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ABSTRACT

This paper addresses the problem of super-resolution (SR) for med-

ical ultrasound (US) images. Contrary to device-based approaches,

we investigate a post-processing method to invert the direct linear

model of US image formation. Given the ill-posedness of single

image SR, we proposed an ℓp-norm (1 ≤ p ≤ 2) regularizer for

the US tissue reflectivity function/image to be estimated. To solve

the associated optimization problem, we propose a novel way to ex-

plore the decimation and blurring operators simultaneously. As a

consequence, we are able to compute the analytical solution for the

ℓ2-norm regularized SR problem and to embed the analytical solu-

tion to an alternating direction method of multipliers for the ℓp-norm

regularized SR problem. The behavior of the proposed algorithm is

illustrated using synthetic, simulated and in vivo US data.

Index Terms— Ultrasound, single image super-resolution, cir-

culant matrix, ADMM, ℓp-norm regularization.

1. INTRODUCTION

Medical ultrasound imaging (USI) has been widely used for clinical

diagnosis, especially for soft tissue applications including cardiovas-

cular medicine and obstetrics [1]. USI has many advantages com-

pared to other medical imaging modalities such as X-ray computed

tomography and magnetic resonance imaging including its harmless,

cost-effective, portable and noninvasive properties. However, US

images suffer from a relatively low contrast, reduced spatial resolu-

tion and low signal-to-noise ratio. Even though advances in ultra-

sonic hardware have improved the resolution of US images during

the last 15-20 years, e.g., [1, 2], post-processing techniques enhanc-

ing US image resolution are still appealing due to the physical limi-

tations of device-based solutions. In an ultrasound system, there are

Fig. 1. Relationship between different US image modes.

basically three image modes available for analysis, including radio-
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frequency (RF) data, in phase/quadrature (IQ) data and B-mode im-

age (also called displayed image) [3], whose relationships are shown

in Fig. 1. In this work, we focus on the complex IQ data. Due

to the linearity of the demodulation process, the convolution model

classically used for RF data can be used to describe the IQ image

formation [4]. This model is defined as

y = SHx+ n (1)

where the vector y ∈ C
Nl×1 (Nl = ml × nl) is the observa-

tion and x ∈ C
Nh×1 (Nh = mh × nh) is the vectorized tis-

sue reflectivity function (TRF), i.e., the image to be estimated, with

Nh > Nl. These vectors are obtained by stacking the corresponding

images into column vectors using a lexicographic order. The vector

n ∈ C
Nl×1 is classically supposed to be an independent identically

distributed (i.i.d.) additive white Gaussian noise (AWGN). The ma-

trices S ∈ R
Nl×Nh and H ∈ C

Nh×Nh are associated with the deci-

mation and blurring/convolution operators. More specifically, H is a

block circulant matrix with circulant blocks (BCCB) corresponding

to cyclic convolution boundaries, and left multiplying by S corre-

sponds to down-sampling with an integer factor d (d = dr×dc), with

the relationships Nh = Nl × d, mh = ml × dr and nh = nl × dc.

The US image super-resolution (SR) problem consists of esti-

mating the TRF vector x from the observation vector y, which re-

quires additional prior information to regularize this well-known ill-

posed problem. An ℓ2-norm regularized method is known to produce

over-smoothed results, the TV regularized method produces piece-

wise smoothing results, whereas the ℓ1-norm regularizer can be used

when the solution is known to be sparse [5]. In this paper, we con-

sider an ℓp-norm regularizer with 1 ≤ p ≤ 2 for the TRF x, which

obviously generalizes the ℓ1-norm and ℓ2-norm regularizers [6, 7].

The single image SR problem was solved in [8] with the alternat-

ing direction method of multipliers (ADMM) by separating the SR

problem into up-sampling and deconvolution steps that can be solved

efficiently and iteratively. First order gradient-based algorithms were

also investigated for the image SR problem in [9]. However, these

algorithms assume that the function to be optimized is differentiable,

which limits their applications. In this paper, we propose to handle

the decimation and blurring matrices simultaneously by exploring

their specific properties in the Fourier domain [10]. Note that simi-

lar properties were mentioned in [11, 12] in different contexts.

2. PROPOSED SUPER-RESOLUTION ALGORITHM

2.1. Problem formulation

Similar to the traditional image reconstruction problems, accounting

for the AWGN and the prior information for the TRF, we consider



the following optimization problem

min
x

1

2
‖y − SHx‖22 + τ‖x‖pp (2)

where ‖x‖p = p
√
|x1|p + · · · |xNh

|p is the ℓp-norm and τ is the

regularization parameter balancing the weights of the data fidelity

and regularization terms. Under the cyclic boundary assumption, the

blurring matrix H is diagonalizable in the Fourier domain leading to

H = F
H
ΛF and H

H = F
H
Λ

H
F (3)

where F/FH are the Fourier and inverse Fourier transform operators

and Λ = diag{Fh}, where h is the first column of the matrix H.

