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The aim of this work is to study the existence of a periodic solutions of nth-order differential equations with delay d dt x(t)

Our approach is based on the M-boundedness of linear operators, Fourier type, B s p,q -multipliers and Besov spaces.

Introduction

Motivated by the fact that neutral functional integro-differential equations with finite delay arise in many areas of applied mathematics, this type of equations has received much attention in recent years. In particular, the problem of existence of periodic solutions, has been considered by several authors. We refer the readers to papers [ [START_REF] Arendt | Operator-valued Fourier multipliers on periodic Besov spaces and applications[END_REF], [START_REF] Bahloul | Periodic solutions of differential equations with two variable in vector-valued function space[END_REF], [START_REF] Ezzinbi | Periodic Solutions in UMD spaces for some neutral partial function differential equations[END_REF], [START_REF] Keyantuo | Periodic solutions of integro-differential equations in vector-valued function spaces[END_REF]] and the references listed therein for information on this subject. In this work, we study the existence of periodic solutions for the following integro-differential equations with delay where A : D(A) ⊆ X → X are a linear closed operators on Banach space (X, . ) and f ∈ L p (T, X) for all p ≥ 1. For r2π := 2πN ( some N ∈ N) L is in B(L p ([-r2π, 0], X); X) is the space of all bounded linear operators and xt is an element of L p ([-r2π , 0], X) which is defined as follows

xt(θ) = x(t + θ) for θ ∈ [-r2π, 0].
In [START_REF] Ezzinbi | Periodic Solutions in UMD spaces for some neutral partial function differential equations[END_REF], Bahloul et al established the existence of a periodic solution for the following partial functional differential equation.

d dt [x(t) -L(xt)] = A[x(t) -L(xt)] + G(xt) + f (t)
where A : D(A) ⊆ X → X is a linear closed operator on Banach space (X, . ) and L and G are in B(L p ([-r2π, 0], X); X).

In [START_REF] Arendt | Operator-valued Fourier multipliers on periodic Besov spaces and applications[END_REF], Arendt gave necessary and sufficient conditions for the existence of periodic solutions of the following evolution equation.

d dt x(t) = Ax(t) + f (t) for t ∈ R,
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In [START_REF] Lizama | Fourier multipliers and perodic solutions of delay equatons in Banach spaces[END_REF], C. Lizama established results on the existence of periodic solutions of Eq. (1.1) when L = 0, namely, for the following partial functional differential equation

d dt x(t) = Ax(t) + G(xt) + f (t) for t ∈ R
where (A, D(A)) is a linear operator on an UMD-space X.

In [START_REF] Hernan | Prokopczyk Periodic Solutions of abstract neutral functional differential equations[END_REF], Hernan et al, studied the existence of periodic solution for the class of linear abstract neutral functional differential equation described in the following form: 

d dt [x(t) -Bx(t -r)] = Ax(t) + G(xt) + f (t) for t ∈ R
G ∈ B(L p ([-2π, 0], X); X).
This work is organized as follows : After preliminaries in the second section, we give a main result and the conclusion.

vector-valued space and preliminaries

Let X be a Banach Space. Firstly, we denote By T the group defined as the quotient R/2πZ. There is an identification between functions on T and 2π-periodic functions on R. We consider the interval [0, 2π) as a model for T . Given 1 ≤ p < ∞, we denote by L p (T; X) the space of 2π-periodic locally p-integrable functions from R into X, with the norm:

f p := 2π 0 f (t) p dt 1/p
For f ∈ L p (T; X), we denote by f (k), k ∈ Z the k-th Fourier coefficient of f that is defined by:

F(f )(k) = f (k) = 1 2π
2π 0 e -ikt f (t)dt for k ∈ Z and t ∈ R.

For 1 ≤ p < ∞, the periodic vector-valued space is defined by. Let S(R) be the Schwartz space of all rapidly decreasing smooth functions on R. Let D(T) be the space of all infinitely differentiable functions on T equipped with the locally convex topology given by the seminorms ||f ||n = sup x∈T |f (n) (x)| for n ∈ N. Let D ′ (T; X) = L(D(T), X). In order to define Besov spaces, we consider the dyadic-like subsets of R:

I0 = {t ∈ R : |t| ≤ 2}, I k = {t ∈ R, 2 k-1 < |t| ≤ 2 k+1 } for k ∈ N. Let φ(R) be the set of all systems φ = (φ k ) k∈N ⊂ S(R) satisfying supp(φ k ) ⊂ Īk , for each k ∈ N, k∈N φ k (x) = 1. Let 1 ≤ p, q ≤ ∞, s ∈ R and (φj) j≥0 ∈ φ(R) the X-valued periodic Besov space is defined by B s p,q (T; X) = {f ∈ D ′ (T; X) : ||f ||Bs p,q := ( j≥0 2 sjq || k∈Z e k φj(k) f (k)|| q p ) 1/q < ∞}. Proposition 2.1. [14] 1) B s p,q ((0, 2π); X) is a Banach space; 2) Let s > 0. Then f ∈ B s+1
p,q ((0, 2π); X) in and only if f is differentiale and f ′ ∈ B s p,q ((0, 2π); X) 3) Let s > 0. Then f ∈ B s+j p,q ((0, 2π); X) in and only if f is differentiale four times and f (j) ∈ B s p,q ((0, 2π); X) for all j ∈ N Definition 2.1.

