in J_{n}$. From assumption (H3) we know that $\left(\nabla f_{\alpha}\left(U^{n+1}\right)\right)_{\alpha \in J_{n}}$ is linearly independent. Thus $\left(e_{\alpha}^{n}\right)_{\alpha \in J_{n}}$ is also linearly independent and, using Lemma 7, we know that there exist two dual bases $\left(v_{j}\left(U^{n+1}\right)\right)_{1 \leqq j \leqq d}$ and $\left(w_{j}\left(U^{n+1}\right)\right)_{1 \leqq j \leqq d}$ such that

$$
\left|v_{j}\left(U^{n+1}\right)\right|=1 \quad \forall j \in\{1, \ldots, d\}, \quad v_{j}\left(U^{n+1}\right)=e_{j}^{n} \quad \forall j \in J_{n}
$$

and

$$
\left|w_{j}\left(U^{n+1}\right)\right| \leqq C_{*, B_{0}} \quad \forall j \in\{1, \ldots, d\}
$$

where $C_{*, B_{0}}$ depends only on the compact set B_{0} and the mappings $f_{\alpha}, \alpha \in$ $\{1, \ldots, \nu\}$, and M.

Now, we define

$$
w^{n}=-V^{n}+\frac{L_{f} h}{2 m_{B_{0}}}\left|V^{n}\right|^{2} \sum_{\alpha \in J_{n}} M^{-1 / 2}\left(U^{n+1}\right) w_{\alpha}\left(U^{n+1}\right)
$$

For all $\alpha \in J_{n}$ we have clearly

$$
\begin{aligned}
& \left(\nabla f_{\alpha}\left(U^{n+1}\right),-w^{n}\right) \\
& =\left|M^{-1 / 2}\left(U^{n+1}\right) \nabla f_{\alpha}\left(U^{n+1}\right)\right|\left(\left(e_{\alpha}^{n}, M^{1 / 2}\left(U^{n+1}\right) V^{n}\right)-\frac{L_{f} h}{2 m_{B_{0}}}\left|V^{n}\right|^{2}\right) \leqq 0
\end{aligned}
$$

that is, $w^{n} \in T_{K}\left(U^{n+1}\right)$. With Lemma 1 we get

$$
\left(V^{n-1}-V^{n}+h F^{n}, w^{n}\right)_{M\left(U^{n}\right)} \leqq 0
$$

which yields

$$
\begin{equation*}
\left(V^{n}-V^{n-1}-h F^{n}, V^{n}-\frac{L_{f} h}{2 m_{B_{0}}}\left|V^{n}\right|^{2} \sum_{\alpha \in J_{n}} M^{-1 / 2}\left(U^{n+1}\right) w_{\alpha}\left(U^{n+1}\right)\right)_{M\left(U^{n}\right)} \leqq 0 \tag{12}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
\left\|V^{n}\right\|_{M\left(U^{n}\right)}^{2} \leqq & -\frac{L_{f} h}{2 m_{B_{0}}}\left|V^{n}\right|^{2} \sum_{\alpha \in J_{n}}\left(M^{-1 / 2}\left(U^{n+1}\right) w_{\alpha}\left(U^{n+1}\right), V^{n-1}-V^{n}+h F^{n}\right)_{M\left(U^{n}\right)} \\
& +\left(V^{n}, V^{n-1}+h F^{n}\right)_{M\left(U^{n}\right)} \leqq\left\|V^{n}\right\|_{M\left(U^{n}\right)}\left\|V^{n-1}+h F^{n}\right\|_{M\left(U^{n}\right)} \\
& +\frac{L_{f} h}{2 m_{B_{0}}} \frac{\lambda_{\max }}{\lambda_{\min }}\left|V^{n}\right|\left\|V^{n}\right\|_{M\left(U^{n}\right)} \sum_{\alpha \in J_{n}}\left|w_{\alpha}\left(U^{n+1}\right)\right|\left|V^{n-1}-V^{n}+h F^{n}\right| .
\end{aligned}
$$

Using Proposition 1 we get

$$
\begin{aligned}
& \left|V^{n}\right| \sum_{\alpha \in J_{n}}\left|w_{\alpha}\left(U^{n+1}\right)\right|\left|V^{n-1}-V^{n}+h F^{n}\right| \\
& \quad \leqq 4 \sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}} \nu C_{0} C_{*, B_{0}}\left(C_{0}\left(1+4 \sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}}\right)+h C_{F}\right)
\end{aligned}
$$

if $J_{n} \neq \emptyset$. Recalling that

$$
V^{n}=V^{n-1}+h F^{n} \quad \text { if } J_{n}=\emptyset
$$

we obtain finally that

$$
\begin{aligned}
\left\|V^{n}\right\|_{M\left(U^{n}\right)} \leqq & \left\|V^{n-1}\right\|_{M\left(U^{n}\right)}+h \sqrt{\lambda_{\max }} C_{F} \\
& +\frac{2 L_{f} h}{m_{B_{0}}}\left(\frac{\lambda_{\max }}{\lambda_{\min }}\right)^{3 / 2} \nu C_{*, B_{0}} C_{0}^{2}\left(2+4 \sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}}\right)
\end{aligned}
$$

whenever $J_{n}=\emptyset$ or $J_{n} \neq \emptyset$.
By using the Lipschitz property of $M^{1 / 2}$ on B_{0}, we also have

$$
\begin{aligned}
\left\|V^{n-1}\right\|_{M\left(U^{n}\right)} & \leqq\left\|V^{n-1}\right\|_{M\left(U^{n-1}\right)}+\left\|M^{1 / 2}\left(U^{n}\right)-M^{1 / 2}\left(U^{n-1}\right)\right\|\left|V^{n-1}\right| \\
& \leqq\left\|V^{n-1}\right\|_{M\left(U^{n-1}\right)}+L_{M^{1 / 2}} h\left|V^{n-1}\right|^{2}
\end{aligned}
$$

We infer that

$$
\begin{equation*}
\left\|V^{n}\right\|_{M\left(U^{n}\right)} \leqq\left\|V^{n-1}\right\|_{M\left(U^{n-1}\right)}+C_{1} h \tag{13}
\end{equation*}
$$

with

$$
C_{1}=\sqrt{\lambda_{\max }} C_{F}+L_{M^{1 / 2}} C_{0}^{2}+\frac{2 L_{f}}{m_{B_{0}}}\left(\frac{\lambda_{\max }}{\lambda_{\min }}\right)^{3 / 2} \nu C_{*, B_{0}} C_{0}^{2}\left(2+4 \sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}}\right) .
$$

It follows that

$$
\left|V^{n}\right| \leqq \sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}}\left|V^{0}\right|+\frac{n C_{1} h}{\sqrt{\lambda_{\min }}}
$$

Then, choosing $\tau_{0} \in\left(0, \delta /\left(2 C_{0}\right)\right]$ such that

$$
\sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}} C_{0}^{*}+\frac{\tau_{0} C_{1}}{\sqrt{\lambda_{\min }}} \leqq C_{0}
$$

and observing that

$$
\left|V^{0}\right| \leqq C_{0}^{*}<\sqrt{\frac{\lambda_{\min }}{\lambda_{\max }}} C_{0} \leqq C_{0} \quad \forall h \in\left(0, h_{0}^{*}\right]
$$

we may conclude the proof by induction on n.
Let us now consider the initialization procedure given by formula (5), that is, let $t_{0 h}=0$ and U^{0} and U^{1} be given by

$$
U^{0}=u_{0}, \quad U^{1} \in \operatorname{Argmin}_{Z \in K}\left\|u_{0}+h v_{0}+h z(h)-Z\right\|_{M\left(u_{0}\right)}, \lim _{h \rightarrow 0} z(h)=0
$$

for all $h \in\left(0, h^{*}\right]$. We can choose $\mathcal{B}=\bar{B}\left(u_{0}, C+1\right)$ with $C \geqq 0$, and the previous results lead to an uniform estimate of the discrete velocities on a non-trivial time interval. More precisely, we obtain

Theorem 1. For all $C_{0}^{*} \geqq 2 \sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}}\left(\left|v_{0}\right|+1\right)$ and for all $C_{0}>\sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}} C_{0}^{*}$, there exist $h_{0}^{*} \in\left(0, h^{*}\right]$ and $\tau_{0}>0$, depending only on $\mathcal{B}, C_{0}, C_{0}^{*}$ and the data, such that

$$
\left|V^{n}\right|=\left|\frac{U^{n+1}-U^{n}}{h}\right| \leqq C_{0} \quad \forall n h \in\left[0, \min \left(\tau_{0}, T\right)\right], \quad \forall h \in\left(0, h_{0}^{*}\right]
$$

Proof. Let $C_{0}^{*} \geqq 2 \sqrt{\frac{\lambda_{\text {max }}}{\lambda_{\text {min }}}}\left(\left|v_{0}\right|+1\right), C_{0}>\sqrt{\frac{\lambda_{\text {max }}}{\lambda_{\text {min }}}} C_{0}^{*}$ and $h_{0}^{*} \in\left(0, h^{*}\right]$ such that

$$
h_{0}^{*} \leqq \min \left(\frac{C_{0}}{C_{F}}, \frac{\delta}{8 C_{0}} \sqrt{\frac{\lambda_{\min }}{\lambda_{\max }}}\right)
$$

where C_{F} is defined by (11) and $\lambda_{\min }, \lambda_{\max }$ are defined by (10).
By definition of U^{1}, we have

$$
\left\|u_{0}+h v_{0}+h z(h)-U^{1}\right\|_{M\left(u_{0}\right)} \leqq\left\|u_{0}+h v_{0}+h z(h)-Z\right\|_{M\left(u_{0}\right)} \quad \forall Z \in K
$$

and by choosing $Z=u_{0}=U^{0}$ we get

$$
\left\|V^{0}\right\|_{M\left(U^{0}\right)}=\left\|\frac{U^{1}-U^{0}}{h}\right\|_{M\left(u_{0}\right)} \leqq 2\left\|v_{0}+z(h)\right\|_{M\left(u_{0}\right)} .
$$

Thus,

$$
\left|V^{0}\right| \leqq 2 \sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}}\left|v_{0}+z(h)\right| \leqq 2 \sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}}\left(\left|v_{0}\right|+1\right) \quad \forall h \in\left(0, h^{*}\right]
$$

and

$$
\left|V^{0}\right| \leqq C_{0}^{*}<\sqrt{\frac{\lambda_{\min }}{\lambda_{\max }}} C_{0} \quad \forall h \in\left(0, h_{0}^{*}\right]
$$

It follows that we may apply Proposition 2, which yields the announced result.

3. Convergence of the approximate solutions $\left(u_{h}\right)_{h^{*} \geqq h>0}$

Before passing to the limit as h tends to zero in the sequence $\left(u_{h}\right)_{h^{*} \geqq h>0}$, we prove an estimate for the discrete accelerations.

Proposition 3. Let us now assume that there exist $C_{0}>0, \tau_{0}>0, h_{0}^{*} \in\left(0, h^{*}\right]$ and a sequence $\left(h_{i}\right)_{i \in \mathbb{N}}$, decreasing to zero, such that

$$
\begin{equation*}
\left|V^{n}\right| \leqq C_{0} \quad \forall n h_{i} \in\left[0, \min \left(\tau_{0}, T\right)\right], \forall h_{i} \in\left(0, h_{0}^{*}\right] \tag{14}
\end{equation*}
$$

Then there exist $h_{1}^{*} \in\left(0, h_{0}^{*}\right]$ and $C_{0}^{\prime}>0$ such that, for all $h_{i} \in\left(0, h_{1}^{*}\right]$

$$
\sum_{n=1}^{N}\left|V^{n}-V^{n-1}\right| \leqq C_{0}^{\prime} \quad \text { with } \quad N=\left\lfloor\frac{\min \left(\tau_{0}, T\right)}{h_{i}}\right\rfloor
$$

Proof. The main ideas of the proof are the same as in proposition 2.4 in [11]. More precisely, let $\mathcal{B}=\bar{B}\left(u_{0}, C+1\right)$ with $C \geqq 0, B_{0}$ be defined by (9) and C_{F} be defined by (11). Without loss of generality, possibly decreasing h_{0}^{*}, we assume that $C_{0} h_{0}^{*} \leqq 1$ and $C_{F} h_{0}^{*} \leqq C_{0}$. We denote $K_{1}=K \cap B_{1}=K \cap \bar{B}\left(u_{0}, C_{0} T+1\right)$ and

$$
\begin{align*}
& \lambda_{\min , B_{1}}=\inf _{u \in B_{1}} \lambda_{\min }(u)=\frac{1}{\sup _{u \in B_{1}}\left\|M^{-1}(u)\right\|}, \tag{15}\\
& \lambda_{\max , B_{1}}=\sup _{u \in B_{1}} \lambda_{\max }(u)=\sup _{u \in B_{1}}\|M(u)\| .
\end{align*}
$$

Let $h_{i} \in\left(0, h_{0}^{*}\right]$. By definition of the scheme, we have $U^{n} \in K$ for all $n \in$ $\left\{0, \ldots,\left\lfloor T / h_{i}\right\rfloor+1\right\}$. Assumption (14) implies that

$$
\left|U^{n}-U^{0}\right| \leqq h_{i} \sum_{k=0}^{n-1}\left|V^{k}\right| \leqq n h_{i} C_{0} \leqq C_{0} T+1 \quad \forall n \in\{0, \ldots, N+1\}
$$

thus $U^{n} \in K_{1}$ for all $n \in\{0, \ldots, N+1\}$.
By Lemma 8 (see Appendix), we infer that, for all $q \in K_{1}$, there exist $a_{q} \in \mathbb{R}^{d}$ and two strictly positive numbers δ_{q} and r_{q} such that, for all $q^{\prime} \in \bar{B}\left(q, 2 \delta_{q}\right)$

$$
\begin{equation*}
\bar{B}\left(a_{q}, r_{q}\right) \subset T_{K}\left(q^{\prime}\right) \tag{16}
\end{equation*}
$$

It is obvious that $K_{1} \subset \bigcup_{q \in K_{1}} B\left(q, \delta_{q}\right)$, and a compactness argument implies that there exists $\left(q_{j}\right)_{1 \leqq j \leqq \ell}$ such that $q_{j} \in K_{1}$ for all $j \in\{1, \ldots, \ell\}$ and

$$
K_{1} \subset \bigcup_{j=1}^{\ell} B\left(q_{j}, \delta_{q_{j}}\right)
$$

In the remainder of the proof we will simply write δ_{j}, a_{j} and r_{j} instead of $\delta_{q_{j}}, a_{q_{j}}$ and $r_{q_{j}}$. We define

$$
r=\min _{1 \leqq j \leqq \ell} r_{j}, \quad \delta^{\prime}=\min _{1 \leqq j \leqq \ell} \delta_{j}, \quad \tau_{1}=\frac{\delta^{\prime}}{C_{0}} .
$$

Let $h_{1}^{*} \in\left(0, \min \left(h_{0}^{*}, \tau_{1} / 2\right)\right), h_{i} \in\left(0, h_{1}^{*}\right]$ and $n \in\{0, \ldots, N\}$. Let $j \in$ $\{1, \ldots, \ell\}$ be such that $U^{n+1} \in B\left(q_{j}, \delta_{j}\right)$. Then, for all $m \in\{n+1, \ldots, p\}$ with $p=\min \left(N, n+\left\lfloor\tau_{1} / h_{i}\right\rfloor\right)$, we have

$$
\begin{aligned}
\left|U^{m+1}-q_{j}\right| & \leqq\left|U^{m+1}-U^{n+1}\right|+\left|U^{n+1}-q_{j}\right| \\
& \leqq\left|\sum_{k=n+1}^{m} h_{i} V^{k}\right|+\delta_{j} \leqq h_{i} C_{0}(m-n)+\delta_{j} \leqq \delta^{\prime}+\delta_{j} \leqq 2 \delta_{j}
\end{aligned}
$$

By applying (16), we obtain that, for all $m \in\{n+1, \ldots, p\}$, we have $\bar{B}\left(a_{j}, r_{j}\right) \subset$ $T_{K}\left(U^{m+1}\right)$. Thus

$$
\bar{B}_{M\left(U^{m}\right)}\left(a_{j}, \sqrt{\lambda_{\min , B_{1}}} r_{j}\right)=\left\{z \in \mathbb{R}^{d} ;\left\|z-a_{j}\right\|_{M\left(U^{m}\right)} \leqq \sqrt{\lambda_{\min , B_{1}}} r_{j}\right\} \subset \bar{B}\left(a_{j}, r_{j}\right) .
$$

Then, we use a classical result about contractions on Hilbert spaces due to Moreau [5] and we infer that, for all $z \in \mathbb{R}^{d}$

$$
\begin{aligned}
& \left\|z-\operatorname{Proj}_{M\left(U^{m}\right)}\left(T_{K}\left(U^{m+1}\right), z\right)\right\|_{M\left(U^{m}\right)} \\
& \quad \leqq \frac{1}{2 \sqrt{\lambda_{\min , B_{1}} r_{j}}}\left(\left\|z-a_{j}\right\|_{M\left(U^{m}\right)}^{2}-\left\|\operatorname{Proj}_{M\left(U^{m}\right)}\left(T_{K}\left(U^{m+1}\right), z\right)-a_{j}\right\|_{M\left(U^{m}\right)}^{2}\right) .
\end{aligned}
$$

With Lemma 1 we know that

$$
M\left(U^{m}\right)\left(V^{m-1}-V^{m}+h_{i} F^{m}\right) \in N_{K}\left(U^{m+1}\right)
$$

Since $N_{K}\left(U^{m+1}\right)$ and $T_{K}\left(U^{m+1}\right)$ are two closed convex polar cones, we get

$$
\operatorname{Proj}_{M\left(U^{m}\right)}\left(T_{K}\left(U^{m+1}\right), V^{m-1}-V^{m}+h_{i} F^{m}\right)=0
$$

Hence

$$
\begin{aligned}
& \left\|V^{m-1}-V^{m}+h_{i} F^{m}\right\|_{M\left(U^{m}\right)} \\
& \quad \leqq \frac{1}{2 \sqrt{\lambda_{\min , B_{1}}} r_{j}}\left(\left\|\left(V^{m-1}-V^{m}+h_{i} F^{m}\right)-a_{j}\right\|_{M\left(U^{m}\right)}^{2}-\left\|a_{j}\right\|_{M\left(U^{m}\right)}^{2}\right) \\
& \leqq \frac{1}{2 \sqrt{\lambda_{\min , B_{1}}} r_{j}}\left(\left\|V^{m-1}-V^{m}+h_{i} F^{m}\right\|_{M\left(U^{m}\right)}^{2}\right. \\
& \left.\quad-2\left(a_{j}, V^{m-1}-V^{m}+h_{i} F^{m}\right)_{M\left(U^{m}\right)}\right)
\end{aligned}
$$

It follows that

$$
\begin{align*}
\left\|V^{m-1}-V^{m}\right\|_{M\left(U^{m}\right)} \leqq & h_{i}\left\|F^{m}\right\|_{M\left(U^{m}\right)}+\frac{1}{2 \sqrt{\lambda_{\min , B_{1}}} r_{j}}\left(\left\|V^{m-1}-V^{m}\right\|_{M\left(U^{m}\right)}^{2}\right. \\
& +2 h_{i}\left(F^{m}, V^{m-1}-V^{m}\right)_{M\left(U^{m}\right)}+h_{i}^{2}\left\|F^{m}\right\|_{M\left(U^{m}\right)}^{2} \\
& \left.-2\left(a_{j}, V^{m-1}-V^{m}+h_{i} F^{m}\right)_{M\left(U^{m}\right)}\right) \tag{17}
\end{align*}
$$

