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Time-Stepping Approximation of Rigid-Body
Dynamics with Perfect Unilateral Constraints.
I: The Inelastic Impact Case

L. PaoLr

We consider a discrete mechanical system with a non-trivial mass matrix, sub-
jected to perfect unilateral constraints described by the geometrical inequalities
fu(@) 20,0 €{1,...,v}(v = 1). We assume that the transmission of the veloci-
ties at impact is governed by Newton’s Law with a coefficient of restitution e = 0
(so that the impact is inelastic). We propose a time-discretization of the second
order differential inclusion describing the dynamics, which generalizes the scheme
proposed in Paoli (J Differ Equ 211:247-281, 2005) and, for any admissible data,
we prove the convergence of approximate motions to a solution of the initial-value
problem.

1. Introduction

We consider a discrete mechanical system subjected to perfect unilateral con-
straints. More precisely, let us denote by u € RY the generalized coordinates of
a typical configuration of the system. We assume that the set K of admissible
configurations is described by v = 1 geometrical inequalities

fa) 20, aeci{l,...,v}

where f, is a smooth function (at least C1) such that vV fo(u) does not vanish in a
neighbourhood of {u € R?; f,(u) = 0}.
At each u € RY we define the set of active constraints J () by

Jw) ={ae{l,...,v} fuw) £0}.

In order to avoid some geometrical inconsistencies we assume, moreover, that the
active constraints along d K are linearly independent, that is, (V fo, (4))aes(w) are
linearly independent for all u € K.



Then the dynamics is described by the following measure differential inclusion
(see [17] or [6] for instance)

M u)ii — g(t,u,uu) € —Ng (u) (D)

where M (1) is the mass matrix of the system and Nk () is the normal cone to K
at u given by

{0} if u € Int(K),
Nk (u) = {Zaej(u) haV (), by < 0 Ve € J(u)] ifuedk,
0 ifugK.

We also define the tangent cone to K at u
Tiw) = {w € RY (Vo (), w) 20 Vo € Jw))

where (v, w) denotes the Euclidean scalar product of vectors v and w in R?. Since
u(s) € K for all s, we infer that

u(t+0) e Tx (u()), u@—0)e —Tg (u(t)) (>0)

whenever i (¢t &= 0) exists. It follows that the velocities are discontinuous at impacts
if u(t —0) & Tk (u(¢)) and (1) implies that

M (u(t)) (u( +0) —u —0)) € —Ng (u(t)) .

This relation does not uniquely determine (¢ + 0), so we should add an impact
law. Following MOREAU ([6] and [7], see also [14] or [16]) we assume that

it(t +0) = Proj sy (T (u(®)) , it — 0)) @)

where Proj,(,, denotes the projection relative to the Riemannian metric defined
by the inertia operator M (u).

More precisely, for admissible initial data («g, vo) € K x Tk (1), we consider
the following problem:
Problem (P) Find « : [0, 1] — R? ( > 0) such that:

(P1) wuisanabsolutely continuous function from [0, 7]to K andu € BV (0, t; Rd),
(P2) the differential inclusion

M (u)ii — g(t,u,u) € —Ng (u)

is satisfied in the following sense: there exists a (non-unique) non-negative
measure u such that the Stieltjes measure di = ii and the usual Lebesgue
measure dt admit densities with respect to du, that is, there exist two d u-
integrable functions v;, and t,, such that ii = dit = v, du, dt = t,du, and
such that

M (u(t)) vl’i (t) — g (¢, u(t), u(r)) t/;(t) € —Ng (u(t)) du almost everywhere,
(3)



(P3) forallr € (0, 1)

11t + 0) = Proj ) (Tx (1)), 1i(t — 0)) 4)

(P4) u(0) = uo, (0 + 0) = vo.

Observe that the right-hand side of (3) is a cone, so that the differential inclu-
sion remains true for any non-negative measure p with respect to which dit and dt
admit densities (see [7]).

For this model of impact, a very complete theoretical study has been performed
by BALLARD in [1]: using existence results for both ordinary differential equations
and variational inequalities, he proved the existence and uniqueness of a maximal
solution for the initial value problem when the data are analytical. Some counter-
examples show that uniqueness may be lost for less regular data (see [7] or [1]
for instance) but existence results have still been established in the single con-
straint case (that is, v = 1): see [3,4] and [9,12] for a trivial mass matrix (that is,
M (u) = Idga), and [18] and [13,15] for a non-trivial mass matrix. All these results
rely on the study of a sequence of approximate solutions constructed either by a
penalty method [18] or by a time-stepping scheme [3,4,9,12,13,15].

For the multi-constraint case, these techniques encounter a new difficulty: in
general, the motion is not continuous with respect to the data. Nevertheless, some
sufficient conditions ensuring continuity on data have been established in [1] and
[10]. In this framework, the convergence of the time-stepping scheme proposed
in [9] has been extended to the multi-constraint case with inelastic shocks when
the mass matrix is trivial and the set K is convex [11]. The aim of this paper is to
relax these restricting conditions for the mass matrix and the set K, and to prove
an analogous convergence result in a more general setting.

More precisely we assume the same kind of regularity for the data as in [10],
that is,

(H1) g is a continuous function from [0, T'] x R? x RY (T > 0) to R?;

(H2) for all « € {1,...,v}, the function f, belongs to CHR?), V£, is lo-
cally Lipschitz continuous and does not vanish in a neighbourhood of
{u e RY; fo(u) =0};

(H3) the set K is defined by

K:{ueRd;fa(u)go, ae{l,...,v}}

and the active constraints along d K are functionally independent, that is, the
vectors (V fo (1)) ;) are linearly independent for all u € K;

(H4) M is amapping of class C! from R to the set of symmetric positive definite
d x d matrices.
With this last assumption, we may define M~ ), M2 () and M~ V2 (u)
for all u € RY; the corresponding mappings are of class C! from R to the
set of symmetric positive definite d x d matrices.



Let F be a function such that
(H5) F is continuous from [0, 7] x R? x RY x [0, h*] (h* > 0) to R? and is
consistent with respect to g, that is,

F(t,u,v,0) = M~ (u)g(t,u,v) Y(t,u,v) €0, T] xR x RY,

For admissible initial data (uq, vg) € K x Tk (ug), we consider the initial-value
problem (P) and we define a time-stepping scheme as follows:

e the initial positions U and U are given by
U =ug, U' e Argminy g lluo + hvo + hz(h) — Zllmu) )

with limy,_, z(h) = 0,
o forallne{l,.... L]} let

n n n—1 2 -n n n Un_Un_l
w'=2U0"-U +h“F", F'=F nh,U,T,h (6)

and
U™ e Argming g [|W" — Z | mqum) (7)

where || - [[ap(v) is the norm associated to the kinetic metric at U defined by
1Z13w) = (Z, Z)mw) with

(Z, 2 mw) = (Z,MU)Z") = MU)Z, Z")

forall (U, Z, Z') € (R%)3.

In the initialization procedure given at formula (5), the mapping & +— z(h) can
be chosen in such a way that the unconstrained dynamics is approximated at order
p,with p = 1, by U' = ug + hvg + hz(h) at t; = h. For instance, the simplest

h
choice z(h) = 0 leads to p = 1, while z(h) = EM_I(uo)g(O, ug, vo) leads to

p = 2. Moreover we can observe that we obtain U”+! = W” when W" € K and
thus

Un+1 _yn + Un—l

2 =F" when W" € K,

which is a centered time-discretization of the unconstrained dynamics. Further-
more, if M (u) = Idga forall u € R4 and K is convex, we recognize the scheme
introduced in [9] for the first time and whose convergence has been established in
[9] when 0K is smooth, and in [11] in the general case.

We now define the approximate solutions uj, by

n+1 _yn
up() =U"+(t — nh)T vVt € [nh,(n+ 1A N[0, T]

foralln € {0,..., [ T/h]} and h € (0, h*].



Since the impact law (2) leads to some discontinuity with respect to the data if
the active constraints at impacts create an obtuse angle (see [10]), we cannot expect
convergence of the approximate motions unless we add some assumptions on the
geometry of active constraints along 0K .

So, forallu € K and o € J(u), let us define

M=2u)V £, (u)
IM=12u)V f, ()|

eq(u) =

where | - | denotes the Euclidean norm in R?, and assume that the “angle condition”
given in [10], which ensures continuity on data in the case of inelastic shocks, holds.
That is,

(H6) forallu € 0K, forall («, B) € J ()2, such that « # B, we have

(ea(u), eﬂ(u)) <0.

This inequality can be interpreted geometrically: in the local momentum metric,
defined by the matrix M ~!(x), the active constraints create right or acute angles.

Then, under assumptions (H1)—-(H6) we prove the convergence of a subse-
quence of the approximate solutions (i)« >~ to a solution of problem (P).

The paper is organized as follows. In the next sections we establish a priori
estimates for the discrete velocities and accelerations on a non-trivial time interval
[0, 7], with O < T < T. Then we pass to the limit when 4 tends to zero on [0, ]:
using Ascoli’s and Helly’s theorems we obtain the convergence of a subsequence
of (up)j+>p~0 to a limit u which satisfies (P1) and (P2). Next, for any instant ¢
such that u(r) € 9K, we perform a precise local study of the approximate motions
and we prove that the limit u also satisfies (P3) and (P4). Finally, we conclude the
proof with some energy estimates which allow us to obtain global results.

2. A priori estimates for the discrete velocities

Let us begin with a priori estimates for the discrete velocities. Let I3 be a given
convex compact subset of R? such that BN K # @. Possibly decreasing h*, we
may assume without loss of generality that

lz(W| =1 Vh e (0,h"].

In this section we consider a more general scheme for which the initialization
procedure involves an initial time g5 € [0, ') depending on /. This modification
will allow us, in the last section of the paper, to extend the a priori estimates of
the discrete velocities by considering as “new” initial data the already constructed
approximate positions at some time steps #o, and to, + h.

So, let h € (0, h*], top, € [0, T), U% and U! be given in BN K and K respec-
tively, and forall n € {1, ..., [ 152 |}

U™ e Argming g [|W" — Z | mqm)



with

U" — Un—l
W' =20U" — U+ W2F", F'=F (ro,, +nh, U", T, h) .

Forallh € (0, h*]and n € {O, e L%J}, we define

Un+l —y"
Ve —,
h

First let us observe that
Lemma 1. Forallh € (0, h*landn € {1, ..., |[(T — top)/ h]}, we have
MUV — V" hF") € Ng (U™,

Proof. Leth € (0, h*]andn € {1, ..., (T —ton)/h]}. By definition of U"*! we
have

+12 2
W = U m S IW = Z00m,
§ ”Wn _ Ul’l-‘rl ”%W(Un) + Z(Wn _ Uﬂ+l’ Ul’l+l _ Z)M(U")
+ 10" = Z130m)

for all Z € K, which yields
, 1
W' = U™t Z = U Dhywn S SI0" = ZIyen, VZEK. ®)

If U™t € Int(K), we deduce from (8) that
W' — U™ = (v — Vv L hF) =0
and
MUV — V" + hF") e N (U™ = {0).
Assume now that U+ € 9K and let

T U = {w e RY; (Vfa(U”“), w) > 0Va e J(U"“)} .

