L Paoli 
  
Time-Stepping Approximation of Rigid-Body Dynamics with Perfect Unilateral Constraints. I: The

Keywords: 

des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

We consider a discrete mechanical system subjected to perfect unilateral constraints. More precisely, let us denote by u ∈ R d the generalized coordinates of a typical configuration of the system. We assume that the set K of admissible configurations is described by ν 1 geometrical inequalities f α (u) 0, α ∈ {1, . . . , ν} where f α is a smooth function (at least C 1 ) such that ∇ f α (u) does not vanish in a neighbourhood of {u ∈ R d ; f α (u) = 0}.

At each u ∈ R d we define the set of active constraints J (u) by J (u) = α ∈ {1, . . . , ν}; f α (u) 0 .

In order to avoid some geometrical inconsistencies we assume, moreover, that the active constraints along ∂ K are linearly independent, that is, (∇ f α (u)) α∈J (u) are linearly independent for all u ∈ K .

Then the dynamics is described by the following measure differential inclusion (see [START_REF] Schatzman | A class of nonlinear differential equations of second order in time[END_REF] or [START_REF] Moreau | Liaisons unilatérales sans frottement et chocs inélastiques[END_REF] for instance) M(u) üg(t, u, u) ∈ -N K (u) [START_REF] Ballard | The dynamics of discrete mechanical systems with perfect unilateral constraints[END_REF] where M(u) is the mass matrix of the system and N K (u) is the normal cone to K at u given by

N K (u) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ {0} if u ∈ Int(K ), α∈J (u) λ α ∇ f α (u), λ α 0 ∀α ∈ J (u) if u ∈ ∂ K , ∅ if u ∈ K .
We also define the tangent cone to K at u

T K (u) = w ∈ R d ; (∇ f α (u), w) 0 ∀α ∈ J (u)
where (v, w) denotes the Euclidean scalar product of vectors v and w in R d . Since u(s) ∈ K for all s, we infer that

u(t + 0) ∈ T K (u(t)) , u(t -0) ∈ -T K (u(t)) (t > 0)
whenever u(t ± 0) exists. It follows that the velocities are discontinuous at impacts if u(t -0) ∈ T K (u(t)) and ( 1) implies that

M (u(t)) ( u(t + 0) -u(t -0)) ∈ -N K (u(t)) .
This relation does not uniquely determine u(t + 0), so we should add an impact law. Following Moreau ([6] and [START_REF] Moreau | Standard inelastic shocks and the dynamics of unilateral constraints. Unilateral problems in structural analysis[END_REF], see also [START_REF] Paoli | Penalty approximation for non smooth constraints in vibroimpact[END_REF] or [START_REF] Paoli | Penalty approximation for dynamical systems submitted to multiple non-smooth constraints[END_REF]) we assume that u(t + 0) = Proj M(u(t)) (T K (u(t)) , u(t -0)) [START_REF] Jeffery | Non-absolutely convergent integrals with respect to functions of bounded variations[END_REF] where Proj M(u) denotes the projection relative to the Riemannian metric defined by the inertia operator M(u). More precisely, for admissible initial data (u 0 , v 0 ) ∈ K × T K (u 0 ), we consider the following problem: Problem (P) Find u : [0, τ ] → R d (τ > 0) such that: (P1) u is an absolutely continuous function from [0, τ ] to K and u ∈ BV (0, τ ; R d ), (P2) the differential inclusion

M(u) ü -g(t, u, u) ∈ -N K (u)
is satisfied in the following sense: there exists a (non-unique) non-negative measure μ such that the Stieltjes measure d u = ü and the usual Lebesgue measure dt admit densities with respect to dμ, that is, there exist two dμintegrable functions v μ and t μ such that ü = d u = v μ dμ, dt = t μ dμ, and such that M (u(t)) v μ (t)g (t, u(t), u(t)) t μ (t) ∈ -N K (u(t)) dμ almost everywhere,

(P3) for all t ∈ (0, τ )

u(t + 0) = Proj M(u(t)) (T K (u(t)) , u(t -0)) (4) 
(P4) u(0) = u 0 , u(0 + 0) = v 0 .

Observe that the right-hand side of (3) is a cone, so that the differential inclusion remains true for any non-negative measure μ with respect to which d u and dt admit densities (see [START_REF] Moreau | Standard inelastic shocks and the dynamics of unilateral constraints. Unilateral problems in structural analysis[END_REF]).

For this model of impact, a very complete theoretical study has been performed by Ballard in [START_REF] Ballard | The dynamics of discrete mechanical systems with perfect unilateral constraints[END_REF]: using existence results for both ordinary differential equations and variational inequalities, he proved the existence and uniqueness of a maximal solution for the initial value problem when the data are analytical. Some counterexamples show that uniqueness may be lost for less regular data (see [START_REF] Moreau | Standard inelastic shocks and the dynamics of unilateral constraints. Unilateral problems in structural analysis[END_REF] or [START_REF] Ballard | The dynamics of discrete mechanical systems with perfect unilateral constraints[END_REF] for instance) but existence results have still been established in the single constraint case (that is, ν = 1): see [START_REF] Monteiro-Marques | Chocs inélastiques standards: un résultat d'existence[END_REF][START_REF] Monteiro-Marques | Differential Inclusions in Non-Smooth Mechanical Problems: Shocks and Dry Friction[END_REF] and [START_REF] Paoli | Analyse numérique de vibrations avec contraintes unilatérales[END_REF][START_REF] Paoli | Schéma numérique pour un modèle de vibrations avec contraintes unilatérales et perte d'énergie aux impacts, en dimension finie[END_REF] for a trivial mass matrix (that is, M(u) ≡ Id R d ), and [START_REF] Schatzman | Penalty method for impact in generalized coordinates[END_REF] and [START_REF] Paoli | Approximation et existence en vibro-impact[END_REF][START_REF] Paoli | A numerical scheme for impact problems I and II[END_REF] for a non-trivial mass matrix. All these results rely on the study of a sequence of approximate solutions constructed either by a penalty method [START_REF] Schatzman | Penalty method for impact in generalized coordinates[END_REF] or by a time-stepping scheme [START_REF] Monteiro-Marques | Chocs inélastiques standards: un résultat d'existence[END_REF][START_REF] Monteiro-Marques | Differential Inclusions in Non-Smooth Mechanical Problems: Shocks and Dry Friction[END_REF][START_REF] Paoli | Analyse numérique de vibrations avec contraintes unilatérales[END_REF][START_REF] Paoli | Schéma numérique pour un modèle de vibrations avec contraintes unilatérales et perte d'énergie aux impacts, en dimension finie[END_REF][START_REF] Paoli | Approximation et existence en vibro-impact[END_REF][START_REF] Paoli | A numerical scheme for impact problems I and II[END_REF].

For the multi-constraint case, these techniques encounter a new difficulty: in general, the motion is not continuous with respect to the data. Nevertheless, some sufficient conditions ensuring continuity on data have been established in [START_REF] Ballard | The dynamics of discrete mechanical systems with perfect unilateral constraints[END_REF] and [START_REF] Paoli | Continuous dependence on data for problems[END_REF]. In this framework, the convergence of the time-stepping scheme proposed in [START_REF] Paoli | Analyse numérique de vibrations avec contraintes unilatérales[END_REF] has been extended to the multi-constraint case with inelastic shocks when the mass matrix is trivial and the set K is convex [START_REF] Paoli | An existence result for non-smooth vibro-impact problems[END_REF]. The aim of this paper is to relax these restricting conditions for the mass matrix and the set K , and to prove an analogous convergence result in a more general setting.

More precisely we assume the same kind of regularity for the data as in [START_REF] Paoli | Continuous dependence on data for problems[END_REF], that is, (H1) g is a continuous function from [0, T ] × R d × R d (T > 0) to R d ; (H2) for all α ∈ {1, . . . , ν}, the function f α belongs to C 1 (R d ), ∇ f α is locally Lipschitz continuous and does not vanish in a neighbourhood of u ∈ R d ; f α (u) = 0 ; (H3) the set K is defined by

K = u ∈ R d ; f α (u) 0, α ∈ {1, . . . , ν}
and the active constraints along ∂ K are functionally independent, that is, the vectors (∇ f α (u)) J (u) are linearly independent for all u ∈ K ; (H4) M is a mapping of class C 1 from R d to the set of symmetric positive definite d × d matrices.

With this last assumption, we may define M -1 (u), M 1/2 (u) and M -1/2 (u) for all u ∈ R d ; the corresponding mappings are of class C 1 from R d to the set of symmetric positive definite d × d matrices.

Let F be a function such that (H5) F is continuous from [0, T ] × R d × R d × [0, h * ] (h * > 0) to R d and is consistent with respect to g, that is,

F(t, u, v, 0) = M -1 (u)g(t, u, v) ∀(t, u, v) ∈ [0, T ] × R d × R d .
For admissible initial data (u 0 , v 0 ) ∈ K × T K (u 0 ), we consider the initial-value problem (P) and we define a time-stepping scheme as follows:

• the initial positions U 0 and U 1 are given by U 0 = u 0 , U 1 ∈ Argmin Z ∈K u 0 + hv 0 + hz(h) -Z M(u 0 ) [START_REF] Moreau | Un cas de convergence des itérées d'une contraction d'un espace hilbertien[END_REF] with lim h→0 z(h) = 0, • for all n ∈ {1, . . . , T h }, let

W n = 2U n -U n-1 + h 2 F n , F n = F nh, U n , U n -U n-1 h , h (6) 
and

U n+1 ∈ Argmin Z ∈K W n -Z M(U n ) ( 7 
)
where • M(U ) is the norm associated to the kinetic metric at U defined by

Z 2 M(U ) = (Z , Z ) M(U ) with (Z , Z ) M(U ) = (Z , M(U )Z ) = (M(U )Z , Z ) for all (U, Z , Z ) ∈ (R d ) 3 .
In the initialization procedure given at formula [START_REF] Moreau | Un cas de convergence des itérées d'une contraction d'un espace hilbertien[END_REF], the mapping h → z(h) can be chosen in such a way that the unconstrained dynamics is approximated at order p, with p 1, by

Ũ 1 = u 0 + hv 0 + hz(h) at t 1 = h. For instance, the simplest choice z(h) ≡ 0 leads to p = 1, while z(h) = h 2 M -1 (u 0 )g(0, u 0 , v 0 ) leads to p = 2.
Moreover we can observe that we obtain U n+1 = W n when W n ∈ K and thus

U n+1 -2U n + U n-1 h 2 = F n when W n ∈ K ,
which is a centered time-discretization of the unconstrained dynamics. Furthermore, if M(u) ≡ Id R d for all u ∈ R d and K is convex, we recognize the scheme introduced in [START_REF] Paoli | Analyse numérique de vibrations avec contraintes unilatérales[END_REF] for the first time and whose convergence has been established in [START_REF] Paoli | Analyse numérique de vibrations avec contraintes unilatérales[END_REF] when ∂ K is smooth, and in [START_REF] Paoli | An existence result for non-smooth vibro-impact problems[END_REF] in the general case. We now define the approximate solutions u h by

u h (t) = U n + (t -nh) U n+1 -U n h ∀t ∈ [nh, (n + 1)h] ∩ [0, T ]
for all n ∈ {0, . . . , T / h } and h ∈ (0, h * ].

Since the impact law (2) leads to some discontinuity with respect to the data if the active constraints at impacts create an obtuse angle (see [START_REF] Paoli | Continuous dependence on data for problems[END_REF]), we cannot expect convergence of the approximate motions unless we add some assumptions on the geometry of active constraints along ∂ K .

So, for all u ∈ K and α ∈ J (u), let us define

e α (u) = M -1/2 (u)∇ f α (u) |M -1/2 (u)∇ f α (u)|
where | • | denotes the Euclidean norm in R d , and assume that the "angle condition" given in [START_REF] Paoli | Continuous dependence on data for problems[END_REF], which ensures continuity on data in the case of inelastic shocks, holds. That is, (H6) for all u ∈ ∂ K , for all (α, β) ∈ J (u) 2 , such that α = β, we have

e α (u), e β (u) 0.
This inequality can be interpreted geometrically: in the local momentum metric, defined by the matrix M -1 (u), the active constraints create right or acute angles.

Then, under assumptions (H1)-(H6) we prove the convergence of a subsequence of the approximate solutions (u h ) h * h>0 to a solution of problem (P).

The paper is organized as follows. In the next sections we establish a priori estimates for the discrete velocities and accelerations on a non-trivial time interval [0, τ ], with 0 < τ T . Then we pass to the limit when h tends to zero on [0, τ ]: using Ascoli's and Helly's theorems we obtain the convergence of a subsequence of (u h ) h * h>0 to a limit u which satisfies (P1) and (P2). Next, for any instant t such that u(t) ∈ ∂ K , we perform a precise local study of the approximate motions and we prove that the limit u also satisfies (P3) and (P4). Finally, we conclude the proof with some energy estimates which allow us to obtain global results.

A priori estimates for the discrete velocities

Let us begin with a priori estimates for the discrete velocities. Let B be a given convex compact subset of R d such that B ∩ K = ∅. Possibly decreasing h * , we may assume without loss of generality that

|z(h)| 1 ∀h ∈ (0, h * ].
In this section we consider a more general scheme for which the initialization procedure involves an initial time t 0h ∈ [0, T ) depending on h. This modification will allow us, in the last section of the paper, to extend the a priori estimates of the discrete velocities by considering as "new" initial data the already constructed approximate positions at some time steps t 0h and t 0h + h.