If $J_{m} \neq \emptyset$, we can reproduce the same computations as in Propositions 1 and 2 to obtain (see (12))

$$
\left(V^{m}-V^{m-1}-h_{i} F^{m}, V^{m}-\frac{L_{f} h_{i}}{2 m_{B_{1}}}\left|V^{m}\right|^{2} \sum_{\alpha \in J_{m}} M^{-1 / 2}\left(U^{m+1}\right) w_{\alpha}\left(U^{m+1}\right)\right)_{M\left(U^{m}\right)} \leqq 0
$$

which yields

$$
\begin{align*}
-\left(V^{m-1}, V^{m}\right)_{M\left(U^{m}\right)} \leqq & -\left\|V^{m}\right\|_{M\left(U^{m}\right)}^{2}+h_{i}\left(F^{m}, V^{m}\right)_{M\left(U^{m}\right)} \\
& +\frac{L_{f} h_{i} \lambda_{\max , B_{1}}}{2 m_{B_{1}} \sqrt{\lambda_{\min , B_{1}}}} \nu C_{*, B_{1}}\left|V^{m}\right|^{2}\left|V^{m-1}-V^{m}+h_{i} F^{m}\right| \tag{18}
\end{align*}
$$

where $C_{*, B_{1}}$ is the constant defined at Lemma 7.
Otherwise, if $J_{m}=\emptyset$, we have $V^{m}=V^{m-1}+h_{i} F^{m}$, hence

$$
\begin{aligned}
-\left(V^{m-1}, V^{m}\right)_{M\left(U^{m}\right)} & =\left(-V^{m}+h_{i} F^{m}, V^{m}\right)_{M\left(U^{m}\right)} \\
& =-\left\|V^{m}\right\|_{M\left(U^{m}\right)}^{2}+h_{i}\left(F^{m}, V^{m}\right)_{M\left(U^{m}\right)}
\end{aligned}
$$

and (18) is still true.
Thus

$$
\begin{aligned}
\left\|V^{m-1}-V^{m}\right\|_{M\left(U^{m}\right)}^{2} \leqq & \left\|V^{m-1}\right\|_{M\left(U^{m}\right)}^{2}-\left\|V^{m}\right\|_{M\left(U^{m}\right)}^{2}+2 h_{i}\left(F^{m}, V^{m}\right)_{M\left(U^{m}\right)} \\
& +\frac{L_{f} h_{i} \lambda_{\max , B_{1}}}{m_{B_{1}} \sqrt{\lambda_{\min , B_{1}}}} \nu C_{*, B_{1}} C_{0}^{2}\left(2 C_{0}+h_{i} C_{F}\right)
\end{aligned}
$$

Going back to (17) and using the Lipschitz property of M on B_{1}, we obtain

$$
\begin{aligned}
\left\|V^{m-1}-V^{m}\right\|_{M\left(U^{m}\right)} \leqq & h_{i} C_{1}^{\prime}+\frac{1}{2 \sqrt{\lambda_{\min , B_{1}} r}}\left(\left\|V^{m-1}\right\|_{M\left(U^{m-1}\right)}^{2}-\left\|V^{m}\right\|_{M\left(U^{m}\right)}^{2}\right. \\
& \left.-2\left(a_{j}, V^{m-1}\right)_{M\left(U^{m-1}\right)}+2\left(a_{j}, V^{m}\right)_{M\left(U^{m}\right)}\right)
\end{aligned}
$$

for all $m \in\{n+1, \ldots, p\}$, where

$$
\begin{aligned}
C_{1}^{\prime}= & \sqrt{\lambda_{\max , B_{1}}} C_{F}\left(1+\frac{\sqrt{\lambda_{\max , B_{1}}}\left(C_{0}+a\right)}{\left.\sqrt{\lambda_{\min , B_{1}} r}\right)+C_{F}^{2} \frac{h_{0}^{*} \lambda_{\max , B_{1}}}{2 \sqrt{\lambda_{\min , B_{1}} r}}}\right. \\
& +\frac{C_{0}+2 a}{2 \sqrt{\lambda_{\min , B_{1}}} r} C_{0}^{2} L_{M}+3 \frac{L_{f} \lambda_{\max , B_{1}}}{2 r m_{B_{1}} \lambda_{\min , B_{1}}} v C_{*, B_{1}} C_{0}^{3}
\end{aligned}
$$

and $a=\max _{1 \leqq j \leqq \ell}\left|a_{j}\right|$. By summation we get

$$
\begin{aligned}
\sum_{m=n+1}^{p}\left\|V^{m-1}-V^{m}\right\|_{M\left(U^{m}\right)} \leqq & (p-n) h_{i} C_{1}^{\prime} \\
& +\frac{1}{2 \sqrt{\lambda_{\min , B_{1}}} r}\left(\left\|V^{n}\right\|_{M\left(U^{n}\right)}^{2}-\left\|V^{p}\right\|_{M\left(U^{p}\right)}^{2}\right. \\
& +4 \lambda_{\left.\max , B_{1} C_{0} a\right)}
\end{aligned}
$$

Recalling that $p=\min \left(N, n+\left\lfloor\tau_{1} / h_{i}\right\rfloor\right)$, we infer that

$$
\begin{aligned}
\sum_{m=1}^{N}\left\|V^{m-1}-V^{m}\right\|_{M\left(U^{m}\right)} \leqq & N h_{i} C_{1}^{\prime}+\frac{1}{2 \sqrt{\lambda_{\min , B_{1}} r}}\left(\left\|V^{0}\right\|_{M\left(U^{0}\right)}^{2}-\left\|V^{N}\right\|_{M\left(U^{N}\right)}^{2}\right) \\
& +\left(k_{1}+1\right) \frac{2 \lambda_{\max , B_{1} C_{0} a}}{\sqrt{\lambda_{\min , B_{1}} r}}
\end{aligned}
$$

where $k_{1} \in \mathbb{N}$ is such that

$$
1+k_{1}\left\lfloor\frac{\tau_{1}}{h_{i}}\right\rfloor \leqq N<\left(k_{1}+1\right)\left\lfloor\frac{\tau_{1}}{h_{i}}\right\rfloor .
$$

Observing that $k_{1} \leqq \min \left(\tau_{0}, T\right) /\left(\tau_{1}-h_{i}\right)$ for all $h_{i} \in\left(0, h_{1}^{*}\right]$, and

$$
\left|V^{m-1}-V^{m}\right| \leqq \frac{1}{\sqrt{\lambda_{\min , B_{1}}}}\left\|V^{m-1}-V^{m}\right\|_{M\left(U^{m}\right)} \quad \forall m \in\{1, \ldots, N\}
$$

we can conclude the proof with

$$
C_{0}^{\prime}=\frac{1}{\sqrt{\lambda_{\min , B_{1}}}}\left(T C_{1}^{\prime}+\frac{\lambda_{\max , B_{1}} C_{0}^{2}}{\sqrt{\lambda_{\min , B_{1}} r}}+\frac{\left.2 \lambda_{\max , B_{1} C_{0} a}^{\sqrt{\lambda_{\min , B_{1}} r}}\left(\frac{T}{\tau_{1}-h_{1}^{*}}+1\right)\right) ~ . ~}{\text {. }}\right. \text {. }
$$

With these results we can now pass to the limit as h tends to zero. Let us recall the definition of the approximate solutions $\left(u_{h}\right)_{h^{*} \geqq h>0}$:

$$
\begin{equation*}
u_{h}(t)=U^{n}+(t-n h) \frac{U^{n+1}-U^{n}}{h} \forall t \in[n h,(n+1) h] \cap[0, T] \tag{19}
\end{equation*}
$$

and let us define

$$
\begin{equation*}
v_{h}(t)=V^{n}=\frac{U^{n+1}-U^{n}}{h} \quad \forall t \in[n h,(n+1) h) \cap[0, T] \tag{20}
\end{equation*}
$$

for all $n \in\{0, \ldots,\lfloor T / h\rfloor\}$ and $h \in\left(0, h^{*}\right]$.
Let us assume from now on that
(H7) there exist $C_{0}>0, \tau_{0}>0, h_{0}^{*} \in\left(0, h^{*}\right]$ and a subsequence $\left(h_{i}\right)_{i \in \mathbb{N}}$, decreasing to zero, such that

$$
\left|V^{n}\right| \leqq C_{0} \quad \forall n h_{i} \in\left[0, \min \left(\tau_{0}, T\right)\right] \quad \forall h_{i} \in\left(0, h_{0}^{*}\right] .
$$

We define $\mathcal{B}=\bar{B}\left(u_{0}, C+1\right)$ with $C \geqq 0$. Let B_{0} and C_{F} be defined by (9) and (11), respectively. We assume (without loss of generality) that $C_{0} h_{0}^{*} \leqq 1$ and $C_{F} h_{0}^{*} \leqq C_{0}$. Let us denote $\tau=\min \left(\tau_{0}, T\right)$. From assumption (H7) and Proposition 3 we know that $\left(u_{h_{i}}\right)_{h_{1}^{*} \geqq h_{i}>0}$ is uniformly C_{0}-Lipschitz continuous on $[0, \tau]$ and $\left(v_{h_{i}}\right)_{h_{1}^{*} \geqq h_{i}>0}$ is uniformly bounded in $L^{\infty}\left(0, \tau ; \mathbb{R}^{d}\right) \cap B V\left(0, \tau ; \mathbb{R}^{d}\right)$. It follows that $\left(u_{h_{i}}\right)_{h_{1}^{*} \geqq h_{i}>0}$ is equicontinuous and, using Ascoli's and Helly's theorems, we
infer that there exists a subsequence, still denoted $\left(h_{i}\right)_{i \in \mathbb{N}}, u \in C^{0}\left([0, \tau] ; \mathbb{R}^{d}\right)$ and $v \in B V\left(0, \tau ; \mathbb{R}^{d}\right)$, such that

$$
\begin{equation*}
u_{h_{i}} \rightarrow u \text { strongly in } C^{0}\left([0, \tau] ; \mathbb{R}^{d}\right) \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{h_{i}} \rightarrow v \text { pointwise in }[0, \tau] . \tag{22}
\end{equation*}
$$

Moreover, we have

$$
u_{h_{i}}(t)=u_{0}+\int_{0}^{t} v_{h_{i}}(s) \mathrm{d} s \quad \forall t \in[0, T], \quad \forall h_{i} \in\left(0, h^{*}\right] .
$$

Thus, with Lebesgue's theorem, we get

$$
\begin{equation*}
u(t)=\lim _{h_{i} \rightarrow 0}\left(u_{0}+\int_{0}^{t} v_{h_{i}}(s) \mathrm{d} s\right)=u_{0}+\int_{0}^{t} v(s) \mathrm{d} s \quad \forall t \in[0, \tau] \tag{23}
\end{equation*}
$$

We infer that u is C_{0}-Lipschitz continuous and
$u_{h_{i}}(t), u(t) \in \bar{B}\left(u_{0}, C_{0} \tau\right) \subset B_{1}=\bar{B}\left(u_{0}, C_{0} T+1\right) \quad \forall t \in[0, \tau], \forall h_{i} \in\left(0, h_{1}^{*}\right]$.
Moreover, u is absolutely continuous on $[0, \tau]$, thus u admits a derivative (in the classical sense) almost everywhere on $[0, \tau]$ and $\dot{u} \in L^{1}\left(0, \tau ; \mathbb{R}^{d}\right)$. From (23) we infer that $\dot{u}(t)=v(t)$ for all $t \in[0, \tau]$ such that v is continuous at t. Possibly modifying \dot{u} on a countable subset of $[0, \tau]$, we may assume without loss of generality that $\dot{u}=v$.

As usual, we adopt the convention

$$
\begin{gather*}
\dot{u}(0-0)=v(0-0)=v(0)=\dot{u}(0), \tag{24}\\
\dot{u}(\tau+0)=v(\tau+0)=v(\tau)=\dot{u}(\tau) .
\end{gather*}
$$

Then we observe that
Lemma 2. For all $t \in[0, \tau], u(t) \in K$.
Proof. Let $t \in[0, \tau]$. For all $h_{i} \in\left(0, h_{1}^{*}\right]$ there exists $n \in\left\{0, \ldots,\left\lfloor\frac{\tau}{h_{i}}\right\rfloor\right\}$ such that $t \in\left[n h_{i},(n+1) h_{i}\right)$. Then, observing that $U^{n} \in K$ we get

$$
\begin{aligned}
\operatorname{dist}(u(t), K) & \leqq\left|u(t)-U^{n}\right| \leqq\left|u(t)-u_{h_{i}}(t)\right|+\left|u_{h_{i}}(t)-U^{n}\right| \\
& \leqq\left|u(t)-u_{h_{i}}(t)\right|+\left(t-n h_{i}\right)\left|V^{n}\right| \leqq\left\|u-u_{h_{i}}\right\|_{C^{0}\left([0, \tau] ; \mathbb{R}^{d}\right)}+C_{0} h_{i} .
\end{aligned}
$$

By passing to the limit as h_{i} tends to zero, we obtain $\operatorname{dist}(u(t), K) \leqq 0$, that is, $u(t) \in K$.

3.1. Study of property (P2)

Now let us prove that u satisfies property (P2), that is, the differential inclusion (3). First, we observe that there exists at least one non-negative measure μ such that the Stieltjes measure $\ddot{u}=d \dot{u}=d v$ and the usual Lebesgue measure $d t$ admit densities with respect to μ. Indeed, let μ be defined by $d \mu=|d \dot{u}|+d t: \mu$ is non-negative and the measures $\ddot{u}=d \dot{u}$ and $d t$ are both absolutely continuous with respect to μ.

Now, let $\mu=|d \dot{u}|+d t$. We denote by v_{μ}^{\prime} and t_{μ}^{\prime} the densities of $d \dot{u}=d v$ and $d t$ with respect to $d \mu$. We have to prove that

$$
M(u(t)) v_{\mu}^{\prime}(t)-g(t, u(t), \dot{u}(t)) t_{\mu}^{\prime}(t) \in-N_{K}(u(t)) \quad d \mu \text { almost everywhere. }
$$

By Jeffery's theorem (see [2] or [4]) we know that there exists a $d \mu$-negligible set $N \subset[0, \tau]$ such that, for all $t \in[0, \tau] \backslash N$:

$$
v_{\mu}^{\prime}(t)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{d \dot{u}\left(I_{\varepsilon}\right)}{d \mu\left(I_{\varepsilon}\right)}, \quad t_{\mu}^{\prime}(t)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{d t\left(I_{\varepsilon}\right)}{d \mu\left(I_{\varepsilon}\right)}
$$

with $I_{\varepsilon}=[t, t+\varepsilon] \cap[0, \tau]$.
We define

$$
N^{\prime}=\{t \in[0, \tau] ; \dot{u}(t+0)=\dot{u}(t-0) \neq \dot{u}(t)\}
$$

(we may observe that the convention (24) implies that $0 \notin N^{\prime}$ and $\tau \notin N^{\prime}$). Since $\dot{u}=v$ belongs to $B V\left(0, \tau ; \mathbb{R}^{d}\right), N^{\prime}$ is, at most, a countable subset of $[0, \tau]$ and is negligible with respect to $|d \dot{u}|$.

Finally, let $N_{0}=\{t \in\{0\} \cup\{\tau\} ; \dot{u}$ is continuous at $t\}$. The set N_{0} is finite (it contains at most the two points $t=0$ and $t=\tau$), so it is negligible with respect to $|d \dot{u}|$, and it follows that $N \cup N^{\prime} \cup N_{0}$ is also negligible with respect to $d \mu$. We have:

Proposition 4. Let $t \in[0, \tau] \backslash\left(N \cup N^{\prime} \cup N_{0}\right)$ such that \dot{u} is continuous at t. Then

$$
\begin{equation*}
M(u(t)) v_{\mu}^{\prime}(t)-g(t, u(t), \dot{u}(t)) t_{\mu}^{\prime}(t) \in-N_{K}(u(t)) . \tag{25}
\end{equation*}
$$

Proof. Let $t \in[0, \tau] \backslash\left(N \cup N^{\prime} \cup N_{0}\right)$ such that \dot{u} is continuous at t. Then $t \in(0, \tau)$; for simplicity we will denote $\bar{u}=u(t)$ in the remainder of the proof. By definition of $N_{K}(\bar{u}),(25)$ is equivalent to

$$
\left(g(t, \bar{u}, \dot{u}(t)) t_{\mu}^{\prime}(t)-M(\bar{u}) v_{\mu}^{\prime}(t), w\right) \leqq 0
$$

for all $w \in T_{K}(\bar{u})=\left\{w \in \mathbb{R}^{d} ;\left(\nabla f_{\alpha}(\bar{u}), w\right) \geqq 0, \forall \alpha \in J(\bar{u})\right\}$.
First, let us observe that there exists $r_{\bar{u}}>0$ such that

$$
J(q) \subset J(\bar{u}) \quad \forall q \in \bar{B}\left(\bar{u}, r_{\bar{u}}\right)
$$

Indeed, for all $\alpha \in\{1, \ldots, \nu\} \backslash J(\bar{u})$ we have $f_{\alpha}(\bar{u})>0$ and, by continuity of the mappings $f_{\alpha}(1 \leqq \alpha \leqq \nu)$, there exists $r_{\bar{u}}>0$ such that

$$
f_{\alpha}(q) \geqq \frac{f_{\alpha}(\bar{u})}{2} \quad \forall q \in \bar{B}\left(\bar{u}, r_{\bar{u}}\right), \quad \forall \alpha \in\{1, \ldots, \nu\} \backslash J(\bar{u}) .
$$

Let us consider $\tilde{T}_{K}(\bar{u})$ defined by

$$
\tilde{T}_{K}(\bar{u})= \begin{cases}\left\{w \in \mathbb{R}^{d} ;\left(\nabla f_{\alpha}(\bar{u}), w\right)>0 \forall \alpha \in J(\bar{u})\right\} & \text { if } J(\bar{u}) \neq \emptyset \\ \mathbb{R}^{d} & \text { otherwise }\end{cases}
$$

Let $w \in \tilde{T}_{K}(\bar{u})$. If $J(\bar{u}) \neq \emptyset$, the continuity of the mappings $\nabla f_{\alpha}(1 \leqq \alpha \leqq \nu)$ implies that there exists $r_{w} \in\left(0, r_{\bar{u}}\right]$ such that

$$
\left(\nabla f_{\alpha}(q), w\right) \geqq 0 \quad \forall \alpha \in J(\bar{u}), \quad \forall q \in \bar{B}\left(\bar{u}, r_{w}\right),
$$

and thus $w \in T_{K}(q)$ for all $q \in \bar{B}\left(\bar{u}, r_{w}\right)$. If $J(\bar{u})=\emptyset$, we still have $w \in T_{K}(q)$ for all $q \in \bar{B}\left(\bar{u}, r_{w}\right)$ if we choose $r_{w}=r_{\bar{u}}$.