2.2. Estimation of the TRF x

As mentioned in the introduction, we propose to handle the deci-

mation and blurring matrices simultaneously by taking into account

the properties of the decimation matrix in the Fourier domain. More

precisely, the following result can be obtained [12]

FSF
H =

1

d
Jd ⊗ INl

(4)

where Jd ∈ R
d×d is a matrix of ones, INl

∈ R
Nl×Nl is the identity

matrix, S = SHS and ⊗ is the Kronecker product. Using (4), an

analytical solution to (2) for p = 2 is

x = (HH
S
H
SH+ 2τINh

)−1
r

= F
H(ΛH

FSF
H
Λ+ 2τINh

)−1
Fr (5)

where r = HHSHy. The computation of (5) is complicated due to

the huge and non-diagonalizable matrix to be inverted. The existing

methods to solve this problem include iterative optimization [8] and

sampling [13] methods that are still computationally intensive. The

main contribution of this paper is the derivation of the analytical

solution (5) (i.e., the solution of (2) for p = 2) presented in Theorem

1.

Theorem 1. The solution of (5) can be computed as

x̂ =
1

2τ
r−

1

2τ
F

H
Λ

H
(

2τdINl
+ΛΛ

H
)−1

ΛFr (6)

where Λ = (INl
, · · · , INl

︸ ︷︷ ︸

d

)Λ ∈ C
Nl×Nh .

Proof. Use the Woodbury inversion lemma, see [10] for more details

of the proof.

Moreover, the analytical solution (6) can be embedded into an

ADMM framework for 1 6 p < 2. Precisely, by introducing an

additional variable u = x, (2) can be rewritten as

minx,u
1

2
‖y − SHx‖22 + τ‖u‖pp

subject to u = x. (7)

The augmented Lagrangian function associated with (7) is

L(x,u,λ) =
1

2
‖y−SHx‖22+ τ‖u‖pp+λ

T (x−u)+
µ

2
‖x−u‖22

or equivalently

L(x,u,d) =
1

2
‖y − SHx‖22 + τ‖u‖pp +

µ

2
‖x− u+ d‖22 (8)

where d = (1/µ)λ is the scaled dual variable with µ > 0. Then,

the problem (8) can be solved iteratively as

For k = 0, . . .





xk+1 ∈ argminx

1

2
‖y − SHx‖22 +

µ

2
‖x− uk + dk‖

2
2

uk+1 ∈ argminu τ‖u‖pp + µ

2
‖xk+1 − u+ dk‖

2
2

dk+1 = dk + (xk+1 − uk+1)
(9)

The optimization problems w.r.t. x and u involved in (9) are detailed

below

• Update x: The analytical solution of the MAP estimator of x

can be calculated as follows

xk+1 = (HH
S
H
SH+ µINh

)−1
r1

= F
H(ΛH

FSF
H
Λ+ µINh

)−1
Fr1 (10)

where r1 = HHSHy + µ(uk − dk). Theorem 1 can be

finally used to compute the solution (10).

• Update u: The MAP estimator of u can be calculated with the

following proximal operator since u is pixel-wise decoupled

[14]

prox|·|p(ν) = argmin
u

τ |u|p +
µ

2
|ν − u|2 (11)

where ν is an element from the vector ν = xk+1 +dk. Note

that when p belongs to {1, 4/3, 3/2, 2}, the analytical solu-

tion of the proximal operator (11) can be found in [14].

2.3. Proposed algorithm

The SR algorithm resulting from the previous derivations is summa-

rized in Algo. 1. Note that the regularization parameters used in this

paper have been adjusted manually by cross-validation.

Algorithm 1: fast SR algorithm for US images

1 Set k = 0, choose µ > 0, τ > 0, x0, d0;

2 Repeat

// 1) Update x using (10)

3 r1 = HHSHy + µ(uk − dk);
4 Λ← Dec (H);

5 Λ← ΛΛH ;

6 xf ←
(

ΛH
(
µdINl

+ΛΛH
)−1

Λ
)

Fr1 ;

7 xk+1 ←
1

µ
r1 −

1

µ
FHxf ;

// 2) Update u using the proximal

operator

8 ν = xk+1 + dk ;

9 uk+1 = prox|·|p(ν);

// 3) Update the dual variables d

10 dk+1 = dk + (xk+1 − uk+1);
11 k ← k + 1
12 until stopping criterion is satisfied.

3. SIMULATION RESULTS

In this section, we evaluate the proposed algorithm on synthetic data,

simulated and in vivo US images. The performance of the algorithms

is assessed using the resolution gain (RG), whose definition is the ra-

tio of the normalized auto-correlation (higher than 3 dB) of the inter-

polation of the observed US data to the normalized auto-correlation

(higher than 3 dB) of the restored TRF. Note that RG is widely used

in US image reconstruction problems [5, 15].