So, let h ∈ (0, h * ], t 0h ∈ [0, T ), U 0 and U 1 be given in B ∩ K and K respectively, and for all n ∈ {1, . . . ,

T -t 0h h } U n+1 ∈ Argmin Z ∈K W n -Z M(U n ) with W n = 2U n -U n-1 + h 2 F n , F n = F t 0h + nh, U n , U n -U n-1 h , h .
For all h ∈ (0, h * ] and n ∈ 0, . . . , T -t 0h h , we define

V n = U n+1 -U n h .
First let us observe that Lemma 1. For all h ∈ (0, h * ] and n ∈ {1, . . . , (Tt 0h )/ h }, we have

M(U n )(V n-1 -V n + h F n ) ∈ N K (U n+1 ).
Proof. Let h ∈ (0, h * ] and n ∈ {1, . . . , (Tt 0h )/ h }. By definition of U n+1 we have

W n -U n+1 2 M(U n ) W n -Z 2 M(U n ) W n -U n+1 2 M(U n ) + 2(W n -U n+1 , U n+1 -Z ) M(U n ) + U n+1 -Z 2 M(U n ) for all Z ∈ K , which yields (W n -U n+1 , Z -U n+1 ) M(U n ) 1 2 U n+1 -Z 2 M(U n ) ∀Z ∈ K . ( 8 
)
If U n+1 ∈ Int(K ), we deduce from (8) that

W n -U n+1 = h(V n-1 -V n + h F n ) = 0 and M(U n )(V n-1 -V n + h F n ) ∈ N K (U n+1 ) = {0}.
Assume now that U n+1 ∈ ∂ K and let

TK (U n+1 ) = w ∈ R d ; ∇ f α (U n+1 ), w > 0 ∀α ∈ J (U n+1 ) .
For all w ∈ TK (U n+1 ) there exists a smooth curve t → ϕ(t) such that ϕ(0) = U n+1 , ϕ (0) = w and ϕ(t) ∈ K for all t in a right neighbourhood of 0. By choosing Z = ϕ(t) we infer that

(W n -U n+1 , w) M(U n ) 0 ∀w ∈ TK (U n+1 ).
Then the density of TK (U n+1 ) in T K (U n+1 ) leads to

(V n-1 -V n + h F n , w) M(U n ) 0 ∀w ∈ T K (U n+1 ).
Finally, observing that T K (u) = N K (u) ⊥ for all u ∈ K , we are able to conclude the proof.

Let us introduce some notation. We define

λ max (u) = M(u) , λ min (u) = 1 M -1 (u) ∀u ∈ R d .
Since u → M(u) is continuous with values in the set of symmetric positive definite matrices, the mappings u → λ max (u) and u → λ min (u) are well defined and continuous from

R d to R * + . Moreover λ min (u)|w| 2 w 2 M(u) λ max (u)|w| 2 ∀w ∈ R d , ∀u ∈ R d .
Since B is compact, there exists δ > 0 such that, for all (q, q ) ∈ B × R d such that |qq | δ, we have:

λ min (q) -λ min (q ) 1 2 inf u∈B λ min (u), λ max (q) -λ max (q ) 1 2 sup u∈B λ max (u).
We define

B 0 = u ∈ R d ; dist(u, B) δ . ( 9 
)
Then B 0 is also a convex compact subset of R d and we have

1 2 inf u∈B λ min (u) inf u∈B 0 λ min (u), sup u∈B 0 λ max (u) 3 2 sup u∈B λ max (u).
We let

λ min = 1 2 inf u∈B λ min (u), λ max = 3 2 sup u∈B λ max (u). ( 10 
)
Of course we have

0 < λ min |w| 2 w 2 M(u) λ max |w| 2 ∀w ∈ R d \ {0}, ∀u ∈ B 0 .
Let C 0 > 0 and C F be given by

C F = sup |F(t, u, v, h)| ; t ∈ [0, T ], u ∈ B 0 ∪ B 1 , |v| C 0 , h ∈ [0, h * ] , ( 11 
)
where 

B 1 = B(u 0 , C 0 T + 1). Since the mappings M, M -1 , M
∇ f α (Z )-∇ f α (Z ) L f |Z -Z | ∀(Z , Z ) ∈ (B 0 ∪ B 1 ) 2 , ∀α ∈{1, . . . , ν}.
Next, we obtain some rough estimates on the discrete velocities. More precisely, let us assume that

|V l | C 0 ∀l ∈ {0, . . . , n -1}
for some n 1. We obtain the following estimate on V n :

Proposition 1. Let C 0 > 0 and h * 0 ∈ (0, h * ] such that h * 0 min C 0 C F , δ 8C 0 λ min λ max
where C F is defined by [START_REF] Paoli | An existence result for non-smooth vibro-impact problems[END_REF], and λ min , λ max are defined by [START_REF] Paoli | Continuous dependence on data for problems[END_REF]. Let h ∈ (0, h * 0 ], τ h = min(δ/(2C 0 ), Tt 0h ) and assume that there exists n ∈ {1, . . . , τ h / h } such that

|V l | C 0 ∀l ∈ {0, . . . , n -1}. Then |V n | 4 λ max λ min C 0 .
Moreover, for all l ∈ {0, . . . , n} such that J

(U l+1 ) = ∅, ∇ f α (U l+1 ), V l L f h 2 |V l | 2 ∀α ∈ J (U l+1 ).
Proof. For all l ∈ {0, . . . , n} we have U l ∈ B 0 , since

|U l -U 0 | l-1 k=0 h|V k | lhC 0 τ h C 0 δ ∀ l ∈ {0, . . . , n}.
By definition of U n+1 we have

W n -U n+1 M(U n ) W n -U n M(U n ) since U n ∈ K and W n -U n+1 = h(V n-1 -V n + h F n ), W n -U n = h(V n-1 + h F n ).
Hence

V n M(U n ) 2 V n-1 M(U n ) + 2h F n M(U n )
and

|V n | λ max λ min (2C 0 + 2hC F ) 4 λ max λ min C 0 .
Now, we infer that U n+1 ∈ B 0 . Indeed

|U n+1 -U 0 | |U n -U 0 | + h|V n | C 0 τ h + 4h λ max λ min C 0 C 0 τ h + δ 2 δ.
Let l ∈ {0, . . . , n} such that J (U l+1 ) = ∅. For all α ∈ J (U l+1 ), we have

0 f α (U l ) -f α (U l+1 ) = 1 0 ∇ f α U l+1 + t (U l -U l+1 ) , U l -U l+1 dt
and thus

∇ f α (U l+1 ), V l - 1 0 ∇ f α U l+1 +t U l -U l+1 -∇ f α U l+1 , V l dt 1 0 ∇ f α U l+1 +t U l -U l+1 -∇ f α U l+1 V l dt.
It follows that

∇ f α (U l+1 ), V l L f h 2 |V l | 2 .
Now we prove a more precise estimate on the discrete velocities. We have the following result:

Proposition 2. Let C 0 > 0 and assume that there exist C * 0 > 0 and h * 0 ∈ (0, h * ] such that h * 0 min C 0 C F , δ 8C 0 λ min λ max , |V 0 | = U 1 -U 0 h C * 0 < λ min λ max C 0 ∀h ∈ (0, h * 0 ],
where C F is defined by [START_REF] Paoli | An existence result for non-smooth vibro-impact problems[END_REF] and λ min , λ max are defined by [START_REF] Paoli | Continuous dependence on data for problems[END_REF]. Then, there exists τ 0 > 0, depending only on B, C 0 , C * 0 and the data, such that

|V n | = U n+1 -U n h C 0 ∀nh ∈ [0, min(τ 0 , T -t 0h )] , ∀h ∈ (0, h * 0 ].
Proof. Let us assume that h ∈ (0, h * 0 ] and n ∈ {1, . . . , τ h / h } such that

V l C 0 ∀l ∈ {0, . . . , n -1}
with τ h = min(δ/(2C 0 ), Tt 0h ). Then, with Proposition 1, we know that U l ∈ B 0 for all l ∈ {0, . . . , n + 1} and

|V n | 4 λ max λ min C 0 .
Moreover, from Lemma 1 we know that

M(U n ) V n-1 -V n + h F n ∈ N K (U n+1 ).
It follows that

V n = V n-1 + h F n if J (U n+1 ) = ∅.
Let us assume now that J (U n+1 ) = ∅. Using once again, Proposition 1, for all α ∈ J (U n+1 ) we have also

∇ f α (U n+1 ), V n L f h 2 |V n | 2
and thus, with Lemma 7 (see Appendix),

e α (U n+1 ), M 1/2 (U n+1 )V n L f h 2 |V n | 2 M -1/2 (U n+1 )∇ f α (U n+1 ) L f h 2m B 0 |V n | 2 .
For sake of simplicity, denote J n = J (U n+1 ) and e n α = e α (U n+1 ) for all α ∈ J n . From assumption (H3) we know that (∇ f α (U n+1 )) α∈J n is linearly independent. Thus (e n α ) α∈J n is also linearly independent and, using Lemma 7, we know that there exist two dual bases (v j (U n+1 )) 1 j d and (w j (U n+1 )) 1 j d such that

v j (U n+1 ) = 1 ∀ j ∈ {1, . . . , d}, v j (U n+1 ) = e n j ∀ j ∈ J n and w j (U n+1 ) C * ,B 0 ∀ j ∈ {1, . . . , d}
where C * ,B 0 depends only on the compact set B 0 and the mappings f α , α ∈ {1, . . . , ν}, and M. Now, we define

w n = -V n + L f h 2m B 0 |V n | 2 α∈J n M -1/2 (U n+1 )w α (U n+1 ).
For all α ∈ J n we have clearly

∇ f α (U n+1 ), -w n = M -1/2 (U n+1 )∇ f α (U n+1 ) e n α , M 1/2 (U n+1 )V n - L f h 2m B 0 |V n | 2 0, that is, w n ∈ T K (U n+1 ). With Lemma 1 we get V n-1 -V n + h F n , w n M(U n ) 0 which yields ⎛ ⎝ V n -V n-1 -h F n , V n - L f h 2m B 0 |V n | 2 α∈J n M -1/2 (U n+1 )w α (U n+1 ) ⎞ ⎠ M(U n ) 0. ( 12 
)
It follows that

V n 2 M(U n ) - L f h 2m B 0 |V n | 2 α∈J n M -1/2 (U n+1 )w α (U n+1 ), V n-1 -V n +h F n M(U n ) +(V n , V n-1 + h F n ) M(U n ) V n M(U n ) V n-1 + h F n M(U n ) + L f h 2m B 0 λ max λ min |V n | V n M(U n ) α∈J n w α (U n+1 ) |V n-1 -V n + h F n |.
Using Proposition 1 we get

|V n | α∈J n w α (U n+1 ) |V n-1 -V n + h F n | 4 λ max λ min νC 0 C * ,B 0 C 0 1 + 4 λ max λ min + hC F if J n = ∅. Recalling that V n = V n-1 + h F n if J n = ∅
we obtain finally that

V n M(U n ) V n-1 M(U n ) + h λ max C F + 2L f h m B 0 λ max λ min 3/2 νC * ,B 0 C 2 0 2 + 4
λ max λ min whenever J n = ∅ or J n = ∅. By using the Lipschitz property of M 1/2 on B 0 , we also have

V n-1 M(U n ) V n-1 M(U n-1 ) + M 1/2 (U n ) -M 1/2 (U n-1 ) V n-1 V n-1 M(U n-1 ) + L M 1/2 h V n-1 2 .
We infer that

V n M(U n ) V n-1 M(U n-1 ) + C 1 h ( 13 
)
with

C 1 = λ max C F + L M 1/2 C 2 0 + 2L f m B 0 λ max λ min 3/2 νC * ,B 0 C 2 0 2 + 4 λ max λ min .
It follows that

|V n | λ max λ min V 0 + nC 1 h √ λ min .
Then, choosing τ 0 ∈ (0, δ/(2C 0 )] such that

λ max λ min C * 0 + τ 0 C 1 √ λ min C 0
and observing that

|V 0 | C * 0 < λ min λ max C 0 C 0 ∀h ∈ (0, h * 0 ]
we may conclude the proof by induction on n.