Using the continuity of u and the uniform convergence of $\left(u_{h_{i}}\right)_{i \in \mathbb{N}}$ to u on $[0, \tau]$, there exists $\tilde{\varepsilon}_{w} \in\left(0, \min \left(t, \frac{\tau-t}{2}\right)\right)$ such that, for all $\varepsilon \in\left(0, \tilde{\varepsilon}_{w}\right]$, there exists $h_{\varepsilon} \in\left(0, h_{1}^{*}\right]$ such that

$$
\begin{aligned}
u(s) & \in \bar{B}\left(\bar{u}, \frac{r_{w}}{3}\right) \quad \forall s \in[t, t+\varepsilon] \\
h_{\varepsilon} & \leqq \min \left(\frac{r_{w}}{3 C_{0}}, \frac{\varepsilon}{3}\right), \quad\left\|u-u_{h_{i}}\right\|_{C^{0}\left([0, \tau] ; \mathbb{R}^{d}\right)} \leqq \frac{r_{w}}{3} \quad \forall h_{i} \in\left(0, h_{\varepsilon}\right] .
\end{aligned}
$$

It follows that for all $\varepsilon \in\left(0, \tilde{\varepsilon}_{w}\right]$ and for all $h_{i} \in\left(0, h_{\varepsilon}\right]$

$$
u_{h_{i}}(s) \in \bar{B}\left(\bar{u}, \frac{2 r_{w}}{3}\right) \quad \forall s \in[t, t+\varepsilon],
$$

and

$$
U^{n+1} \in \bar{B}\left(\bar{u}, r_{w}\right) \quad \forall n h_{i} \in[t, t+\varepsilon] .
$$

Now let $\varepsilon \in\left(0, \tilde{\varepsilon}_{w}\right]$ and $h_{i} \in\left(0, h_{\varepsilon}\right]$. We define j and k by

$$
j=\left\lfloor\frac{t}{h_{i}}\right\rfloor, \quad k=\left\lfloor\frac{t+\varepsilon}{h_{i}}\right\rfloor .
$$

We have

$$
0<t_{j}=j h_{i} \leqq t<t_{j+1}<\cdots<t_{k}=k h_{i} \leqq t+\varepsilon<t_{k+1}<\tau
$$

From Lemma 1 we know that, for all $n \in\{j+1, \ldots, k\}$, we have

$$
\left(V^{n-1}-V^{n}+h_{i} F^{n}, w\right)_{M\left(U^{n}\right)} \leqq 0
$$

since $w \in T_{K}\left(U^{n+1}\right)$, and by summation

$$
\begin{align*}
& \sum_{n=j+1}^{k} h_{i}\left(M\left(U^{n}\right) F^{n}, w\right)+\sum_{n=j+1}^{k}\left(M\left(U^{n-1}\right) V^{n-1}-M\left(U^{n}\right) V^{n}, w\right) \\
& \quad+\sum_{n=j+1}^{k}\left(M\left(U^{n}\right) V^{n-1}-M\left(U^{n-1}\right) V^{n-1}, w\right) \leqq 0 . \tag{26}
\end{align*}
$$

The last term can be easily estimated as $\mathcal{O}\left(\varepsilon+h_{i}\right)$. Indeed, the Lipschitz property of the mapping M on B_{1} implies that

$$
\left\|M\left(U^{n}\right)-M\left(U^{n-1}\right)\right\| \leqq L_{M} h_{i}\left|V^{n-1}\right| \leqq h_{i} L_{M} C_{0}
$$

It follows that

$$
\begin{aligned}
& \left|\sum_{n=j+1}^{k}\left(M\left(U^{n}\right) V^{n-1}-M\left(U^{n-1}\right) V^{n-1}, w\right)\right| \\
& \quad \leqq \sum_{n=j+1}^{k}\left\|M\left(U^{n}\right)-M\left(U^{n-1}\right)\right\| C_{0}|w| \\
& \quad \leqq(k-j) L_{M} h_{i} C_{0}^{2}|w| \leqq\left(\varepsilon+h_{i}\right) L_{M} C_{0}^{2}|w|
\end{aligned}
$$

The second term of the left-hand side of (26) is a telescopic sum which can be rewritten as

$$
\begin{aligned}
\left(M\left(U^{j}\right) V^{j}-M\left(U^{k}\right) V^{k}, w\right)= & \left(M\left(u_{h_{i}}(t)\right)\left(v_{h_{i}}(t)-v_{h_{i}}(t+\varepsilon)\right), w\right) \\
& +\left(\left(M\left(U^{j}\right)-M\left(u_{h_{i}}(t)\right)\right) V^{j}, w\right) \\
& +\left(\left(M\left(u_{h_{i}}(t)\right)-M\left(U^{k}\right)\right) V^{k}, w\right) .
\end{aligned}
$$

Once again, the last two terms can be estimated by using the Lipschitz property of M on B_{1} :

$$
\begin{aligned}
& \left|\left(\left(M\left(U^{j}\right)-M\left(u_{h_{i}}(t)\right)\right) V^{j}+\left(M\left(u_{h_{i}}(t)\right)-M\left(U^{k}\right)\right) V^{k}, w\right)\right| \\
& \quad \leqq L_{M} C_{0}|w|\left(\left|u_{h_{i}}\left(j h_{i}\right)-u_{h_{i}}(t)\right|+\left|u_{h_{i}}(t)-u_{h_{i}}\left(k h_{i}\right)\right|\right) \leqq L_{M} C_{0}^{2}|w|\left(h_{i}+\varepsilon\right)
\end{aligned}
$$

Moreover, with (21) and (22), we have

$$
\begin{aligned}
\lim _{h_{i} \rightarrow 0} M\left(u_{h_{i}}(t)\right)\left(v_{h_{i}}(t)-v_{h_{i}}(t+\varepsilon)\right) & =M(u(t))(v(t)-v(t+\varepsilon)) \\
& =M(u(t))(\dot{u}(t)-\dot{u}(t+\varepsilon)) .
\end{aligned}
$$

Let us prove now that

$$
\lim _{h_{i} \rightarrow 0} \sum_{n=j+1}^{k} h_{i}\left(M\left(U^{n}\right) F^{n}, w\right)=\int_{t}^{t+\varepsilon}(g(s, u(s), \dot{u}(s)), w) \mathrm{d} s
$$

for all $\varepsilon \in\left(0, \tilde{\varepsilon}_{w}\right]$.
Indeed, let $\varepsilon \in\left(0, \tilde{\varepsilon}_{w}\right]$. For all $h_{i} \in\left(0, h_{\varepsilon}\right]$ and $n \in\{j+1, \ldots, k\}$, we have $F^{n}=F\left(n h_{i}, U^{n}, V^{n-1}, h_{i}\right)$ and with (H5)
$F\left(n h_{i}, U^{n}, V^{n-1}, 0\right)=M^{-1}\left(U^{n}\right) g\left(n h_{i}, u_{h_{i}}\left(n h_{i}\right), v_{h_{i}}(s)\right) \quad \forall s \in\left[(n-1) h_{i}, n h_{i}\right)$.

It follows that

$$
\begin{align*}
& \sum_{n=j+1}^{k} h_{i}\left(M\left(U^{n}\right) F^{n}, w\right)-\sum_{n=j+1}^{k} \int_{(n-1) h_{i}}^{n h_{i}}\left(g\left(n h_{i}, u_{h_{i}}\left(n h_{i}\right), v_{h_{i}}(s)\right), w\right) \mathrm{d} s \\
& =\sum_{n=j+1}^{k} h_{i}\left(F\left(n h_{i}, U^{n}, V^{n-1}, h_{i}\right)-F\left(n h_{i}, U^{n}, V^{n-1}, 0\right), w\right)_{M\left(U^{n}\right)} \tag{27}
\end{align*}
$$

In order to estimate the right-hand side of (27), we denote by ω_{F} the modulus of continuity of F on the compact set $[0, T] \times B_{1} \times \bar{B}\left(0, C_{0}\right) \times\left[0, h^{*}\right]$ and we get

$$
\begin{align*}
& \left|\sum_{n=j+1}^{k} h_{i}\left(F\left(n h_{i}, U^{n}, V^{n-1}, h_{i}\right)-F\left(n h_{i}, U^{n}, V^{n-1}, 0\right), w\right)_{M\left(U^{n}\right)}\right| \\
& \quad \leqq \sum_{n=j+1}^{k} h_{i}\left\|M\left(U^{n}\right)\right\| \omega_{F}\left(h_{i}\right)|w| \leqq\left(\varepsilon+h_{i}\right) \lambda_{\max , B_{1}} \omega_{F}\left(h_{i}\right)|w| \tag{28}
\end{align*}
$$

Furthermore

$$
\begin{align*}
& \sum_{n=j+1}^{k} \int_{(n-1) h_{i}}^{n h_{i}}\left(g\left(n h_{i}, u_{h_{i}}\left(n h_{i}\right), v_{h_{i}}(s)\right), w\right) \mathrm{d} s \\
& \quad-\int_{t}^{t+\varepsilon}\left(g\left(s, u_{h_{i}}(s), v_{h_{i}}(s)\right), w\right) \mathrm{d} s \\
& =\sum_{n=j+1}^{k} \int_{(n-1) h_{i}}^{n h_{i}}\left(g\left(n h_{i}, u_{h_{i}}\left(n h_{i}\right), v_{h_{i}}(s)\right)-g\left(s, u_{h_{i}}(s), v_{h_{i}}(s)\right), w\right) \mathrm{d} s \\
& \quad-\int_{k h_{i}}^{t+\varepsilon}\left(g\left(s, u_{h_{i}}(s), v_{h_{i}}(s)\right), w\right) \mathrm{d} s+\int_{j h_{i}}^{t}\left(g\left(s, u_{h_{i}}(s), v_{h_{i}}(s)\right), w\right) \mathrm{d} s \tag{29}
\end{align*}
$$

Recalling that $\left(u_{h_{i}}(s), v_{h_{i}}(s)\right) \in B_{1} \times \bar{B}\left(0, C_{0}\right)$ for all $s \in[0, \tau]$ and for all $h_{i} \in\left(0, h_{1}^{*}\right.$], we obtain the following estimates for the second and third terms of the right-hand side of (29):

$$
\begin{aligned}
&\left|\int_{k h_{i}}^{t+\varepsilon}\left(g\left(s, u_{h_{i}}(s), v_{h_{i}}(s)\right), w\right) \mathrm{d} s\right| \leqq\left|t+\varepsilon-k h_{i}\right| C_{g}|w| \leqq h_{i} C_{g}|w|, \\
&\left|\int_{j h_{i}}^{t}\left(g\left(s, u_{h_{i}}(s), v_{h_{i}}(s)\right), w\right) \mathrm{d} s\right| \leqq\left|t-j h_{i}\right| C_{g}|w| \leqq h_{i} C_{g}|w|,
\end{aligned}
$$

with $C_{g}=\sup \left\{|g(s, q, v)| ;(s, q, v) \in[0, T] \times B_{1} \times \bar{B}\left(0, C_{0}\right)\right\}$.
In order to estimate the first term of the right-hand side of (29), we introduce ω_{g} the modulus of continuity of g on $[0, T] \times B_{1} \times \bar{B}\left(0, C_{0}\right)$. Observing that

$$
\left|u_{h_{i}}\left(n h_{i}\right)-u_{h_{i}}(s)\right| \leqq C_{0}\left|n h_{i}-s\right| \leqq C_{0} h_{i}
$$

for all $s \in\left[(n-1) h_{i}, n h_{i}\right)$ and for all $n \in\{j+1, \ldots, k\}$, we get

$$
\left|g\left(n h_{i}, u_{h_{i}}\left(n h_{i}\right), v_{h_{i}}(s)\right)-g\left(s, u_{h_{i}}(s), v_{h_{i}}(s)\right)\right| \leqq \omega_{g}\left(C_{0} h_{i}\right)+\omega_{g}\left(h_{i}\right)
$$

for all $s \in\left[(n-1) h_{i}, n h_{i}\right)$ and for all $n \in\{j+1, \ldots, k\}$.
Hence

$$
\begin{align*}
& \mid \sum_{n=j+1}^{k} \int_{(n-1) h_{i}}^{n h_{i}}\left(g\left(n h_{i}, u_{h_{i}}\left(n h_{i}\right), v_{h_{i}}(s)\right), w\right) \mathrm{d} s \\
& \quad-\int_{t}^{t+\varepsilon}\left(g\left(s, u_{h_{i}}(s), v_{h_{i}}(s)\right), w\right) \mathrm{d} s \mid \\
& \leqq 2 h_{i} C_{g}|w|+\left(\omega_{g}\left(C_{0} h_{i}\right)+\omega_{g}\left(h_{i}\right)\right)(k-j) h_{i}|w| \\
& \leqq 2 h_{i} C_{g}|w|+\left(\omega_{g}\left(C_{0} h_{i}\right)+\omega_{g}\left(h_{i}\right)\right)\left(\varepsilon+h_{i}\right)|w| . \tag{30}
\end{align*}
$$

Then recalling that

$$
u_{h_{i}}(s) \rightarrow_{h_{i} \rightarrow 0} u(s) \text { for all } s \in[0, \tau],
$$

and

$$
v_{h_{i}}(s) \rightarrow_{h_{i} \rightarrow 0} v(s)=\dot{u}(s) \text { for a.a. } s \in[0, \tau],
$$

we infer from Lebesgue's theorem that

$$
\begin{equation*}
\lim _{h_{i} \rightarrow 0} \int_{t}^{t+\varepsilon}\left(g\left(s, u_{h_{i}}(s), v_{h_{i}}(s)\right), w\right) \mathrm{d} s=\int_{t}^{t+\varepsilon}(g(s, u(s), \dot{u}(s)), w) \mathrm{d} s \tag{31}
\end{equation*}
$$

Finally, combining (31), (30) and (29), we obtain

$$
\begin{aligned}
& \lim _{h_{i} \rightarrow 0} \sum_{n=j+1}^{k} \int_{(n-1) h_{i}}^{n h_{i}}\left(g\left(n h_{i}, u_{h_{i}}\left(n h_{i}\right), v_{h_{i}}(s)\right), w\right) \mathrm{d} s \\
& \quad=\int_{t}^{t+\varepsilon}(g(s, u(s), \dot{u}(s)), w) \mathrm{d} s
\end{aligned}
$$

and with (27) and (28) we may conclude that

$$
\lim _{h_{i} \rightarrow 0} \sum_{n=j+1}^{k} h_{i}\left(M\left(U^{n}\right) F^{n}, w\right)=\int_{t}^{t+\varepsilon}(g(s, u(s), \dot{u}(s)), w) \mathrm{d} s
$$

Then, passing to the limit as h_{i} tends to zero in (26), we get

$$
\begin{align*}
& \int_{t}^{t+\varepsilon}(g(s, u(s), \dot{u}(s)), w) \mathrm{d} s+(M(u(t))(\dot{u}(t)-\dot{u}(t+\varepsilon)), w) \\
& \quad \leqq 2 L_{M} \varepsilon C_{0}^{2}|w| \tag{32}
\end{align*}
$$

for all $\varepsilon \in\left(0, \tilde{\varepsilon}_{w}\right]$. Since \dot{u} is continuous at t, we have $\dot{u}(t)=\dot{u}(t-0)=\dot{u}(t+0)$. Moreover, since $\dot{u}=v$ and v is continuous, except perhaps on a countable subset of $[0, \tau]$, we may choose a sequence $\left(\varepsilon_{i}\right)_{i \in \mathbb{N}}$ decreasing to zero such that

$$
\varepsilon_{i} \in\left(0, \tilde{\varepsilon}_{w}\right], \quad v\left(t+\varepsilon_{i}\right)=\dot{u}\left(t+\varepsilon_{i}\right)=\dot{u}\left(t+\varepsilon_{i}+0\right) \quad \forall i \in \mathbb{N}
$$

It follows that

$$
\dot{u}(t)-\dot{u}\left(t+\varepsilon_{i}\right)=\dot{u}(t-0)-\dot{u}\left(t+\varepsilon_{i}+0\right)=-d \dot{u}\left(\left[t, t+\varepsilon_{i}\right]\right) \quad \forall i \in \mathbb{N} .
$$

Multiplying (32) by $\frac{1}{d \mu\left(\left[t, t+\varepsilon_{i}\right]\right)}$ and passing to the limit as ε_{i} tends to zero, we obtain

$$
(g(t, u(t), \dot{u}(t)), w) t_{\mu}^{\prime}(t)-\left(M(u(t)) v_{\mu}^{\prime}(t), w\right) \leqq 0 \quad \forall w \in \tilde{T}_{K}(\bar{u})
$$

Finally, observing that $\tilde{T}_{K}(\bar{u})$ is dense in $T_{K}(\bar{u})$ we may conclude.
Let us now consider $t \in[0, \tau] \backslash\left(N \cup N^{\prime} \cup N_{0}\right)$ such that \dot{u} is discontinuous at t. Then $\dot{u}(t-0) \neq \dot{u}(t+0)$ and $d \dot{u}$ possesses a Dirac mass at t. Thus $\{t\}$ is not negligible anymore with respect to $d \mu$ and (3) is equivalent to

$$
M(u(t))(\dot{u}(t+0)-\dot{u}(t-0)) \in-N_{K}(u(t)) .
$$

This property is a direct consequence of the following proposition:
Proposition 5. For all $t \in[0, \tau]$ we have

$$
M(u(t))(\dot{u}(t+0)-\dot{u}(t-0)) \in-N_{K}(u(t))
$$

Proof. Let $t \in[0, \tau]$ and denote, for simplicity, $\bar{u}=u(t)$. Thanks to the density of $\tilde{T}_{K}(\bar{u})$ in $T_{K}(\bar{u})$, we only need to prove that

$$
(M(\bar{u})(\dot{u}(t-0)-\dot{u}(t+0)), w) \leqq 0 \quad \forall w \in \tilde{T}_{K}(\bar{u}) .
$$

Let $w \in \tilde{T}_{K}(\bar{u})$. As in the proof of the previous proposition, we define $r_{w}>0$ such that

$$
J(q) \subset J(\bar{u}) \text { and } w \in T_{K}(q) \text { for all } q \in \bar{B}\left(\bar{u}, r_{w}\right)
$$

We also define $\tilde{\varepsilon}_{w} \in(0, \tau / 2)$ such that for all $\varepsilon \in\left(0, \tilde{\varepsilon}_{w}\right]$ we have

$$
u(s) \in \bar{B}\left(\bar{u}, \frac{r_{w}}{3}\right) \quad \forall s \in[t-\varepsilon, t+\varepsilon] \cap[0, \tau]
$$

and there exists $h_{\varepsilon} \in\left(0, \min \left(h_{1}^{*}, r_{w} /\left(3 C_{0}\right), \varepsilon / 3\right)\right]$ such that

$$
u_{h_{i}}(s) \in \bar{B}\left(\bar{u}, \frac{2 r_{w}}{3}\right) \quad \forall s \in[t-\varepsilon, t+\varepsilon] \cap[0, \tau], \quad \forall h_{i} \in\left(0, h_{\varepsilon}\right],
$$

and

$$
U^{n+1} \in \bar{B}\left(\bar{u}, r_{w}\right) \quad \forall n h_{i} \in[t-\varepsilon, t+\varepsilon] \cap[0, \tau], \quad \forall h_{i} \in\left(0, h_{\varepsilon}\right] .
$$

Let $\varepsilon \in\left(0, \tilde{\varepsilon}_{w}\right]$ and $h_{i} \in\left(0, h_{\varepsilon}\right]$. We define $t_{\varepsilon}^{-}=\max (t-\varepsilon, 0), t_{\varepsilon}^{+}=\min (t+\varepsilon, \tau)$ and

$$
j=\left\lfloor\frac{t_{\varepsilon}^{-}}{h_{i}}\right\rfloor, \quad k=\left\lfloor\frac{t_{\varepsilon}^{+}}{h_{i}}\right\rfloor
$$

that is, we have

$$
0 \leqq t_{j}=j h_{i} \leqq t_{\varepsilon}^{-}<t_{j+1}<\cdots<t_{k}=k h_{i} \leqq t_{\varepsilon}^{+} \leqq \tau
$$

It follows that

$$
v_{h_{i}}\left(t_{\varepsilon}^{-}\right)=V^{j}, \quad v_{h_{i}}\left(t_{\varepsilon}^{+}\right)=V^{k}
$$

We have

$$
\begin{align*}
& \left(M\left(u_{h_{i}}\left(t_{\varepsilon}^{-}\right)\right) v_{h_{i}}\left(t_{\varepsilon}^{-}\right)-M\left(u_{h_{i}}\left(t_{\varepsilon}^{+}\right)\right) v_{h_{i}}\left(t_{\varepsilon}^{+}\right), w\right) \\
& \quad=\left(M\left(U^{j}\right) V^{j}-M\left(U^{k}\right) V^{k}, w\right) \\
& \quad+\left(\left(M\left(u_{h_{i}}\left(t_{\varepsilon}^{-}\right)\right)-M\left(U^{j}\right)\right) V^{j}, w\right)+\left(\left(M\left(U^{k}\right)-M\left(u_{h_{i}}\left(t_{\varepsilon}^{+}\right)\right)\right) V^{k}, w\right) . \tag{33}
\end{align*}
$$

Following the same ideas as in the previous proof, we use the Lipschitz continuity of M on B_{1} to estimate the last two terms of (33). More precisely,

$$
\left|\left(\left(M\left(u_{h_{i}}\left(t_{\varepsilon}^{-}\right)\right)-M\left(U^{j}\right)\right) V^{j}, w\right)\right| \leqq|w|\left|V^{j}\right| L_{M}\left|u_{h_{i}}\left(t_{\varepsilon}^{-}\right)-U^{j}\right| \leqq L_{M}|w| C_{0}^{2} h_{i}
$$

and with similar computations

$$
\left|\left(\left(M\left(U^{k}\right)-M\left(u_{h_{i}}\left(t_{\varepsilon}^{+}\right)\right)\right) V^{k}, w\right)\right| \leqq L_{M}|w| C_{0}^{2} h_{i}
$$

We rewrite the first term of (33) as

$$
\begin{aligned}
\left(M\left(U^{j}\right) V^{j}-M\left(U^{k}\right) V^{k}, w\right)= & \sum_{n=j+1}^{k} M\left(U^{n}\right)\left(V^{n-1}-V^{n}, w\right) \\
& +\sum_{n=j+1}^{k}\left(\left(M\left(U^{n-1}\right)-M\left(U^{n}\right)\right) V^{n-1}, w\right)
\end{aligned}
$$

and, observing that $w \in T_{K}\left(U^{n+1}\right)$ for all $n \in\{j+1, \ldots, k\}$, we infer from Lemma 1 that

$$
\begin{aligned}
\sum_{n=j+1}^{k} M\left(U^{n}\right)\left(V^{n-1}-V^{n}, w\right) & \leqq \sum_{n=j+1}^{k}-h_{i}\left(M\left(U^{n}\right) F^{n}, w\right) \\
& \leqq(k-j) h_{i} \lambda_{\max , B_{1}} C_{F}|w| \\
& \leqq\left(2 \varepsilon+h_{i}\right) \lambda_{\max , B_{1}} C_{F}|w|
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left(M\left(U^{j}\right) V^{j}-M\left(U^{k}\right) V^{k}, w\right) \leqq & \sum_{n=j+1}^{k}\left|\left(\left(M\left(U^{n-1}\right)-M\left(U^{n}\right)\right) V^{n-1}, w\right)\right| \\
& +\left(2 \varepsilon+h_{i}\right) \lambda_{\max , B_{1}} C_{F}|w|
\end{aligned}
$$

and, using once again the Lipschitz property of M, we get

$$
\left(M\left(U^{j}\right) V^{j}-M\left(U^{k}\right) V^{k}, w\right) \leqq\left(2 \varepsilon+h_{i}\right)|w|\left(\lambda_{\max , B_{1}} C_{F}+L_{M} C_{0}^{2}\right)
$$

Finally, we obtain

$$
\begin{aligned}
& \left(M\left(u_{h_{i}}\left(t_{\varepsilon}^{-}\right)\right) v_{h_{i}}\left(t_{\varepsilon}^{-}\right)-M\left(u_{h_{i}}\left(t_{\varepsilon}^{+}\right)\right) v_{h_{i}}\left(t_{\varepsilon}^{+}\right), w\right) \\
& \quad \leqq 2 L_{M}|w| C_{0}^{2} h_{i}+\left(2 \varepsilon+h_{i}\right)|w|\left(\lambda_{\max , B_{1}} C_{F}+L_{M} C_{0}^{2}\right),
\end{aligned}
$$

for all $h_{i} \in\left(0, h_{\varepsilon}\right]$ and for all $\varepsilon \in\left(0, \tilde{\varepsilon}_{w}\right]$.
Now, passing to the limit as h_{i} tends to zero, then as ε tends to zero, we may conclude.