3.1. Synthetic data

We first tested the proposed algorithm on synthetic data, as shown in

Fig. 2 (a)-(b). The synthetic sparse data (isolated Diracs) was con-

volved by a PSF represented by a Gaussian function modulated by a

3.4 MHz cosine sampled at a rate of 20 MHz. Note that the obser-

vations have been scaled for better visualization in this paper (i.e.,

the LR images contain d times fewer pixels than the corresponding

HR images). In this group of experiments, we studied the efficiency

of the ℓp-norm regularizer for p ∈ {1, 4/3, 3/2, 2}. The regulariza-

tion parameter τ was set to 0.001 and the decimation factors were

dr = dc = 2. The restored images and the numerical RG results

are reported in Fig. 2 (c)-(f). As illustrated in Fig. 2, the smaller the

value of p is, the higher RG we can obtain. The results are coherent

since the ℓ1-norm regularized problem favors a sparse solution.
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Fig. 2. Synthetic data and SR results with the proposed method with

ℓp-norm regularization terms.

3.2. Simulated US image

This section evaluates the performance of the proposed algorithm on

simulated images of size 78 × 88, as shown in Fig. 3 (a)-(c). The

observation (Fig. 3 (a)) has been generated from the decimation of

the convolution between a TRF of size 156 × 196 (Fig. 3 (c)) and

a standard US PSF with decimation factors dr = dc = 2. The

regularization parameter is τ = 0.0001. The restored images using

ℓp-norm regularization terms with the proposed algorithm are shown

in Fig. 3 (e)-(h). The corresponding numerical results are reported in

Table 1. Compared to the synthetic data in Section 3.1, the simulated

US image is not sparse explaining why the restored image using the

ℓp-norm regularizer with p = 4/3 outperforms the others. Thus, we

emphasize that the choice of the value of p highly depends on the

statistical properties of the TRF. Furthermore, we also show that our

method outperforms, in terms of RG, the super-resolution technique

introduced in [8] using a TV regularizer (see Fig. 3 (d)).

3.3. In vivo US image

Finally, the proposed SR algorithm was tested on in vivo US data

using ℓp-norm regularization. The image displayed in Fig. 4 (a)

is a mouse kidney image acquired with a probe of 25MHz central

frequency. We carried out SR experiments on the region located

inside the red box, shown in Fig.4 (b). The up-sampling factors were

set to dr = dc = 2. The PSF was estimated directly from the data

following [16]. Finally, the regularization parameter τ was set to

0.1 in this section. For the real data, we compared the proposed

algorithm with a classical ADMM implementation [8, 10] 1. The

restored images obtained with the proposed method are shown in

Fig. 4 (c)-(f), while the ones estimated with the classical method are

shown in Fig. 4 (g)-(j). The numerical results are reported in Table

2. According to the graphical and numerical results, the restored

images with the proposed algorithm and the classical method are

similar in terms of RG. However, the proposed algorithm needs less

CPU time and a reduced number of iterations (when compared to the

classical method) to converge.

Table 1. SR of the simulated US image

Prior ℓp RG Time (s) Iters.

p = 2 2.37 0.004 -

p = 1 9.56 1.55 317

p = 4/3 26.01 2.98 300

p = 3/2 22.63 2.20 329

TV [8] 2.24 2.70 289
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Fig. 3. Simulated US image and the SR results using ℓp-norm and

TV regularizers.

1The classical method needs to split the SR problem into deconvolution

and up-sampling problems.



Table 2. SR of the real US image

ℓp Method RG Time (s) Iters.

p = 2
Proposed 1.78 0.009 -

Classical 1.78 0.53 55

p = 1
Proposed 16.26 2.42 190

Classical 16.50 2.58 199

p = 4

3

Proposed 9.72 0.76 28

Classical 10.04 1.12 37

p = 3

2

Proposed 5.55 0.31 14

Classical 5.72 0.75 33
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Fig. 4. In vivo US image and the restored images with the proposed

and classical methods using ℓp norm regularizers.

4. CONCLUSION

This paper studied a new super-resolution algorithm for ultrasound

images. By exploring the properties of the decimation matrix in the

Fourier domain, we were able to calculate an analytical solution of

the super-resolution problem with an ℓ2-norm regularizer and were

able to embed this analytical solution into an ADMM framework

for a more general ℓp-norm regularizer (p ∈ [1, 2]). Due to the

implementation of the analytical solution, the proposed method al-

lowed to reduce the computation time comparing with the classical

method. Our results also showed that better restoration performance

can be obtained with the ℓp-norm regularizer, depending on the im-

age structure.
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