For all w € 7~"K(U”+1) there exists a smooth curve ¢ +— ¢(¢) such that ¢(0) =
U1, ¢'(0) = wand ¢(r) € K forall 7 in a right neighbourhood of 0. By choosing
Z = @(t) we infer that

(W" — U™ wyyny £0 Yw e Tg (U™,
Then the density of Tx (U"1) in Tg (U"+!) leads to
(VL VL W w gy £ 0 Yw e T (U™,

Finally, observing that Tk (1) = Nk (u)" for all u € K, we are able to conclude
the proof. O



Let us introduce some notation. We define

— . — 1 d
Amax (W) = [IM @),  Amin(u) = M ()] Yu € RY.

Since u — M (u) is continuous with values in the set of symmetric positive defi-
nite matrices, the mappings u > Amax(#) and u — Apin (1) are well defined and
continuous from R? to R* . Moreover

dnin )] Z (w30 S Amax@|w]* Yw € RY, Vu e RY.

Since B is compact, there exists § > 0 such that, for all (¢, ¢’) € B x R4 such that
lg —q’| £, we have:

1.
P\min(‘]) - )hmin(q/)| = ) 122)\min(u)»
u

, 1
|)\max(q) — Amax(q )| = 5 Sug Amax (1).

ue

We define
By = {u e R?: dist(u, B) < 5} . 9)

Then By is also a convex compact subset of R? and we have

I, . 3
= inf Amin(u) < inf Amin (), SUp Amax () < - Sup Amax (14).
2 ueB u€By ueBy ueBB

We let

I, 3
Amin = = I0f Amin (),  Amax = = SUP Amax (1). (10)
2 ueB 2 ueB

Of course we have
0 < Aminlwl® < w350 £ Amaxlwl* Yw € R\ {0}, Vu € By.
Let Cp > 0 and CF be given by
Cr=sup{|F(t,u,v,h)|; t €[0,T], u€ ByUBy, |v| < Co, h €[0,r*]},
(1D

where B| = E(uo, CoT + 1). Since the mappings M, M= MY2 and M~V are
of class C! on R, they are Lipschitz continuous on By U By and we denote by
Ly, Lys-1, Ly and Ly,-1/2 the corresponding Lipschitz constants. Moreover,
the functions V fy, 1 < a < v, are locally Lipschitzian and there exists also a
positive real number L s such that

\Vfu(2) =V f(ZH|SLf1Z— Z'|  Y(Z,Z')e(ByUB1)?, Yae(l,...,v}

Next, we obtain some rough estimates on the discrete velocities. More precisely,
let us assume that

Vi <cy Vielo,...,n—1}

for some n = 1. We obtain the following estimate on V":



Proposition 1. Let Cy > 0 and h(; € (0, h*] such that

h{ < min &, N / min
Cr 8CO Amax

where CF is defined by (11), and Amin, Amax are defined by (10). Let h € (0, hg],
7, = min(§/(2Cy), T — ton) and assume that there exists n € {1,..., [ty/h]}
such that

VI <Co VIelo,...,n—1}.
Then
A
[V <4 [ 2.
Amin
Moreover, for alll € {0, ..., n} such that J(U'*) # ¢,

Lsh
(vfa(U’“), V’) < %Wﬂ2 Va € J(U™Y).

Proof. Foralll € {0, ..., n} we have Ul e By, since

-1
U= U S D hVH S1hCy S TyCo <8 V1€ (0,....n).
k=0

By definition of U"*! we have
IW" = U™ gy S IW" = U lmqwm)
since U" € K and

whn — Un+l — h(vn—l —yn +th)’
W —U" = h(V" ' + hF").

Hence
IV Iy S 20V imy + 201 F™ | mcomy
and
n )\max )\max
v < (2Co + 2hCF) < 4 Co.
min min

Now, we infer that U"*! € By. Indeed

/2 8
Ut — U0 < Ut — U + h|V"| £ Cotyy + 4h /\’”—”ﬂ“co < Cotp + 3 <s.
min



Let/ € {0, ...,n} such that J(U'*t!) # @. For all « € J(U'*"), we have

1
0§AW5—EWH5=/‘WA(WH+KW—UM01ﬂ—WH)m
0

and thus

1
(Vfa(Um)’ Vz) g_/0 (Vfa (U1+1_H (Ul_UlJrl))_Vfa (Uzﬂ)’ Vz) dr

< /01 ‘Vfa (UI—H_H (UI_U1+1)) vy, (U1+1)) M ar

It follows that
L¢h
(Vs v!) = 2R,
O

Now we prove a more precise estimate on the discrete velocities. We have the
following result:

Proposition 2. Let Cy > 0 and assume that there exist Cj > 0 and hij € (0, h*]

such that
h{ < min @, i —)Lmin ,
CF 8CO )Vmax
v'-u°

W%{
h

where CF is defined by (11) and Apyin, Mmax are defined by (10). Then, there exists
19 > 0, depending only on B, Cy, C; and the data, such that

Un+l _yn

; < Co Vnh € [0, min(rg, T — to4)], Vh € (0, h§].

WH{

Proof. Let us assume that 2 € (0, hj]landn € {1, ..., [7;/h]} such that
’v’) <Cy VIe{0,....n—1)

with t;, = min(§/(2Co), T —ton). Then, with Proposition 1, we know that U I'e By
foralll € {0,...,n+ 1} and

Mg
[V <4 [ 2.

min
Moreover, from Lemma 1 we know that

MU™ (v"—1 v hF”) e Ng (U™,



It follows that
Vit — Vn—l +hF" if J(Un+l) = (.

Let us assume now that J (U"+1) £ @.
Using once again, Proposition 1, for all @ € J(U™*!) we have also

L¢h
(Vhuwrth, vr) < 22y

and thus, with Lemma 7 (see Appendix),

~Lsh [ve?

< th

< v
2 |M_1/2(U”+1)Vfa(U”+l)| szO

(ea(U'l+1), Ml/Z(Uﬂ+1)Vﬂ)

For sake of simplicity, denote J, = J(U"*!) and e = e, (U"*!) for all & € J,,.
From assumption (H3) we know that (V fo[(U'”“l))ae J, 18 linearly independent.
Thus (el!)qey, is also linearly independent and, using Lemma 7, we know that
there exist two dual bases (vj(UnH))lSde and (wj(U"+l))1Sj§d such that

‘vj(U"H)‘:l Vie(l,...d), vU"h=¢ Vjel,
and
wj ] £ Cogy Vie (L. d)

where Cy g, depends only on the compact set By and the mappings fy, o €
{1,...,v},and M.
Now, we define

L¢h
wn — _Vn + f |Vn|2 Z M_l/z(Un+1)wa(Un+l).
2mBO

ael,
For all ¢ € J,, we have clearly
(Vsah, —u)
_ Lyh
— ‘M I/Z(Un+1)vfa(Ull+1)‘ (en M1/2(Un+1)vn) _ |Vn|2 S O,
2m -

o

that is, w" € Tgx (U"*!). With Lemma 1 we get

(vt —vrenF ) <0
M@U")
which yields
Vn_vn—l_th’ Vn_ th |Vn|2 Z M_1/2(Un+1)wa(Un+1) g 0
2mBO ael,
n M@U™)

12)



It follows that

L¢h - -
V" 3wy <‘ﬁ VPR (M U Y we U, VI VIR RET)

aely,
+(V VI RFY ymy S0V e IV + R | m)

Lh Amax
2mBO Amin

VIV awny D [wa @DV =V R F™).

aed,

Using Proposition 1 we get

vy ‘wa(U"“)‘ (A VY 'y 2

aed,

A A
<4 [ vCoChpo | Co| 1 +4, 7= )+ hCF
Amin Amin

if J, # . Recalling that

V=Vl hF if J, =0
we obtain finally that

IV lmwmy S V" mwny + hy/AmaxCr

2L fh Amax )3/2 ) Amax
+ - — vC Cil2+4, | —
mp, ( Amin * B0 Amin

whenever J,, = @ or J, # 0.
By using the Lipschitz property of M!/% on By, we also have

L S Ll NS LR U]
MU™) - M(U"’l)
2
< v"*‘H L h‘V”’l‘
= H M1 + M1/2
We infer that
-1
1V lasomy [V oy + €1 a3
with
2L ( Amax )/ s
Cl = \/)\,mach —+ LMI/ZC(% + f (ﬂ) UC*,BOC(% 244 e .
mp, Amin min
It follows that
o< [Ames vo|+ ncih
)"min \/)&min




Then, choosing 9 € (0, 6/(2C¢)] such that

Amax Cc* i 70C1 <
Amin 0 Amin
and observing that
0 * Amin *
|V|§C0< Co £ Cy Vh € (0, hy]l

max
we may conclude the proof by inductiononn. 0O

Let us now consider the initialization procedure given by formula (5), that is,
let fo;, = 0 and U° and U be given by

U%=uy, U'e Argming g |lug + hvo + hz(h) — Zl yuy) » }}in%)z(h) =0,
forall i € (0, h*]. We can choose B = B(uq, C + 1) with C > 0, and the previous

results lead to an uniform estimate of the discrete velocities on a non-trivial time
interval. More precisely, we obtain

Theorem 1. Forall C§ = 2 2max |y | 4 1) and for all Cy > Lmax Cg, there exist

Amin Amin

hi € (0, h*] and to > 0, depending only on B, Co, C§ and the data, such that

‘UrH»l —_y"r

V" = < Cy Vnh €0, min(, T)], Vh € (0, hf].