3.2. Transmission of the velocity at impacts

With the previous proposition, we observe that $\dot{u}(t+0)=\dot{u}(t-0)$ for all $t \in[0, \tau]$ such that $J(u(t))=\emptyset$. That is, \dot{u} is continuous at t if $u(t) \in \operatorname{Int}(K)$ and, in this case, the impact law (4) is satisfied. Thus it remains only to prove that

$$
\begin{equation*}
\dot{u}(\bar{t}+0)=\operatorname{Proj}_{M(u(\bar{t}))}\left(T_{K}(u(\bar{t})), \dot{u}(\bar{t}-0)\right) \tag{34}
\end{equation*}
$$

for all $\bar{t} \in(0, \tau)$ such that $J(u(\bar{t})) \neq \emptyset$.
In order to also obtain some information on $\dot{u}(0+0)$, we now consider $\bar{t} \in[0, \tau)$ such that $J(u(\bar{t})) \neq \emptyset$. For simplicity, we denote $\bar{u}=u(\bar{t})$ and $\dot{u}^{+}=\dot{u}(\bar{t}+0)$, $\dot{u}^{-}=\dot{u}(\bar{t}-0)$. With Proposition 5 we already know that $M(\bar{u})\left(\dot{u}^{-}-\dot{u}^{+}\right) \in N_{K}(\bar{u})$, that is, there exist non-positive real numbers $\left(\mu_{\alpha}\right)_{\alpha \in J(\bar{u})}$ such that

$$
M^{1 / 2}(\bar{u})\left(\dot{u}^{-}-\dot{u}^{+}\right)=\sum_{\alpha \in J(\bar{u})} \mu_{\alpha} e_{\alpha}(\bar{u}),
$$

where we recall that

$$
e_{\alpha}(\bar{u})=\frac{M^{-1 / 2}(\bar{u}) \nabla f_{\alpha}(\bar{u})}{\left|M^{-1 / 2}(\bar{u}) \nabla f_{\alpha}(\bar{u})\right|} \quad \forall \alpha \in J(\bar{u}) .
$$

Moreover, since $u(t) \in K$ for all $t \in[0, \tau]$, we have $\dot{u}^{+} \in T_{K}(\bar{u})$ and (34) reduces to

$$
\left(\dot{u}^{-}-\dot{u}^{+}, \dot{u}^{+}\right)_{M(\bar{u})}=0
$$

that is,

$$
\left(e_{\alpha}(\bar{u}), M^{1 / 2}(\bar{u}) \dot{u}^{+}\right)=0 \text { for all } \alpha \in J(\bar{u}) \text { such that } \mu_{\alpha} \neq 0
$$

From assumption (H3) we know that $\left(\nabla f_{\alpha}(\bar{u})\right)_{\alpha \in J(\bar{u})}$ is linearly independent. It follows that $\left(e_{\alpha}(\bar{u})\right)_{\alpha \in J(\bar{u})}$ is also linearly independent and there exist $\left(e_{\beta}\right)_{\beta \in\{1, \ldots, d\} \backslash J(\bar{u})}$ such that $\left\{e_{\alpha}(\bar{u}) ; \alpha \in J(\bar{u})\right\} \cup\left\{e_{\beta} ; \beta \in\{1, \ldots, d\} \backslash J(\bar{u})\right\}$ is a basis of \mathbb{R}^{d} and $\left|e_{\beta}\right|=1$ for all $\beta \in\{1, \ldots, d\} \backslash J(\bar{u})$.

Using Lemma 7 (see Appendix) we know that there exists $r_{\bar{u}} \in\left(0, r_{B_{1}}\right]$ such that

$$
\begin{equation*}
J(q) \subset J(\bar{u}) \quad \forall q \in \bar{B}\left(\bar{u}, r_{\bar{u}}\right) \tag{35}
\end{equation*}
$$

and

$$
\left|M^{-1 / 2}(q) \nabla f_{\alpha}(q)\right| \geqq m_{B_{1}}>0 \quad \forall q \in \bar{B}\left(\bar{u}, r_{\bar{u}}\right), \forall \alpha \in J(\bar{u})
$$

Thus, for all $\alpha \in\{1, \ldots, d\}$ and for all $q \in \bar{B}\left(\bar{u}, r_{\bar{u}}\right)$ we define

$$
v_{\alpha}(q)= \begin{cases}\frac{M^{-1 / 2}(q) \nabla f_{\alpha}(q)}{\left|M^{-1 / 2}(q) \nabla f_{\alpha}(q)\right|} & \text { if } \alpha \in J(\bar{u}) \\ e_{\alpha} & \text { if } \alpha \notin J(\bar{u})\end{cases}
$$

From (35) we infer that $v_{\alpha}(q)=e_{\alpha}(q)$ for all $\alpha \in J(q)$, for all $q \in B\left(\bar{u}, r_{\bar{u}}\right) \cap K$. Moreover, the continuity of $M^{-1 / 2}$ and $\nabla f_{\alpha}(1 \leqq \alpha \leqq \nu)$ implies that, possibly decreasing $r_{\bar{u}},\left(v_{\alpha}(q)\right)_{1 \leqq} \leqq_{\alpha}$ is a basis of \mathbb{R}^{d} for all $q \in \bar{B}\left(\bar{u}, r_{\bar{u}}\right)$. We define the dual basis $\left(w_{\alpha}(q)\right)_{1 \leqq \alpha \leqq d}$ for all $q \in \bar{B}\left(\bar{u}, r_{\bar{u}}\right)$. From Lemma 7, we know that the vectors $\left(w_{\alpha}(q)\right)_{1 \leqq \alpha \leqq d}$ are bounded independently of q by a constant $C_{*, \bar{u}}$ and, since the mappings $M^{-1 / 2}$ and $\nabla f_{\alpha}(1 \leqq \alpha \leqq \nu)$ are locally Lipschitz continuous, the mappings v_{α} and $w_{\alpha}(1 \leqq \alpha \leqq d)$ are also Lipschitz continuous on $\bar{B}\left(\bar{u}, r_{\bar{u}}\right)$; we let $L_{\bar{u}} \in \mathbb{R}_{*}^{+}$be such that, for all $\alpha \in\{1, \ldots, d\}$ and for all $\left(q, q^{\prime}\right) \in \bar{B}\left(\bar{u}, r_{\bar{u}}\right)^{2}$

$$
\left|v_{\alpha}(q)-v_{\alpha}\left(q^{\prime}\right)\right| \leqq L_{\bar{u}}\left|q-q^{\prime}\right|, \quad\left|w_{\alpha}(q)-w_{\alpha}\left(q^{\prime}\right)\right| \leqq L_{\bar{u}}\left|q-q^{\prime}\right|
$$

Finally, from the continuity of u and the uniform convergence of $\left(u_{h_{i}}\right)_{i \in \mathbb{N}}$ to u on $[0, \tau]$, we infer that there exist $\bar{\varepsilon} \in\left(0, \frac{\tau-\bar{t}}{2}\right]$ and $h_{2}^{*} \in\left(0, \min \left(h_{1}^{*}, \frac{\bar{\varepsilon}}{3}, \frac{r_{\bar{u}}}{3 C_{0}}\right)\right]$ such that

$$
\begin{aligned}
& u(t) \in \bar{B}\left(\bar{u}, \frac{r_{\bar{u}}}{3}\right) \quad \forall t \in[\bar{t}-\bar{\varepsilon}, \bar{t}+\bar{\varepsilon}] \cap[0, \tau], \\
& \left\|u-u_{h_{i}}\right\|_{C^{0}\left([0, \tau] ; \mathbb{R}^{d}\right)} \leqq \frac{r_{\bar{u}}}{3} \quad \forall h_{i} \in\left(0, h_{2}^{*}\right] .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
U^{n+1}, U^{n} \in \bar{B}\left(\bar{u}, r_{\bar{u}}\right) \quad \forall n h_{i} \in[t-\bar{\varepsilon}, t+\bar{\varepsilon}] \cap[0, \tau], \forall h_{i} \in\left(0, h_{2}^{*}\right] . \tag{36}
\end{equation*}
$$

We begin with the following lemma.
Lemma 3. Let $\alpha \in J(\bar{u})$ such that $\mu_{\alpha} \neq 0$. Then, for all $\varepsilon_{1} \in(0, \bar{\varepsilon}]$ there exists $h_{\varepsilon_{1}} \in\left(0, \min \left(h_{2}^{*}, \varepsilon_{1} / 3\right)\right]$ such that for all $h_{i} \in\left(0, h_{\varepsilon_{1}}\right]$, there exists $n h_{i} \in\left[\bar{t}-\varepsilon_{1}\right.$, $\left.\bar{t}+\varepsilon_{1}\right] \cap[0, \tau]$ such that $f_{\alpha}\left(U^{n+1}\right) \leqq 0$.

Proof. Let us assume that the announced result does not hold, that is, assume that there exists $\varepsilon_{1} \in(0, \bar{\varepsilon}]$ such that, for all $h_{\varepsilon_{1}} \in\left(0, \min \left(h_{2}^{*}, \varepsilon_{1} / 3\right)\right]$ there exists $h_{i} \in\left(0, h_{\varepsilon_{1}}\right]$ such that $f_{\alpha}\left(U^{n+1}\right)>0$ for all $n h_{i} \in\left[\bar{t}-\varepsilon_{1}, \bar{t}+\varepsilon_{1}\right] \cap[0, \tau]$.

Hence, we can extract from $\left(h_{i}\right)_{i \in \mathbb{N}}$ a subsequence denoted $\left(h_{\varphi(i)}\right)_{i \in \mathbb{N}}$ such that $h_{\varphi(i)} \in\left(0, \min \left(h_{2}^{*}, \varepsilon_{1} / 3\right)\right],\left(h_{\varphi(i)}\right)_{i \in \mathbb{N}}$ decreases to zero and

$$
\begin{equation*}
f_{\alpha}\left(U^{n+1}\right)>0 \quad \forall n h_{\varphi(i)} \in\left[\bar{t}-\varepsilon_{1}, \bar{t}+\varepsilon_{1}\right] \cap[0, \tau] \tag{37}
\end{equation*}
$$

for all $i \in \mathbb{N}$.
For all $\varepsilon \in\left(0, \varepsilon_{1}\right]$, let us establish the following estimate:

$$
\begin{aligned}
& \left|\left(M^{1 / 2}\left(u_{h_{\varphi(i)}}\left(t_{\varepsilon}^{-}\right)\right) v_{h_{\varphi(i)}}\left(t_{\varepsilon}^{-}\right)-M^{1 / 2}\left(u_{h_{\varphi(i)}}\left(t_{\varepsilon}^{+}\right)\right) v_{h_{\varphi(i)}}\left(t_{\varepsilon}^{+}\right), w_{\alpha}(\bar{u})\right)\right| \\
& \quad \leqq \mathcal{O}\left(\varepsilon+h_{\varphi(i)}+\left\|u-u_{h_{\varphi(i)}}\right\|_{C^{0}\left([0, \tau] ; \mathbb{R}^{d}\right)}\right)
\end{aligned}
$$

where $t_{\varepsilon}^{-}=\max (\bar{t}-\varepsilon, 0)$ and $t_{\varepsilon}^{+}=\min (\bar{t}+\varepsilon, \tau)$. Then, by passing to the limit when i tends to $+\infty$, we will infer with (21) and (22) that

$$
\left|\left(M^{1 / 2}\left(u\left(t_{\varepsilon}^{-}\right)\right) v\left(t_{\varepsilon}^{-}\right)-M^{1 / 2}\left(u\left(t_{\varepsilon}^{+}\right)\right) v\left(t_{\varepsilon}^{+}\right), w_{\alpha}(\bar{u})\right)\right| \leqq \mathcal{O}(\varepsilon)
$$

and, when ε tends to zero, we will obtain

$$
\left|\left(M^{1 / 2}(\bar{u})(\dot{u}(\bar{t}-0)-\dot{u}(\bar{t}+0)), w_{\alpha}(\bar{u})\right)\right|=\left|\mu_{\alpha}\right| \leqq 0
$$

which gives a contradiction.
Let $\varepsilon \in\left(0, \varepsilon_{1}\right]$. There exists $i_{\varepsilon} \in \mathbb{N}$ such that, for all $i \geqq i_{\varepsilon}$ we have $h_{\varphi(i)} \in$ $(0, \varepsilon / 2)$ and we define

$$
n_{i}=\left\lfloor\frac{t_{\varepsilon}^{-}}{h_{\varphi(i)}}\right\rfloor, \quad p_{i}=\left\lfloor\frac{t_{\varepsilon}^{+}}{h_{\varphi(i)}}\right\rfloor .
$$

Then, $n_{i}+1<p_{i}$ and for all $n \in\left\{n_{i}+1, \ldots, p_{i}\right\}$ we have $n h_{\varphi(i)} \in\left[t_{\varepsilon}^{-}, t_{\varepsilon}^{+}\right]$. We infer from Lemma 1 that, for all $n \in\left\{n_{i}+1, \ldots, p_{i}\right\}$

$$
M\left(U^{n}\right)\left(V^{n-1}-V^{n}+h_{\varphi(i)} F^{n}\right) \in N_{K}\left(U^{n+1}\right)
$$

If $J\left(U^{n+1}\right) \neq \emptyset$, there exist non-positive real numbers $\left(\mu_{\beta}^{n}\right)_{\beta \in J\left(U^{n+1}\right)}$ such that

$$
M\left(U^{n}\right)\left(V^{n-1}-V^{n}+h_{\varphi(i)} F^{n}\right)=\sum_{\beta \in J\left(U^{n+1}\right)} \mu_{\beta}^{n} M^{1 / 2}\left(U^{n+1}\right) e_{\beta}\left(U^{n+1}\right)
$$

From (36), we obtain $e_{\beta}\left(U^{n+1}\right)=v_{\beta}\left(U^{n+1}\right)$ for all $\beta \in J\left(U^{n+1}\right)$ and

$$
\begin{aligned}
\left|\mu_{\beta}^{n}\right| & =\left|\left(M\left(U^{n}\right)\left(V^{n-1}-V^{n}+h_{\varphi(i)} F^{n}\right), M^{-1 / 2}\left(U^{n+1}\right) w_{\beta}\left(U^{n+1}\right)\right)\right| \\
& \leqq \frac{\lambda_{\max , B_{1}}}{\sqrt{\lambda_{\min , B_{1}}}}\left(2 C_{0}+h_{2}^{*} C_{F}\right) C_{*, \bar{u}} \leqq 3 \frac{\lambda_{\max , B_{1}}}{\sqrt{\lambda_{\min , B_{1}}}} C_{0} C_{*, \bar{u}} \quad \forall \beta \in J\left(U^{n+1}\right) .
\end{aligned}
$$

From now on, let us denote

$$
C_{2}^{\prime}=3 \frac{\lambda_{\max , B_{1}}}{\sqrt{\lambda_{\min , B_{1}}}} C_{0} C_{*, \bar{u}}
$$

With (37) we know that $\alpha \notin J\left(U^{n+1}\right)$, thus

$$
\begin{aligned}
& \left|\left(M^{1 / 2}\left(U^{n+1}\right)\left(V^{n-1}-V^{n}+h_{\varphi(i)} F^{n}\right), w_{\alpha}\left(U^{n+1}\right)\right)\right| \\
& \quad=\left|\sum_{\beta \in J\left(U^{n+1}\right)} \mu_{\beta}^{n}\left(M^{1 / 2}\left(U^{n+1}\right) M^{-1}\left(U^{n}\right) M^{1 / 2}\left(U^{n+1}\right) v_{\beta}\left(U^{n+1}\right), w_{\alpha}\left(U^{n+1}\right)\right)\right| \\
& \quad \leqq \sum_{\beta \in J\left(U^{n+1}\right)}\left|\mu_{\beta}^{n}\right|\left\|M^{1 / 2}\left(U^{n+1}\right)\right\|^{2}\left\|M^{-1}\left(U^{n+1}\right)-M^{-1}\left(U^{n}\right)\right\|\left|v_{\beta}\left(U^{n+1}\right)\right|\left|w_{\alpha}\left(U^{n+1}\right)\right| \\
& \quad \leqq \nu C_{2}^{\prime} C_{*, \bar{u}} \lambda_{\max , B_{1}} L_{M^{-1}}\left|U^{n+1}-U^{n}\right| \leqq \nu C_{2}^{\prime} C_{0} C_{*, \bar{u}} \lambda_{\max , B_{1}} L_{M^{-1}} h_{\varphi(i)}
\end{aligned}
$$

for all $n \in\left\{n_{i}+1, \ldots, p_{i}\right\}$, if $J\left(U^{n+1}\right) \neq \emptyset$.
If $J\left(U^{n+1}\right)=\emptyset$, this last inequality remains true since $V^{n-1}-V^{n}+h_{\varphi(i)} F^{n}=0$ if $J\left(U^{n+1}\right)=\emptyset$.