Let us now consider the initialization procedure given by formula [START_REF] Moreau | Un cas de convergence des itérées d'une contraction d'un espace hilbertien[END_REF], that is, let t 0h = 0 and U 0 and U 1 be given by

U 0 = u 0 , U 1 ∈ Argmin Z ∈K u 0 + hv 0 + hz(h) -Z M(u 0 ) , lim h→0 z(h) = 0, for all h ∈ (0, h * ].
We can choose B = B(u 0 , C + 1) with C 0, and the previous results lead to an uniform estimate of the discrete velocities on a non-trivial time interval. More precisely, we obtain

Theorem 1. For all C * 0 2 λ max λ min (|v 0 | + 1)
and for all C 0 > λ max λ min C * 0 , there exist h * 0 ∈ (0, h * ] and τ 0 > 0, depending only on B, C 0 , C * 0 and the data, such that

|V n | = U n+1 -U n h C 0 ∀nh ∈ [0, min(τ 0 , T )] , ∀h ∈ (0, h * 0 ]. Proof. Let C * 0 2 λ max λ min (|v 0 | + 1), C 0 > λ max λ min C * 0 and h * 0 ∈ (0, h * ] such that h * 0 min C 0 C F , δ 8C 0 λ min λ max
where C F is defined by [START_REF] Paoli | An existence result for non-smooth vibro-impact problems[END_REF] and λ min , λ max are defined by [START_REF] Paoli | Continuous dependence on data for problems[END_REF]. By definition of U 1 , we have

u 0 + hv 0 + hz(h) -U 1 M(u 0 ) u 0 + hv 0 + hz(h) -Z M(u 0 ) ∀Z ∈ K
and by choosing Z = u 0 = U 0 we get

V 0 M(U 0 ) = U 1 -U 0 h M(u 0 ) 2 v 0 + z(h) M(u 0 ) .
Thus,

|V 0 | 2 λ max λ min |v 0 + z(h)| 2 λ max λ min (|v 0 | + 1) ∀h ∈ (0, h * ]
and

|V 0 | C * 0 < λ min λ max C 0 ∀h ∈ (0, h * 0 ].
It follows that we may apply Proposition 2, which yields the announced result.

Convergence of the approximate solutions (u h ) h * h>0

Before passing to the limit as h tends to zero in the sequence (u h ) h * h>0 , we prove an estimate for the discrete accelerations.

Proposition 3.

Let us now assume that there exist C 0 > 0, τ 0 > 0, h * 0 ∈ (0, h * ] and a sequence (h i ) i∈N , decreasing to zero, such that

|V n | C 0 ∀nh i ∈ [0, min(τ 0 , T )] , ∀h i ∈ (0, h * 0 ]. ( 14 
)
Then there exist h * 1 ∈ (0, h * 0 ] and C 0 > 0 such that, for all h i ∈ (0,

h * 1 ] N n=1 V n -V n-1 C 0 with N = min(τ 0 , T ) h i .
Proof. The main ideas of the proof are the same as in proposition 2.4 in [START_REF] Paoli | An existence result for non-smooth vibro-impact problems[END_REF]. More precisely, let B = B(u 0 , C + 1) with C 0, B 0 be defined by ( 9) and C F be defined by [START_REF] Paoli | An existence result for non-smooth vibro-impact problems[END_REF]. Without loss of generality, possibly decreasing h * 0 , we assume that

C 0 h * 0 1 and C F h * 0 C 0 . We denote K 1 = K ∩ B 1 = K ∩ B(u 0 , C 0 T + 1) and λ min,B 1 = inf u∈B 1 λ min (u) = 1 sup u∈B 1 M -1 (u) , λ max,B 1 = sup u∈B 1 λ max (u) = sup u∈B 1 M(u) . ( 15 
)
Let

h i ∈ (0, h * 0 ]
. By definition of the scheme, we have U n ∈ K for all n ∈ {0, . . . , T / h i + 1}. Assumption [START_REF] Paoli | Penalty approximation for non smooth constraints in vibroimpact[END_REF] implies that

U n -U 0 h i n-1 k=0 V k nh i C 0 C 0 T + 1 ∀n ∈ {0, . . . , N + 1} thus U n ∈ K 1 for all n ∈ {0, . . . , N + 1}.
By Lemma 8 (see Appendix), we infer that, for all q ∈ K 1 , there exist a q ∈ R d and two strictly positive numbers δ q and r q such that, for all q ∈ B(q, 2δ q )

B(a q , r q ) ⊂ T K (q ). ( 16 
)
It is obvious that K 1 ⊂ q∈K 1 B(q, δ q ), and a compactness argument implies that there exists (q j ) 1 j such that q j ∈ K 1 for all j ∈ {1, . . . , } and

K 1 ⊂ j=1 B(q j , δ q j ).
In the remainder of the proof we will simply write δ j , a j and r j instead of δ q j , a q j and r q j . We define

r = min 1 j r j , δ = min 1 j δ j , τ 1 = δ C 0 . Let h * 1 ∈ (0, min(h * 0 , τ 1 /2)), h i ∈ (0, h * 1 ]
and n ∈ {0, . . . , N }. Let j ∈ {1, . . . , } be such that U n+1 ∈ B(q j , δ j ). Then, for all m ∈ {n + 1, . . . , p} with p = min(N , n + τ 1 / h i ), we have

|U m+1 -q j | |U m+1 -U n+1 | + |U n+1 -q j | m k=n+1 h i V k + δ j h i C 0 (m -n) + δ j δ + δ j 2δ j .
By applying [START_REF] Paoli | Penalty approximation for dynamical systems submitted to multiple non-smooth constraints[END_REF], we obtain that, for all m ∈ {n + 1, . . . , p}, we have

B(a j , r j ) ⊂ T K (U m+1 ). Thus B M(U m ) (a j , λ min,B 1 r j ) = z ∈ R d ; z -a j M(U m ) λ min,B 1 r j ⊂ B(a j , r j ).
Then, we use a classical result about contractions on Hilbert spaces due to Moreau [START_REF] Moreau | Un cas de convergence des itérées d'une contraction d'un espace hilbertien[END_REF] and we infer that, for all

z ∈ R d z -Proj M(U m ) (T K (U m+1 ), z) M(U m ) 1 2 λ min,B 1 r j z -a j 2 M(U m ) -Proj M(U m ) (T K (U m+1 ), z) -a j 2 M(U m )
.

With Lemma 1 we know that

M(U m )(V m-1 -V m + h i F m ) ∈ N K (U m+1 ).
Since N K (U m+1 ) and T K (U m+1 ) are two closed convex polar cones, we get

Proj M(U m ) T K (U m+1 ), V m-1 -V m + h i F m = 0. Hence V m-1 -V m + h i F m M(U m ) 1 2 λ min,B 1 r j (V m-1 -V m + h i F m ) -a j 2 M(U m ) -a j 2 M(U m ) 1 2 λ min,B 1 r j V m-1 -V m + h i F m 2 M(U m ) -2 a j , V m-1 -V m + h i F m M(U m )
.

It follows that

V m-1 -V m M(U m ) h i F m M(U m ) + 1 2 λ min,B 1 r j V m-1 -V m 2 M(U m ) + 2h i F m , V m-1 -V m M(U m ) + h 2 i F m 2 M(U m ) -2 a j , V m-1 -V m + h i F m M(U m ) . ( 17 
)
If J m = ∅, we can reproduce the same computations as in Propositions 1 and 2 to obtain (see [START_REF] Paoli | Schéma numérique pour un modèle de vibrations avec contraintes unilatérales et perte d'énergie aux impacts, en dimension finie[END_REF])

⎛ ⎝ V m -V m-1 -h i F m , V m - L f h i 2m B 1 |V m | 2 α∈J m M -1/2 (U m+1 )w α (U m+1 ) ⎞ ⎠ M(U m ) 0 which yields -V m-1 , V m M(U m ) -V m 2 M(U m ) + h i F m , V m M(U m ) + L f h i λ max,B 1 2m B 1 λ min,B 1 νC * ,B 1 |V m | 2 |V m-1 -V m + h i F m | (18) 
where C * ,B 1 is the constant defined at Lemma 7.

Otherwise, if 18) is still true. Thus

J m = ∅, we have V m = V m-1 + h i F m , hence -V m-1 , V m M(U m ) = (-V m + h i F m , V m ) M(U m ) = -V m 2 M(U m ) + h i (F m , V m ) M(U m ) and (
V m-1 -V m 2 M(U m ) V m-1 2 M(U m ) -V m 2 M(U m ) + 2h i F m , V m M(U m ) + L f h i λ max,B 1 m B 1 λ min,B 1 νC * ,B 1 C 2 0 (2C 0 + h i C F ).
Going back to [START_REF] Schatzman | A class of nonlinear differential equations of second order in time[END_REF] and using the Lipschitz property of M on B 1 , we obtain

V m-1 -V m M(U m ) h i C 1 + 1 2 λ min,B 1 r V m-1 2 M(U m-1 ) -V m 2 M(U m ) -2 a j , V m-1 M(U m-1 ) + 2 a j , V m M(U m )
for all m ∈ {n + 1, . . . , p}, where

C 1 = λ max,B 1 C F 1 + λ max,B 1 (C 0 + a) λ min,B 1 r + C 2 F h * 0 λ max,B 1 2 λ min,B 1 r + C 0 + 2a 2 λ min,B 1 r C 2 0 L M + 3 L f λ max,B 1 2rm B 1 λ min,B 1 νC * ,B 1 C 3 0 and a = max 1 j |a j |. By summation we get p m=n+1 V m-1 -V m M(U m ) ( p -n)h i C 1 + 1 2 λ min,B 1 r V n 2 M(U n ) -V p 2 M(U p ) + 4λ max,B 1 C 0 a . Recalling that p = min (N , n + τ 1 / h i ), we infer that N m=1 V m-1 -V m M(U m ) N h i C 1 + 1 2 λ min,B 1 r V 0 2 M(U 0 ) -V N 2 M(U N ) + (k 1 + 1) 2λ max,B 1 C 0 a λ min,B 1 r
where k 1 ∈ N is such that

1 + k 1 τ 1 h i N < (k 1 + 1) τ 1 h i . Observing that k 1 min(τ 0 , T )/(τ 1 -h i ) for all h i ∈ (0, h * 1 ],
and

|V m-1 -V m | 1 λ min,B 1 V m-1 -V m M(U m ) ∀m ∈ {1, . . . , N },
we can conclude the proof with

C 0 = 1 λ min,B 1 T C 1 + λ max,B 1 C 2 0 λ min,B 1 r + 2λ max,B 1 C 0 a λ min,B 1 r T τ 1 -h * 1 + 1 .
With these results we can now pass to the limit as h tends to zero. Let us recall the definition of the approximate solutions (u h ) h * h>0 :

u h (t) = U n + (t -nh) U n+1 -U n h ∀t ∈ [nh, (n + 1)h] ∩ [0, T ] (19) 
and let us define

v h (t) = V n = U n+1 -U n h ∀t ∈ [nh, (n + 1)h) ∩ [0, T ] (20) 
for all n ∈ {0, . . . , T / h } and h ∈ (0, h * ].

Let us assume from now on that (H7) there exist C 0 > 0, τ 0 > 0, h * 0 ∈ (0, h * ] and a subsequence (h i ) i∈N , decreasing to zero, such that

|V n | C 0 ∀nh i ∈ [0, min(τ 0 , T )] ∀h i ∈ (0, h * 0 ].
We define B = B(u 0 , C + 1) with C 0. Let B 0 and C F be defined by ( 9) and [START_REF] Paoli | An existence result for non-smooth vibro-impact problems[END_REF], respectively. We assume (without loss of generality) that C 0 h * 0 1 and C F h * 0 C 0 . Let us denote τ = min(τ 0 , T ). From assumption (H7) and Proposition 3 we know that (u

h i ) h * 1 h i >0 is uniformly C 0 -Lipschitz continuous on [0, τ ] and (v h i ) h * 1 h i >0 is uniformly bounded in L ∞ (0, τ ; R d )∩ BV (0, τ ; R d ). It follows that (u h i ) h * 1 h i >0
is equicontinuous and, using Ascoli's and Helly's theorems, we infer that there exists a subsequence, still denoted

(h i ) i∈N , u ∈ C 0 [0, τ ]; R d and v ∈ BV (0, τ ; R d ), such that u h i → u strongly in C 0 [0, τ ]; R d , (21) 
and

v h i → v pointwise in [0, τ ]. ( 2 2 ) 
Moreover, we have

u h i (t) = u 0 + t 0 v h i (s) ds ∀t ∈ [0, T ], ∀h i ∈ (0, h * ].
Thus, with Lebesgue's theorem, we get

u(t) = lim h i →0 u 0 + t 0 v h i (s) ds = u 0 + t 0 v(s) ds ∀t ∈ [0, τ ]. (23) 
We infer that u is C 0 -Lipschitz continuous and

u h i (t), u(t) ∈ B(u 0 , C 0 τ ) ⊂ B 1 = B(u 0 , C 0 T + 1) ∀t ∈ [0, τ ], ∀h i ∈ (0, h * 1 ].
Moreover, u is absolutely continuous on [0, τ ], thus u admits a derivative (in the classical sense) almost everywhere on [0, τ ] and u ∈ L 1 (0, τ ; R d ). From (23) we infer that u(t) = v(t) for all t ∈ [0, τ ] such that v is continuous at t. Possibly modifying u on a countable subset of [0, τ ], we may assume without loss of generality that u = v.

As usual, we adopt the convention

u(0 -0) = v(0 -0) = v(0) = u(0), u(τ + 0) = v(τ + 0) = v(τ ) = u(τ ). ( 24 
)
Then we observe that

Lemma 2. For all t ∈ [0, τ ], u(t) ∈ K . Proof. Let t ∈ [0, τ ]. For all h i ∈ (0, h * 1 ] there exists n ∈ {0, . . . , τ h i } such that t ∈ [nh i , (n + 1)h i ). Then, observing that U n ∈ K we get dist (u(t), K ) u(t) -U n u(t) -u h i (t) + u h i (t) -U n u(t)-u h i (t) +(t -nh i )|V n | u -u h i C 0 ([0,τ];R d ) +C 0 h i .
By passing to the limit as h i tends to zero, we obtain dist(u(t), K ) 0, that is, u(t) ∈ K .