Proof. Let Cj = 2 i::‘; (Jvo] + 1), Cp > ,/i‘;‘l‘z Cg and Ay € (0, h*] such that

h < min ﬂ S / Amin
Cr 8CO Amax

where CF is defined by (11) and Apin, Amax are defined by (10).
By definition of U 1 we have

o + oo + hz(hy — U HM( S o+ o+ he(h) — Zlyy VZ € K
up

and by choosing Z = ug = U° we get

ul -u°
||VO||M(U0) = H T < 2lvo + 200 | prug) -
M (uo)
Thus,
0 < Amax < Amax %
V=2 lvo +z(h)| =2 (lvol +1) Vh € (0,h7]
)\min )Lmin
and

)"min

Vo £ch <

Co Vh € (0, hi).

max

It follows that we may apply Proposition 2, which yields the announced result. O



3. Convergence of the approximate solutions () +>}.¢

Before passing to the limit as £ tends to zero in the sequence (uy,)),+>),~ 0, We
prove an estimate for the discrete accelerations. -

Proposition 3. Let us now assume that there exist Co > 0, 1o > 0, hj € (0, h*]
and a sequence (h;);cN, decreasing to zero, such that

[V < Co Vnh; € [0, min(zg, T)], Vh; € (0, h{l. (14)

Then there exist h € (0, hij] and C(’) > 0 such that, for all h; € (0, h7]

al min(tg, T)
Z‘V" - V’H‘ <) with N= Lh—OJ
i

n=1

Proof. The main ideas of the proof are the same as in proposition 2.4 in [11]. More
precisely, let B = B(ug, C + 1) with C > 0, By be defined by (9) and Cr be
defined by (11). Without loss of generality, possibly decreasing /¢, we assume that
Cohjy < 1and Cphf < Co. We denote K| = K N By = K N B(ug, CoT + 1) and

1

Amin, B, = lél]g Amin () =
ueB

5P,y 1) )
)\max,Bl = Sup Amax(u) = sup [|[M@)].
ueB; ueB)

Let h; € (0, h’(;]. By definition of the scheme, we have U" € K for all n €
{0,...,LT/h;] + 1}. Assumption (14) implies that

n—1
)U”—UO‘ ghiZ‘V"‘ <nhiCo< CoT +1 Vnel{0,....N+1}
k=0
thus U" € Ky foralln € {0, ..., N + 1}.
By Lemma 8 (see Appendix), we infer that, for all ¢ € K1, there exist a, € R4
and two strictly positive numbers 8, and r, such that, for all ¢’ € B(q, 284)

Blag,rg) C Tx(q). (16)
Itis obvious that K1 C U, ck, B(q,d,), and a compactness argument implies
that there exists (¢;);<;<, such thatg; € K forall j € {1,..., ¢} and

14

ki c | Bg;. 8.
j=1

In the remainder of the proof we will simply write §;, a;j and r; instead of &, ag;
and rg;. We define
8/

r= min rj, §= min §;, 7 =—.
15/ 15/ Co



Let h7 € (0, min(h, 11/2)),h; € (0,h7] and n € {0,...,N}. Let j €
{1, ..., £} be such that Uunrt! ¢ B(gj,8;). Then, forallm € {n +1,..., p}
with p = min(N, n + |11/ h;]), we have

|Um+l _l]]| é |Um+l _ Ul’l+1| + |Un+l _qj|

m
Z A%

k=n+1

< +5j§hiC0(m—l’l)+5j§5/+5j§25j.

By applying (16), we obtain that, forallm € {n + 1, ..., p}, we have E(aj, rj) C
Tx (U™, Thus

Bywmy(@j, /Amin, B, 1) = {ZGRd; lz—ajllpwm g\/)\min,Blrj} C B(aj,rj).

Then, we use a classical result about contractions on Hilbert spaces due to MOREAU
[5] and we infer that, for all z € R4

— Projyy g (T (UMD, H
|2 = Projyum (Tk @™ 1), 2) -
1

2
iz =a; 1% m —HPro' ” (TK(Um“),z)—a»H )
2mrj( Hacm =@ Hmwm

With Lemma 1 we know that

=

M@U™)(V™ = V™ 4 b F™) € Ng(U™ ).
Since Ng (U™+1) and Tg (U™*1) are two closed convex polar cones, we get
Projyymy (T (U™, V"= = v 4 ™) =0,
Hence
V™=t = V™ 4 hi F™ | m)

=

\ tmin, (
2\/ Amin,B! (
sb1% ]

=2 (aj, vt v Y )
MU™)

It follows that

2
|t = v Py - g
MU™)

-~ ||a,-||%mUm))

2

[IA

H ym=l_ym g pm ”
M(U771)

V=t = V™ ) < il F™ [am + (77 =V g,

1
2/ Amin, By ¥}

42 (F’”, ym=l v'”) + B F™ 3y m)

M(Um)

_ . m—1 _ ym m
2(aj,v VM F )M(Um)). (17



If J,, # @, we can reproduce the same computations as in Propositions 1 and 2
to obtain (see (12))

L¢h;
Vm_mel _hiFm7Vm 2f |VWl| ZM ]/2(Um+l)w (Um+1) éo
acty, MU™)
which yields
-1 2
- (Vm ’ Vm)M(Um) S =V Wsgmy + hi (F™ V™) gy
thi)tmax B 2 -1
+ —————vCy V"IV = V" + b F™
ZmBl\/ )\min,Bl - l
(18)
where Cy p, is the constant defined at Lemma 7.
Otherwise, if J,, = ¥, we have V" = V"~1 4 h; F" hence
_ (Vm—l’ Vm)M — (_Vm + ]’l,’Fm, Vm)M(U’")
wm)
= —IV™"3gcum) + hi (F™. V™) sy
and (18) is still true.
Thus
V"= = V™ gy S V™" Wgmy = IV Wy + 2k (F™ V™) m,

tht)\max,Bl

mp,+/ )\min,Bl

Going back to (17) and using the Lipschitz property of M on B, we obtain

vCs. 8, C5(2C0 + hiCF).

V™=t — V™ ywmy £ hiCl +

1 m—12 my2
T (V" 1ty = 1V g m)

. m—1 . m
_2(aj’ v )M(Um—1)+2(a]’v )M(U’"))

forallm € {n+ 1, ..., p}, where

Cota hish.
€= JAmTBlCF(Hm(O )) 4 2 otma By

F
+/ Amin B’ 2\/ Amin,Blr
Co+2a A
0+ f max, By C*,Bl C(3)

0T Ly +3
ZM ’

and a = max; <; <, |aj|. By summation we get

2rmB] Amin By

p
SV = V™M@ £ (p—n)hiCy
m=n+1

+

1 2 2
2y (V" = 1V
s D1

+ 4)\-max,31 CO“) .



Recalling that p = min (N, n + |71/ h;]), we infer that
ad 1
IVt =V lgmy £ NBCY A+ = (V"1 o, = IV g )
Z? l 23/ Amin, B, 7 Mn M)
)\max,Bl Coa

2
+ (k1 +1)
vV )\min,Blr

where k| € N is such that

1+k1{%J§N<(k1+l){%J.

l 1

Observing that ky = min(zo, 7)/(t1 — h;) for all h; € (0, h{], and

1
vl — v S ——— V" = V™ ymy Ym e {l,..., N},

Vv )\min,B|

we can conclude the proof with

)\max,Blc(% 2)\max,Blcoa ( T + 1))

1
S +
V )"min,Bl ( RV )\min,Blr V )"min,Blr T — hT

Cp =

O

With these results we can now pass to the limit as /4 tends to zero. Let us recall
the definition of the approximate solutions (i) x>, 0:

n+l _ grn
up(t) =U"+(t — nh)T Vt € [nh, (n + D] N[0, T] (19)
and let us define
Un+1 _yn
vp(t) = V" = — vVt € [nh,(n+ 1)h) N[0, T] (20)

foralln € {0, ..., [T/h]}and h € (0, h*].
Let us assume from now on that

(H7) there exist Co > 0, 7o > 0, hj € (0, h*] and a subsequence (/;);en,
decreasing to zero, such that

[V'| < Co Vnh; €[0,min(rg, T)] Vh; € (0, hi].

We define B = B(ug, C + 1) with C > 0. Let By and Cr be defined by (9)
and (11), respectively. We assume (without loss of generality) that Cohj < 1 and
C ph3 < Cp. Let us denote T = min(zg, 7). From assumption (H7) and Proposi-
tion 3 we know that (up,) W 2>h; >0 is uniformly Co-Lipschitz continuous on [0, 7]
and (vh, ) s >, -0 s uniformly bounded in L= (0, 7; R)NBV (0, 7; RY). It follows
that (up,) hﬁéhpo is equicontinuous and, using Ascoli’s and Helly’s theorems, we



infer that there exists a subsequence, still denoted (h;);cN, U € co ([0, T]; Rd) and
v € BV (0, t; R?), such that

up, — u strongly in C° ([0, ]; RY), (21
and
vy, — v pointwise in [0, T]. 22)

Moreover, we have
t
up,; (t) = ug +/ v, (s)ds Vi €[0,T], Vh; € (0,h"].
0

Thus, with Lebesgue’s theorem, we get

t t
u(t) = hlimo (uo +/ vp, (5) ds) = uop —|—/ v(s)ds Vre[0,t]. (23)
i~ 0 0
We infer that u is Co-Lipschitz continuous and
unp, (1), u(t) € B(ug, Cot) C By = B(ug, CoT + 1) Vt € [0, 7], Vh; € (0, h7].

Moreover, u is absolutely continuous on [0, 7], thus # admits a derivative (in the
classical sense) almost everywhere on [0, 7] and & € L0, t; Rd). From (23) we
infer that i (z) = v(¢) forall ¢ € [0, ] such that v is continuous at z. Possibly mod-
ifying & on a countable subset of [0, 7], we may assume without loss of generality
that it = v.

As usual, we adopt the convention

w(0—0) =v(0—0) =v(0) =1u(0), ”
u(t +0)=v(rt+0) =v(r) = u(r). 24
Then we observe that

Lemma 2. Forallt € [0, 7], u(t) € K.

Proof. Let ¢ € [0, ]. For all h; € (0, h{] there exists n € {0, ..., thij} such that
t € [nh;, (n + 1)h;). Then, observing that U" € K we get

dist (u(1), K) < |u(t) = U"| < |u(t) — up, ()| + |up, (1) — U"|
< |u@ —up, |+ — nh) V" < |u—up,

CO([O,‘[];Rd) +C0hi .

By passing to the limit as /; tends to zero, we obtain dist(u(z), K) < 0, that is,
u(t)y e K. 0O



3.1. Study of property (P2)

Now let us prove that u satisfies property (P2), that is, the differential inclusion
(3). First, we observe that there exists at least one non-negative measure p such
that the Stieltjes measure ii = du = dv and the usual Lebesgue measure dt admit
densities with respect to w. Indeed, let u be defined by du = |dut| + dt : p is
non-negative and the measures ii = dit and dt are both absolutely continuous with
respect to .

Now, let i = |dit| + dt. We denote by v;L and t;L the densities of dit = dv and
dt with respect to d . We have to prove that

M (u(t)) v, (1) — g (¢, u(t), u(t)) 1, (t) € =Nk (u(r)) dp almost everywhere.
By Jeffery’s theorem (see [2] or [4]) we know that there exists a d u-negligible
set N C [0, ] such that, forall t € [0, 7] \ N:

. du(lg)
"(t) = lim ——=,
v 0) si%l+ du (1)

with I, = [t,t + €] N[O, T].
We define

¢ (1) dr (1)
= l1m
" e—0+ du (Iy)

N ={tel0,t];u(t +0) =u( —0) # u()}

(we may observe that the convention (24) implies that 0 ¢ N" and T € N’). Since
it = v belongs to BV (0, t; Rd), N’ is, at most, a countable subset of [0, 7] and is
negligible with respect to |dt.