It follows that, for all $n \in\left\{n_{i}+1, \ldots, p_{i}\right\}$

$$
\begin{aligned}
& \left(M^{1 / 2}\left(U^{n_{i}+1}\right) V^{n_{i}}-M^{1 / 2}\left(U^{p_{i}+1}\right) V^{p_{i}}, w_{\alpha}(\bar{u})\right) \\
& =\sum_{n=n_{i}+1}^{p_{i}}\left(M^{1 / 2}\left(U^{n}\right) V^{n-1}-M^{1 / 2}\left(U^{n+1}\right) V^{n}, w_{\alpha}(\bar{u})\right) \\
& =\sum_{n=n_{i}+1}^{p_{i}}\left(M^{1 / 2}\left(U^{n+1}\right)\left(V^{n-1}-V^{n}+h_{\varphi(i)} F^{n}\right), w_{\alpha}\left(U^{n+1}\right)\right) \\
& \quad+\sum_{n=n_{i}+1}^{p_{i}}\left(\left(M^{1 / 2}\left(U^{n}\right)-M^{1 / 2}\left(U^{n+1}\right)\right) V^{n-1}, w_{\alpha}(\bar{u})\right) \\
& \quad-\sum_{n=n_{i}+1}^{p_{i}} h_{\varphi(i)}\left(M^{1 / 2}\left(U^{n+1}\right) F^{n}, w_{\alpha}\left(U^{n+1}\right)\right) \\
& \quad+\sum_{n=n_{i}+1}^{p_{i}}\left(M^{1 / 2}\left(U^{n+1}\right)\left(V^{n-1}-V^{n}\right), w_{\alpha}(\bar{u})-w_{\alpha}\left(U^{n+1}\right)\right)
\end{aligned}
$$

which yields

$$
\begin{aligned}
& \left|\left(M^{1 / 2}\left(U^{n_{i}+1}\right) V^{n_{i}}-M^{1 / 2}\left(U^{p_{i}+1}\right) V^{p_{i}}, w_{\alpha}(\bar{u})\right)\right| \\
& \quad \leqq \sum_{n=n_{i}+1}^{p_{i}} \nu C_{2}^{\prime} C_{0} C_{*, \bar{u}} \lambda_{\max , B_{1}} L_{M^{-1}} h_{\varphi(i)}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{n=n_{i}+1}^{p_{i}} C_{0} C_{*, \bar{u}} L_{M^{1 / 2}} h_{\varphi(i)}\left|V^{n}\right|+\sum_{n=n_{i}+1}^{p_{i}} h_{\varphi(i)} C_{*, \bar{u}} C_{F} \sqrt{\lambda_{\max , B_{1}}} \\
& +\sum_{n=n_{i}+1}^{p_{i}} \sqrt{\lambda_{\max , B_{1}}}\left|V^{n}-V^{n-1}\right|\left|w_{\alpha}(\bar{u})-w_{\alpha}\left(U^{n+1}\right)\right|
\end{aligned}
$$

Then, observing that for all $n \in\left\{n_{i}+1, \ldots, p_{i}\right\}$

$$
\begin{aligned}
\left|\bar{u}-U^{n+1}\right| & \leqq\left|u(\bar{t})-u_{h_{\varphi(i)}}(\bar{t})\right|+\left|u_{h_{\varphi(i)}}(\bar{t})-u_{h_{\varphi(i)}}\left(n h_{\varphi(i)}\right)\right|+h_{\varphi(i)}\left|V^{n}\right| \\
& \leqq\left\|u-u_{h_{\varphi(i)}}\right\|_{C^{0}\left([0, \tau] ; \mathbb{R}^{d}\right)}+C_{0}\left(\varepsilon+h_{\varphi(i)}\right),
\end{aligned}
$$

we can estimate $\left|w_{\alpha}(\bar{u})-w_{\alpha}\left(U^{n+1}\right)\right|$ as

$$
L_{\bar{u}}\left(\left\|u-u_{h_{\varphi(i)}}\right\|_{C^{0}\left([0, \tau] ; \mathbb{R}^{d}\right)}+C_{0}\left(\varepsilon+h_{\varphi(i)}\right)\right) .
$$

Hence, with the estimate of the discrete accelerations obtained at Proposition 3, we get

$$
\begin{align*}
& \left|\left(M^{1 / 2}\left(U^{n_{i}+1}\right) V^{n_{i}}-M^{1 / 2}\left(U^{p_{i}+1}\right) V^{p_{i}}, w_{\alpha}(\bar{u})\right)\right| \\
& \quad \leqq\left(p_{i}-n_{i}\right) h_{\varphi(i)} C_{*, \bar{u}}\left(v C_{2}^{\prime} C_{0} \lambda_{\max , B_{1}} L_{M^{-1}}+C_{0}^{2} L_{M^{1 / 2}}+C_{F} \sqrt{\lambda_{\max , B_{1}}}\right) \\
& \quad+\sqrt{\lambda_{\max , B_{1}}} L_{\bar{u}}\left(\left\|u-u_{h_{\varphi(i)}}\right\|_{C^{0}\left([0, \tau] ; \mathbb{R}^{d}\right)}+C_{0}\left(\varepsilon+h_{\varphi(i)}\right)\right) \sum_{n=n_{i}+1}^{p_{i}}\left|V^{n}-V^{n-1}\right| \\
& \quad=\mathcal{O}\left(\varepsilon+h_{\varphi(i)}+\left\|u-u_{h_{\varphi(i)}}\right\|_{C^{0}\left([0, \tau] ; \mathbb{R}^{d}\right)}\right) . \tag{38}
\end{align*}
$$

But $V^{n_{i}}=v_{h_{\varphi(i)}}\left(t_{\varepsilon}^{-}\right), V^{p_{i}}=v_{h_{\varphi(i)}}\left(t_{\varepsilon}^{+}\right)$and

$$
\begin{align*}
& \mid\left(M^{1 / 2}\left(u_{h_{\varphi(i)}}\left(t_{\varepsilon}^{-}\right)\right) v_{h_{\varphi(i)}}\left(t_{\varepsilon}^{-}\right)-M^{1 / 2}\left(u_{h_{\varphi(i)}}\left(t_{\varepsilon}^{+}\right)\right) v_{h_{\varphi(i)}}\left(t_{\varepsilon}^{+}\right), w_{\alpha}(\bar{u})\right) \\
& \quad-\left(M^{1 / 2}\left(U^{n_{i}+1}\right) V^{n_{i}}-M^{1 / 2}\left(U^{p_{i}+1}\right) V^{p_{i}}, w_{\alpha}(\bar{u})\right) \mid \\
& \quad \leqq\left(\left|M^{1 / 2}\left(u_{h_{\varphi(i)}}\left(t_{\varepsilon}^{-}\right)\right)-M^{1 / 2}\left(U^{n_{i}+1}\right)\right|\right. \\
& \left.\quad+\left|M^{1 / 2}\left(u_{h_{\varphi(i)}}\left(t_{\varepsilon}^{+}\right)\right)-M^{1 / 2}\left(U^{p_{i}+1}\right)\right|\right) C_{0} C_{*, \bar{u}} \\
& \leqq \tag{39}
\end{align*} 2 L_{M^{1 / 2}} C_{0}^{2} C_{*, \bar{u}} h_{\varphi(i)} .
$$

Finally, from (38), (39) we obtain

$$
\begin{aligned}
& \left|\left(M^{1 / 2}\left(u_{h_{\varphi(i)}}\left(t_{\varepsilon}^{-}\right)\right) v_{h_{\varphi(i)}}\left(t_{\varepsilon}^{-}\right)-M^{1 / 2}\left(u_{h_{\varphi(i)}}\left(t_{\varepsilon}^{+}\right)\right) v_{h_{\varphi(i)}}\left(t_{\varepsilon}^{+}\right), w_{\alpha}(\bar{u})\right)\right| \\
& \quad=\mathcal{O}\left(\varepsilon+h_{\varphi(i)}+\left\|u-u_{h_{\varphi(i)}}\right\|_{C^{0}\left([0, \tau] ; \mathbb{R}^{d}\right)}\right)
\end{aligned}
$$

for all $i \geqq i_{\varepsilon}$ and for all $\varepsilon \in\left(0, \varepsilon_{1}\right]$, which enables us to conclude.

Let us now prove that

$$
\left(e_{\alpha}(\bar{u}), M^{1 / 2}(\bar{u}) \dot{u}^{+}\right)=0 \text { for all } \alpha \in J(\bar{u}) \text { such that } \mu_{\alpha} \neq 0
$$

Lemma 4. Let $\alpha \in J(\bar{u})$ be such that $\mu_{\alpha} \neq 0$. Then

$$
\left(e_{\alpha}(\bar{u}), M^{1 / 2}(\bar{u}) \dot{u}^{+}\right)=0 .
$$

Proof. Let $\alpha \in J(\bar{u})$ such that $\mu_{\alpha} \neq 0$. Since $\dot{u}^{+} \in T_{K}(\bar{u})$ we have $\left(M^{1 / 2}(\bar{u}) \dot{u}^{+}\right.$, $\left.e_{\alpha}(\bar{u})\right)=\left(M^{1 / 2}(\bar{u}) \dot{u}^{+}, v_{\alpha}(\bar{u})\right) \geqq 0$ and it remains to prove that $\left(M^{1 / 2}(\bar{u}) \dot{u}^{+}, v_{\alpha}(\bar{u})\right)$ $\leqq 0$. The main idea of the proof is to obtain an estimate of $\left(M^{1 / 2}(u(\bar{t}+\varepsilon))\right.$ $\left.v(\bar{t}+\varepsilon), v_{\alpha}(u(\bar{t}+\varepsilon))\right)$ and to pass to the limit when ε tends to zero.

More precisely, let $\varepsilon \in(0, \bar{\varepsilon}]$. Then

$$
v(\bar{t}+\varepsilon)=\lim _{h_{i} \rightarrow 0} v_{h_{i}}(\bar{t}+\varepsilon)=\lim _{h_{i} \rightarrow 0} V^{p_{i}}
$$

with $p_{i}=\left\lfloor\frac{\bar{t}+\varepsilon}{h_{i}}\right\rfloor$ for all $i \in \mathbb{N}$. Observing that

$$
\begin{aligned}
\left|u(\bar{t}+\varepsilon)-U^{p_{i}+1}\right| & \leqq\left|u(\bar{t}+\varepsilon)-u_{h_{i}}(\bar{t}+\varepsilon)\right|+\left|u_{h_{i}}(\bar{t}+\varepsilon)-u_{h_{i}}\left(\left(p_{i}+1\right) h_{i}\right)\right| \\
& \leqq\left\|u-u_{h_{i}}\right\|_{C^{0}\left([0, \tau] ; \mathbb{R}^{d}\right)}+C_{0} h_{i}
\end{aligned}
$$

the continuity of v_{α} and $M^{1 / 2}$ on $\bar{B}\left(\bar{u}, r_{\bar{u}}\right)$ implies that

$$
\begin{aligned}
& \left(M^{1 / 2}(u(\bar{t}+\varepsilon)) v(\bar{t}+\varepsilon), v_{\alpha}(u(\bar{t}+\varepsilon))\right) \\
& =\lim _{h_{i} \rightarrow 0}\left(M^{1 / 2}\left(U^{p_{i}+1}\right) v_{h_{i}}(\bar{t}+\varepsilon), v_{\alpha}\left(U^{p_{i}+1}\right)\right) \\
& =\lim _{h_{i} \rightarrow 0}\left(M^{1 / 2}\left(U^{p_{i}+1}\right) V^{p_{i}}, v_{\alpha}\left(U^{p_{i}+1}\right)\right),
\end{aligned}
$$

and we will prove that

$$
\begin{equation*}
\left(M^{1 / 2}\left(U^{p_{i}+1}\right) V^{p_{i}}, v_{\alpha}\left(U^{p_{i}+1}\right)\right) \leqq \mathcal{O}\left(\varepsilon+h_{i}+\left\|u-u_{h_{i}}\right\|_{C^{0}\left([0, \tau] ; \mathbb{R}^{d}\right)}\right) \tag{40}
\end{equation*}
$$

Let us apply Lemma 3: for all i such that $h_{i} \in\left(0, h_{\varepsilon}\right]$ we define N_{i} as the last time step in $[\bar{t}-\varepsilon, \bar{t}+\varepsilon] \cap[0, \tau]$ where the constraint f_{α} is active, that is,

$$
N_{i}=\max \left\{n \in \mathbb{N} ; n h_{i} \in[\bar{t}-\varepsilon, \bar{t}+\varepsilon] \cap[0, \tau] \text { and } f_{\alpha}\left(U^{n+1}\right) \leqq 0\right\}
$$

Since $\alpha \in J\left(U^{N_{i}+1}\right)$, we infer, as in Proposition 1, that

$$
\begin{aligned}
\left(v_{\alpha}\left(U^{N_{i}+1}\right), M^{1 / 2}\left(U^{N_{i}+1}\right) V^{N_{i}}\right) & =\left(e_{\alpha}\left(U^{N_{i}+1}\right), M^{1 / 2}\left(U^{N_{i}+1}\right) V^{N_{i}}\right) \\
& \leqq \frac{L_{f} h_{i}}{2 m_{B_{1}}}\left|V^{N_{i}}\right|^{2} \leqq \frac{L_{f} C_{0}^{2}}{2 m_{B_{1}}} h_{i}
\end{aligned}
$$

Moreover, with the same computations as in Lemma 3, for all $n h_{i} \in[\bar{t}-\varepsilon$, $\bar{t}+\varepsilon] \cap[0, \tau]$ such that $n \geqq 1$ we have

$$
\begin{equation*}
M\left(U^{n}\right)\left(V^{n-1}-V^{n}+h_{i} F^{n}\right)=\sum_{\beta \in J\left(U^{n+1}\right)} \mu_{\beta}^{n} M^{1 / 2}\left(U^{n+1}\right) v_{\beta}\left(U^{n+1}\right) \tag{41}
\end{equation*}
$$

with

$$
\begin{equation*}
-3 \frac{\lambda_{\max , B_{1}}}{\sqrt{\lambda_{\min , B_{1}}}} C_{0} C_{*, \bar{u}}=-C_{2}^{\prime} \leqq \mu_{\beta}^{n} \leqq 0 \quad \forall \beta \in J\left(U^{n+1}\right) \tag{42}
\end{equation*}
$$

Thus, for all $h_{i} \in\left(0, h_{\varepsilon}\right]$ we get

$$
\begin{aligned}
& \left(M^{1 / 2}\left(U^{p_{i}+1}\right) V^{p_{i}}, v_{\alpha}\left(U^{p_{i}+1}\right)\right) \\
& =\left(M^{1 / 2}\left(U^{N_{i}+1}\right) V^{N_{i}}, v_{\alpha}\left(U^{N_{i}+1}\right)\right) \\
& \quad+\left(M^{1 / 2}\left(U^{N_{i}+1}\right) V^{N_{i}}, v_{\alpha}\left(U^{p_{i}+1}\right)-v_{\alpha}\left(U^{N_{i}+1}\right)\right) \\
& \quad+\sum_{n=N_{i}+1}^{p_{i}}\left(M^{1 / 2}\left(U^{n+1}\right) V^{n}-M^{1 / 2}\left(U^{n}\right) V^{n-1}, v_{\alpha}\left(U^{p_{i}+1}\right)\right) \\
& \leqq \\
& =\frac{L_{f} C_{0}^{2}}{2 m_{B_{1}}} h_{i}+\left(M^{1 / 2}\left(U^{N_{i}+1}\right) V^{N_{i}}, v_{\alpha}\left(U^{p_{i}+1}\right)-v_{\alpha}\left(U^{N_{i}+1}\right)\right) \\
& \quad+\sum_{n=N_{i}+1}^{p_{i}}\left(\left(M^{1 / 2}\left(U^{n+1}\right)-M^{1 / 2}\left(U^{n}\right)\right) V^{n-1}, v_{\alpha}\left(U^{p_{i}+1}\right)\right) \\
& \quad+\sum_{n=N_{i}+1}^{p_{i}} h_{i}\left(M^{1 / 2}\left(U^{n+1}\right) F^{n}, v_{\alpha}\left(U^{p_{i}+1}\right)\right) \\
& \quad+\sum_{n=N_{i}+1}^{p_{i}}\left(M^{1 / 2}\left(U^{n+1}\right)\left(V^{n}-V^{n-1}-h_{i} F^{n}\right), v_{\alpha}\left(U^{p_{i}+1}\right)\right) .
\end{aligned}
$$

Using the Lipschitz property of $M^{1 / 2}$ on B_{1} and recalling that the mappings v_{α} $(\alpha \in\{1, \ldots, \nu\})$ are $L_{\bar{u}}$-Lipschitz continuous on $\bar{B}\left(\bar{u}, r_{\bar{u}}\right)$, we get

$$
\begin{align*}
& \left(M^{1 / 2}\left(U^{p_{i}+1}\right) V^{p_{i}}, v_{\alpha}\left(U^{p_{i}+1}\right)\right) \\
& \quad \leqq \sum_{n=N_{i}+1}^{p_{i}} h_{i}\left(L_{M^{1 / 2}} C_{0}^{2}+\sqrt{\lambda_{\max , B_{1}}} C_{F}\right)+\frac{L_{f} C_{0}^{2}}{2 m_{B_{1}}} h_{i} \\
& \quad+2 \varepsilon \sqrt{\lambda_{\max , B_{1}}} C_{0}^{2} L_{\bar{u}}+\sum_{n=N_{i}+1}^{p_{i}}\left(M^{1 / 2}\left(U^{n+1}\right)\left(V^{n}-V^{n-1}-h_{i} F^{n}\right), v_{\alpha}\left(U^{p_{i}+1}\right)\right) \tag{43}
\end{align*}
$$

There remains the task of estimating the last term. Using (41) and (42) we rewrite it as follows

$$
\begin{align*}
& \sum_{n=N_{i}+1}^{p_{i}} \sum_{\beta \in J\left(U^{n+1}\right)}\left(-\mu_{\beta}^{n}\right)\left(M^{1 / 2}\left(U^{n+1}\right) M^{-1}\left(U^{n}\right) M^{1 / 2}\left(U^{n+1}\right) v_{\beta}\left(U^{n+1}\right), v_{\alpha}\left(U^{p_{i}+1}\right)\right) \\
& \leqq \sum_{n=N_{i}+1}^{p_{i}} \sum_{\beta \in J\left(U^{n+1}\right)} C_{2}^{\prime}\left\|M^{1 / 2}\left(U^{n+1}\right)\right\|^{2}\left\|M^{-1}\left(U^{n+1}\right)-M^{-1}\left(U^{n}\right)\right\| \\
& \quad+\sum_{n=N_{i}+1}^{p_{i}} \sum_{\beta \in J\left(U^{n+1}\right)}\left(-\mu_{\beta}^{n}\right)\left(v_{\beta}\left(U^{n+1}\right), v_{\alpha}\left(U^{p_{i}+1}\right)\right) \tag{44}
\end{align*}
$$

By definition of N_{i} we have $\alpha \notin J\left(U^{n+1}\right)$ for all $n \in\left\{N_{i}+1, \ldots, p_{i}\right\}$. Moreover, from assumption (H6) we have

$$
\left(v_{\beta}(\bar{u}), v_{\alpha}(\bar{u})\right)=\left(e_{\beta}(\bar{u}), e_{\alpha}(\bar{u})\right) \leqq 0 \quad \forall \beta \in J(\bar{u}) \backslash\{\alpha\}
$$

and (35) and (36) imply that $J\left(U^{n+1}\right) \subset J(\bar{u})$ for all $n h_{i} \in[\bar{t}-\varepsilon, \bar{t}+\varepsilon] \cap[0, \tau]$.
It follows that

$$
\begin{aligned}
& \sum_{n=N_{i}+1}^{p_{i}} \sum_{\beta \in J\left(U^{n+1}\right)}\left(-\mu_{\beta}^{n}\right)\left(v_{\beta}\left(U^{n+1}\right), v_{\alpha}\left(U^{p_{i}+1}\right)\right) \\
& \leqq \sum_{n=N_{i}+1}^{p_{i}} \sum_{\beta \in J\left(U^{n+1}\right)}\left(-\mu_{\beta}^{n}\right)\left(\left(v_{\beta}\left(U^{n+1}\right), v_{\alpha}\left(U^{p_{i}+1}\right)\right)-\left(v_{\beta}(\bar{u}), v_{\alpha}(\bar{u})\right)\right) \\
& \leqq \sum_{n=N_{i}+1}^{p_{i}} \sum_{\beta \in J\left(U^{n+1}\right)}\left|\mu_{\beta}^{n}\right| L_{\bar{u}}\left(\left|U^{n+1}-\bar{u}\right|+\left|U^{p_{i}+1}-\bar{u}\right|\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \sum_{n=N_{i}+1}^{p_{i}} \sum_{\beta \in J\left(U^{n+1}\right)}\left(-\mu_{\beta}^{n}\right)\left(M^{1 / 2}\left(U^{n+1}\right) M^{-1}\left(U^{n}\right) M^{1 / 2}\left(U^{n+1}\right) v_{\beta}\left(U^{n+1}\right), v_{\alpha}\left(U^{p_{i}+1}\right)\right) \\
& \leqq \sum_{n=N_{i}+1}^{p_{i}} \sum_{\beta \in J\left(U^{n+1}\right)} C_{2}^{\prime} \lambda_{\max , B_{1}} L_{M^{-1}} C_{0} h_{i} \\
& \quad+\sum_{n=N_{i}+1}^{p_{i}} \sum_{\beta \in J\left(U^{n+1}\right)} 2\left|\mu_{\beta}^{n}\right| L_{\bar{u}}\left(\left\|u-u_{h_{i}}\right\|_{C^{0}\left([0, \tau] ; \mathbb{R}^{d}\right)}+C_{0}\left(\varepsilon+h_{i}\right)\right)
\end{aligned}
$$

But

$$
\begin{aligned}
\left|\mu_{\beta}^{n}\right| & =\left|\left(M^{-1 / 2}\left(U^{n+1}\right) M\left(U^{n}\right)\left(V^{n-1}-V^{n}+h_{i} F^{n}\right), w_{\beta}\left(U^{n+1}\right)\right)\right| \\
& \leqq \frac{\lambda_{\max , B_{1}}}{\sqrt{\lambda_{\min , B_{1}}}}\left(\left|V^{n-1}-V^{n}\right|+h_{i} C_{F}\right) C_{*, \bar{u}}
\end{aligned}
$$

for all $\beta \in J\left(U^{n+1}\right)$, for all $n \in\left\{N_{i}+1, \ldots, p_{i}\right\}$. Hence, with the estimate of the discrete accelerations obtained at Proposition 3

$$
\begin{align*}
& \sum_{n=N_{i}+1}^{p_{i}} \sum_{\beta \in J\left(U^{n+1}\right)}\left(-\mu_{\beta}^{n}\right)\left(M^{1 / 2}\left(U^{n+1}\right) M^{-1}\left(U^{n}\right) M^{1 / 2}\left(U^{n+1}\right) v_{\beta}\left(U^{n+1}\right), v_{\alpha}\left(U^{p_{i}+1}\right)\right) \\
& \leqq 2 v \frac{\lambda_{\max , B_{1}}}{\sqrt{\lambda_{\min , B_{1}}}} C_{*, \bar{u}}\left(C_{0}^{\prime}+2 \varepsilon C_{F}\right) L_{\bar{u}}\left(\left\|u-u_{h_{i}}\right\|_{C^{0}\left([0, \tau] ; \mathbb{R}^{d}\right)}+C_{0}\left(\varepsilon+h_{i}\right)\right) \\
& \quad+2 \varepsilon v C_{2}^{\prime} \lambda_{\max , B_{1}} L_{M^{-1}} C_{0} . \tag{45}
\end{align*}
$$

Finally, combining (43), (44) and (45), we obtain

$$
\begin{aligned}
& \left(M^{1 / 2}\left(U^{p_{i}+1}\right) V^{p_{i}}, v_{\alpha}\left(U^{p_{i}+1}\right)\right) \\
& \quad \leqq \frac{L_{f} C_{0}^{2}}{2 m_{B_{1}}} h_{i}+2 \varepsilon C_{0}^{2} \sqrt{\lambda_{\max , B_{1}}} L_{\bar{u}} \\
& \quad+2 \varepsilon\left(L_{M^{1 / 2}} C_{0}^{2}+\sqrt{\lambda_{\max , B_{1}}} C_{F}+\nu C_{2}^{\prime} \lambda_{\max , B_{1}} L_{M^{-1}} C_{0}\right) \\
& \quad+2 v \frac{\lambda_{\max , B_{1}}}{\sqrt{\lambda_{\min , B_{1}}} C_{*, \bar{u}}\left(C_{0}^{\prime}+2 \varepsilon C_{F}\right) L_{\bar{u}}\left(\left\|u-u_{h_{i}}\right\|_{C^{0}\left([0, \tau] ; \mathbb{R}^{d}\right)}+C_{0}\left(\varepsilon+h_{i}\right)\right)}
\end{aligned}
$$

for all $h_{i} \in\left(0, h_{\varepsilon}\right]$, for all $\varepsilon \in(0, \bar{\varepsilon}]$, which proves (40). Passing to the limit as h_{i} tends to zero, then when ε tends to zero, we may conclude the proof.