Study of property (P2)

Now let us prove that u satisfies property (P2), that is, the differential inclusion [START_REF] Monteiro-Marques | Chocs inélastiques standards: un résultat d'existence[END_REF]. First, we observe that there exists at least one non-negative measure μ such that the Stieltjes measure ü = d u = dv and the usual Lebesgue measure dt admit densities with respect to μ. Indeed, let μ be defined by dμ = |d u| + dt : μ is non-negative and the measures ü = d u and dt are both absolutely continuous with respect to μ. Now, let μ = |d u| + dt. We denote by v μ and t μ the densities of d u = dv and dt with respect to dμ. We have to prove that

M (u(t)) v μ (t) -g (t, u(t), u(t)) t μ (t) ∈ -N K (u(t)) dμ almost everywhere.
By Jeffery's theorem (see [START_REF] Jeffery | Non-absolutely convergent integrals with respect to functions of bounded variations[END_REF] or [START_REF] Monteiro-Marques | Differential Inclusions in Non-Smooth Mechanical Problems: Shocks and Dry Friction[END_REF]) we know that there exists a dμ-negligible

set N ⊂ [0, τ ] such that, for all t ∈ [0, τ ] \ N : v μ (t) = lim ε→0 + d u (I ε ) dμ (I ε ) , t μ (t) = lim ε→0 + dt (I ε ) dμ (I ε ) with I ε = [t, t + ε] ∩ [0, τ ].
We define

N = {t ∈ [0, τ ]; u(t + 0) = u(t -0) = u(t)}
(we may observe that the convention (24) implies that 0 ∈ N and τ ∈ N ). Since u = v belongs to BV (0, τ ; R d ), N is, at most, a countable subset of [0, τ ] and is negligible with respect to |d u|. Finally, let N 0 = {t ∈ {0} ∪ {τ }; u is continuous at t}. The set N 0 is finite (it contains at most the two points t = 0 and t = τ ), so it is negligible with respect to |d u|, and it follows that N ∪ N ∪ N 0 is also negligible with respect to dμ. We have:

Proposition 4. Let t ∈ [0, τ ] \ (N ∪ N ∪ N 0 ) such that u is continuous at t. Then M (u(t)) v μ (t) -g (t, u(t), u(t)) t μ (t) ∈ -N K (u(t)) .
(25)

Proof. Let t ∈ [0, τ ]\(N ∪ N ∪ N 0 ) such that u is continuous at t. Then t ∈ (0, τ );
for simplicity we will denote ū = u(t) in the remainder of the proof. By definition of N K ( ū), (25) is equivalent to

g (t, ū, u(t)) t μ (t) -M( ū)v μ (t), w 0 for all w ∈ T K ( ū) = w ∈ R d ; (∇ f α ( ū), w) 0, ∀α ∈ J ( ū) .
First, let us observe that there exists r ū > 0 such that

J (q) ⊂ J ( ū) ∀q ∈ B( ū, r ū ).
Indeed, for all α ∈ {1, . . . , ν} \ J ( ū) we have f α ( ū) > 0 and, by continuity of the mappings f α (1 α ν), there exists r ū > 0 such that

f α (q) f α ( ū) 2 ∀q ∈ B( ū, r ū ), ∀α ∈ {1, . . . , ν} \ J ( ū).

Time-Stepping Approximation of Rigid-Body Dynamics

Let us consider T ˜K (u ¯) defined by

TK ( ū) = w ∈ R d ; (∇ f α ( ū), w) > 0 ∀α ∈ J ( ū) if J ( ū) = ∅, R d otherwise.
Let w ∈ TK ( ū). If J ( ū) = ∅, the continuity of the mappings ∇ f α (1 α ν) implies that there exists r w ∈ (0, r ū ] such that

(∇ f α (q), w) 0 ∀α ∈ J ( ū), ∀q ∈ B( ū, r w ),
and thus w ∈ T K (q) for all q ∈ B( ū, r w ). If J ( ū) = ∅, we still have w ∈ T K (q) for all q ∈ B( ū, r w ) if we choose r w = r ū .

Using the continuity of u and the uniform convergence of (u h i ) i∈N to u on [0, τ ], there exists εw ∈ (0, min(t, τt 2

)) such that, for all ε ∈ (0, εw ], there

exists h ε ∈ (0, h * 1 ] such that u(s) ∈ B ū, r w 3 ∀s ∈ [t, t + ε], h ε min r w 3C 0 , ε 3 , u -u h i C 0 ([0,τ];R d ) r w 3 ∀h i ∈ (0, h ε ].
It follows that for all ε ∈ (0, εw ] and for all h i ∈ (0, h ε ]

u h i (s) ∈ B ū, 2r w 3 ∀s ∈ [t, t + ε],
and

U n+1 ∈ B( ū, r w ) ∀nh i ∈ [t, t + ε].
Now let ε ∈ (0, εw ] and h i ∈ (0, h ε ]. We define j and k by

j = t h i , k = t + ε h i .
We have

0 < t j = jh i t < t j+1 < • • • < t k = kh i t + ε < t k+1 < τ.
From Lemma 1 we know that, for all n ∈ { j + 1, . . . , k}, we have

V n-1 -V n + h i F n , w M(U n ) 0 since w ∈ T K (U n+1
), and by summation

k n= j+1 h i M(U n )F n , w + k n= j+1 M(U n-1 )V n-1 -M(U n )V n , w + k n= j+1 M(U n )V n-1 -M(U n-1 )V n-1 , w 0. ( 26 
)
The last term can be easily estimated as O(ε + h i ). Indeed, the Lipschitz property of the mapping M on B 1 implies that

M(U n ) -M(U n-1 ) L M h i |V n-1 | h i L M C 0 . It follows that k n= j+1 M(U n )V n-1 -M(U n-1 )V n-1 , w k n= j+1 M(U n ) -M(U n-1 ) C 0 |w| (k -j)L M h i C 2 0 |w| (ε + h i )L M C 2 0 |w|.
The second term of the left-hand side of (26) is a telescopic sum which can be rewritten as

M(U j )V j -M(U k )V k , w = M u h i (t) v h i (t) -v h i (t + ε) , w + M(U j ) -M u h i (t) V j , w + M u h i (t) -M(U k ) V k , w .
Once again, the last two terms can be estimated by using the Lipschitz property of M on B 1 :

M(U j ) -M u h i (t) V j + M u h i (t) -M(U k ) V k , w L M C 0 |w| |u h i ( jh i )-u h i (t) +|u h i (t) -u h i (kh i ) L M C 2 0 |w|(h i +ε).
Moreover, with (21) and ( 22), we have lim

h i →0 M u h i (t) v h i (t) -v h i (t + ε) = M (u(t)) (v(t) -v(t + ε)) = M (u(t)) ( u(t) -u(t + ε)) .
Let us prove now that lim

h i →0 k n= j+1 h i M(U n )F n , w = t+ε t (g (s, u(s), u(s)) , w) ds for all ε ∈ (0, εw ].
Indeed, let ε ∈ (0, εw ]. For all h i ∈ (0, h ε ] and n ∈ { j + 1, . . . , k}, we have

F n = F(nh i , U n , V n-1 , h i ) and with (H5) F(nh i , U n , V n-1 , 0) = M -1 (U n )g nh i , u h i (nh i ), v h i (s) ∀s ∈[(n -1)h i , nh i ). It follows that k n= j+1 h i M(U n )F n , w - k n= j+1 nh i (n-1)h i g nh i , u h i (nh i ), v h i (s) , w ds = k n= j+1 h i F(nh i , U n , V n-1 , h i ) -F(nh i , U n , V n-1 , 0), w M(U n ) (27)
In order to estimate the right-hand side of (27), we denote by ω F the modulus of continuity of F on the compact set

[0, T ] × B 1 × B(0, C 0 ) × [0, h * ] and we get k n= j+1 h i F(nh i , U n , V n-1 , h i ) -F(nh i , U n , V n-1 , 0), w M(U n ) k n= j+1 h i M(U n ) ω F (h i )|w| (ε + h i )λ max,B 1 ω F (h i )|w|. ( 28 
) Furthermore k n= j+1 nh i (n-1)h i g nh i , u h i (nh i ), v h i (s) , w ds - t+ε t g s, u h i (s), v h i (s) , w ds = k n= j+1 nh i (n-1)h i g nh i , u h i (nh i ), v h i (s) -g s, u h i (s), v h i (s) , w ds - t+ε kh i g s, u h i (s), v h i (s) , w ds + t jh i g s, u h i (s), v h i (s) , w ds. ( 29 
) Recalling that (u h i (s), v h i (s)) ∈ B 1 × B(0, C 0 ) for all s ∈ [0, τ ] and for all h i ∈ (0, h * 1 ]
, we obtain the following estimates for the second and third terms of the right-hand side of (29):

t+ε kh i g s, u h i (s), v h i (s) , w ds |t + ε -kh i |C g |w| h i C g |w|, t jh i g s, u h i (s), v h i (s) , w ds |t -jh i |C g |w| h i C g |w|, with C g = sup{|g(s, q, v)|; (s, q, v) ∈ [0, T ] × B 1 × B(0, C 0 )}.
In order to estimate the first term of the right-hand side of (29), we introduce ω g the modulus of continuity of g on [0, T ] × B 1 × B(0, C 0 ). Observing that

u h i (nh i ) -u h i (s) C 0 |nh i -s| C 0 h i for all s ∈ [(n -1)h i , nh i
) and for all n ∈ { j + 1, . . . , k}, we get

g nh i , u h i (nh i ), v h i (s) -g s, u h i (s), v h i (s) ω g (C 0 h i ) + ω g (h i )
for all s ∈ [(n -1)h i , nh i ) and for all n ∈ { j + 1, . . . , k}. Hence

k n= j+1 nh i (n-1)h i g nh i , u h i (nh i ), v h i (s) , w ds - t+ε t g(s, u h i (s), v h i (s) , w ds 2h i C g |w| + ω g (C 0 h i ) + ω g (h i ) (k -j)h i |w| 2h i C g |w| + ω g (C 0 h i ) + ω g (h i ) (ε + h i )|w|. ( 30 
)
Then recalling that

u h i (s) → h i →0 u(s) for all s ∈ [0, τ ],
and

v h i (s) → h i →0 v(s) = u(s) for a.a. s ∈ [0, τ ],
we infer from Lebesgue's theorem that lim

h i →0 t+ε t g s, u h i (s), v h i (s) , w ds = t+ε t (g (s, u(s), u(s)) , w) ds. (31) 
Finally, combining (31), (30) and (29), we obtain lim

h i →0 k n= j+1 nh i (n-1)h i g nh i , u h i (nh i ), v h i (s) , w ds = t+ε t (g (s, u(s), u(s)) , w) ds
and with ( 27) and (28) we may conclude that lim

h i →0 k n= j+1 h i M(U n )F n , w = t+ε t (g (s, u(s), u(s)) , w) ds.
Then, passing to the limit as h i tends to zero in (26), we get

t+ε t (g (s, u(s), u(s)) , w) ds + (M (u(t)) ( u(t) -u(t + ε)) , w) 2L M εC 2 0 |w| (32) 
for all ε ∈ (0, εw ]. Since u is continuous at t, we have u(t) = u(t -0) = u(t + 0). Moreover, since u = v and v is continuous, except perhaps on a countable subset of [0, τ ], we may choose a sequence (ε i ) i∈N decreasing to zero such that

ε i ∈ (0, εw ], v(t + ε i ) = u(t + ε i ) = u(t + ε i + 0) ∀i ∈ N.
It follows that

u(t) -u(t + ε i ) = u(t -0) -u(t + ε i + 0) = -d u ([t, t + ε i ]) ∀i ∈ N.
Multiplying (32) by 1 dμ([t,t+ε i ]) and passing to the limit as ε i tends to zero, we obtain

(g (t, u(t), u(t)) , w) t μ (t) -M (u(t)) v μ (t), w 0 ∀w ∈ TK ( ū).
Finally, observing that TK ( ū) is dense in T K ( ū) we may conclude.

Let us now consider t ∈ [0, τ ] \ (N ∪ N ∪ N 0 ) such that u is discontinuous at t. Then u(t -0) = u(t + 0) and d u possesses a Dirac mass at t. Thus {t} is not negligible anymore with respect to dμ and ( 3) is equivalent to

M (u(t)) ( u(t + 0) -u(t -0)) ∈ -N K (u(t)) .
This property is a direct consequence of the following proposition:

Proposition 5. For all t ∈ [0, τ ] we have M (u(t)) ( u(t + 0) -u(t -0)) ∈ -N K (u(t)) .
Proof. Let t ∈ [0, τ ] and denote, for simplicity, ū = u(t). Thanks to the density of TK ( ū) in T K ( ū), we only need to prove that

(M( ū) ( u(t -0) -u(t + 0)) , w) 0 ∀w ∈ TK ( ū).
Let w ∈ TK ( ū). As in the proof of the previous proposition, we define r w > 0 such that J (q) ⊂ J ( ū) and w ∈ T K (q) for all q ∈ B( ū, r w ).