Finally, let Ng = {t € {0} U {t}; u is continuous at t}. The set Ny is finite (it
contains at most the two points r = 0 and t+ = 1), so it is negligible with respect
to |dit|, and it follows that N U N” U Ny is also negligible with respect to d . We
have:

Proposition 4. Let t € [0, ]\ (N U N’ U Ny) such that u is continuous at t. Then
M (u(t)) v, (1) — g (t, u(t), i () 1, (1) € =Ng (u()). (25)

Proof. Lett € [0, 7]\ (NUN'UNp) such that z is continuous at z. Then ¢ € (0, 7);
for simplicity we will denote # = u(¢) in the remainder of the proof. By definition
of Nk (u), (25) is equivalent to

(g (t it  1(1) 1, (1) = M(@)v;, (1), w) =0

forall w € Tk (u) = {w e R?: (Vfu(it),w) 20, Ya € J(ﬁ)}.
First, let us observe that there exists r; > 0 such that

J(q) C J(it) Yq € B(ii,ry).

Indeed, forall @ € {1, ..., v} \ J(u) we have f, () > 0 and, by continuity of the
mappings f, (1 < o < v), there exists r; > 0 such that
Ja (i)

fulg) = = Vg € B(it,rg), Yae{l,...,v}\ J(@@).



Let us consider TK () defined by

Pty — H;; € R (V fo (@), w) > OV € J(@)}) if J(@) # 9,

otherwise.

Let w € Tk (i). If J (1) # (J, the continuity of the mappings Vf, (1 £ a < v)
implies that there exists ry, € (0, r;] such that

(Vfa(q), w) 20 VYa € J(@), Vg e B(i,ry),

and thus w € Tk (q) forall g € B(it, ry). If J (i) = ¥, we still have w € Tk (¢)
for all ¢ € B(u, ry) if we choose ry, = ry;.
Using the continuity of u and the uniform convergence of (up,);en to u on

T—1
[0, 7], there exists &, € (0, min(z, T)) such that, for all ¢ € (0, £,], there
exists i € (0, h7] such that
J— _ }’w
u(s) € B (u, ?) Vs € [t,t + €],

&

. r r
hS é min (%7 g) ) ||l/l — Up; ||CO([0,T];R‘1) = ?w Vhl € (05 hé‘]

It follows that for all € € (0, £,,] and for all i; € (0, h,]

—(_ 2ry
up,(s) € B u,? Vs € [t,t+ €],

and
U™ e B, ry) Vnhi € (1,1t +¢].
Now let ¢ € (0, &,] and h; € (0, he]. We define j and k by

=)=l

0<l‘j=jh,‘§t<tj+1<~-~<tk=khi§t+£<tk+1<f.

We have

From Lemma 1 we know that, foralln € {j + 1, ..., k}, we have

(v"—l — V" 4 b F", w) <0
M@U™)

since w € Tx (U"*!), and by summation

k k
> o (MU w)+ > (M(U"’I)V”’I—M(U”)V”,w>
n=j+1 n=j+1
k
+ > (M(U")V”’l —M(U”’I)V"’l,w> <o. (26)

n=j+1



The last term can be easily estimated as O(e + h;). Indeed, the Lipschitz prop-
erty of the mapping M on B implies that

|M™ = M@ £ Laghivi =Y < ity o

It follows that

i (M(Un)vnfl — M@y, w)

n=j+1

A

5 | M = M| colw)
n=j+1

(k — HLyhiCYlw| < (e + hi) Ly C3lwl.

A

The second term of the left-hand side of (26) is a telescopic sum which can be
rewritten as

(MWHVI = MUVF w) = (M (11,0) (v, (1) = v, (¢ + ) , w)
+ ((M(Uf) — M (up, (t))) Vi, w)
+ ((M (un, (1)) — M(Uk)) vk, w) .

Once again, the last two terms can be estimated by using the Lipschitz property of
M on By:

(MW7) = M (un, @) ) VI + (M (0, (0) = MUS) VE,w))|
<Ly Colw| (Jun, (hi)—up, (0) |+lup, (0) — wp, (khi)|) < Ly Cglwl(h;+e).
Moreover, with (21) and (22), we have
hliii)nOM (up; () (vp, (1) — Vi, (t + 8)) = M (1)) (v(t) — v(t + €))
= M (u(1)) (i(t) — (1 + €)) .

Let us prove now that

k t+e¢
li h; (M(UNYF", w) = , , U ,w) d
Jim > hi (MUF", w) / (g (s, u(s), it(s)) , w) ds
n=j+1
for all ¢ € (0, &,].
Indeed, let ¢ € (0, &,]. Forall h; € (0,h]andn € {j + 1, ..., k}, we have
F" = F(nh;, U", V"1 h;) and with (H5)

F(nhi, U", V"=, 0)=M""(U"g (nhi, un; (nhi), va;(s)) Vs €[(n—1h;, nh;).



It follows that

k k nh;
Z hi (M(U")Fh, w) — Z / (g (nh,-, up, (nhi), vy, (S)) , w) ds
n=j+1 n=j+1 (n—D)h;
k
> b (Fohi, U™, V"= i) = Fahi, U™, V=, 0), w) @7)
n=j+1 MU

In order to estimate the right-hand side of (27), we denote by wr the modulus of
continuity of F on the compact set [0, T] x B x B(0, Cp) x [0, h*] and we get

k
> b (Fhi, 0" V"= o) = Fahi, U™, V"=, 0), w)

MU"
n=j+1 @

k
< D hi[MUM|or®ilw] £ (6 +hi)hmar,,or (h)|w].  (28)
n=j+1

Furthermore

k nh;

Z /< (g (nh,-, up, (nh;), vy, (s)) , w) ds

g1 (1=Dhi

t+e
_/ (g (52, (), v (9)) s w) ds

Z / 8 (nhi, up; (nhi), vy, (s)) — g (s, un; (5), vp; (5)) , w) ds
n=j+1 (n—1)h;
t
—/kh (& (5. un; (5), vy, (5)) , w) ds +/h (g (5. un,; (), vp; (5)) , w) ds.
i Jhi

(29)

Recalling that (up,; (s), vy, (s)) € By X B(0, Co) for all s € [0, 7] and for all
h; € (0, hT], we obtain the following estimates for the second and third terms of
the right-hand side of (29):

t+e
/k (g (s, up, (8), vp, (s)) , u)) ds

hi

t
/ (g (S, Up; (S)v Uh; (S)) s w) ds
J

ih;

S |t 4 e — khi|Colw| = hi Cglw],

S |t — jhilColw| = hiCglwl,

with Cy = sup{|g(s, g, v)|; (s, ¢, v) € [0, T] x By x B(0, Co)}.
In order to estimate the first term of the right-haIEl side of (29), we introduce
wg the modulus of continuity of g on [0, 7] x By x B(0, Cp). Observing that

|un; (nhi) — up; ()| < Colnh; — 5| < Coh;



forall s € [(n — 1)h;,nh;) andforalln € {j + 1, ..., k}, we get
|g (nhi, up, (nhi), vn, (8)) — & (s, up, (), v, ()| < wg(Cohy) + wg(hy)

forall s € [(n — 1)h;,nh;) andforalln € {j + 1, ..., k}.
Hence

k nh;
> / (g (nhi, up, (nhy), v, (5)) , w) ds

i1 (n=Dhi

t+e
- / (g(sv uh,' (S), vh,‘ (S))v w) ds
t

< 28 Colw| + (wg(Cohi) + wg(hy)) (k — j)hi|w]|

< 21 Cglw| + (wg (Cohy) + wg(hi)) (e + hi)wl. (30)
Then recalling that

up,(s) —n;—o u(s) foralls € [0, 7],

and

vp; (8) =0 v(s) = u(s) fora.a.s e [0, ],

we infer from Lebesgue’s theorem that

t+e

t+¢
hl_imo (g (s, up, (), vp, (s)) , w) ds = / (g (s,u(s), u(s)),w) ds.
i t t
31

Finally, combining (31), (30) and (29), we obtain

k nh,-
lim nhi, up, (nh;), vy, (s)), w) ds
hi—>0n§‘rl/(n—l)hi (s (nhe. sy, ), vy )) )

t+e
:/ (g (s,u(s),u(s)),w) ds
'

and with (27) and (28) we may conclude that
k I+
lim h; (M(U")F”,w) =/ (g (s, u(s), u(s)), w) ds.
t

hi—0 -
n=j+1

Then, passing to the limit as /; tends to zero in (26), we get

t+e
/ (g (s, 1(s), i(5)) , w) ds + (M (u(®)) (@(t) — et + £)) , w)
t

< 2LyeCllwl (32)



for all € € (0, &, ]. Since u is continuous at ¢, we have 1 () = u(t —0) = w(t +0).
Moreover, since i = v and v is continuous, except perhaps on a countable subset
of [0, ], we may choose a sequence (&;);n decreasing to zero such that

g €(0,8y], vit+e)=u@+e)=ult+¢e +0) VieN.
It follows that
u() —u(t+¢e)=u(t—0)—u(lt+e +0) =—du(t,t+¢&]) VielN.

Multiplying (32) by zzmis
obtain

and passing to the limit as &; tends to zero, we
(g (6, u(@), i()) , w) 1), (1) — (M () v, (1), w) <0 Yw € T (@)
Finally, observing that 7~"K (u) is dense in Tk (#) we may conclude. O

Let us now consider ¢ € [0, t] \ (N U N" U Np) such that « is discontinuous at
t. Then u(t — 0) # u(t + 0) and du possesses a Dirac mass at ¢. Thus {r} is not
negligible anymore with respect to d . and (3) is equivalent to

M (u(t)) (u( +0) —u —0)) € —Ng (u(®)) .
This property is a direct consequence of the following proposition:
Proposition 5. For all t € [0, t] we have

M (u(t)) (@ +0) —u —0) € =Nk (u(2)).

Proof. Let ¢ € [0, 7] and denote, for simplicity, & = u(t). Thanks to the density
of Tk (u) in Tk (u), we only need to prove that

(M @) it —0) — i@t +0),w) <0 Vw € T ().

Let w € Tk (it). As in the proof of the previous proposition, we define r,, > 0
such that

J(q) C J(@) and w € Tx(q) forallg € B(i, ry).

We also define &,, € (0, t/2) such that for all ¢ € (0, &,,] we have
u(s) eE(ﬁ,%w) Vselt—et+elN[0, 7],
and there exists i, € (0, min (h}, r,,/(3Co), £/3)] such that
—(_ 2ry
up,(s) € B u,? Vselt—e t+¢e]lN[0,t], Vh; € (0, h,],

and

U™ e B, ry) Vnh;i €[t —e, t +e]N[0, 7], Yhi € (0, he].