3.3. Study of the initial conditions

We can now prove quite easily that property (P4) is satisfied.
Lemma 5. The initial conditions $\left(u_{0}, v_{0}\right)$ are satisfied in the following sense:

$$
u(0)=u_{0}, \quad \dot{u}(0+0)=v_{0} .
$$

Proof. Since the sequence $\left(u_{h_{i}}\right)_{i \in \mathbb{N}}$ converges uniformly to u on $[0, \tau]$, we have

$$
u(0)=\lim _{h_{i} \rightarrow 0} u_{h_{i}}(0)
$$

But $u_{h_{i}}(0)=U^{0}=u_{0}$ for all $h_{i} \in\left(0, h^{*}\right]$, and thus $u(0)=u_{0}$. From the results of the previous subsection we already know that

$$
\dot{u}(0+0)=\operatorname{Proj}_{M(u(0))}\left(T_{K}(u(0)), \dot{u}(0-0)\right)
$$

where $\dot{u}(0-0)=\dot{u}(0)=v(0)$ (see (24)). It follows that

$$
\begin{equation*}
\dot{u}(0+0)=\operatorname{Proj}_{M\left(u_{0}\right)}\left(T_{K}\left(u_{0}\right), v(0)\right) . \tag{46}
\end{equation*}
$$

Since the sequence $\left(v_{h_{i}}\right)_{i \in \mathbb{N}}$ converges pointwise to v on $[0, \tau]$ we have

$$
v(0)=\lim _{h_{i} \rightarrow 0} v_{h_{i}}(0)
$$

Let us prove now that $\lim _{h_{i} \rightarrow 0} v_{h_{i}}(0)=v_{0}$. For all $h_{i} \in\left(0, h^{*}\right]$ we have

$$
v_{h_{i}}(0)=V^{0}=\frac{U^{1}-U^{0}}{h_{i}}
$$

and the definition of U^{1} implies that

$$
h_{i}\left\|v_{0}+z\left(h_{i}\right)-v_{h_{i}}(0)\right\|_{M\left(u_{0}\right)} \leqq\left\|u_{0}+h_{i} v_{0}+h_{i} z\left(h_{i}\right)-Z\right\|_{M\left(u_{0}\right)} \quad \forall Z \in K
$$

which yields

$$
\left\|v_{0}-v_{h_{i}}(0)\right\|_{M\left(u_{0}\right)} \leqq 2\left\|z\left(h_{i}\right)\right\|_{M\left(u_{0}\right)}+\left\|v_{0}-v\right\|_{M\left(u_{0}\right)}
$$

for all $v \in \mathbb{R}^{d}$ such that $u_{0}+h_{i} v \in K$.
If $u_{0} \in \operatorname{Int}(K)$, we infer that there exists $r_{u_{0}}>0$ such that $u_{0}+h_{i} v_{0} \in K$ for all $h_{i} \in\left(0, \frac{r_{u_{0}}}{\left|v_{0}\right|+1}\right]$ and thus

$$
\left\|v_{0}-v_{h_{i}}(0)\right\|_{M\left(u_{0}\right)} \leqq 2\left\|z\left(h_{i}\right)\right\|_{M\left(u_{0}\right)} \quad \forall h_{i} \in\left(0, \min \left(\frac{r_{u_{0}}}{\left|v_{0}\right|+1}, h^{*}\right)\right]
$$

Since $\lim _{h \rightarrow 0} z(h)=0$, we get $\lim _{h_{i} \rightarrow 0} v_{h_{i}}(0)=v(0)=v_{0}$.
Let us assume now that $u_{0} \in \partial K$. Since $v_{0} \in T_{K}\left(u_{0}\right)$ and $\tilde{T}_{K}\left(u_{0}\right)$ is dense in $T_{K}\left(u_{0}\right)$, we may consider a sequence $\left(v_{p}\right)_{p \in \mathbb{N}^{*}}$ converging to v_{0} and such that

$$
v_{p} \in \tilde{T}_{K}\left(u_{0}\right)=\left\{w \in \mathbb{R}^{d} ;\left(\nabla f_{\alpha}\left(u_{0}\right), w\right)>0 \quad \forall \alpha \in J\left(u_{0}\right)\right\} \quad \forall p \in \mathbb{N}^{*}
$$

It follows that $\left(\left|v_{p}\right|\right)_{p \in \mathbb{N}^{*}}$ remains bounded, and we consider $M \in \mathbb{R}_{+}^{*}$ such that $M \geqq\left|v_{p}\right|$ for all $p \in \mathbb{N}^{*}$. Using the continuity of the mappings $f_{\alpha}, \alpha \in\{1, \ldots, v\}$, there exists $r_{u_{0}}>0$ such that

$$
f_{\alpha}(q) \geqq \frac{f_{\alpha}\left(u_{0}\right)}{2} \quad \forall \alpha \notin J\left(u_{0}\right), \quad \forall q \in \bar{B}\left(u_{0}, r_{u_{0}}\right) .
$$

Let $p \in \mathbb{N}^{*}$. From the definition of $r_{u_{0}}$, we infer that

$$
f_{\alpha}\left(u_{0}+t v_{p}\right) \geqq 0 \quad \forall \alpha \notin J\left(u_{0}\right), \quad \forall t \in\left(0, \frac{r_{u_{0}}}{M}\right) .
$$

Moreover, if $\alpha \in J\left(u_{0}\right)$

$$
\begin{aligned}
& f_{\alpha}\left(u_{0}+t v_{p}\right) \\
& \quad=f_{\alpha}\left(u_{0}\right)+t\left(\nabla f_{\alpha}\left(u_{0}\right), v_{p}\right)+t \int_{0}^{1}\left(\nabla f_{\alpha}\left(u_{0}+s t v_{p}\right)-\nabla f_{\alpha}\left(u_{0}\right), v_{p}\right) \mathrm{d} s .
\end{aligned}
$$

If $t \in(0,1 / M]$, we get $\left|t v_{p}\right| \leqq 1$ and thus $u_{0}+$ st $v_{p} \in B_{1}$ for all $s \in[0,1]$, which yields

$$
f_{\alpha}\left(u_{0}+t v_{p}\right) \geqq t\left(\nabla f_{\alpha}\left(u_{0}\right), v_{p}\right)-t^{2} \frac{L_{f}\left|v_{p}\right|^{2}}{2} \quad \forall \alpha \in J\left(u_{0}\right) .
$$

It follows that there exists $\left.t_{p} \in\left(0, \min \left(1, r_{u_{0}}\right) / M\right)\right]$ such that $f_{\alpha}\left(u_{0}+t v_{p}\right) \geqq 0$ for all $\alpha \in\{1, \ldots, \nu\}$ and for all $t \in\left(0, t_{p}\right]$. Thus

$$
\begin{aligned}
& \left\|v_{0}-v_{h_{i}}(0)\right\|_{M\left(u_{0}\right)} \leqq 2\left\|z\left(h_{i}\right)\right\|_{M\left(u_{0}\right)}+\left\|v_{0}-v_{p}\right\|_{M\left(u_{0}\right)} \\
& \forall h_{i} \in\left(0, \min \left(h^{*}, t_{p}\right)\right], \quad \forall p \in \mathbb{N}^{*} .
\end{aligned}
$$

Then, passing to the limit when h_{i} tends to zero, we get

$$
\left\|v_{0}-v(0)\right\|_{M\left(u_{0}\right)} \leqq\left\|v_{0}-v_{p}\right\|_{M\left(u_{0}\right)} \quad \forall p \in \mathbb{N}^{*}
$$

and recalling that the sequence $\left(v_{p}\right)_{p \in \mathbb{N}^{*}}$ converges to v_{0}, we obtain $v_{0}=v(0)$. Finally, using (46) and recalling that $v_{0} \in T_{K}\left(u_{0}\right)$, we get

$$
\dot{u}(0+0)=\operatorname{Proj}_{M\left(u_{0}\right)}\left(T_{K}\left(u_{0}\right), v_{0}\right)=v_{0} .
$$

With the previous results, we can state the following theorem:

Theorem 2. Let us assume that there exist $C_{0}>0, \tau_{0}>0, h_{0}^{*} \in\left(0, h^{*}\right]$ and a subsequence of the approximate positions defined by (5)-(7) such that

$$
\left|V^{n}\right|=\left|\frac{U^{n+1}-U^{n}}{h_{i}}\right| \leqq C_{0} \quad \forall n h_{i} \in\left[0, \min \left(\tau_{0}, T\right)\right], \quad \forall h_{i} \in\left(0, h_{0}^{*}\right]
$$

with $\left(h_{i}\right)_{i \in \mathbb{N}}$ decreasing to zero. Let u_{h} and v_{h} be defined by (19) and (20). Then, there exist a subsequence still denoted $\left(h_{i}\right)_{i \in \mathbb{N}}$ and $(u, v) \in C^{0}\left(\left[0, \min \left(\tau_{0}, T\right)\right]\right.$; $\left.\mathbb{R}^{d}\right) \times B V\left(0, \min \left(\tau_{0}, T\right) ; \mathbb{R}^{d}\right)$ such that

$$
\begin{aligned}
u_{h_{i}} & \rightarrow u \text { strongly in } C^{0}\left(\left[0, \min \left(\tau_{0}, T\right)\right] ; \mathbb{R}^{d}\right), \\
v_{h_{i}} & \rightarrow v \text { pointwise in }\left[0, \min \left(\tau_{0}, T\right)\right],
\end{aligned}
$$

with

$$
u(t)=u_{0}+\int_{0}^{t} v(s) \mathrm{d} s \quad \text { for all } t \in\left[0, \min \left(\tau_{0}, T\right)\right]
$$

and u is a solution of problem (P) on $\left[0, \min \left(\tau_{0}, T\right)\right]$.

By combining Theorem 2 with the a priori estimate of the discrete velocities obtained in Theorem 1, we immediately obtain a local convergence result for the numerical scheme, and thus a local existence result for problem (P).

4. Energy estimates and global results

In order to establish global convergence results, we now state an energy estimate for the solutions of problem (P).

Proposition 6. Let $C>\left\|v_{0}\right\|_{M\left(u_{0}\right)}$. Then there exists $\tau(C)>0$ such that, for any solution u of problem (P) defined on $[0, \tau]$ (with $\tau \in(0, T]$), we have

$$
\begin{aligned}
\left|u(t)-u_{0}\right| & \leqq C \quad \forall t \in[0, \min (\tau(C), \tau)] \\
\|\dot{u}(t)\|_{M(u(t))} & \leqq C \quad d t \text { almost everywhere on }[0, \min (\tau(C), \tau)] .
\end{aligned}
$$

Proof. Let us define the kinetic energy E by

$$
E=\frac{1}{2}(\dot{u}, M(u) \dot{u}) .
$$

Since $\dot{u} \in B V\left(0, \tau ; \mathbb{R}^{d}\right)$ and u is absolutely continuous from $[0, \tau]$ to \mathbb{R}^{d}, E belongs to $B V\left(0, \tau ; \mathbb{R}^{d}\right)$. Moreover (see [8])

$$
d E=\left(d \dot{u}, M(u)\left(\frac{\dot{u}^{+}+\dot{u}^{-}}{2}\right)\right)+\frac{1}{2}(\dot{u},(d M(u) \dot{u}) \dot{u}) d t .
$$

Let $\left[t_{1}, t_{2}\right] \subset[0, \tau)$. Then

$$
\begin{aligned}
E\left(t_{2}+0\right)-E\left(t_{1}+0\right)= & \int_{\left(t_{1}, t_{2}\right]}\left(d \dot{u}, M(u)\left(\frac{\dot{u}^{+}+\dot{u}^{-}}{2}\right)\right) \\
& +\frac{1}{2} \int_{t_{1}}^{t_{2}}(\dot{u}(t),(d M(u(t)) \dot{u}(t)) \dot{u}(t)) \mathrm{d} t .
\end{aligned}
$$

Let us define $D=\left\{t \in\left(t_{1}, t_{2}\right] ; \dot{u}(t+0) \neq \dot{u}(t-0)\right\}$. The set D is at most denumerable and

$$
\begin{aligned}
\int_{\left(t_{1}, t_{2}\right]}\left(d \dot{u}, M(u)\left(\frac{\dot{u}^{+}+\dot{u}^{-}}{2}\right)\right)= & \int_{\left(t_{1}, t_{2}\right] \backslash D}\left(d \dot{u}, M(u) \dot{u}^{+}\right) \\
& +\sum_{t \in D} \frac{1}{2}\left(\|\dot{u}(t+0)\|_{M(u(t))}^{2}-\|\dot{u}(t-0)\|_{M(u(t))}^{2}\right) .
\end{aligned}
$$

But, with property (P 2), we have also

$$
M(u(t)) v_{\mu}^{\prime}(t)-g(t, u(t), \dot{u}(t)) t_{\mu}^{\prime}(t) \in-N_{K}(u(t))
$$

$d \mu$ almost everywhere on $[0, \tau]$
where $d \mu=|d \dot{u}|+d t$ and v_{μ}^{\prime} and t_{μ}^{\prime} are, respectively, the densities of $d \dot{u}$ and $d t$ with respect to μ. Thus

$$
\begin{aligned}
\int_{\left(t_{1}, t_{2}\right] \backslash D}\left(d \dot{u}, M(u) \dot{u}^{+}\right)= & \int_{\left(t_{1}, t_{2} \backslash \backslash D\right.}\left(g(t, u, \dot{u}), \dot{u}^{+}\right) t_{\mu}^{\prime} \mathrm{d} \mu \\
& +\int_{\left(t_{1}, t_{2} \backslash \backslash D\right.}\left(M(u) v_{\mu}^{\prime}-g(t, u, \dot{u}) t_{\mu}^{\prime}, \dot{u}^{+}\right) \mathrm{d} \mu .
\end{aligned}
$$

Since $\dot{u}(t+0)=\dot{u}(t-0) \in\left(T_{K}(u(t))\right) \cap\left(-T_{K}(u(t))\right)$ for all $t \in\left(t_{1}, t_{2}\right] \backslash D$, the last term vanishes and we get

$$
\begin{aligned}
E\left(t_{2}+0\right)-E\left(t_{1}+0\right)= & \frac{1}{2} \int_{t_{1}}^{t_{2}}(\dot{u}(t),(d M(u(t)) \dot{u}(t)) \dot{u}(t)) \mathrm{d} t \\
& +\int_{\left(t_{1}, t_{2}\right] \backslash D}\left(g(t, u, \dot{u}), \dot{u}^{+}\right) t_{\mu}^{\prime} \mathrm{d} \mu \\
& +\sum_{t \in D} \frac{1}{2}\left(\|\dot{u}(t+0)\|_{M(u(t))}^{2}-\|\dot{u}(t-0)\|_{M(u(t))}^{2}\right) .
\end{aligned}
$$

But, with property (P3), we know that

$$
2 E(t+0)=\|\dot{u}(t+0)\|_{M(u(t))}^{2} \leqq\|\dot{u}(t-0)\|_{M(u(t))}^{2}=2 E(t-0) \quad \forall t \in(0, \tau)
$$

and finally

$$
\begin{aligned}
E\left(t_{2}+0\right)-E\left(t_{1}+0\right) \leqq & \int_{t_{1}}^{t_{2}}(g(t, u(t), \dot{u}(t)), \dot{u}(t)) \mathrm{d} t \\
& +\frac{1}{2} \int_{t_{1}}^{t_{2}}(\dot{u}(t),(d M(u(t)) \dot{u}(t)) \dot{u}(t)) \mathrm{d} t .
\end{aligned}
$$

In particular, for all $t \in[0, \tau)$

$$
\begin{aligned}
E(t+0) \leqq & E(0+0)+\int_{0}^{t}(g(s, u(s), \dot{u}(s)), \dot{u}(s)) \mathrm{d} s \\
& +\frac{1}{2} \int_{0}^{t}(\dot{u}(s),(d M(u(s)) \dot{u}(s)) \dot{u}(s)) \mathrm{d} s
\end{aligned}
$$

Observing that $C^{2}>2 E(0+0)$, the continuity of u on $[0, \tau]$ and the right continuity of $E(\cdot+0)$ on $[0, \tau)$ imply that there exists $\bar{\tau} \in(0, \tau)$ such that

$$
\begin{equation*}
|u(t)-u(0)| \leqq C, \quad E(t+0) \leqq \frac{C^{2}}{2} \quad \forall t \in[0, \bar{\tau}] \tag{47}
\end{equation*}
$$

We define

$$
\tau_{\max }=\sup \{\bar{\tau} \in(0, \tau) \text { such that (47) holds }\} .
$$

Since u is continuous on $[0, \tau]$, we have

$$
\begin{equation*}
|u(t)-u(0)| \leqq C \quad \forall t \in\left[0, \tau_{\max }\right], \tag{48}
\end{equation*}
$$

and

$$
\begin{equation*}
E(t+0)=\frac{1}{2}\left|M^{1 / 2}(u(t)) \dot{u}(t+0)\right|^{2} \leqq \frac{C^{2}}{2} \quad \forall t \in\left[0, \tau_{\max }\right) \tag{49}
\end{equation*}
$$

It follows that

$$
\|\dot{u}(t)\|_{M(u(t))}^{2}=\left|M^{1 / 2}(u(t)) \dot{u}(t)\right|^{2} \leqq C^{2} d t \text { almost everywhere on }\left[0, \tau_{\max }\right]
$$

If $\tau_{\max }=\tau$ there is nothing to prove. Otherwise, we define

$$
\begin{aligned}
& \alpha=\sup \left\{\left|\left(g\left(t, q, M^{-1 / 2}(q) w\right), M^{-1 / 2}(q) w\right)\right| ; t \in[0, T], q \in \bar{B}\left(u_{0}, C\right), w \in \bar{B}(0, C)\right\}, \\
& \beta=\sup \left\{\frac{1}{2}\left\|M^{-1 / 2}(q)\left(d M(q) M^{-1 / 2}(q) w\right) M^{-1 / 2}(q)\right\|, q \in \bar{B}\left(u_{0}, C\right), w \in \bar{B}(0, C)\right\} \\
& \gamma=\sup \left\{\left\|M^{-1 / 2}(q)\right\|, q \in \bar{B}\left(u_{0}, C\right)\right\}
\end{aligned}
$$

With (48) and (49) we obtain that for all $t \in\left[0, \tau_{\max }\right]$

$$
E(t+0)-E(0+0) \leqq \int_{0}^{t}\left(\alpha+\beta\left|M^{1 / 2}(u(s)) \dot{u}(s)\right|^{2}\right) \mathrm{d} s \leqq\left(\alpha+\beta C^{2}\right) t
$$

and

$$
\left|u(t)-u_{0}\right| \leqq \int_{0}^{t}|\dot{u}(s)| \mathrm{d} s \leqq \int_{0}^{t} \gamma\left|M^{1 / 2}(u(s)) \dot{u}(s)\right| \mathrm{d} s \leqq \gamma C t .
$$

Then, the continuity of u on $[0, \tau]$ and the right continuity of $E(\cdot+0)$ on $[0, \tau)$ imply that $\tau_{\max } \geqq \min (\tau, \tau(C))$ where $\tau(C)$ is defined by

$$
\tau(C)= \begin{cases}\min \left(\frac{1}{\gamma}, \frac{C^{2}-2 E(0+0)}{2\left(\alpha+\beta C^{2}\right)}\right) & \text { if } \alpha \neq 0 \text { or } \beta \neq 0 \\ \frac{1}{\gamma} & \text { if } \alpha=0 \text { and } \beta=0\end{cases}
$$

Now we can prove that
Theorem 3. Let $C>\left\|v_{0}\right\|_{M\left(u_{0}\right)}$ and $\tau(C)>0$ such that, for any solution u of problem (P) defined on $[0, \tau]$ (with $\tau \in(0, T]$), we have

$$
\begin{aligned}
\left|u(t)-u_{0}\right| & \leqq C \quad \forall t \in[0, \min (\tau(C), \tau)] \\
\|\dot{u}(t)\|_{M(u(t))} & \leqq C \quad d t \text { almost everywhere on }[0, \min (\tau(C), \tau)] .
\end{aligned}
$$

Let u_{h} and v_{h} be the approximate positions and velocities defined by (19) and (20). Then, there exists a subsequence $\left(u_{h_{i}}, v_{h_{i}}\right)_{i \in \mathbb{N}}, \tau \in[\min (\tau(C), T), T]$ and $(u, v) \in C^{0}\left([0, \tau] ; \mathbb{R}^{d}\right) \times B V\left(0, \tau ; \mathbb{R}^{d}\right)$ such that

$$
\begin{aligned}
& u_{h_{i}} \rightarrow u \\
& v_{h_{i}} \rightarrow v \\
& \text { strongly in } C^{0}\left([0, \tau] ; \mathbb{R}^{d}\right) \\
& \text { pointwise in }[0, \tau]
\end{aligned}
$$

with

$$
u(t)=u_{0}+\int_{0}^{t} v(s) \mathrm{d} s \quad \forall t \in[0, \tau]
$$

and u is a solution of problem (P) on $[0, \tau]$.