We also define εw ∈ (0, τ/2) such that for all ε ∈ (0, εw ] we have

u(s) ∈ B ū, r w 3 ∀s ∈ [t -ε, t + ε] ∩ [0, τ ],
and there exists h ε ∈ 0, min h * 1 , r w /(3C 0 ), ε/3 such that

u h i (s) ∈ B ū, 2r w 3 ∀s ∈ [t -ε, t + ε] ∩ [0, τ ], ∀h i ∈ (0, h ε ],
and

U n+1 ∈ B( ū, r w ) ∀nh i ∈ [t -ε, t + ε] ∩ [0, τ ], ∀h i ∈ (0, h ε ].
Let ε ∈ (0, εw ] and h i ∈ (0, h ε ]. We define t - ε = max(t -ε, 0), t + ε = min(t +ε, τ ) and

j = t - ε h i , k = t + ε h i
that is, we have

0 t j = jh i t - ε < t j+1 < • • • < t k = kh i t + ε τ.

It follows that

v h i (t - ε ) = V j , v h i (t + ε ) = V k .
We have

M u h i (t - ε ) v h i (t - ε ) -M u h i (t + ε ) v h i (t + ε ), w = M(U j )V j -M(U k )V k , w + M u h i (t - ε ) -M(U j ) V j , w + M(U k )-M u h i (t + ε ) V k , w . ( 33 
)
Following the same ideas as in the previous proof, we use the Lipschitz continuity of M on B 1 to estimate the last two terms of (33). More precisely,

M u h i (t - ε ) -M(U j ) V j , w |w||V j |L M u h i (t - ε )-U j L M |w|C 2 0 h i ,
and with similar computations

M(U k ) -M u h i (t + ε ) V k , w L M |w|C 2 0 h i .
We rewrite the first term of (33) as

M(U j )V j -M(U k )V k , w = k n= j+1 M(U n )(V n-1 -V n , w) + k n= j+1 M(U n-1 ) -M(U n ) V n-1 , w ,
and, observing that w ∈ T K (U n+1 ) for all n ∈ { j + 1, . . . , k}, we infer from Lemma 1 that

k n= j+1 M(U n )(V n-1 -V n , w) k n= j+1 -h i M(U n )F n , w (k -j)h i λ max,B 1 C F |w| (2ε + h i )λ max,B 1 C F |w|.
It follows that

M(U j )V j -M(U k )V k , w k n= j+1 M(U n-1 ) -M(U n ) V n-1 , w + (2ε + h i )λ max,B 1 C F |w|
and, using once again the Lipschitz property of M, we get

M(U j )V j -M(U k )V k , w (2ε + h i )|w| λ max,B 1 C F + L M C 2 0 .
Finally, we obtain

M u h i (t - ε ) v h i (t - ε ) -M u h i (t + ε ) v h i (t + ε ), w 2L M |w|C 2 0 h i + (2ε + h i )|w| λ max,B 1 C F + L M C 2 0 ,
for all h i ∈ (0, h ε ] and for all ε ∈ (0, εw ]. Now, passing to the limit as h i tends to zero, then as ε tends to zero, we may conclude.

Transmission of the velocity at impacts

With the previous proposition, we observe that u(t + 0) = u(t -0) for all t ∈ [0, τ ] such that J (u(t)) = ∅. That is, u is continuous at t if u(t) ∈ Int(K ) and, in this case, the impact law (4) is satisfied. Thus it remains only to prove that

u(t + 0) = Proj M(u(t)) T K u(t) , u(t -0) ( 34 
)
for all t ∈ (0, τ ) such that J u(t) = ∅.

In order to also obtain some information on u(0+0), we now consider t ∈ [0, τ ) such that J u(t) = ∅. For simplicity, we denote ū = u(t) and u+ = u(t + 0), u-= u(t -0). With Proposition 5 we already know that M( ū)( u--u+ ) ∈ N K ( ū), that is, there exist non-positive real numbers (μ α ) α∈J ( ū) such that

M 1/2 ( ū) u--u+ = α∈J ( ū) μ α e α ( ū),
where we recall that

e α ( ū) = M -1/2 ( ū)∇ f α ( ū) M -1/2 ( ū)∇ f α ( ū) ∀α ∈ J ( ū).
Moreover, since u(t) ∈ K for all t ∈ [0, τ ], we have u+ ∈ T K ( ū) and (34) reduces to u--u+ , u+ M( ū) = 0, that is, e α ( ū), M 1/2 ( ū) u+ = 0 for all α ∈ J ( ū) such that μ α = 0.

From assumption (H3) we know that (∇ f α ( ū)) α∈J ( ū) is linearly independent. It follows that (e α ( ū)) α∈J ( ū) is also linearly independent and there exist (e β ) β∈{1,...,d}\J ( ū) such that {e α ( ū); α ∈ J ( ū)} ∪ {e β ; β ∈ {1, . . . , d} \ J ( ū)} is a basis of R d and |e β | = 1 for all β ∈ {1, . . . , d} \ J ( ū).

Using Lemma 7 (see Appendix) we know that there exists r ū ∈ (0, r B 1 ] such that

J (q) ⊂ J ( ū) ∀q ∈ B( ū, r ū ) ( 35 
)
and

M -1/2 (q)∇ f α (q) m B 1 > 0 ∀q ∈ B( ū, r ū ), ∀α ∈ J ( ū).
Thus, for all α ∈ {1, . . . , d} and for all q ∈ B( ū, r ū ) we define

v α (q) = ⎧ ⎪ ⎨ ⎪ ⎩ M -1/2 (q)∇ f α (q) M -1/2 (q)∇ f α (q) if α ∈ J ( ū), e α if α ∈ J ( ū).
From (35) we infer that v α (q) = e α (q) for all α ∈ J (q), for all q ∈ B( ū, r ū )∩K . Moreover, the continuity of M -1/2 and ∇ f α (1 α ν) implies that, possibly decreasing r ū , (v α (q)) 1 α d is a basis of R d for all q ∈ B( ū, r ū ). We define the dual basis (w α (q)) 1 α d for all q ∈ B( ū, r ū ). From Lemma 7, we know that the vectors (w α (q)) 1 α d are bounded independently of q by a constant C * , ū and, since the mappings M -1/2 and ∇ f α (1 α ν) are locally Lipschitz continuous, the mappings v α and w α (1 α d) are also Lipschitz continuous on B( ū, r ū ); we let L ū ∈ R + * be such that, for all α ∈ {1, . . . , d} and for all (q, q ) ∈ B( ū, r ū )

2 v α (q) -v α (q ) L ū |q -q |, w α (q) -w α (q ) L ū |q -q |.
Finally, from the continuity of u and the uniform convergence of (u h i ) i∈N to u on [0, τ ], we infer that there exist ε ∈ (0, τ -t 2 ] and h

* 2 ∈ (0, min(h * 1 , ε 3 , r ū 3C 0 )] such that u(t) ∈ B ū, r ū 3 ∀t ∈ [t -ε, t + ε] ∩ [0, τ ], u -u h i C 0 ([0,τ];R d ) r ū 3 ∀h i ∈ (0, h * 2 ].
It follows that

U n+1 , U n ∈ B( ū, r ū ) ∀nh i ∈ [t -ε, t + ε] ∩ [0, τ ], ∀h i ∈ (0, h * 2 ]. (36) 
We begin with the following lemma.

Lemma 3. Let α ∈ J ( ū) such that μ α = 0. Then, for all ε 1 ∈ (0, ε] there exists h ε 1 ∈ (0, min(h * 2 , ε 1 /3)] such that for all h i ∈ (0,

h ε 1 ], there exists nh i ∈ [t -ε 1 , t + ε 1 ] ∩ [0, τ ] such that f α (U n+1 ) 0.
Proof. Let us assume that the announced result does not hold, that is, assume that there exists ε 1 ∈ (0, ε] such that, for all h ε 1 ∈ (0, min(h * 2 , ε 1 /3)] there exists

h i ∈ (0, h ε 1 ] such that f α (U n+1 ) > 0 for all nh i ∈ [t -ε 1 , t + ε 1 ] ∩ [0, τ ].
Hence, we can extract from (h i ) i∈N a subsequence denoted (h ϕ(i) ) i∈N such that h ϕ(i) ∈ (0, min(h * 2 , ε 1 /3)], (h ϕ(i) ) i∈N decreases to zero and

f α (U n+1 ) > 0 ∀nh ϕ(i) ∈ [t -ε 1 , t + ε 1 ] ∩ [0, τ ] (37) 
for all i ∈ N. For all ε ∈ (0, ε 1 ], let us establish the following estimate:

M 1/2 u h ϕ(i) (t - ε ) v h ϕ(i) (t - ε ) -M 1/2 u h ϕ(i) (t + ε ) v h ϕ(i) (t + ε ), w α ( ū) O ε + h ϕ(i) + u -u h ϕ(i) C 0 ([0,τ];R d )
where t - ε = max(t -ε, 0) and t + ε = min(t + ε, τ ). Then, by passing to the limit when i tends to +∞, we will infer with ( 21) and ( 22) that

M 1/2 u(t - ε ) v(t - ε ) -M 1/2 u(t + ε ) v(t + ε ), w α ( ū) O(ε)
and, when ε tends to zero, we will obtain

M 1/2 ( ū) u(t -0) -u(t + 0) , w α ( ū) = |μ α | 0
which gives a contradiction. Let ε ∈ (0, ε 1 ]. There exists i ε ∈ N such that, for all i i ε we have h ϕ(i) ∈ (0, ε/2) and we define

n i = t - ε h ϕ(i) , p i = t + ε h ϕ(i) .
Then, n i + 1 < p i and for all n ∈ {n i + 1, . . . ,

p i } we have nh ϕ(i) ∈ [t - ε , t + ε ]. We infer from Lemma 1 that, for all n ∈ {n i + 1, . . . , p i } M(U n ) V n-1 -V n + h ϕ(i) F n ∈ N K (U n+1 ). If J (U n+1 ) = ∅, there exist non-positive real numbers (μ n β ) β∈J (U n+1 ) such that M(U n ) V n-1 -V n + h ϕ(i) F n = β∈J (U n+1 ) μ n β M 1/2 (U n+1 )e β (U n+1 ).
From (36), we obtain e β (U n+1 ) = v β (U n+1 ) for all β ∈ J (U n+1 ) and

|μ n β | = M(U n )(V n-1 -V n + h ϕ(i) F n ), M -1/2 (U n+1 )w β (U n+1 ) λ max,B 1 λ min,B 1 (2C 0 + h * 2 C F )C * , ū 3 λ max,B 1 λ min,B 1 C 0 C * , ū ∀β ∈ J (U n+1 ).
From now on, let us denote

C 2 = 3 λ max,B 1 λ min,B 1 C 0 C * , ū .
With (37) we know that α ∈ J (U n+1 ), thus

M 1/2 (U n+1 ) V n-1 -V n + h ϕ(i) F n , w α (U n+1 ) = β∈J (U n+1 ) μ n β M 1/2 (U n+1 )M -1 (U n )M 1/2 (U n+1 )v β (U n+1 ), w α (U n+1 ) β∈J (U n+1 ) μ n β M 1/2 (U n+1 ) 2 M -1 (U n+1 ) -M -1 (U n ) v β (U n+1 ) w α (U n+1 ) νC 2 C * , ū λ max,B 1 L M -1 |U n+1 -U n | νC 2 C 0 C * , ū λ max,B 1 L M -1 h ϕ(i) for all n ∈ {n i + 1, . . . , p i }, if J (U n+1 ) = ∅. If J (U n+1 ) = ∅, this last inequality remains true since V n-1 -V n +h ϕ(i) F n = 0 if J (U n+1 ) = ∅.
It follows that, for all n ∈ {n i + 1, . . . ,

p i } M 1/2 (U n i +1 )V n i -M 1/2 (U p i +1 )V p i , w α ( ū) = p i n=n i +1 M 1/2 (U n )V n-1 -M 1/2 (U n+1 )V n , w α ( ū) = p i n=n i +1 M 1/2 (U n+1 )(V n-1 -V n + h ϕ(i) F n ), w α (U n+1 ) + p i n=n i +1 M 1/2 (U n ) -M 1/2 (U n+1 ) V n-1 , w α ( ū) - p i n=n i +1 h ϕ(i) M 1/2 (U n+1 )F n , w α (U n+1 ) + p i n=n i +1 M 1/2 (U n+1 )(V n-1 -V n ), w α ( ū) -w α (U n+1 ) which yields M 1/2 (U n i +1 )V n i -M 1/2 (U p i +1 )V p i , w α ( ū) p i n=n i +1 νC 2 C 0 C * , ū λ max,B 1 L M -1 h ϕ(i) + p i n=n i +1 C 0 C * , ū L M 1/2 h ϕ(i) |V n | + p i n=n i +1 h ϕ(i) C * , ū C F λ max,B 1 + p i n=n i +1 λ max,B 1 |V n -V n-1 | w α ( ū) -w α (U n+1 ) .
Then, observing that for all n ∈ {n i + 1, . . . ,

p i } | ū -U n+1 | u(t) -u h ϕ(i) (t) + u h ϕ(i) (t) -u h ϕ(i) (nh ϕ(i) ) + h ϕ(i) |V n | u -u h ϕ(i) C 0 ([0,τ];R d ) + C 0 (ε + h ϕ(i) ), we can estimate |w α ( ū) -w α (U n+1 )| as L ū u -u h ϕ(i) C 0 ([0,τ];R d ) + C 0 (ε + h ϕ(i) ) .
Hence, with the estimate of the discrete accelerations obtained at Proposition 3, we get

M 1/2 (U n i +1 )V n i -M 1/2 (U p i +1 )V p i , w α ( ū) ( p i -n i )h ϕ(i) C * , ū νC 2 C 0 λ max,B 1 L M -1 + C 2 0 L M 1/2 + C F λ max,B 1 + λ max,B 1 L ū u -u h ϕ(i) C 0 ([0,τ];R d ) + C 0 (ε + h ϕ(i) ) p i n=n i +1 |V n -V n-1 | = O ε + h ϕ(i) + u -u h ϕ(i) C 0 ([0,τ];R d ) . ( 38 
) But V n i = v h ϕ(i) (t - ε ), V p i = v h ϕ(i) (t + ε )
and

M 1/2 u h ϕ(i) (t - ε ) v h ϕ(i) (t - ε ) -M 1/2 u h ϕ(i) (t + ε ) v h ϕ(i) (t + ε ), w α ( ū) -M 1/2 (U n i +1 )V n i -M 1/2 (U p i +1 )V p i , w α ( ū) M 1/2 u h ϕ(i) (t - ε ) -M 1/2 (U n i +1 ) + M 1/2 u h ϕ(i) (t + ε ) -M 1/2 (U p i +1 ) C 0 C * , ū 2L M 1/2 C 2 0 C * , ū h ϕ(i) . ( 39 
)
Finally, from (38), (39) we obtain

M 1/2 u h ϕ(i) (t - ε ) v h ϕ(i) (t - ε ) -M 1/2 u h ϕ(i) (t + ε ) v h ϕ(i) (t + ε ), w α ( ū) = O ε + h ϕ(i) + u -u h ϕ(i) C 0 ([0,τ];R d )
for all i i ε and for all ε ∈ (0, ε 1 ], which enables us to conclude.