Lete € (0, &,]and h; € (0, he]. We define f, = max(t —e, O),t;r = min(t+¢, 1)
and

RHREE

Oéthjhi§Z;<lj+1<~~'<tk=khi§t€+§‘[.

that is, we have

It follows that
v (1) = VI, oy (1) = VK
We have
(M (1, (1)) vm (1) — M (e (157)) oy (1), w)
- (M(U/)V/ — MUNVE, w)

+ ((M (e (1) — M(Uf)) Vi, w)—i—((M(Uk)—M (un, (rj))) vk, w).
(33)

Following the same ideas as in the previous proof, we use the Lipschitz continuity
of M on B to estimate the last two terms of (33). More precisely,

(M () =MWDY VI w) [ wllVI Ly |, (1) = U7 | LaglwI CFi,
and with similar computations
‘((M(Uk) — M (up, (tj))) vk, w)‘ < Ly|w|C3h;.

We rewrite the first term of (33) as

k
(M(Uf')v-f — MUMVF, w) = > MUHVT -V w)

n=j+1
k
+ > ((mw=H —mwn) vi=w),
n=j+1
and, observing that w € TK(U"‘H) forallm € {j + 1,...,k}, we infer from
Lemma 1 that
k k
> M@V =V w) £ > —h (MUMF", w)
n=j+1 n=j+1

§ (k — j)hi)\max,Bl Crlwl
§ (2e + hi))\max,Bl Crlwl.



It follows that

(M(Uf)vf — MUMVF, w) < Zk: ‘((M(U”’l) - M(U")) vt w)‘
n:(/;+ hi)Amax, B, Crlw|

and, using once again the Lipschitz property of M, we get
(M(Uf)vf — MUMV, w) < (¢ + hi)|w] (xmax,B1 Cr+ LMcg) .
Finally, we obtain
(M (un; (277)) vn; (07) = M (un; (1)) o, (1), w)
< 2Ly |w|Chi + e + h)|w] (Amax,5, Cr + LuCE)
for all h; € (0, h.] and for all € € (0, £,].

Now, passing to the limit as 4; tends to zero, then as ¢ tends to zero, we may
conclude. O

3.2. Transmission of the velocity at impacts

With the previous proposition, we observe that u(r + 0) = u(r — 0) for all
t € [0, t] such that J (u(z)) = @. That s, i is continuous at ¢ if u(¢) € Int(K) and,
in this case, the impact law (4) is satisfied. Thus it remains only to prove that

(i + 0) = Projy @) (Tx (u(@) . i@ —0)) (34)

forall 7 € (0, 7) such that J (u(7)) # 0.

In order to also obtain some information on 1 (0+0), we now consider f € [0, T)
such that J (u (f)) # (. For simplicity, we denote it = u(f) and ™ = i (f + 0),
1~ = 1(t —0). With Proposition 5 we already know that M (1) (i1~ —u™") € Nk (i1),
that is, there exist non-positive real numbers (it )qe @) Such that

MGy (i =it = D paea (i),
acl (i)
where we recall that

M~ 2@V fo ()
|M=12@)V fo ()]

eq(it) = Yo € J(i1).

Moreover, since u(t) € K forallt € [0, t], we have 1T € Tk (i) and (34) reduces
to

that is,

(ea(ﬁ), Ml/z(ﬁ)bff) —0 foralla € J(@) such that ug # 0.



From assumption (H3) we know that (V f,(it))qes@) is linearly indepen-
dent. It follows that (eq (#))qes(a) 1S also linearly independent and there exist
(ep)gefl,....aps @) such that {ey(i); a0 € J(u)} Ufeg; B € {1,...,d}\ J(w)}is
a basis of R and legl = 1forall B e {1,...,d}\ J(u).

Using Lemma 7 (see Appendix) we know that there exists r; € (0, rp,] such
that

J(g) c J() Yq € B(i,r;) (35)
and

M=)V fol@)] 2 mp, > 0 ¥q € Bl ra). Vot € J ().

Thus, forall« € {1,...,d} and forall ¢ € E(ﬁ, ri;) we define

M~Y2(q)V fu(q)
va(q) = |[M~12(@)V fu(q)]
ey ifo ¢ J(ir).

ifa e J(u),

From (35) we infer that vy (q) = ey (q) foralla € J(q),forallg € B(u, ri)NK.
Moreover, the continuity of M~1/2 and Vf, (1 £ a < v) implies that, possibly
decreasing rj, (vo(q))1<y,<g 1 a basis of R for all ¢ € B(ii, r). We define the
dual basis (we(g));<,<, for all ¢ € B(i, ry). From Lemma 7, we know that the
vectors (wq(q));<,<,4 are bounded independently of ¢ by a constant Cy ; and,
since the mappings M~'/2 and V f,, (1 £ a < v) are locally Lipschitz continuous,
the mappings vy and wy (I < o < d) are also Lipschitz continuous on B(u, ra);
we let L; € Rj be such that, forall « € {1, ...,d} and forall (¢, q") € B(i, ri)?

[va (@) — va(¢)| £ Lilg —4'l.  |wa(q@) — walg)| < Lilg — 4’|

Finally, from the continuity of « and the uniform convergence of (uy;);cN to u on
[0, ], we infer that there exist £ € (0, %’] and 13 € (0, min(h7, §, 3rc‘70)] such
that

u() € B (& %”) Vielf—&f+EN[0, 1],
e = s, Icogo,imey S 5 Yhi € (O.H3]
It follows that
U™ U™ € B(ii, rz) Vnhi €[t —& t+&]1N[0, 1], Vh; € (0, h3]. (36)
We begin with the following lemma.
Lemma 3. Let o € J(u) such that py # 0. Then, for all 1 € (0, €] there exists

he, € (0, min(h3, &1/3)] such that for all h; € (0, hg,], there exists nh; € [f — &1,
7 411N 1[0, t] such that f,(U"+") < 0.



Proof. Let us assume that the announced result does not hold, that is, assume that
there exists €1 € (0, ] such that, for all h,, € (0, min(h}, £1/3)] there exists
h; € (0, he,] such that f, (U"") > O forallnh; € [f — ey, +&1N[0, ].
Hence, we can extract from (h;);c a subsequence denoted (/1¢(;));en such that
heeiy € (0, min(h3, £1/3)], (hy@i))ien decreases to zero and
FuU"™™ >0 Vnhyg € lf—e1,1+e11N[0, 7] (37)

foralli € N.
For all ¢ € (0, £1], let us establish the following estimate:

‘(Ml/z (”hwu)(l;)) Uy (e ) — m'? (th)(t:)) Vhy ) (1), wa (ﬁ))‘
<0 (8 + h(p(i) + llu — Uhy i) ”CO([O,T]:R”’))

where 1, = max(f — ¢, 0) and t€+ = min(f + &, 7). Then, by passing to the limit
when i tends to +00, we will infer with (21) and (22) that

‘(MI/Z () v;) — M2 (ut)) v, wa(ﬁ))‘ = O(e)
and, when ¢ tends to zero, we will obtain
‘(Ml/z(ﬁ) (i(7 — 0) — (7 +0)) wa(ﬁ))‘ = || =0

which gives a contradiction.
Let ¢ € (0, &1]. There exists i, € N such that, for all i = i, we have hei) €

(0, £/2) and we define
e " J
n; = , pPi= .
l bw(i)J l {hw(i)

Then, n; +1 < p; andforalln € {n; +1,..., p;} we have nhy € (¢, , t;']. We
infer from Lemma 1 that, foralln € {n; + 1, ..., p;}

MU (V”’l — +h¢(l~)F”) e Ng (U™,
If J(U™t1) + @, there exist non-positive real numbers (u'%) n+1y such that
p B/ BeJ(U"T)

’BEJ(UH+1)

From (36), we obtain eg(U" 1) = vg(U"*!) for all g € J(U"T!) and

|MIZ}| = ‘(M(Un)(vnil -Vt 4+ /’lw(,')Fn), M*I/Z(UnJrl)wﬂ(UnJrl))‘

)»max,Bl

RV )‘«min,Bl

A
< M(ZCQ + h;CF)C*,IZ =3

- Vv )\min,Bl

CoCyvi VB € J(U™.



From now on, let us denote

Amax, B
Ch =322 CoChi

\ )hmin,Bl
With (37) we know that & J(U"*1), thus

|(M'2@U™ (VT =V 4 oy F7)  we (U™T)]

— z M);} (M'/Z(U”“)M"(U")MW(U"H)v,g(U”“),wa(U”“))
ﬂe](U”*l)

3

5EJ(UM+1)

M1/2(Un+l)H2 ||M—1(Un+l) _ M—I(Un)” |Uﬁ(U”+1)| |wa(U”+1)|

S VO Coithmar, By Ly U™ — U] £ vCyCoCh ihmax, 1 Lag—1 Py

foralln € {n; + 1, ..., pi}, if J(U™) #£ 0.

If J(U"*!) = @, this last inequality remains true since V"' ~! — V" +h, ;) F" =0
if J(U"Y = 0.

It follows that, foralln € {n; + 1, ..., p;}

(Ml/z(UniJrl)Vn,- _ M1/2(Upi+1)vpi’ wa(ﬁ))

Pi
= > (MY - MUY, w @)
n=n;+1

Di
— Z (Ml/z(Un+l)(Vn7] _ Vn 4 hgﬂ(i)Fn)» wa(U”H))
n=n;+1

+ Z ((M1/2(Un _M1/2(Un+l)) Vn—l’wa(ﬁ))
n=n;+1
Pi
z h(p(i) (MI/Z(UH+1)F}1, wa(Un+1))
n=n;+1

Di
+ > (M =V, i @) - wa (U)
n=n;+1

which yields

‘(Ml/z(UmH)Vni _ M1/2(UP1+1)V[71', wa(ﬁ))‘

Di

Z vCéCOC*,ﬁAmax,Bl LMflhfp(l‘)
n=n;+1



Pi Di
+ D CoCuiLyho V' I+ D ho@CaiCry/hmar.

n=n;+1 n=n;+1
Di
+ D Vs V= VI fwe @) — w0
n=n;+1

Then, observing that foralln € {n; + 1, ..., p;}
|IZ - Un+1| é ‘u(f) - th,(i) (t_)’ + ‘uhw(i) (f) - uhw(,') (nh(p(l))‘ + h(p(l)|vn|
< u- Uhy(i) ”cO([o,r];Rd) + Cole +hya)),

we can estimate |wg (i) — we (U")] as

L; (”u = Unyg “CO([O,r];]R"’) + Co(e + /’lw(,'))) .