Proof. Let $C>\left\|v_{0}\right\|_{M\left(u_{0}\right)}$. We define $\mathcal{B}=\bar{B}\left(u_{0}, C+1\right)$ and $B_{0}, \lambda_{\min }, \lambda_{\max }$ by (9) and (10), respectively. Let us choose C_{0} such that

$$
C_{0}>\sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}} C_{0}^{*}
$$

with

$$
\begin{aligned}
C_{0}^{*} & =\max \left(2 \sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}}\left(\left|v_{0}\right|+1\right), C^{\prime}\right) \\
C^{\prime} & =(C+1) \sup \left\{\left\|M^{-1 / 2}(q)\right\| ; q \in \bar{B}\left(u_{0}, C+1\right)\right\}
\end{aligned}
$$

and let C_{F} be defined by (11).
Then, from Theorem 1, we know that there exists $h_{0}^{*} \in\left(0, h^{*}\right]$ and $\tau_{0}>0$, depending only on $\mathcal{B}, C_{0}, C_{0}^{*}$ and the data, such that

$$
\begin{equation*}
\left|V^{n}\right|=\left|\frac{U^{n+1}-U^{n}}{h}\right| \leqq C_{0} \quad \forall n h \in\left[0, \min \left(\tau_{0}, T\right)\right], \quad \forall h \in\left(0, h_{0}^{*}\right] . \tag{50}
\end{equation*}
$$

Moreover, from Proposition 2, we know also that, for all $t_{0 h} \in[0, T)$ and for all $\left(\hat{U}^{0}, \hat{U}^{1}\right) \in(\mathcal{B} \cap K) \times K$ such that

$$
\left|\hat{U}^{1}-\hat{U}^{0}\right| \leqq h C_{0}^{*} \quad \forall h \in\left(0, h_{0}^{*}\right]
$$

the approximate positions defined by

$$
\hat{U}^{n+1} \in \operatorname{Argmin}_{Z \in K}\left\|\hat{W}^{n}-Z\right\|_{M\left(\hat{U}^{n}\right)}
$$

with

$$
\hat{W}^{n}=2 \hat{U}^{n}-\hat{U}^{n-1}+h^{2} \hat{F}^{n}, \quad \hat{F}^{n}=F\left(t_{0 h}+n h, \hat{U}^{n}, \frac{\hat{U}^{n}-\hat{U}^{n-1}}{h}, h\right)
$$

for all $n \in\left\{1, \ldots,\left\lfloor\frac{T-t_{0 h}}{h}\right\rfloor\right\}$ and for all $h \in\left(0, h_{0}^{*}\right]$, satisfy

$$
\left|\frac{\hat{U}^{n+1}-\hat{U}^{n}}{h}\right| \leqq C_{0} \quad \forall n h \in\left[0, \min \left(\tau_{0}, T-t_{0 h}\right)\right], \forall h \in\left(0, h_{0}^{*}\right] .
$$

Let $\tau(h)=m(h) h$ be the maximal discrete time step such that estimate (50) holds, that is, for all $h \in\left(0, h_{0}^{*}\right]$

$$
m(h)=\max \left\{n \in\{0, \ldots,\lfloor T / h\rfloor\} ;\left|V^{k}\right| \leqq C_{0} \quad \forall k \in\{0, \ldots, n\}\right\} .
$$

We define $\tau_{1}=\liminf _{h \rightarrow 0} \tau(h)=\liminf _{h \rightarrow 0} m(h) h$. Theorem 1 implies that $\tau_{1} \geqq \tau^{\prime}=\min \left(\tau_{0}, T\right)$. Let us now distinguish two subcases.

Case 1: $\tau(C)<T$.
Let us prove that $\tau_{1}>\tau(C)=\min (\tau(C), T)$. Indeed, assume that $\tau_{1} \leqq \tau(C)$ and let $\varepsilon \in\left(0, \tau^{\prime} / 8\right)$. Then, there exists a subsequence $\left(h_{i}\right)_{i \in \mathbb{N}}$, decreasing to zero, such that $\left(\tau\left(h_{i}\right)\right)_{i \in \mathbb{N}}$ converges to τ_{1} and there exists $h_{\varepsilon}^{*} \in\left(0, \min \left(h_{0}^{*}, \tau^{\prime} / 8\right)\right]$ such that $m\left(h_{i}\right) h_{i} \geqq \tau_{1}-\varepsilon$ for all $h_{i} \in\left(0, h_{\varepsilon}^{*}\right]$. We may apply theorem 2 with $h_{0}^{*}:=h_{\varepsilon}^{*}$ and $\tau_{0}:=\tau_{1}-\varepsilon$; we infer that there exists a subsequence, still denoted $\left(h_{i}\right)_{i \in \mathbb{N}}$, such that $\left(u_{h_{i}}, v_{h_{i}}\right)_{i \in \mathbb{N}}$ converges to a solution of problem (P) on $\left[0, \tau_{1}-\varepsilon\right]$. Thus, with Proposition 6 we get

$$
\begin{aligned}
\left|u(t)-u_{0}\right| & \leqq C \quad \forall t \in\left[0, \tau_{1}-\varepsilon\right], \\
\|\dot{u}(t)\|_{M(u(t))} & \leqq C \quad d t \text { almost everywhere on }\left[0, \tau_{1}-\varepsilon\right] .
\end{aligned}
$$

Now we prove that:
Lemma 6. We have

$$
\begin{aligned}
& \lim \sup _{h_{i} \rightarrow 0^{+}} \sup \left\{\left\|V^{n}\right\|_{M\left(U^{n}\right)}, 0 \leqq n h_{i} \leqq \tau_{1}-\varepsilon\right\} \\
& \quad \leqq \operatorname{ess} \sup \left\{\|\dot{u}(t)\|_{M(u(t))}, 0 \leqq t \leqq \tau_{1}-\varepsilon\right\}
\end{aligned}
$$

Proof. Let us prove this result by contradiction. Assume that

$$
\lim \sup _{h_{i} \rightarrow 0^{+}} \sup \left\{\left\|V^{n}\right\|_{M\left(U^{n}\right)}, 0 \leqq n h_{i} \leqq \tau_{1}-\varepsilon\right\}>S
$$

with $S=\operatorname{ess} \sup \left\{\|\dot{u}(t)\|_{M(u(t))}, 0 \leqq t \leqq \tau_{1}-\varepsilon\right\}$. Then, there exist $\gamma>0, \tilde{h}_{\varepsilon}^{*} \in$ $\left(0, h_{\varepsilon}^{*}\right]$ and a subsequence $\left(h_{\varphi(i)}\right)_{i \in \mathbb{N}}$ decreasing to zero such that

$$
\sup \left\{\left\|V^{n}\right\|_{M\left(U^{n}\right)}, 0 \leqq n h_{\varphi(i)} \leqq \tau_{1}-\varepsilon\right\} \geqq S+\gamma \quad \forall h_{\varphi(i)} \in\left(0, \tilde{h}_{\varepsilon}^{*}\right] .
$$

It follows that there exists $n_{\varphi(i)} \in\left\{0, \ldots,\left\lfloor\left(\tau_{1}-\varepsilon\right) / h_{\varphi(i)}\right\rfloor\right\}$ such that

$$
\left\|V^{n_{\varphi(i)}}\right\|_{M\left(U^{n} \varphi(i)\right)} \geqq S+\gamma \quad \forall h_{\varphi(i)} \in\left(0, \tilde{h}_{\varepsilon}^{*}\right] .
$$

Possibly extracting another subsequence, still denoted $\left(h_{\varphi(i)}\right)_{i \in \mathbb{N}}$, we may assume without loss of generality that the sequence $\left(n_{\varphi(i)} h_{\varphi(i)}\right)_{i \in \mathbb{N}}$ converges to a limit $\tilde{\tau} \in\left[0, \tau_{1}-\varepsilon\right]$.

First, we observe that $\tilde{\tau}>0$. Indeed, with the same computations as in Proposition 2 (see (13)), we obtain that, for all $h_{i} \in\left(0, h_{\varepsilon}^{*}\right]$ and for all $n h_{i} \in\left[0, \tau_{1}-\varepsilon\right]$

$$
\begin{equation*}
\left\|V^{n}\right\|_{M\left(U^{n}\right)} \leqq\left\|V^{n-1}\right\|_{M\left(U^{n-1}\right)}+C_{2} h_{i} \leqq\left\|V^{0}\right\|_{M\left(U^{0}\right)}+C_{2} n h_{i} \tag{51}
\end{equation*}
$$

with

$$
C_{2}=\sqrt{\lambda_{\max , B_{1}}} C_{F}+L_{M^{1 / 2}} C_{0}^{2}+\frac{3 L_{f}}{2 m_{B_{1}}} \frac{\lambda_{\max , B_{1}}}{\lambda_{\min , B_{1}}} \nu C_{*, B_{1}} C_{0}^{2}
$$

$B_{1}=\bar{B}\left(u_{0}, C_{0} T+1\right)$ and $\lambda_{\max , B_{1}}, \lambda_{\min , B_{1}}$ given by (15).

Thus, for all $h_{\varphi(i)} \in\left(0, \tilde{h}_{\varepsilon}^{*}\right]$

$$
S+\gamma \leqq\left\|V^{n_{\varphi(i)}}\right\|_{M\left(U^{n} \varphi(i)\right.} \leqq\left\|v_{h_{\varphi(i)}}(0)\right\|_{M\left(u_{0}\right)}+C_{2} n_{\varphi(i)} h_{\varphi(i)}
$$

and at the limit when i tends to $+\infty$, we get

$$
S+\gamma \leqq\|v(0)\|_{M\left(u_{0}\right)}+C_{2} \tilde{\tau}=\left\|v_{0}\right\|_{M\left(u_{0}\right)}+C_{2} \tilde{\tau}
$$

On the other hand, the right continuity of $\|\dot{u}(\cdot+0)\|_{M(u)}$ implies that, for all $\rho>0$, there exists $\tau_{\rho} \in\left(0, \tau_{1}-\varepsilon\right]$ such that, for all $t \in\left[0, \tau_{\rho}\right]$

$$
\left|\|\dot{u}(t+0)\|_{M(u(t))}-\|\dot{u}(0+0)\|_{M\left(u_{0}\right)}\right| \leqq \rho .
$$

It follows that $\|\dot{u}(0+0)\|_{M\left(u_{0}\right)}-\rho=\left\|v_{0}\right\|_{M\left(u_{0}\right)}-\rho \leqq\|\dot{u}(t)\|_{M(u(t))} \quad$ almost everywhere on $\left[0, \tau_{\rho}\right]$, and thus

$$
\left\|v_{0}\right\|_{M\left(u_{0}\right)}-\rho \leqq S \quad \forall \rho>0
$$

Hence $\left\|v_{0}\right\|_{M\left(u_{0}\right)} \leqq S$ and $\tilde{\tau}>0$.
Then, once again using the estimate (51), we obtain

$$
S+\gamma \leqq\left\|V^{n_{\varphi(i)}}\right\|_{M\left(U^{n_{\varphi(i)}}\right)} \leqq\left\|V^{n_{\varphi(i)}-p}\right\|_{M\left(U^{n} \varphi(i)-p\right)}+C_{2} p h_{\varphi(i)}
$$

for all $p \in\left\{0, \ldots, n_{\varphi(i)}\right\}$, for all $h_{\varphi(i)} \in\left(0, \tilde{h}_{\varepsilon}^{*}\right]$. It follows that

$$
S+\frac{\gamma}{2} \leqq\left\|V^{k}\right\|_{M\left(U^{k}\right)}
$$

for all $k h_{\varphi(i)} \in\left[\max \left(0, n_{\varphi(i)} h_{\varphi(i)}-\frac{\gamma}{2 C_{2}}\right), n_{\varphi(i)} h_{\varphi(i)}\right]$. Moreover, for all $t \in$ $\left[k h_{\varphi(i)},(k+1) h_{\varphi(i)}\right)$,

$$
\begin{aligned}
\left|\left\|v_{h_{\varphi(i)}}(t)\right\|_{M\left(U^{k}\right)}-\left\|v_{h_{\varphi(i)}}(t)\right\|_{M\left(u_{h_{\varphi(i)}}(t)\right)}\right| & \leqq L_{M^{1 / 2}}\left|U^{k}-u_{h_{\varphi(i)}}(t)\right| C_{0} \\
& \leqq L_{M^{1 / 2}} C_{0}^{2} h_{\varphi(i)}
\end{aligned}
$$

Since $\left(n_{\varphi(i)} h_{\varphi(i)}\right)_{i \in \mathbb{N}}$ converges to $\tilde{\tau}>0$, we infer that there exists an interval $I \subset\left[0, \tau_{1}-\varepsilon\right]$ with a non-empty interior, such that

$$
I \subset\left[\max \left(0,\left(n_{\varphi(i)}+1\right) h_{\varphi(i)}-\frac{\gamma}{2 C_{2}}\right), n_{\varphi(i)} h_{\varphi(i)}\right]
$$

and

$$
S+\frac{\gamma}{4} \leqq\left\|v_{h_{\varphi(i)}}(t)\right\|_{M\left(u_{h_{\varphi(i)}}(t)\right)} \quad \forall t \in I
$$

for all $h_{\varphi(i)}$ small enough.
Then, passing to the limit as i tends to $+\infty$, we obtain

$$
S+\frac{\gamma}{4} \leqq\|v(t)\|_{M(u(t))} \quad \forall t \in I
$$

But $v(t)=\dot{u}(t)$ almost everywhere on I, and

$$
S \geqq \mathrm{ess} \sup \left\{\|\dot{u}(t)\|_{M(u(t))} ; t \in I\right\}
$$

which yields a contradiction.

With the previous lemma, possibly decreasing h_{ε}^{*} we get
$U^{n} \in \bar{B}\left(u_{0}, C+1\right), \quad\left\|V^{n}\right\|_{M\left(U^{n}\right)} \leqq C+1 \quad \forall n h_{i} \in\left[0, \tau_{1}-\varepsilon\right], \forall h_{i} \in\left(0, h_{\varepsilon}^{*}\right]$.
It follows that

$$
\left|V^{n}\right| \leqq(C+1) \sup \left\{\left\|M^{-1 / 2}(q)\right\| ; q \in \bar{B}\left(u_{0}, C+1\right)\right\}=C^{\prime} \leqq C_{0}^{*}<C_{0}
$$

We choose now $l\left(h_{i}\right) \in\{0, \ldots,\lfloor T / h\rfloor\}$ such that

$$
l\left(h_{i}\right) h_{i} \in\left[\tau_{1}-\frac{\tau^{\prime}}{2}, \tau_{1}-\frac{\tau^{\prime}}{4}\right] \quad \forall h_{i} \in\left(0, h_{\varepsilon}^{*}\right]
$$

and let

$$
\hat{U}^{0}=U^{l\left(h_{i}\right)}, \quad \hat{U}^{1}=U^{l\left(h_{i}\right)+1}, \quad t_{0 h_{i}}=l\left(h_{i}\right) h_{i} .
$$

We have

$$
\left|\hat{U}^{1}-\hat{U}^{0}\right|=h_{i}\left|V^{l\left(h_{i}\right)}\right| \leqq C_{0}^{*} h_{i}
$$

and \hat{U}^{0}, \hat{U}^{1} belong to $\mathcal{B} \cap K$ for all $h_{i} \in\left(0, h_{\varepsilon}^{*}\right]$.
Then, for all $n \in\left\{l\left(h_{i}\right), \ldots,\left\lfloor\frac{T}{h_{i}}\right\rfloor\right\}, U^{n}=\hat{U}^{n-l\left(h_{i}\right)}$ and with Proposition 2, we obtain

$$
\left|V^{n}\right|=\left|\frac{\hat{U}^{n-l\left(h_{i}\right)+1}-\hat{U}^{n-l\left(h_{i}\right)}}{h_{i}}\right| \leqq C_{0}
$$

for all $\left(n-l\left(h_{i}\right)\right) h_{i} \in\left[0, \min \left(\tau_{0}, T-l\left(h_{i}\right) h_{i}\right)\right]$, for all $h_{i} \in\left(0, h_{\varepsilon}^{*}\right]$.
Hence
$m\left(h_{i}\right) h_{i}>l\left(h_{i}\right) h_{i}+\min \left(\tau_{0}, T-l\left(h_{i}\right) h_{i}\right)-h_{i}=\min \left(l\left(h_{i}\right) h_{i}+\tau_{0}, T\right)-h_{i}$
for all $h_{i} \in\left(0, h_{\varepsilon}^{*}\right]$. But $l\left(h_{i}\right) h_{i} \geqq \tau_{1}-\frac{\tau^{\prime}}{2}$ and $\tau^{\prime}=\min \left(\tau_{0}, T\right)=\tau_{0}$, so

$$
m\left(h_{i}\right) h_{i} \geqq \min \left(\tau_{1}+\frac{\tau^{\prime}}{2}, T\right)-h_{i} \quad \forall h_{i} \in\left(0, h_{\varepsilon}^{*}\right]
$$

and, at the limit, we get

$$
\tau_{1}=\lim _{h_{i} \rightarrow 0} m\left(h_{i}\right) h_{i} \geqq \min \left(\tau_{1}+\frac{\tau^{\prime}}{2}, T\right)
$$

which is absurd.
Thus $\tau_{1}=\lim _{h_{i} \rightarrow 0} m\left(h_{i}\right) h_{i}>\tau(C)$ and there exists $\tilde{h}_{0}^{*} \in\left(0, h_{0}^{*}\right]$ such that

$$
m\left(h_{i}\right) h_{i}=\tau\left(h_{i}\right) \geqq \tau_{1}-\frac{\tau_{1}-\tau(C)}{2}=\frac{\tau_{1}+\tau(C)}{2}>\tau(C) \quad \forall h_{i} \in\left(0, \tilde{h}_{0}^{*}\right] .
$$

Then we apply Theorem 2 with τ_{0} replaced by $\tau=\frac{\tau_{1}+\tau(C)}{2}$ and h_{0}^{*} by \tilde{h}_{0}^{*}, which yields the announced result.