Let us now prove that e α ( ū), M 1/2 ( ū) u+ = 0 for all α ∈ J ( ū) such that μ α = 0.

Lemma 4. Let α ∈ J ( ū) be such that μ α = 0. Then e α ( ū), M 1/2 ( ū) u+ = 0.

Proof. Let α ∈ J ( ū) such that μ α = 0. Since u+ ∈ T K ( ū) we have (M 1/2 ( ū) u+ , e α ( ū)) = (M 1/2 ( ū) u+ , v α ( ū)) 0 and it remains to prove that (M 1/2 ( ū) u+ , v α ( ū)) 0.
The main idea of the proof is to obtain an estimate of (M 1/2 (u(t + ε)) v(t + ε), v α (u(t + ε))) and to pass to the limit when ε tends to zero.

More precisely, let ε ∈ (0, ε]. Then

v(t + ε) = lim h i →0 v h i (t + ε) = lim h i →0 V p i with p i = t+ε h i for all i ∈ N. Observing that u(t + ε) -U p i +1 u(t + ε) -u h i (t + ε) + u h i (t + ε) -u h i (( p i + 1)h i ) u -u h i C 0 ([0,τ];R d ) + C 0 h i the continuity of v α and M 1/2 on B( ū, r ū ) implies that M 1/2 u(t + ε) v(t + ε), v α u(t + ε) = lim h i →0 M 1/2 (U p i +1 )v h i (t + ε), v α (U p i +1 ) = lim h i →0 M 1/2 (U p i +1 )V p i , v α (U p i +1 ) ,
and we will prove that

M 1/2 (U p i +1 )V p i , v α (U p i +1 ) O ε + h i + u -u h i C 0 ([0,τ];R d ) . ( 40 
)
Let us apply Lemma 3: for all i such that h i ∈ (0, h ε ] we define N i as the last time step in [t -ε, t + ε] ∩ [0, τ ] where the constraint f α is active, that is,

N i = max n ∈ N; nh i ∈ [t -ε, t + ε] ∩ [0, τ ] and f α (U n+1 ) 0 . Since α ∈ J (U N i +1 ), we infer, as in Proposition 1, that v α (U N i +1 ), M 1/2 (U N i +1 )V N i = e α (U N i +1 ), M 1/2 (U N i +1 )V N i L f h i 2m B 1 |V N i | 2 L f C 2 0 2m B 1 h i .
Moreover, with the same computations as in Lemma 3, for all

nh i ∈ [t -ε, t + ε] ∩ [0, τ ] such that n 1 we have M(U n )(V n-1 -V n + h i F n ) = β∈J (U n+1 ) μ n β M 1/2 (U n+1 )v β (U n+1 ) (41) with -3 λ max,B 1 λ min,B 1 C 0 C * , ū = -C 2 μ n β 0 ∀β ∈ J (U n+1 ). ( 42 
)
Thus, for all h i ∈ (0, h ε ] we get

M 1/2 (U p i +1 )V p i , v α (U p i +1 ) = M 1/2 (U N i +1 )V N i , v α (U N i +1 ) + M 1/2 (U N i +1 )V N i , v α (U p i +1 ) -v α (U N i +1 ) + p i n=N i +1 M 1/2 (U n+1 )V n -M 1/2 (U n )V n-1 , v α (U p i +1 ) L f C 2 0 2m B 1 h i + M 1/2 (U N i +1 )V N i , v α (U p i +1 ) -v α (U N i +1 ) + p i n=N i +1 M 1/2 (U n+1 ) -M 1/2 (U n ) V n-1 , v α (U p i +1 ) + p i n=N i +1 h i M 1/2 (U n+1 )F n , v α (U p i +1 ) + p i n=N i +1 M 1/2 (U n+1 )(V n -V n-1 -h i F n ), v α (U p i +1 ) .
Using the Lipschitz property of M 1/2 on B 1 and recalling that the mappings v α (α ∈ {1, . . . , ν}) are L ū -Lipschitz continuous on B( ū, r ū ), we get

M 1/2 (U p i +1 )V p i , v α (U p i +1 ) p i n=N i +1 h i (L M 1/2 C 2 0 + λ max,B 1 C F ) + L f C 2 0 2m B 1 h i + 2ε λ max,B 1 C 2 0 L ū + p i n=N i +1 M 1/2 (U n+1 )(V n -V n-1 -h i F n ), v α (U p i +1 ) . ( 43 
)
There remains the task of estimating the last term. Using (41) and (42) we rewrite it as follows

p i n=N i +1 β∈J (U n+1 ) (-μ n β ) M 1/2 (U n+1 )M -1 (U n )M 1/2 (U n+1 )v β (U n+1 ), v α (U p i +1 ) p i n=N i +1 β∈J (U n+1 ) C 2 M 1/2 (U n+1 ) 2 M -1 (U n+1 ) -M -1 (U n ) + p i n=N i +1 β∈J (U n+1 ) (-μ n β ) v β (U n+1 ), v α (U p i +1 ) . ( 44 
)
By definition of N i we have α ∈ J (U n+1 ) for all n ∈ {N i + 1, . . . , p i }. Moreover, from assumption (H6) we have

v β ( ū), v α ( ū) = e β ( ū), e α ( ū) 0 ∀β ∈ J ( ū) \ {α}
and ( 35) and (36) imply that

J (U n+1 ) ⊂ J ( ū) for all nh i ∈ [t -ε, t + ε] ∩ [0, τ ]. It follows that p i n=N i +1 β∈J (U n+1 ) (-μ n β ) v β (U n+1 ), v α (U p i +1 ) p i n=N i +1 β∈J (U n+1 ) (-μ n β ) v β (U n+1 ), v α (U p i +1 ) -v β ( ū), v α ( ū) p i n=N i +1 β∈J (U n+1 ) |μ n β |L ū |U n+1 -ū| + |U p i +1 -ū| .
Hence,

p i n=N i +1 β∈J (U n+1 ) (-μ n β ) M 1/2 (U n+1 )M -1 (U n )M 1/2 (U n+1 )v β (U n+1 ), v α (U p i +1 ) p i n=N i +1 β∈J (U n+1 ) C 2 λ max,B 1 L M -1 C 0 h i + p i n=N i +1 β∈J (U n+1 ) 2 μ n β L ū u -u h i C 0 ([0,τ];R d ) + C 0 (ε + h i ) .
But

μ n β = M -1/2 (U n+1 )M(U n )(V n-1 -V n + h i F n ), w β (U n+1 ) λ max,B 1 λ min,B 1 |V n-1 -V n | + h i C F C * , ū
for all β ∈ J (U n+1 ), for all n ∈ {N i + 1, . . . , p i }. Hence, with the estimate of the discrete accelerations obtained at Proposition 3

p i n=N i +1 β∈J (U n+1 ) (-μ n β ) M 1/2 (U n+1 )M -1 (U n )M 1/2 (U n+1 )v β (U n+1 ), v α (U p i +1 ) 2ν λ max,B 1 λ min,B 1 C * , ū C 0 + 2εC F L ū u -u h i C 0 ([0,τ];R d ) + C 0 (ε + h i ) + 2ενC 2 λ max,B 1 L M -1 C 0 . (45) 
Finally, combining (43), ( 44) and (45), we obtain

M 1/2 (U p i +1 )V p i , v α (U p i +1 ) L f C 2 0 2m B 1 h i + 2εC 2 0 λ max,B 1 L ū + 2ε(L M 1/2 C 2 0 + λ max,B 1 C F + νC 2 λ max,B 1 L M -1 C 0 ) + 2ν λ max,B 1 λ min,B 1 C * , ū C 0 + 2εC F L ū u -u h i C 0 ([0,τ];R d ) + C 0 (ε + h i )
for all h i ∈ (0, h ε ], for all ε ∈ (0, ε], which proves (40). Passing to the limit as h i tends to zero, then when ε tends to zero, we may conclude the proof.

Study of the initial conditions

We can now prove quite easily that property (P4) is satisfied.

Lemma 5. The initial conditions (u 0 , v 0 ) are satisfied in the following sense:

u(0) = u 0 , u(0 + 0) = v 0 .
Proof. Since the sequence (u h i ) i∈N converges uniformly to u on [0, τ ], we have

u(0) = lim h i →0 u h i (0). But u h i (0) = U 0 = u 0 for all h i ∈ (0, h * ],
and thus u(0) = u 0 . From the results of the previous subsection we already know that

u(0 + 0) = Proj M(u(0)) (T K (u(0)) , u(0 -0))
where u(0 -0) = u(0) = v(0) (see (24)). It follows that

u(0 + 0) = Proj M(u 0 ) (T K (u 0 ), v(0)) . ( 46 
)
Since the sequence (v h i ) i∈N converges pointwise to v on [0, τ ] we have

v(0) = lim h i →0 v h i (0).

Let us prove now that lim

h i →0 v h i (0) = v 0 . For all h i ∈ (0, h * ] we have v h i (0) = V 0 = U 1 -U 0 h i
and the definition of U 1 implies that

h i v 0 + z(h i ) -v h i (0) M(u 0 ) u 0 + h i v 0 + h i z(h i ) -Z M(u 0 ) ∀Z ∈ K , which yields v 0 -v h i (0) M(u 0 ) 2 z(h i ) M(u 0 ) + v 0 -v M(u 0 ) for all v ∈ R d such that u 0 + h i v ∈ K . If u 0 ∈ Int(K ), we infer that there exists r u 0 > 0 such that u 0 + h i v 0 ∈ K for all h i ∈ (0, r u 0 |v 0 |+1 ] and thus v 0 -v h i (0) M(u 0 ) 2 z(h i ) M(u 0 ) ∀h i ∈ 0, min r u 0 |v 0 | + 1 , h * . Since lim h→0 z(h) = 0, we get lim h i →0 v h i (0) = v(0) = v 0 .
Let us assume now that u 0 ∈ ∂ K . Since v 0 ∈ T K (u 0 ) and TK (u 0 ) is dense in T K (u 0 ), we may consider a sequence (v p ) p∈N * converging to v 0 and such that

v p ∈ TK (u 0 ) = w ∈ R d ; (∇ f α (u 0 ), w) > 0 ∀α ∈ J (u 0 ) ∀ p ∈ N * .
It follows that (|v p |) p∈N * remains bounded, and we consider M ∈ R * + such that M |v p | for all p ∈ N * . Using the continuity of the mappings f α , α ∈ {1, . . . , ν}, there exists r u 0 > 0 such that

f α (q) f α (u 0 ) 2 ∀α ∈ J (u 0 ), ∀q ∈ B(u 0 , r u 0 ).
Let p ∈ N * . From the definition of r u 0 , we infer that

f α (u 0 + tv p ) 0 ∀α ∈ J (u 0 ), ∀t ∈ 0, r u 0 M . Moreover, if α ∈ J (u 0 ) f α (u 0 + tv p ) = f α (u 0 ) + t ∇ f α (u 0 ), v p + t 1 0 ∇ f α (u 0 + stv p ) -∇ f α (u 0 ), v p ds.
If t ∈ (0, 1/M], we get |tv p | 1 and thus u 0 + stv p ∈ B 1 for all s ∈ [0, 1], which yields

f α (u 0 + tv p ) t ∇ f α (u 0 ), v p -t 2 L f |v p | 2 2 ∀α ∈ J (u 0 ).
It follows that there exists t p ∈ 0, min(1, r u 0 )/M) such that f α (u 0 + tv p ) 0 for all α ∈ {1, . . . , ν} and for all t ∈ (0, t p ]. Thus

v 0 -v h i (0) M(u 0 ) 2 z(h i ) M(u 0 ) + v 0 -v p M(u 0 ) ∀h i ∈ 0, min(h * , t p ) , ∀ p ∈ N * .
Then, passing to the limit when h i tends to zero, we get

v 0 -v(0) M(u 0 ) v 0 -v p M(u 0 ) ∀ p ∈ N *
and recalling that the sequence (v p ) p∈N * converges to v 0 , we obtain v 0 = v(0). Finally, using (46) and recalling that v 0 ∈ T K (u 0 ), we get

u(0 + 0) = Proj M(u 0 ) (T K (u 0 ), v 0 ) = v 0 .
With the previous results, we can state the following theorem:

Theorem 2. Let us assume that there exist C 0 > 0, τ 0 > 0, h * 0 ∈ (0, h * ] and a subsequence of the approximate positions defined by ( 5)-( 7) such that

|V n | = U n+1 -U n h i C 0 ∀nh i ∈ [0, min(τ 0 , T )] , ∀h i ∈ (0, h * 0 ]
with (h i ) i∈N decreasing to zero. Let u h and v h be defined by (19) and (20). Then, there exist a subsequence still denoted

(h i ) i∈N and (u, v) ∈ C 0 ([0, min(τ 0 , T )]; R d ) × BV (0, min(τ 0 , T ); R d ) such that u h i → u strongly in C 0 [0, min(τ 0 , T )] ; R d , v h i → v pointwise in [0, min(τ 0 , T )], with u(t) = u 0 + t 0 v(s) ds for all t ∈ [0, min(τ 0 , T )],
and u is a solution of problem (P) on [0, min(τ 0 , T )].