Hence, with the estimate of the discrete accelerations obtained at Proposition 3,
we get

(M2 Y — MUY we @) |
< (pi — n)hyi)Cri (”Cécokmax,BlLM-l +CoLap + CFm)

Pi
v Amax. 5y L (“” = tthy oo, cymey T Cole + hw(D)) > Vv
n=n;+1

= O (& + hyy + |u = uny, yyCO(MRd)) . (38)

But V" = vy, . (17), VP = vy, (1;7) and

(44 (44

’(Ml/z (U 1)) Vi (1) = M7 (g (1)) Vhygyy (1), wer (ﬁ))
. (Ml/z(UnH_l)Vni _ Ml/Z(UPi+1)VPi , wa(ﬁ)) ‘
< (M2 (g 1) = M|
MY i, () = M PWP]) CoCa
< 2LM1/2C§C*,ﬁh¢(i)~ (39

Finally, from (38), (39) we obtain
)(Ml/z (u/’t<p(l‘) (tg_)) th(,') (tg_) - M1/2 (u/’l<p(l') (t:_)) Uh(p(,') (t:)3 We (ﬁ))‘
=0 (s + hoay + ||u — Uh, HCOUO’T];RJ))

foralli 2 i, and for all ¢ € (0, 1], which enables us to conclude. O



Let us now prove that
(ea(ﬁ), Ml/z(ﬁ)iﬁ) — 0 forall @ € J(@) such that jzq # 0.
Lemma 4. Let o € J (1) be such that iy # 0. Then
(ea(zi), Ml/z(zz)lﬁ) —0.
Proof. Let o € J(it) such that uy # 0. Since it € Tk (i1) we have (M2 (@)u™,
eq (i) = (M2 ()i, vg (i) = 0and itremains to prove that (M /% (1) i ™, vg (it))
< 0. The main idea of the proof is to obtain an estimate of (M2 + ¢))

v(f + €), vy (u(t + ¢))) and to pass to the limit when ¢ tends to zero.
More precisely, let ¢ € (0, €]. Then

v(f+e) = Jim vy, (f+e) = Jim VP
with p; = |52 forall i € N. Observing that
u(+e) = UM < [ul@+ &) — wn (T + )] + a7+ &) = wn, ((pi + Do)
= llu— up, ||c0([o,f];]Rd) + Coh;
the continuity of v, and M Y2 on B(a, ry) implies that
(Ml/2 (u(@+ &) v(i + &), vo (u(@ + 8)))
= Jim (M1/2(Upi+‘)vh,. i +e). ua(UPf“))
and we will prove that
(M 2PV D) £ 0 (4 hi + llu = unlcoo.crey) - 40)

Let us apply Lemma 3: for all i such that #; € (0, h] we define N; as the last
time step in [ — &, 7 + €] N [0, ] where the constraint f, is active, that is,

N; = max {n €N;nh; € [f—e,7+e]N[0, 7] and fo,(U") < 0} .
Since o € J(UN"“), we infer, as in Proposition 1, that
(UQ(UNi+1), M]/Z(UNi+1)VNi) — (ea(UNi+l), M]/Z(UN[+1)VNi)

Lh; LsC?
2f ’|VN,'|2§ f Ohio
mpg, 2mp,

A



Moreover, with the same computations as in Lemma 3, for all nh; € [t — e,
t+¢]N[0, r] such that n = 1 we have

MUYV =V 4 b FY) = Z wpM' AU gt @)
ﬁe](U"*')

with

)"max, B

RV )‘-min,Bl

Thus, for all h; € (0, h,] we get

-3 CoCui=—Cy Sy <0 VB e JWU". (42)

(M PPV )
= (M"Y o V)
+ (Ml/Z(UN,-+1)VN,-’ v (UPITh = va(UN"H))
+ i (M2 — MUY v wrth)
n=N;+1

2
- 2m31

pi
+ Z ((MI/Z(Un+l) _ MI/Z(Un)) yr=1 va(Upf+l))
n=N,-+1

Pi
+ z hi (MI/Z(U’1+1)F’1, Ua(UpiJrl))
n=N;+1

hi + (Ml/z(UNi+l)VNi, Ua(Upi+l) _ Ua(UNi+l))

Di
4 z (M1/2(Un+1)(vl’l _ anl _ hiFn), va(Upi+l)) .
n=N;+1

Using the Lipschitz property of M'/? on By and recalling that the mappings v,
(¢ € {1,...,v}) are L;-Lipschitz continuous on B (i, r;), we get

(MI/Z(UPH'I)VPi , UD,(UP"'H))

Pi
< > hiLy2Cl + Amax 5, CF) +

n=N;+1

pi
+26Amas, CoLa+ Y (MW HV" =V — b P, v (UPT)
n=N;+1

L¢C
ZmB

f
hi
1

(43)



There remains the task of estimating the last term. Using (41) and (42) we
rewrite it as follows

Pi
Z Z (_M%) (Ml/z(Un+l)M71(U")Ml/z(Un+l)vﬁ(Un+l),va(Upi+l))
n=N;i+1 geJ(Un+l)
Pi

> 2 glmMPwrh u ) - v wn)

n=N;+1 geJ(Untl)
Pi
+ D D Cup (Ut v UPh). (44)
n=N;+1 geJj(U"*")

By definition of N; we have o ¢ JWU™ Y foralln € {N;+1,..., pi}. Moreover,
from assumption (H6) we have

(vp(@), vo (@) = (ep (@), ea(@) <0 VB € J(@) \ {}

and (35) and (36) imply that J(U"‘H) C J() forallnh; € [t —e,t +€]N[O, 7].
It follows that

pi
> X Cup (Wt vwrth)

n=N;+1 ﬁeJ(U"“)

> Y cwp ((vp@™ D 0P = (0@, va (@)

n=N;+1 geJ(U"*)

Z > Iwpila (0 g+ urt ).

n=N;+1 geJ(U"*)

[IA

[IA

Hence,

Pi
> 2 Cup (MP@ThmMT WM U o, v UPH)
n=N;+1 geJ(U"t!)

Pi
Z Z Cé)‘max,B] LM—I C()/’ll'

n=N;+1 ﬂGJ(U”+1)

+i > 2

n=N;+1 ﬁeJ(U"*l)

n

Mﬂ Lﬁ (”M — Up; ”CO([O,T];Rd) + CO(S + hl)) .

But

n

Hg| = ‘(M*l/Z(UnJrl)M(Un)(anl _yn +/’liF"), wﬂ(U”Jr]))‘

A
< SBL (jynmt o v i Cr) Cu

= Vmin By



forall g € J(U”“), foralln € {N; + 1, ..., pi}. Hence, with the estimate of the
discrete accelerations obtained at Proposition 3

pi
Z z (—M%) (MI/Z(Un+1)M71(Un)Ml/Z(Un+l)vﬂ(Un+l)’ va(Up,-H))

n=N;+1 geJ(U"+!)
Amax, B
max, b C*ﬁ,; (C(/) + ZECF) LQ (”M — Up; ”CO([O,‘[];]Rd) + C()(8 + I’ll)>

< gy fmaxBi
vV )\min,Bl
(45)

+26vChAmax. B, L -1 Co.
Finally, combining (43), (44) and (45), we obtain

(Ml/Z(U[?i-‘rl)Vpi , va(U[’i'i‘l))

L:C?
é f 0h,-+28C§ Amax, By Lii
2mp,

+26(Lp12C3 + /Amax.8, CF + vChrmax.8, L -1 Co)
Cuit (C) +26CF) Ly (Ilu — unllcogo,e1:mey + Cole + hi))

max, By

A
+2v——
RV )\min,Bl

for all h; € (0, h.], for all ¢ € (0, €], which proves (40). Passing to the limit as &;
tends to zero, then when ¢ tends to zero, we may conclude the proof. O

3.3. Study of the initial conditions

We can now prove quite easily that property (P4) is satisfied.
Lemma 5. The initial conditions (ug, vo) are satisfied in the following sense:
u(0) = ug, u(0+0)=uvy.
Proof. Since the sequence (uy,);eN converges uniformly to u on [0, T], we have
u(0) = hliiino up,; (0).
But up, (0) = U° = ug for all h; € (0, h*], and thus u(0) = ug. From the results

of the previous subsection we already know that

(0 + 0) = Proj 47,0 (T (4(0)) , ix(0 = 0))
where 11(0 — 0) = 12(0) = v(0) (see (24)). It follows that
(0 + 0) = Proj () (Tk (u0), v(0)) . (46)

Since the sequence (v, );eN converges pointwise to v on [0, 7] we have

= li (0).
v(0) h,-linovh’(o)



Let us prove now that limp, .o vp, (0) = vo. For all h; € (0, h*] we have

vy, (0) = V0 = ¥
and the definition of U! implies that
hi [Jvo + 2(hi) = v 0|y ) = N0 + hivo + hiz(hi) = Zllpwg) YZ € K,
which yields
1% = 0 )| y10) S 212020 Dy + 100 = Vllascaey

for all v € R? such that ug + hjv € K.
Ifug € Int(K ), we infer that there exists r,, > 0 such that ug + h;vg € K for
all h; € (0, ToolFT ] and thus

. T,
lvo = vn O] 30y = 212D sy Vhi € (0, min (lv()'”ﬂr o h*)] .

Since limj, o z(h) = 0, we get limy,, . vp, (0) = v(0) = vo.
Let us assume now that ug € dK. Since vg € Tk (1) and 7~‘K (up) is dense in
Tk (uo), we may consider a sequence (v)) ,eN+ converging to vg and such that

vy € Tx(uo) = {w e RY: (V £y (up), w) > 0 Vo € J(uo)} Vp e N*.

It follows that (|v,]) pen+ remains bounded, and we consider M € R such that

M 2 |v,| forall p € N*. Using the continuity of the mappings fu, € {1,..., v},
there exists r,, > 0 such that
fula) = T2 o g swo), g € Bl ri).

Let p € N*. From the definition of r,,, we infer that
fultto+1v,) 20 Va & J(ug), Vi e ( %0)
Moreover, if @ € J(ug)
Sa(uo +tvy)

1
= fo(uo) +1 (Vfa(uO)s Up) +t/0 (Vfoz(uO +stvp) =V fo(uo), Up) ds

Ift € (0,1/M], we get |tvp| < 1 and thus uo+stv, € By foralls € [0, 1], which
yields

L 2
Ja(uo +1vp) >t (Vfa(uo), vp) — t2% Va € J(ugp).



It follows that there exists 7, € (0, min(1, r,y)/M)] such that f(ug + tv,) = 0
forallae € {1,...,v}and forall r € (0, 7,]. Thus

|| Vo — Up; (O) HM(MQ) é 2 ”Z(hi)”M(u()) + [lvo — vp”M(Llo)

Vhi € (0, min(h*,1,)], V¥peN*
Then, passing to the limit when /; tends to zero, we get
lvo = v(O) I pr(ug) = llvo — vpllmuy Yp € N*

and recalling that the sequence (vp) e+ converges to vg, we obtain vy = v(0).
Finally, using (46) and recalling that vy € Tk (up), we get

(0 +0) = Projy ) (Tk (u0), vo) = vo.