Case 2: $\tau(C) \geqq T$.
Since $m(h) h=\tau(h) \leqq T$, we have $\tau_{1} \leqq T$. We consider once again $\varepsilon \in$ $\left(0, \tau^{\prime} / 8\right)$, and we define as previously h_{ε}^{*} and $l\left(h_{i}\right)$ for all $h_{i} \in\left(0, h_{\varepsilon}^{*}\right]$. Then, we have again

$$
\begin{equation*}
m\left(h_{i}\right) h_{i}>l\left(h_{i}\right) h_{i}+\min \left(\tau_{0}, T-l\left(h_{i}\right) h_{i}\right)-h_{i} \geqq \min \left(\tau_{1}+\frac{\tau^{\prime}}{2}, T\right)-h_{i} \tag{52}
\end{equation*}
$$

for all $h_{i} \in\left(0, h_{\varepsilon}^{*}\right]$. Thus, if $\tau_{1}<T, \min \left(\tau_{1}+\frac{\tau^{\prime}}{2}, T\right) \in\left(\tau_{1}, T\right]$ and (52) yields a contradiction with the definition of $\tau_{1}=\lim _{h_{i} \rightarrow 0} m\left(h_{i}\right) h_{i}$. We infer that $\tau_{1}=T$ and (52) implies that $m\left(h_{i}\right) h_{i}>T-h_{i}$, that is, $m\left(h_{i}\right) \geqq\left\lfloor T / h_{i}\right\rfloor$ for all $h_{i} \in\left(0, h_{\varepsilon}^{*}\right]$. Hence, we may apply Theorem 2 to obtain the convergence of a subsequence of $\left(u_{h_{i}}, v_{h_{i}}\right)_{i \in \mathbb{N}}$, still denoted $\left(u_{h_{i}}, v_{h_{i}}\right)_{i \in \mathbb{N}}$, to a solution of problem (P) on $[0, T]$.

Appendix

Lemma 7. For all compact subset \mathcal{B} of \mathbb{R}^{d}, there exist $m_{\mathcal{B}}>0$ and $r_{\mathcal{B}}>0$ such that for all $q \in K \cap \mathcal{B}$ and for all $\alpha \in J(q)$ we have

$$
\left|M^{-1 / 2}\left(q^{\prime}\right) \nabla f_{\alpha}\left(q^{\prime}\right)\right| \geqq m_{\mathcal{B}} \quad \forall q^{\prime} \in \bar{B}\left(q, r_{\mathcal{B}}\right)
$$

Furthermore, for all $q \in K \cap \mathcal{B}$, the family $\left(e_{\alpha}(q)\right)_{\alpha \in J(q)}$ is linearly independent and can be completed as a basis $\left(v_{j}(q)\right)_{1 \leqq j \leq d}$. Let us denote by $\left(w_{j}(q)\right)_{1 \leqq j \leqq d}$ the dual basis. Then there exists $C_{*, \mathcal{B}}>0$ such that

$$
\left|v_{j}(q)\right|=1, \quad\left|w_{j}(q)\right| \leqq C_{*, \mathcal{B}} \quad \forall j \in\{1, \ldots, d\}, \quad \forall q \in K \cap \mathcal{B}
$$

Proof. Let \mathcal{B} be a given compact subset of \mathbb{R}^{d}. For all $\alpha \in\{1, \ldots, \nu\}$ we define

$$
\mathcal{B}_{\alpha}=\mathcal{B} \cap\left\{q \in \mathbb{R}^{d} ; f_{\alpha}(q) \leqq 0\right\} \cap K .
$$

Then \mathcal{B}_{α} is also a compact subset of \mathbb{R}^{d} and, for all $q \in \mathcal{B}_{\alpha}$, we have $f_{\alpha}(q)=0$. Hence, with (H2)

$$
\nabla f_{\alpha}(q) \neq 0 \quad \forall q \in \mathcal{B}_{\alpha}, \quad \forall \alpha \in\{1, \ldots, \nu\} .
$$

It follows that there exists $m_{\alpha}>0$ such that

$$
m_{\alpha}=\inf _{q \in \mathcal{B}_{\alpha}}\left|M^{-1 / 2}(q) \nabla f_{\alpha}(q)\right| .
$$

By continuity of the mappings $M^{-1 / 2}$ and ∇f_{α}, we infer that

$$
\forall q \in \mathcal{B}_{\alpha}, \quad \exists \rho_{q}>0 / \quad\left|M^{-1 / 2}\left(q^{\prime}\right) \nabla f_{\alpha}\left(q^{\prime}\right)\right| \geqq \frac{m_{\alpha}}{2} \quad \forall q^{\prime} \in \bar{B}\left(q, \rho_{q}\right) .
$$

Since \mathcal{B}_{α} is compact and $\mathcal{B}_{\alpha} \subset \bigcup_{q \in \mathcal{B}_{\alpha}} B\left(q, \frac{\rho_{q}}{2}\right)$, there exists a finite set of points $\left\{q_{1}, \ldots, q_{p}\right\} \in \mathcal{B}_{\alpha}^{p}$ such that $\mathcal{B}_{\alpha}=\bigcup_{i=1}^{p} B\left(q_{i}, \frac{\rho_{q_{i}}}{2}\right)$.

By defining $\rho_{\alpha}=\min _{1 \leqq i \leqq p} \frac{\rho_{q_{i}}}{2}$ we obtain that

$$
\forall q \in \mathcal{B}_{\alpha}, \quad\left|M^{-1 / 2}\left(q^{\prime}\right) \nabla f_{\alpha}\left(q^{\prime}\right)\right| \geqq \frac{m_{\alpha}}{2} \quad \forall q^{\prime} \in \bar{B}\left(q, \rho_{\alpha}\right) .
$$

Finally, with

$$
m_{\mathcal{B}}=\min _{1 \leqq \alpha \leqq \nu} \frac{m_{\alpha}}{2}, \quad r_{\mathcal{B}}=\min _{1 \leqq \alpha \leqq \nu} \rho_{\alpha}
$$

we get the first part of the announced result.
As a consequence, for all $q \in K \cap \mathcal{B}$, we can define

$$
v_{\alpha}\left(q^{\prime}\right)=\frac{M^{-1 / 2}\left(q^{\prime}\right) \nabla f_{\alpha}\left(q^{\prime}\right)}{\left|M^{-1 / 2}\left(q^{\prime}\right) \nabla f_{\alpha}\left(q^{\prime}\right)\right|} \quad \forall q^{\prime} \in \bar{B}\left(q, r_{\mathcal{B}}\right), \quad \forall \alpha \in J(q) .
$$

Let $q \in K \cap \mathcal{B}$ be given. From assumption (H3) we infer that $\left(e_{\alpha}(q)\right)_{\alpha \in J(q)}$ is linearly independent, and there exists a family of vectors $\left(e_{\beta}\right)_{\beta \in\{1, \ldots, d\} \backslash J(q)}$ such that $\left|e_{\beta}\right|=1$ for all $\beta \in\{1, \ldots, d\} \backslash J(q)$ and $\left\{e_{\alpha}(q) ; \alpha \in J(q)\right\} \cup\left\{e_{\beta} ; \beta \in\right.$ $\{1, \ldots, d\} \backslash J(q)\}$ is a basis of \mathbb{R}^{d}.

Let us now define the mappings $v_{\beta}, \beta \in\{1, \ldots, d\} \backslash J(q)$, by

$$
v_{\beta}\left(q^{\prime}\right)=e_{\beta} \quad \forall q^{\prime} \in \bar{B}\left(q, r_{\mathcal{B}}\right)
$$

The mappings $v_{j}, j \in\{1, \ldots, d\}$, are continuous on $\bar{B}\left(q, r_{\mathcal{B}}\right)$ and there exists $r_{q} \in\left(0, r_{\mathcal{B}}\right]$ such that $\left(v_{j}\left(q^{\prime}\right)\right)_{1 \leqq j} \leqq_{d}$ is a basis of \mathbb{R}^{d} for all $q^{\prime} \in \bar{B}\left(q, r_{q}\right)$. Moreover, using the continuity of the mappings $f_{\alpha}, \alpha \in\{1, \ldots, \nu\}$, and possibly decreasing r_{q}, we also have

$$
J\left(q^{\prime}\right) \subset J(q) \quad \forall q^{\prime} \in \bar{B}\left(q, r_{q}\right)
$$

It follows that

$$
v_{\alpha}\left(q^{\prime}\right)=e_{\alpha}\left(q^{\prime}\right) \quad \forall \alpha \in J\left(q^{\prime}\right), \quad \forall q^{\prime} \in \bar{B}\left(q, r_{q}\right) \cap K
$$

Let us denote by $\left(w_{j}\left(q^{\prime}\right)\right)_{1 \leqq j \leqq d}$ the dual basis of $\left(v_{j}\left(q^{\prime}\right)\right)_{1 \leqq j \leqq d}$ for all $q^{\prime} \in$ $\bar{B}\left(q, r_{q}\right)$. Then, the mappings $w_{j}, j \in\{1, \ldots, d\}$, are continuous on $\bar{B}\left(q, r_{q}\right)$. Indeed, let $\left(\delta_{j}\right)_{1 \leqq j \leqq d}$ be the canonical basis of \mathbb{R}^{d} and define $\left(a_{i j}\left(q^{\prime}\right)\right)_{1 \leqq i, j \leqq d}$ and $\left(b_{i j}\left(q^{\prime}\right)\right)_{1 \leqq i, j \leqq d}$ as the coordinates of $v_{i}\left(q^{\prime}\right)$ and $w_{i}\left(q^{\prime}\right), 1 \leqq i \leqq d$, in the canonical basis $\left(\delta_{j}\right)_{1 \leqq j \leqq d}$. That is,

$$
v_{i}\left(q^{\prime}\right)=\sum_{j=1}^{d} a_{i j}\left(q^{\prime}\right) \delta_{j}, \quad w_{i}\left(q^{\prime}\right)=\sum_{j=1}^{d} b_{i j}\left(q^{\prime}\right) \delta_{j} \quad \forall i \in\{1, \ldots, d\}
$$

We denote by $A\left(q^{\prime}\right)=\left(A_{i j}\left(q^{\prime}\right)=a_{i j}\left(q^{\prime}\right)\right)_{1 \leqq i, j \leqq d}$ and $B\left(q^{\prime}\right)=\left(B_{i j}\left(q^{\prime}\right)=\right.$ $\left.b_{j i}\left(q^{\prime}\right)\right)_{1 \leqq i, j \leqq d}$. Then, by the definition of dual bases, we have
$\forall(i, j) \in\{1, \ldots, d\}^{2} \quad\left(v_{i}\left(q^{\prime}\right), w_{j}\left(q^{\prime}\right)\right)=\sum_{k=1}^{d} a_{i k}\left(q^{\prime}\right) b_{j k}\left(q^{\prime}\right)= \begin{cases}1 & \text { if } i=j, \\ 0 & \text { otherwise },\end{cases}$
and thus $A\left(q^{\prime}\right) B\left(q^{\prime}\right)=\operatorname{Id}_{\mathbb{R}^{d}}$. We infer that $B\left(q^{\prime}\right)=A^{-1}\left(q^{\prime}\right)$. But, the mapping

$$
\mathcal{I}:\left\{\begin{array}{l}
G L\left(\mathbb{R}^{d}\right) \rightarrow G L\left(\mathbb{R}^{d}\right) \\
Q \mapsto Q^{-1}
\end{array}\right.
$$

is continuous, and the mapping $q^{\prime} \mapsto A\left(q^{\prime}\right)$ is continuous on $\bar{B}\left(q, r_{q}\right)$ with values in $G L\left(\mathbb{R}^{d}\right)$. It follows that $q^{\prime} \mapsto B\left(q^{\prime}\right)$ is also continuous on $\bar{B}\left(q, r_{q}\right)$ and we infer that the mappings $w_{j}, j \in\{1, \ldots, d\}$, (which are the columns of B) are also continuous on $\bar{B}\left(q, r_{q}\right)$.

It follows that we can define

$$
C_{*, q}=\max \left\{\left|w_{j}\left(q^{\prime}\right)\right| ; q^{\prime} \in \bar{B}\left(q, r_{q}\right)\right\} .
$$

Now, using the compactness of $K \cap \mathcal{B}$, we infer that there exists a finite set of points $\left(q_{k}\right)_{1 \leqq k \leqq \ell}$ such that $q_{k} \in K \cap \mathcal{B}$ for all $k \in\{1, \ldots, \ell\}$ and

$$
K \cap \mathcal{B} \subset \bigcup_{k=1}^{\ell} B\left(q_{k}, r_{q_{k}}\right)
$$

Then, the conclusion follows with $C_{*, \mathcal{B}}=\max _{1 \leqq k \leqq \ell} C_{*, q_{k}}$.
Lemma 8. Let us recall the definition of $T_{K}(q)$:

$$
T_{K}(q)=\left\{w \in \mathbb{R}^{d} ;\left(\nabla f_{\alpha}(q), w\right) \geqq 0 \quad \forall \alpha \in J(q)\right\} \quad \forall q \in \mathbb{R}^{d}
$$

with

$$
J(q)=\left\{\alpha \in\{1, \ldots, v\} ; f_{\alpha}(q) \leqq 0\right\}
$$

Then for all $q_{0} \in K$, there exist $\delta>0, r>0$ and $a \in \mathbb{R}^{d}$ such that, for all $q \in \bar{B}\left(q_{0}, 2 \delta\right)$:

$$
\begin{equation*}
\bar{B}(a, r) \subset T_{K}(q) \tag{53}
\end{equation*}
$$

Proof. Let q_{0} be in K.
Since the functions $\left(f_{\alpha}\right)_{\alpha=1, \ldots, \nu}$ are continuous, we infer that there exists $\delta_{1}>0$ such that, for all $\alpha \notin J\left(q_{0}\right)$, we have

$$
f_{\alpha}(q)>0 \quad \text { if }\left|q-q_{0}\right| \leqq \delta_{1} .
$$

It follows that $J(q) \subset J\left(q_{0}\right)$ for all $q \in \bar{B}\left(q_{0}, \delta_{1}\right)$.
Consequently, if $J\left(q_{0}\right)=\emptyset$, we have $J(q)=\emptyset$ for all $q \in \bar{B}\left(q_{0}, \delta_{1}\right)$ and (53) is satisfied for $\delta=\delta_{1} / 2$ and for all $a \in \mathbb{R}^{d}$ and $r>0$.

Let us assume now that $J\left(q_{0}\right) \neq \emptyset$. For all $\alpha \in J\left(q_{0}\right)$ we define $\phi_{\alpha}: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow$ \mathbb{R} by

$$
\phi_{\alpha}(q, y)=\left(\nabla f_{\alpha}(q), y\right) \quad \forall(q, y) \in \mathbb{R}^{d} \times \mathbb{R}^{d}
$$

and $\phi: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ by

$$
\phi(q, y)=\min _{\alpha \in J\left(q_{0}\right)} \phi_{\alpha}(q, y) \quad \forall(q, y) \in \mathbb{R}^{d} \times \mathbb{R}^{d}
$$

Since $f_{\alpha} \in C^{1}\left(\mathbb{R}^{d}\right)$ for all $\alpha \in\{1, \ldots, \nu\}$, we obtain that the mappings are continuous. Moreover, since $\left(\nabla f_{\alpha}\left(q_{0}\right)\right)_{\alpha \in J\left(q_{0}\right)}$ is linearly independent, we can define a basis $\left(\xi_{i}\right)_{1 \leqq i \leqq d}$ of \mathbb{R}^{d} such that

$$
\xi_{\alpha}=\nabla f_{\alpha}\left(q_{0}\right) \quad \forall \alpha \in J\left(q_{0}\right)
$$

Let us denote by $\left(\zeta_{i}\right)_{1 \leqq i \leqq d}$ the dual basis of $\left(\xi_{i}\right)_{1 \leqq i \leqq d}$ and let

$$
a=\sum_{\alpha \in J\left(q_{0}\right)} \zeta_{\alpha} .
$$

Then, for all $\alpha \in J\left(q_{0}\right)$, we have

$$
\phi_{\alpha}\left(q_{0}, a\right)=\left(\nabla f_{\alpha}\left(q_{0}\right), a\right)=\left(\xi_{\alpha}, \sum_{\beta \in J\left(q_{0}\right)} \zeta_{\beta}\right)=1
$$

and $\phi\left(q_{0}, a\right)=1$. By continuity, it follows that there exist $r>0$ and $\delta_{2}>0$ such that

$$
\phi(q, y)>0 \quad \forall(q, y) \in \bar{B}\left(q_{0}, \delta_{2}\right) \times \bar{B}(a, r) .
$$

Let $\delta=\frac{1}{2} \min \left(\delta_{1}, \delta_{2}\right)$. For all $q \in \bar{B}\left(q_{0}, 2 \delta\right)$ we have

$$
J(q) \subset J\left(q_{0}\right), \quad \phi(q, y)=\min _{\alpha \in J\left(q_{0}\right)}\left(\nabla f_{\alpha}(q), y\right)>0 \quad \forall y \in \bar{B}(a, r)
$$

which implies that

$$
\bar{B}(a, r) \subset T_{K}(q)=\left\{y \in \mathbb{R}^{d} ;\left(\nabla f_{\alpha}(q), y\right) \geqq 0 \quad \forall \alpha \in J(q)\right\}
$$

and (53) is satisfied.

Acknowledgements. The author would like to thank the referee for the numerous relevant remarks which have contributed to improving the final form of the manuscript.

References

1. Ballard, P.: The dynamics of discrete mechanical systems with perfect unilateral constraints. Archive for Rational Mechanics and Analysis 154, 199-274 (2000)
2. Jeffery, R.L.: Non-absolutely convergent integrals with respect to functions of bounded variations. Trans. A.M.S. 34, 645-675 (1932)
3. Monteiro-Marques, M.P.D.: Chocs inélastiques standards: un résultat d'existence. Séminaire d'analyse convexe, Univ. Sci. Tech. Languedoc 15(4) (1985)
4. Monteiro-Marques, M.P.D.: Differential Inclusions in Non-Smooth Mechanical Problems: Shocks and Dry Friction. Birkhauser, PNLDE 9, Boston, 1993
5. Moreau, J.J.: Un cas de convergence des itérées d'une contraction d'un espace hilbertien. C.R. Acad. Sci. Paris, Série A 286, 143-144 (1978)
6. Moreau, J.J.: Liaisons unilatérales sans frottement et chocs inélastiques. C.R. Acad. Sci. Paris, Série II 296, 1473-1476 (1983)
7. Moreau, J.J.: Standard inelastic shocks and the dynamics of unilateral constraints. Unilateral problems in structural analysis, Vol. 288 (Eds. Del Piero, G., Maceri, F.) CISM courses and Lectures. Springer, Berlin, 173-221, 1985
8. Moreau, J.J.: Bounded variation in time. Topics in Non-Smooth Mechanics (Eds. Moreau, J.J., Panagiotopoulos, P.D., Strang, G.) Birkhauser, Basel, 1-74, 1988
9. Paoli, L.: Analyse numérique de vibrations avec contraintes unilatérales. PhD Thesis, University Lyon I, 1993
10. Paoli, L.: Continuous dependence on data for vibro-impact problems. Math. Models Methods Appl. Sci. (M3AS) 15(1), 53-93 (2005)
11. Paoli, L.: An existence result for non-smooth vibro-impact problems. J. Differ. Equ. 211, 247-281 (2005)
12. Paoli, L., Schatzman, M.: Schéma numérique pour un modèle de vibrations avec contraintes unilatérales et perte d'énergie aux impacts, en dimension finie. C.R. Acad. Sci. Paris, Série I 317, 211-215 (1993)
13. Paoli, L., Schatzman, M.: Approximation et existence en vibro-impact. C.R. Acad. Sci. Paris, Série I 329, 1103-1107 (1999)
14. Paoli, L., Schatzman, M.: Penalty approximation for non smooth constraints in vibroimpact. J. Differ. Equ. 177, 375-418 (2001)
15. Paoli, L., Schatzman, M.: A numerical scheme for impact problems I and II. SIAM J. Numer. Anal. 40(2), 702-733 and 734-768 (2002)
16. Paoli, L., Schatzman, M.: Penalty approximation for dynamical systems submitted to multiple non-smooth constraints. Multibody Syst. Dyn. 8-3, 347-366 (2002)
17. Schatzman, M.: A class of nonlinear differential equations of second order in time. Nonlinear Anal. Theory Methods Appl. 2, 355-373 (1978)
18. Schatzman, M.: Penalty method for impact in generalized coordinates. Phil. Trans. R. Soc. Lond. A 359, 2429-2446 (2001)