By combining Theorem 2 with the a priori estimate of the discrete velocities obtained in Theorem 1, we immediately obtain a local convergence result for the numerical scheme, and thus a local existence result for problem (P).

Energy estimates and global results

In order to establish global convergence results, we now state an energy estimate for the solutions of problem (P). Proposition 6. Let C > v 0 M(u 0 ) . Then there exists τ (C) > 0 such that, for any solution u of problem (P) defined on [0, τ ] (with τ ∈ (0, T ]), we have

|u(t) -u 0 | C ∀t ∈ [0, min(τ (C), τ )] ,
u(t) M(u(t)) C dt almost everywhere on [0, min(τ (C), τ )].

Proof. Let us define the kinetic energy E by

E = 1 2 ( u, M(u) u) .
Since u ∈ BV (0, τ ; R d ) and u is absolutely continuous from [0, τ ] to R d , E belongs to BV (0, τ ; R d ). Moreover (see [START_REF] Moreau | Bounded variation in time[END_REF])

d E = d u, M(u) u+ + u- 2 + 1 2 ( u, (d M(u) u) u) dt. Let [t 1 , t 2 ] ⊂ [0, τ ). Then E(t 2 + 0) -E(t 1 + 0) = (t 1 ,t 2 ] d u, M(u) u+ + u- 2 + 1 2 t 2 t 1 ( u(t), (d M (u(t)) u(t)) u(t)) dt.
Let us define D = {t ∈ (t 1 , t 2 ]; u(t + 0) = u(t -0)}. The set D is at most denumerable and

(t 1 ,t 2 ] d u, M(u) u+ + u- 2 = (t 1 ,t 2 ]\D d u, M(u) u+ + t∈D 1 2 u(t + 0) 2 M(u(t)) -u(t -0) 2 M(u(t)) .
But, with property (P2), we have also 

M (u(t)) v μ (t) -g (t, u(t), u(t)) t μ (t) ∈ -N K (u(t
+ t∈D 1 2 u(t + 0) 2 M(u(t)) -u(t -0) 2 M(u(t)) .
But, with property (P3), we know that

2E(t + 0) = u(t + 0) 2 M(u(t)) u(t -0) 2 M(u(t)) = 2E(t -0) ∀t ∈ (0, τ )
and finally

E(t 2 + 0) -E(t 1 + 0) t 2 t 1 (g (t, u(t), u(t)) , u(t)) dt + 1 2 t 2 t 1 ( u(t), (d M (u(t)) u(t)) u(t)) dt.
In particular, for all t ∈ [0, τ )

E(t + 0) E(0 + 0) + t 0 (g (s, u(s), u(s)) , u(s)) ds + 1 2 t 0 ( u(s), (d M (u(s)) u(s)) u(s)) ds.
Observing that C 2 > 2E(0+0), the continuity of u on [0, τ ] and the right continuity of E(• + 0) on [0, τ ) imply that there exists τ ∈ (0, τ ) such that

|u(t) -u(0)| C, E(t + 0) C 2 2 ∀t ∈ [0, τ ]. (47) 
We define

τ max = sup { τ ∈ (0, τ ) such that (47) holds} .
Since u is continuous on [0, τ ], we have

|u(t) -u(0)| C ∀t ∈ [0, τ max ], (48) 
and

E(t + 0) = 1 2 M 1/2 (u(t)) u(t + 0) 2 C 2 2 ∀t ∈ [0, τ max ). ( 49 
)
It follows that If τ max = τ there is nothing to prove. Otherwise, we define α = sup g t, q, M -1/2 (q)w , M -1/2 (q)w ; t ∈ [0, T ], q ∈ B(u 0 , C), w ∈ B(0, C) ,

u(t) 2 M(u(t)) = M 1/2 (u(t)) u(t)
β = sup 1 2 M -1/2 (q) d M(q)M -1/2 (q)w M -1/2 (q) , q ∈ B(u 0 , C), w ∈ B(0, C) γ = sup M -1/2 (q) , q ∈ B(u 0 , C)
With ( 48) and ( 49) we obtain that for all t ∈ [0, τ max ]

E(t + 0) -E(0 + 0) t 0 α + β M 1/2 (u(s)) u(s) 2 ds α + βC 2 t and |u(t) -u 0 | t 0 | u(s)| ds t 0 γ M 1/2 (u(s)) u(s) ds γ Ct.
Then, the continuity of u on [0, τ ] and the right continuity of E(• + 0) on [0, τ ) imply that τ max min(τ, τ (C)) where τ (C) is defined by Let u h and v h be the approximate positions and velocities defined by (19) and (20). Then, there exists a subsequence (u

τ (C) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ min 1 γ , C 2 -2E(0 + 0) 2(α + βC 2 ) if α = 0 or β = 0,
h i , v h i ) i∈N , τ ∈ [min(τ (C), T ), T ] and (u, v) ∈ C 0 ([0, τ ]; R d ) × BV (0, τ ; R d ) such that u h i → u strongly in C 0 [0, τ ]; R d , v h i → v pointwise in [0, τ ], with u(t) = u 0 + t 0 v(s) ds ∀t ∈ [0, τ ]
and u is a solution of problem (P) on [0, τ ].

Proof. Let C > v 0 M(u 0 ) . We define B = B(u 0 , C + 1) and B 0 , λ min , λ max by ( 9) and [START_REF] Paoli | Continuous dependence on data for problems[END_REF], respectively. Let us choose C 0 such that

C 0 > λ max λ min C * 0 with C * 0 = max 2 λ max λ min (|v 0 | + 1) , C C = (C + 1) sup M -1/2 (q) ; q ∈ B(u 0 , C + 1)
and let C F be defined by [START_REF] Paoli | An existence result for non-smooth vibro-impact problems[END_REF].

Then, from Theorem 1, we know that there exists h * 0 ∈ (0, h * ] and τ 0 > 0, depending only on B, C 0 , C * 0 and the data, such that

|V n | = U n+1 -U n h C 0 ∀nh ∈ [0, min(τ 0 , T )] , ∀h ∈ (0, h * 0 ]. (50) 
Moreover, from Proposition 2, we know also that, for all t 0h ∈ [0, T ) and for all

( Û 0 , Û 1 ) ∈ (B ∩ K ) × K such that Û 1 -Û 0 hC * 0 ∀h ∈ (0, h * 0 ]
the approximate positions defined by

Û n+1 ∈ Argmin Z ∈K Ŵ n -Z M( Û n ) with Ŵ n = 2 Û n -Û n-1 + h 2 Fn , Fn = F t 0h + nh, Û n , Û n -Û n-1 h , h for all n ∈ {1, . . . , T -t 0h h } and for all h ∈ (0, h * 0 ], satisfy Û n+1 -Û n h C 0 ∀nh ∈ [0, min(τ 0 , T -t 0h )] , ∀h ∈ (0, h * 0 ].
Let τ (h) = m(h)h be the maximal discrete time step such that estimate (50) holds, that is, for all h ∈ (0, h

* 0 ] m(h) = max n ∈ {0, . . . , T / h }; |V k | C 0 ∀k ∈ {0, . . . , n} .
We define τ 1 = lim inf h→0 τ (h) = lim inf h→0 m(h)h. Theorem 1 implies that τ 1 τ = min(τ 0 , T ). Let us now distinguish two subcases.

Case 1: τ (C) < T . Let us prove that τ 1 > τ(C) = min(τ (C), T ). Indeed, assume that τ 1 τ (C) and let ε ∈ (0, τ /8). Then, there exists a subsequence (h i ) i∈N , decreasing to zero, such that (τ (h i )) i∈N converges to τ 1 and there exists h * ε ∈ (0, min(h * 0 , τ /8)] such that m(h i )h i τ 1 -ε for all h i ∈ (0, h * ε ]. We may apply theorem 2 with h * 0 := h * ε and τ 0 := τ 1 -ε; we infer that there exists a subsequence, still denoted (h i ) i∈N , such that (u h i , v h i ) i∈N converges to a solution of problem (P) on [0, τ 1 -ε]. Thus, with Proposition 6 we get

|u(t) -u 0 | C ∀t ∈ [0, τ 1 -ε], u(t) M(u(t)) C dt almost everywhere on [0, τ 1 -ε].
Now we prove that: Lemma 6. We have lim sup

h i →0 + sup V n M(U n ) , 0 nh i τ 1 -ε ess sup u(t) M(u(t)) , 0 t τ 1 -ε .
Proof. Let us prove this result by contradiction. Assume that lim sup

h i →0 + sup V n M(U n ) , 0 nh i τ 1 -ε > S
with S = ess sup u(t) M(u(t)) , 0 t τ 1 -ε . Then, there exist γ > 0, h * ε ∈ (0, h * ε ] and a subsequence (h ϕ(i) ) i∈N decreasing to zero such that sup

V n M(U n ) , 0 nh ϕ(i) τ 1 -ε S + γ ∀h ϕ(i) ∈ (0, h * ε ].
It follows that there exists n ϕ(i) ∈ 0, . . . , (τ 1 -ε)/ h ϕ(i) such that

V n ϕ(i) M(U n ϕ(i) ) S + γ ∀h ϕ(i) ∈ (0, h * ε ].
Possibly extracting another subsequence, still denoted (h ϕ(i) ) i∈N , we may assume without loss of generality that the sequence

(n ϕ(i) h ϕ(i) ) i∈N converges to a limit τ ∈ [0, τ 1 -ε].
First, we observe that τ > 0. Indeed, with the same computations as in Proposition 2 (see ( 13)), we obtain that, for all h i ∈ (0, h * ε ] and for all nh

i ∈ [0, τ 1 -ε] V n M(U n ) V n-1 M(U n-1 ) + C 2 h i V 0 M(U 0 ) + C 2 nh i (51) with C 2 = λ max,B 1 C F + L M 1/2 C 2 0 + 3L f 2m B 1 λ max,B 1 λ min,B 1 νC * ,B 1 C 2 0 , B 1 = B(u 0 , C 0 T + 1)
and λ max,B 1 , λ min,B 1 given by [START_REF] Paoli | A numerical scheme for impact problems I and II[END_REF].

Thus, for all h

ϕ(i) ∈ (0, h * ε ] S + γ V n ϕ(i) M(U n ϕ(i) ) v h ϕ(i) (0) M(u 0 ) + C 2 n ϕ(i) h ϕ(i)
and at the limit when i tends to +∞, we get

S + γ v(0) M(u 0 ) + C 2 τ = v 0 M(u 0 ) + C 2 τ .
On the other hand, the right continuity of u(• + 0) M(u) implies that, for all ρ > 0, there exists τ ρ ∈ (0, τ 1 -ε] such that, for all t ∈ [0, τ ρ ] u(t + 0) M(u(t)) -u(0 + 0) M(u 0 ) ρ.

It follows that

u(0 + 0) M(u 0 ) -ρ = v 0 M(u 0 ) -ρ u(t) M(u(t)) almost everywhere on [0, τ ρ ],
and thus

v 0 M(u 0 ) -ρ S ∀ρ > 0.
Hence v 0 M(u 0 ) S and τ > 0.