With the previous results, we can state the following theorem:

Theorem 2. Let us assume that there exist Co > 0, 79 > 0, hj € (0, h*] and a
subsequence of the approximate positions defined by (5)—(7) such that

Un+] —_yn

7 < Co Vnh; € [0, min(to, T)], Vh; € (0, hjl
i

v =|

with (h;);eN decreasing to zero. Let uy, and vy be defined by (19) and (20). Then,
there exist a subsequence still denoted (h;);eN and (u, v) € CO([O, min(tg, T)];
R?) x BV (0, min(tg, T); RY) such that

up, — u strongly in o ([0, min(tg, T)]; Rd),

vy, — v pointwise in [0, min(zg, T)],

with
t
u(t) = ug +/ v(s)ds forallt € [0, min(zg, T)],
0

and u is a solution of problem (P) on [0, min(tg, T)].

By combining Theorem 2 with the a priori estimate of the discrete velocities
obtained in Theorem 1, we immediately obtain a local convergence result for the
numerical scheme, and thus a local existence result for problem (P).



4. Energy estimates and global results

In order to establish global convergence results, we now state an energy estimate
for the solutions of problem (P).

Proposition 6. Let C > |[vollp(ug)- Then there exists T(C) > 0 such that, for any
solution u of problem (P) defined on [0, t] (with T € (0, T']), we have

lu(t) —uol = C Vt € [0, min(z(C), 7)],
||L't(t)||M<u(,)) < C dt almost everywhere on [0, min(z(C), 7)].

Proof. Let us define the kinetic energy E by
1
E = 3 @, M(u)u) .

Since u € BV (0, t; Rd) and u is absolutely continuous from [0, 7] to R E
belongs to BV (0, t; R?). Moreover (see [8])

ut 40~

dE = (du, M(u)( 5

)) + % (, (dM (u)it) i) dt.

Let [z1, 2] C [0, 7). Then

ut + 0~
E(tp+0)— E(t; +0) =/ (dlft,M(u) (—))
(11,12] 2

1 [~
+3 / @), (@M () i(0)) (1)) dr.
1

Let us define D = {r € (t1,2]; u(t + 0) # u(t — 0)}. The set D is at most
denumerable and

L
/ (du,M(u)(” Rl )) =/ (dii, M(uyir?)
@10 2 (t1,51\D

1 . 2 . 5
+ Z 2 (H”(t + O)“M(u(t))_ H u(t — O)HM(H([))) .
teD

But, with property (P2), we have also
M (u(t)) v, (1) — g (¢, u(t), (1)) 1, (t) € =Nk (u(1))
du almost everywhere on [0, 7]

where dpu = |du| + dt and v;L and tl’L are, respectively, the densities of du and dt
with respect to . Thus

/(\ WD (dl/l, M(M)M+) = / (g([’ u, 1), I/t+) tl/,Ld/'L
1,02

(t1,\D

+/ (M(u)vla — gt u, )], u)dp.
(t1,21\D



Since u(t +0) = u(t — 0) € (Tx (u(r))) N (—=Tg (u(r))) forallt € (71, ]\ D, the
last term vanishes and we get

1 [
Enh+0)—-En +0) = 5/ @(t), @M (u(t)) u(r)) u(r)) de
1
[ (e, fdu
(t1,.1\D

1 . 2 . 2
+ 5 (1 + 0y = it = Olry) -
teD

But, with property (P3), we know that
2E(t +0) = [la(t + O)IIﬁ,,(u(,)) < la@ — 0)||ﬁ,1(u(t)) =2Et—0) Vre(,r1)

and finally
15
E(t+0)— E(t1 +0) = /2 (8 (t,u(t), u(r)), u(r)) de
1

e
s / (). (@M () i(t)) (1)) dr.
t

1

In particular, for all # € [0, 7)
t
Et+0)< EO0+0) +/ (g (s, u(s), u(s)), u(s)) ds
0
l t
+§/0 (@@ (s), (dM (u(s)) u(s)) u(s)) ds.

Observing that C2 > 2E (040), the continuity of x on [0, 7] and the right continuity
of E(- + 0) on [0, ) imply that there exists T € (0, t) such that

2
lu(t) —u(0)| £ C, E(t+0)§% vt € [0, T]. (47)

We define
Tnax = sup {t € (0, 7) such that (47) holds} .

Since u is continuous on [0, 7], we have

lu() —u(0)] £ C Vt € [0, Tmaxl, (48)
and
Lie 2_c?
EG+0) =3 ‘M 2wty it +0)‘ AL (49)

It follows that

2
||L't(t)||%,,(u(t)) = ‘Ml/z (u(t)) li(t)‘ < C? dr almost everywhere on [0, Tmax].



If Tmax = T there is nothing to prove. Otherwise, we define

a = sup{|(g(t.q. M~ (@w) . M~ (q)w)|: 1 €[0.T].q € B(up. C), w € B, C)},
B = sup % [M~2(q) (dM (@M~ (g)w) M~ (@)| . q € B(uo. C), w € B(0, C>]
y =sup{|M~"*(@)|.q € Bluo, )}

With (48) and (49) we obtain that for all £ € [0, Ty ]
E(t+0)— EO+0) < /0 (a + 5| M (u(s))a(s)\z) ds < (o +BC?)1
and
(t) — uol g/ot (5) dsg/oty}M”2 (s i) ds < ycr.

Then, the continuity of # on [0, t] and the right continuity of E(- 4+ 0) on [0, 7)
imply that t,x = min(z, T(C)) where 7(C) is defined by

(1 C*—2E0+0) .
(€)= Tm(;’z(w—ﬂc’z)) ifo #0or B #0,

— ifa =0and g = 0.
v

Now we can prove that

Theorem 3. Let C > ||vollp(ug) and ©(C) > 0 such that, for any solution u of
problem (P) defined on [0, t] (with T € (0, T]), we have

lu(t) —uol = C ¥t € [0, min(z(C), 7)],
NN aruey) < C dt almost everywhere on [0, min(z(C), 7)].
Let uy, and vy, be the approximate positions and velocities defined by (19) and
(20). Then, there exists a subsequence (up,, Vp,;)ieN, T € [min(t(C), T), T'] and
(u,v) € CO([0, 7]; RY) x BV (0, t; RY) such that

up, — u strongly in C° ([0, ]; RY),

vy, — v pointwise in [0, 7],

with
t
u(t) = ug +/ v(s)ds Vr e [0, 1]
0

and u is a solution of problem (P) on [0, t].



Proof. Let C > [|vo|lpug)- We define B = B(ug, C + 1) and Bo, Amins Amax by
(9) and (10), respectively. Let us choose C¢ such that

)\' max

Co >

Co

Amin

with

min

A
Cch = max(2 Kmax (lvol + 1), c’)

C/=(C—|—1)sup[

M=) 1 q € Bluo, € + 1}

and let Cr be defined by (11).
Then, from Theorem 1, we know that there exists h(’; € (0,h*] and 79 > O,
depending only on B, Cy, C(’)" and the data, such that

Un+1 _yn

h < Co Vnh € [0, min(tg, T)], Vh € (0, hgl.

IV"|=‘

(50)

Mpreqver, from Proposition 2, we know also that, for all #y, € [0, T) and for all
(U° U"Y e (BN K) x K such that

‘0‘ - 00‘ < hCE Yh e (0, kil
the approximate positions defined by

A 1 . 7
U™ e Argming g [|W" — Zllpsomy

A ~ ~ R N . Un . 0n—l
W =20" —U" '+ h2F", F" = F(roh +nh, U", — h)

foralln € {1,..., L%J} and for all & € (0, hg], satisty

0n+1 _ 0}1

p < Cy Vnh € [0, min(to, T — ton)]. Vh € (0, hg].

Let t(h) = m(h)h be the maximal discrete time step such that estimate (50)
holds, that is, for all & € (0, hg]

m(h):max{ne{O,...,LT/hJ};|Vk|§Co Vke{O,...,n}}.

We define t; = liminf,_o7t(h) = liminf,_.om(h)h. Theorem 1 implies that
71 2 7/ = min(zg, T). Let us now distinguish two subcases.



Casel:1(C) <T.

Let us prove that t; > t(C) = min(z(C), T). Indeed, assume that 7| < 7(C)
and let & € (0, t//8). Then, there exists a subsequence (/;);cn, decreasing to zero,
such that (7 (h;));cN converges to 1) and there exists 4% € (0, min(kg, //8)] such
that m(h;)h; 2 1 — ¢ for all h; € (0, h¥]. We may apply theorem 2 with hj := h
and 19 := 11 — &; we infer that there exists a subsequence, still denoted (%;);¢cN,
such that (uy, , vy, );en converges to a solution of problem (P) on [0, 7| — €]. Thus,
with Proposition 6 we get

lu(t) —uol = C Vt €0, 7 —el,
NN pr iy < C dr almost everywhere on [0, T — €].

Now we prove that:
Lemma 6. We have
lim sup sup {” %4 ”M(U") , 0 nh; <11 — 8}
hi—>0+
< ess sup {1l puey . 01 <11 — e}
Proof. Let us prove this result by contradiction. Assume that

lim sup sup {” %4 ”M(U")’ 0<nh, <1 — 8} > S
hi—0t

i~

with § = ess sup {||L't(t)||M(u(,)) ,05 <1 — 8}. Then, there exist y > 0, fzj €
(0, k%] and a subsequence (/14(;));eN decreasing to zero such that

sup{” yn ”M(U”) , 0= nhypy =11 — 8} 2 8S4+y Vhyi € (0, fz:].
It follows that there exists ny () € {0, ..., | (ti — &)/ hy) |} such that
” Ve ”M(U”w(i)) >S4y Vhyu € 0,77

Possibly extracting another subsequence, still denoted (%4 (;));eN, We may assume
without loss of generality that the sequence (ny)hy(i))ieN converges to a limit
T e€[0, 71 — ¢l

First, we observe that T > 0. Indeed, with the same computations as in Propo-
sition 2 (see (13)), we obtain that, for all #; € (0, h}] and for all nh; € [0, 71 — €]

IV I < IV ggn-1y + C2hi < 1V w0y + Canhi 1)
with
3L ¢ Amax B
=/ max31CF+LM1/2C()+ J Zmax By C*,BIC(%,

2m31 min, By

B = B(ug, CoT + 1) and Ayax, B, > Amin,, given by (15).



Thus, for all hyg) € (0, h¥]
S+y SNVl oy = [Vh,6 O 40, T Congir heiy
and at the limit when i tends to 400, we get
S+y = vl puy) + C2T = llvollmwe) + Ca7.

On the other hand, the right continuity of ||t (- 4-0) || p () implies that, for all p > 0,
there exists 7, € (0, Ty — ] such that, forall 7 € [0, 7, ]

[t + Ol sy = 120 + Ol | < -
It follows that
120+ 0)l a1 ug) — 2 = lvollmr o) — P = 1Ol pueryy almost everywhere on [0, 7p],
and thus
lvollMwy —p =S VYp > 0.

Hence [|voll gy < S and T > 0.
Then, once again using the estimate (51), we obtain

S+y || Vie® ||M(U”<ﬂ(z‘)) < ||Vn<p(i)7p”M(U”<p(i)7p) + Caphy)
forall p € {0, ..., 1y}, for all hyiy € (0, h¥]. It follows that
Y
S+2 = IV sy

for all k/’l(p(,') € [max(O, n(p([)h¢(i) — %),nw(;)hw(,’)]. Moreover, for all ¢+ €
[khygiy, (kK + Dhyiy),

§ Ly

k
‘||Uh¢(,-) Ollpwry = nys Olma, g @) U™ — up, (I)‘ Co
< LMl/zC§h¢(i).

Since (ng(i)hei))ieN converges to T > 0, we infer that there exists an interval
I C [0, 71 — €] with a non-empty interior, such that

)4
I C |max |0, (nyi) + Dhpi)y — =5 ) noi) Roi)
2C,
and
14
S+ y = lvngg Ollma, @y Yt el

for all hy(;y small enough.
Then, passing to the limit as i tends to +00, we obtain

Y
S+ 1 S v lmway Vel
But v(t) = u(t) almost everywhere on 7, and

S = ess sup { ey t € 1}

which yields a contradiction. 0O



With the previous lemma, possibly decreasing h} we get
U" € Blup, C+ 1), |V'ywn < C+1 Vnh; €[0,7 —el, Vh; € 0, hF].
It follows that

V' < €+ Dsup {| M)

g eE(uo,c+1)}=c/§cg<C0.

We choose now [(h;) € {0, ..., | T/h]} such that

/ /

T T
[(hi)h; € |:‘L'1 -7 T — Zi| Vhi € (0, h}]

and let

A

0° =y, gt = g IF g = 1)y
We have

01— 00 = by [VI9| < i

and U°, U belong to BN K for all h; € (0, hZ].
Then, for all n € {I(h;), ..., thij}, U" = g1 and with Proposition 2, we

obtain

0n—l(hi)+1 _ 0n—l(h,-)

V| =
VA I

for all (n — I(h;))h; € [0, min(g, T — I(h;)h;)], for all h; € (0, hf].
Hence

m(hi)h; > l(hj)h; +min (tg, T — [(h;)h;) — h; = min ({(h;)h; + 10, T) — h;
’

for all h; € (0, h]. Butl(hj)h; = 11 — % and v/ = min(to, T) = 10, SO

/

> mi r *
m(h;)h; = min (| 71 + E, T)—h; Yh; € (0, hg]

and, at the limit, we get

. . 7/
= hlianOm(hi)hi 2 min (n +o T)

which is absurd. y
Thus 7y = limy, .o m(h;)h; > T(C) and there exists i € (0, Aj] such that

71 —1(C) _at 7(C)

m(hj)h; = t(hj) = 11 — 2 2

> 7(C) Vh; € (0, k).

Then we apply Theorem 2 with 7y replaced by T = %1(0) and h§ by hi, which
yields the announced result.



Case2: t(C) = T.
Since m(h)h = t(h) < T, we have 11 < T. We consider once again ¢ €

(0, 7'/8), and we define as_previously h} and I(h;) for all h; € (0, h}]. Then, we
have again
/
m(hj)h; > [(hj)h; +min (v, T — I(h;)h;) — h; = min (‘L’l + %, T) — h;
(52)

forallh; € (0, h}]. Thus,if 11 < T, min(t; ~|—’7/, T) € (11, T]and (52) yields a con-
tradiction with the definition of v1 = limp, o m(h;)h;. We infer that 1y = T and
(52) implies that m(h;)h; > T — h;, thatis, m(h;) = |T/h;] for all h; € (0, h¥].
Hence, we may apply Theorem 2 to obtain the convergence of a subsequence of
(un;, vu,)ien, still denoted (uy;, vy, )ieN, to a solution of problem (P) on [0, T'].

O

Appendix

Lemma 7. For all compact subset B of R?, there exist mp > 0 and rg > 0 such
that for all ¢ € K N B and for all @ € J(q) we have

(M~12@)V fulq)| 2 mB Vq' € B(q.rB).

Furthermore, for all ¢ € K N B, the family (eq(q))acJ(q) is linearly independent
and can be completed as a basis (vj(q))<;<q- Let us denote by (w;(¢))<;<q
the dual basis. Then there exists Cy g > 0 such that -

vi@|=1 |wj@|<Cip Yje{l.....d}, YgeKnB.
Proof. Let BB be a given compact subset of R¢. Forall « € {1, ..., v} we define
By =BN{q € R’ fulg) S0)NK.

Then B, is also a compact subset of R? and, for all ¢ € By, we have f,(g) = 0.
Hence, with (H2)

Vi) #0 Yge By, Yaell,... v

It follows that there exists my > 0 such that

ma = inf |M72@)V fulq)]

q€By
By continuity of the mappings M ~'/? and V f,,, we infer that
mey

Vg e By 3p,>0/ |MTAQOV @) 25 Ve € Bla.n,).

Since By is compact and B, C |J qeBe B(q, %"), there exists a finite set of points
Pq:
{q1....,qp} € B such that B, = UY_, B(gi, 55).



By defining p, = min % we obtain that
1Si<p

_ m -
Vg € By, |M7V2(q)V folg)] 2 7“ Vq' € B(q. pa) -

Finally, with
. Mgy .
mp= min —, rg= min P,
B 1<a<v 2 B 1Za<v Pa
we get the first part of the announced result.
As a consequence, for all ¢ € K N B, we can define

M=Y2(q")V fu(q)
|M_1/2(6]/)Vfa(61/)|

Let ¢ € K N B be given. From assumption (H3) we infer that (ex(q))aci(q) IS
linearly independent, and there exists a family of vectors (eg) ge(1,....a)\J(g) Such
that |eg| = 1 forall B € {1,...,d}\ J(gq) and {ex(q); o € J(g)} U {eg; B €
{1,...,d}\ J(q)} is a basis of RY.

Let us now define the mappings vg, 8 € {1, ...,d}\ J(q), by

v (q) = Vq' € B(q,rB), VYa e J(q).

vg(q) =ep Vq' € B(q.rB).

The mappings v;, j € {I,...,d}, are continuous on E(q, rg) and there exists
rq € (0, rg] such that (Uj(q/))léjéd is a basis of R? for all ¢’ € B(q, rq). More-
over, using the continuity of the mappings f,,« € {1, ..., v}, and possibly decreas-
ing r,, we also have

J(q') C J(q) Vq' € B(q.ry).
It follows that
va(q) = eq(q") Yo €J(q"), VYq' € B(q.ry) NK.

Let us denote by (w; (q’))1§j§d the dual basis of (v; (q/))l§j§d for all ¢’ €
E(q, r4). Then, the mappings w;, j € {1,...,d}, are continuous on E(q, rg)-
Indeed, let (5./')1§j§d be the canonical basis of R and define (aij(q")) 1<i,j<d
and (b;; (q’))]éiyjéd as the coordinates of v;(¢’) and w;(g’), 1 < i < d, in the
canonical basis (5j)1§j <da- That is,

d d
vilg) =D aij(@)s;, wilg) =D bij(ghs; Vie(l, ... d}.
j=1 j=1
We denote by A(g") = (Aij(¢) = aij(g")<; j<q and B(q') = (Bij(q") =
bji(q'))1<;, j<q- Then, by the definition of dual bases, we have

d . .

I ifi =

v.y. 1,.-.,d2 [ /, i ¢ = . /b‘ /: ’
@ j) e P (i@, wi(gh) k§:la,k<q) k(@) [0 .



and thus A(q’)B(q’) = Idga. We infer that B(¢') = A~'(q’). But, the mapping

I GL(R?) — GL®RY)
"o~ 0!

is continuous, and the mapping ¢’ — A(g’) is continuous on B(q, r4) with values
in GL(RY). It follows that ¢’ — B(q’) is also continuous on B(q, rq) and we
infer that the mappings w;, j € {1, ..., d}, (which are the columns of B) are also
continuous on B(q, rg)-

It follows that we can define

; q' € B(g,ry)}-

Now, using the compactness of K N B, we infer that there exists a finite set of points
(qk)1<p<g such that gy € K N Bforallk € {1, ..., £} and

Cy,q = max {|wj q"

14

KNBcC UB(qk,qu).
k=1

Then, the conclusion follows with C, g = max; <4<y Cs,q,- O
Lemma 8. Let us recall the definition of Tk (q):
Ti(@) = {w e RY: (Vfulg),w) 20 Yo € J(@)] Vg eR!
with
J(q) ={ae{l,....v} fulg) £0}.

Then_for all qo € K, there exist § > 0, r > O and a € RY such that, for all
q € B(qo, 28):

E(a, r) C Tk (q). (53)

Proof. Let gg be in K.
Since the functions ( fy)g=1,...,» are continuous, we infer that there exists §; > 0
such that, for all @ & J(qo), we have

fa(q) >0 if g —qol < &1.

It follows that J(q) C J(go) for all ¢ € B(qo, 81).

Consequently, if J(qo) = @, we have J(q) = @ forall g € E(qo, 81) and (53)
is satisfied for 6 = 61/2 and for all a € RY and r > 0.

Letus assume now that J(qo) 7# @.Foralla € J(qo) we define ¢, : RIxR4 —
R by

$a(q.y) = (Vful@),y) V(g.y) eR! xR?
and ¢ : R? x RY — R by

¢(g,y) = min ¢u(q,y) V(g,y) € R x R%.
)



Since f, € C'(R?) forall @ € {1,..., v}, we obtain that the mappings are con-
tinuous. Moreover, since (V fu(q0))aeJ(go) 1 linearly independent, we can define
a basis (§;)<; <4 of R4 such that

€ =V fulqo) Vo € J(qo).

Let us denote by (i) <;<4 the dual basis of (§;);<;<, and let

a= Z Cu-

aeJ(qo)

Then, for all @« € J(qo), we have

Pa(qo.a) = (Vfalqo).a) = [&a. D tp]| =1

BeJ(q0)

and ¢ (qo, a) = 1. By continuity, it follows that there exist r > 0 and §, > 0 such
that

#(q,y) >0 ¥(q.y) € B(qo, 82) x B(a,r).

Let§ = 3 min(8;, 82). For all ¢ € B(qo, 28) we have
J(q) CJ(qo), ¢(g,y)= min (Vfy(q),y)>0 Vye B(a,r)
aeJ(qo)
which implies that

Bla.r) € Tx(@) = {v € R (Vful@), 1) 20 Va e J(@)]

and (53) is satisfied. 0O
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