Then, once again using the estimate (51), we obtain

S + γ V n ϕ(i) M(U n ϕ(i) ) V n ϕ(i) -p M(U n ϕ(i) -p ) + C 2 ph ϕ(i) for all p ∈ {0, . . . , n ϕ(i) }, for all h ϕ(i) ∈ (0, h * ε ]. It follows that S + γ 2 V k M(U k ) for all kh ϕ(i) ∈ [max(0, n ϕ(i) h ϕ(i) -γ 2C 2 ), n ϕ(i) h ϕ(i) ]. Moreover, for all t ∈ [kh ϕ(i) , (k + 1)h ϕ(i) ), v h ϕ(i) (t) M(U k ) -v h ϕ(i) (t) M(u h ϕ(i) (t)) L M 1/2 U k -u h ϕ(i) (t) C 0 L M 1/2 C 2 0 h ϕ(i) . Since (n ϕ(i) h ϕ(i)
) i∈N converges to τ > 0, we infer that there exists an interval I ⊂ [0, τ 1 -ε] with a non-empty interior, such that

I ⊂ max 0, (n ϕ(i) + 1)h ϕ(i) - γ 2C 2 , n ϕ(i) h ϕ(i)
and

S + γ 4 v h ϕ(i) (t) M(u h ϕ(i) (t)) ∀t ∈ I
for all h ϕ(i) small enough. Then, passing to the limit as i tends to +∞, we obtain 

S + γ 4 v(t) M(u(t)) ∀t ∈ I But v(t) = u(t)
U n ∈ B(u 0 , C + 1), V n M(U n ) C + 1 ∀nh i ∈ [0, τ 1 -ε], ∀h i ∈ (0, h * ε ].
It follows that

|V n | (C + 1) sup M -1/2 (q) ; q ∈ B(u 0 , C + 1) = C C * 0 < C 0 .
We choose now l(h i ) ∈ {0, . . . , T / h } such that

l(h i )h i ∈ τ 1 - τ 2 , τ 1 - τ 4 ∀h i ∈ (0, h * ε ]
and let

Û 0 = U l(h i ) , Û 1 = U l(h i )+1 , t 0h i = l(h i )h i .
We have

| Û 1 -Û 0 | = h i V l(h i ) C * 0 h i and Û 0 , Û 1 belong to B ∩ K for all h i ∈ (0, h * ε ]. Then, for all n ∈ {l(h i ), . . . , T h i }, U n = Û n-l(h i )
and with Proposition 2, we obtain

|V n | = Û n-l(h i )+1 -Û n-l(h i ) h i C 0 for all (n -l(h i ))h i ∈ [0, min(τ 0 , T -l(h i )h i )], for all h i ∈ (0, h * ε ]. Hence m(h i )h i > l(h i )h i + min (τ 0 , T -l(h i )h i ) -h i = min (l(h i )h i + τ 0 , T ) -h i for all h i ∈ (0, h * ε ]. But l(h i )h i τ 1 - τ 2 and τ = min(τ 0 , T ) = τ 0 , so m(h i )h i min τ 1 + τ 2 , T -h i ∀h i ∈ (0, h * ε ]
and, at the limit, we get

τ 1 = lim h i →0 m(h i )h i min τ 1 + τ 2 , T which is absurd. Thus τ 1 = lim h i →0 m(h i )h i > τ(C) and there exists h * 0 ∈ (0, h * 0 ] such that m(h i )h i = τ (h i ) τ 1 - τ 1 -τ (C) 2 = τ 1 + τ (C) 2 > τ(C) ∀h i ∈ (0, h * 0 ].
Then we apply Theorem 2 with τ 0 replaced by τ = τ 1 +τ (C) 2 and h * 0 by h * 0 , which yields the announced result. Since m(h)h = τ (h) T , we have τ 1 T . We consider once again ε ∈ (0, τ /8), and we define as previously h * ε and l(h i ) for all h i ∈ (0, h * ε ]. Then, we have again

m(h i )h i > l(h i )h i + min (τ 0 , T -l(h i )h i ) -h i min τ 1 + τ 2 , T -h i (52)
for all h i ∈ (0, h * ε ]. Thus, if τ 1 < T , min(τ 1 + τ 2 , T ) ∈ (τ 1 , T ] and (52) yields a contradiction with the definition of τ 1 = lim h i →0 m(h i )h i . We infer that τ 1 = T and (52) implies that m(h i )h i > Th i , that is, m(h i )

T / h i for all h i ∈ (0, h * ε ]. Hence, we may apply Theorem 2 to obtain the convergence of a subsequence of (u h i , v h i ) i∈N , still denoted (u h i , v h i ) i∈N , to a solution of problem (P) on [0, T ].

Appendix

Lemma 7. For all compact subset B of R d , there exist m B > 0 and r B > 0 such that for all q ∈ K ∩ B and for all α ∈ J (q) we have |M -1/2 (q )∇ f α (q )| m B ∀q ∈ B(q, r B ).

Furthermore, for all q ∈ K ∩ B, the family (e α (q)) α∈J (q) is linearly independent and can be completed as a basis (v j (q)) 1 j d . Let us denote by (w j (q)) 1 j d the dual basis. Then there exists C * ,B > 0 such that v j (q) = 1, w j (q) C * ,B ∀ j ∈ {1, . . . , d}, ∀q ∈ K ∩ B.

Proof. Let B be a given compact subset of R d . For all α ∈ {1, . . . , ν} we define

B α = B ∩ {q ∈ R d ; f α (q) 0} ∩ K .
Then B α is also a compact subset of R d and, for all q ∈ B α , we have f α (q) = 0. Hence, with (H2)

∇ f α (q) = 0 ∀q ∈ B α , ∀α ∈ {1, . . . , ν}.

It follows that there exists m α > 0 such that

m α = inf q∈B α M -1/2 (q)∇ f α (q) .
By continuity of the mappings M -1/2 and ∇ f α , we infer that ∀q ∈ B α , ∃ρ q > 0 / M -1/2 (q )∇ f α (q ) m α 2 ∀q ∈ B q, ρ q .

Since B α is compact and B α ⊂ q∈B α B(q, ρ q

2 ), there exists a finite set of points {q 1 , . . . , q p } ∈ B p α such that B α = p i=1 B(q i , ρ q i 2 ).

By defining ρ α = min 1 i p ρ q i 2 we obtain that ∀q ∈ B α , M -1/2 (q )∇ f α (q ) m α 2 ∀q ∈ B (q, ρ α ) .

Finally, with

m B = min 1 α ν m α 2 , r B = min 1 α ν ρ α ,
we get the first part of the announced result. As a consequence, for all q ∈ K ∩ B, we can define v α (q ) = M -1/2 (q )∇ f α (q ) M -1/2 (q )∇ f α (q ) ∀q ∈ B (q, r B ) , ∀α ∈ J (q).

Let q ∈ K ∩ B be given. From assumption (H3) we infer that (e α (q)) α∈J (q) is linearly independent, and there exists a family of vectors (e β ) β∈{1,...,d}\J (q) such that |e β | = 1 for all β ∈ {1, . . . , d} \ J (q) and {e α (q); α ∈ J (q)} ∪ {e β ; β ∈ {1, . . . , d} \ J (q)} is a basis of R d .

Let us now define the mappings v β , β ∈ {1, . . . , d} \ J (q), by v β (q ) = e β ∀q ∈ B (q, r B ) .

The mappings v j , j ∈ {1, . . . , d}, are continuous on B(q, r B ) and there exists r q ∈ (0, r B ] such that (v j (q )) 1 j d is a basis of R d for all q ∈ B(q, r q ). Moreover, using the continuity of the mappings f α , α ∈ {1, . . . , ν}, and possibly decreasing r q , we also have J (q ) ⊂ J (q) ∀q ∈ B(q, r q ).

It follows that v α (q ) = e α (q ) ∀α ∈ J (q ), ∀q ∈ B(q, r q ) ∩ K .

Let us denote by (w j (q )) 1 j d the dual basis of (v j (q )) 1 j d for all q ∈ B(q, r q ). Then, the mappings w j , j ∈ {1, . . . , d}, are continuous on B(q, r q ). Indeed, let (δ j ) 1 j d be the canonical basis of R d and define (a i j (q )) 1 i, j d and (b i j (q )) 1 i, j d as the coordinates of v i (q ) and w i (q ), 1 i d, in the canonical basis (δ j ) 1 j d . That is, v i (q ) = d j=1 a i j (q )δ j , w i (q ) = d j=1 b i j (q )δ j ∀i ∈ {1, . . . , d}.

We denote by A(q ) = (A i j (q ) = a i j (q )) 1 i, j d and B(q ) = (B i j (q ) = b ji (q )) 1 i, j d . Then, by the definition of dual bases, we have ∀(i, j) ∈ {1, . . . , d} 2 v i (q ), w j (q ) = d k=1 a ik (q )b jk (q ) = 1 if i = j, 0 otherwise, and thus A(q )B(q ) = Id R d . We infer that B(q ) = A -1 (q ). But, the mapping

I : G L(R d ) → G L(R d ) Q → Q -1
is continuous, and the mapping q → A(q ) is continuous on B(q, r q ) with values in G L(R d ). It follows that q → B(q ) is also continuous on B(q, r q ) and we infer that the mappings w j , j ∈ {1, . . . , d}, (which are the columns of B) are also continuous on B(q, r q ). It follows that we can define C * ,q = max w j (q ) ; q ∈ B(q, r q ) . Now, using the compactness of K ∩ B, we infer that there exists a finite set of points (q k ) 1 k such that q k ∈ K ∩ B for all k ∈ {1, . . . , } and

K ∩ B ⊂ k=1 B q k , r q k .
Then, the conclusion follows with C * ,B = max 1 k C * ,q k .

Lemma 8. Let us recall the definition of T K (q):

T K (q) = w ∈ R d ; (∇ f α (q), w) 0 ∀α ∈ J (q) ∀q ∈ R d with J (q) = α ∈ {1, . . . , ν}; f α (q) 0 .

Then for all q 0 ∈ K , there exist δ > 0, r > 0 and a ∈ R d such that, for all q ∈ B(q 0 , 2δ):

B(a, r ) ⊂ T K (q). (53)

Proof. Let q 0 be in K . Since the functions ( f α ) α=1,...,ν are continuous, we infer that there exists δ 1 > 0 such that, for all α ∈ J (q 0 ), we have

f α (q) > 0 if |q -q 0 | δ 1 .
It follows that J (q) ⊂ J (q 0 ) for all q ∈ B(q 0 , δ 1 ).

Consequently, if J (q 0 ) = ∅, we have J (q) = ∅ for all q ∈ B(q 0 , δ 1 ) and ( 53) is satisfied for δ = δ 1 /2 and for all a ∈ R d and r > 0.

Let us assume now that J (q 0 ) = ∅. For all α ∈ J (q 0 ) we define φ α : R d ×R d → R by φ α (q, y) = (∇ f α (q), y) ∀(q, y) ∈ R d × R d and φ : R d × R d → R by φ(q, y) = min α∈J (q 0 ) φ α (q, y) ∀(q, y) ∈ R d × R d .

Since f α ∈ C 1 (R d ) for all α ∈ {1, . . . , ν}, we obtain that the mappings are continuous. Moreover, since (∇ f α (q 0 )) α∈J (q 0 ) is linearly independent, we can define a basis (ξ i ) 1 i d of R d such that ξ α = ∇ f α (q 0 ) ∀α ∈ J (q 0 ).

Let us denote by (ζ i ) 1 i d the dual basis of (ξ i ) 1 i d and let a = α∈J (q 0 ) ζ α .

Then, for all α ∈ J (q 0 ), we have

φ α (q 0 , a) = (∇ f α (q 0 ), a) = ⎛ ⎝ ξ α , β∈J (q 0 ) ζ β ⎞ ⎠ = 1
and φ(q 0 , a) = 1. By continuity, it follows that there exist r > 0 and δ 2 > 0 such that φ(q, y) > 0 ∀(q, y) ∈ B(q 0 , δ 2 ) × B(a, r ).

Let δ = 1 2 min(δ 1 , δ 2 ). For all q ∈ B(q 0 , 2δ) we have J (q) ⊂ J (q 0 ), φ(q, y) = min α∈J (q 0 ) (∇ f α (q), y) > 0 ∀y ∈ B(a, r ) which implies that B(a, r ) ⊂ T K (q) = y ∈ R d ; (∇ f α (q), y) 0 ∀α ∈ J (q) and (53) is satisfied.

2 C 2

 22 dt almost everywhere on [0, τ max ].

1 γTheorem 3 .

 13 if α = 0 and β = 0. Now we can prove that Let C > v 0 M(u 0 ) and τ (C) > 0 such that, for any solution u of problem (P) defined on [0, τ ] (with τ ∈ (0, T ]), we have|u(t)u 0 | C ∀t ∈ [0, min(τ (C), τ )] ,u(t) M(u(t)) C dt almost everywhere on [0, min(τ (C), τ )].

Case 2 :

 2 τ (C) T .

  1/2 and M -1/2 are of class C 1 on R d , they are Lipschitz continuous on B 0 ∪ B 1 and we denote by L M , L M -1 , L M 1/2 and L M -1/2 the corresponding Lipschitz constants.

			Moreover,
	the functions ∇ f α , 1	α	ν, are locally Lipschitzian and there exists also a
	positive real number L f such that

  )) dμ almost everywhere on [0, τ ] where dμ = |d u| + dt and v μ and t μ are, respectively, the densities of d u and dt with respect to μ. Thus

	Since u(t + 0) = u(t -0) ∈ (T K (u(t))) ∩ (-T K (u(t))) for all t ∈ (t 1 , t 2 ] \ D, the
	last term vanishes and we get	
	E(t 2 + 0) -E(t 1 + 0) =	1 2	t 2 t 1	( u(t), (d M (u(t)) u(t)) u(t)) dt
			+	(t 1 ,t 2 ]\D	g(t, u, u), u+ t μ dμ
	(t 1 ,t 2 ]\D	d u, M(u) u+ =	(t 1 ,t 2 ]\D	g(t, u, u), u+ t μ dμ
				+	(t 1 ,t 2 ]\D	M(u)v μ -g(t, u, u)t μ , u+ dμ.
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