[14] For 1 ≤ p < ∞ , a sequence {M k } k∈Z ⊂ B(X, Y ) is a B s p,q -multiplier if for each f ∈ B s p,q (T, X), there exists u ∈ B s p,q (T, Y ) such that û(k) = M k f (k) for all k ∈ Z. Definition 2.2. [1]
The Banach space X has Fourier type r ∈]1, 2] if there exists Cr > 0 such that

||F(f )|| r ′ ≤ Cr||f ||r , f ∈ L r (R, X)
where

1 r ′ + 1 r = 1. Definition 2.3. [14] Let {M k } k∈Z ⊆ B(X, Y ) be a sequence of operators. {M k } k∈Z is M-bounded of order 1( or M- bounded) if sup k M k < ∞ and sup k k(M k+1 -M k ) < ∞ (2.1) Theorem 2.1. [1]
Let X and Y be Banach spaces having Fourier type r ∈]1, 2] and let {M k } k∈Z ⊆ B(X, Y ) be a sequence satisfying (2.1). Then for

1 ≤ p, q < ∞, s ∈ R, {M k } k∈Z is an B s p,q -multiplier. Lemma 2.2. [7]
Let L : L p (T, X) → X be a bounded linear operateur. Then

L(u.)(k) = L(e k û(k)) := L k û(k) for all k ∈ Z and {L k } k∈Z is r-bounded such that Rp((L k ) k∈Z ) ≤ (2r2π) 1/p L .

Main result

For convenience, we introduce the following notations:

a k = n + n-1 j=1 j p=1 C p j (ik) j+1-n-p i p-1 + n p=2 C p n (ik) 1-p i p-1 , C p n = p!(n-p)! n! b k = 2 n p=1 C p n (ik) -p i p + n-1 j=1 (ik) j-n + n-1 j=1 j p=0 C p j (ik) j-p-n i p + n p=1 C p n (ik) -p i p n-1 j=1 (ik) j-n c k = n p=0 C p n (ik) n-p i p n j=1 (ik) j -(ik) n n j=1 j p=0 C p j (ik) j-p i p L k (x) := L(e k x
) and e k (θ) := e ikθ , for all k ∈ Z and suppose that {L k } k∈Z is M-bounded. Definition 3.1. : Let 1 ≤ p, q < ∞ and s > 0. We say that a function x ∈ B s p,q (T; X) is a strong B s p,q -solution of (1.1) if x(t) ∈ D(A), x(t) ∈ B s+j p,q (T; X), j ∈ {1, ...n} and equation (1.1) holds for a.e t ∈ T.

We prove the following result. Lemma 3.1. : Let X be a Banach space and A be a linear closed and bounded operator. Suppose that ( n j=1 (ik

) j I -A -L k ) is bounded invertible and (ik) n ( n j=1 (ik) j I -A -L k ) -1 is bounded. Then N k = ( n j=1 (ik) j I -A -L k ) -1 k∈Z , {S k = (ik) n N k } k∈Z and {T k = L k N k } k∈Z are M-bounded.
Proof. The proof is given by several steps.

Step 1: We claim that {kb k } k∈Z is bounded.

We have

kb k = 2 n p=1 C p n (ik) -p i p + n-1 j=1 (ik) j-n + n-1 j=1 j p=0 C p j (ik) j-p-n i p + n p=1 C p n (ik) -p i p n-1 j=1 (ik) j-n = 2 n p=1 C p n (ik) 1-p i p-1 -i n-1 j=1 (ik) 1+j-n + n-1 j=1 j p=0 C p j (ik) 1+j-p-n i p-1 -i n p=1 C p n (ik) -p i p n-1 j=1 (ik) 1+j-n
is bonded because:

1 < p ⇒ n p=1 C p n (ik) 1-p i p-1 is bounded 1 + j < n ⇒ n-1 j=1 (ik) 1+j-n is bounded 1 + j < n and p ≥ 0 ⇒ n-1 j=1 j p=0 C p j (ik) 1+j-p-n i p-1 is bounded 1 + j < n and p ≥ 1 ⇒ n-1 j=1 j p=0 C p j (ik) 1+j-p-n i p-1 is bounded
Step 2: New, we claim that, for all k ∈ Z

c k = (ik) 2n b k (3.1) 
c k = n p=0 C p n (ik) n-p i p n j=1 (ik) j -(ik) n n j=1 j p=0 C p j (ik) j-p i p = [(ik) n + n p=1 C p n (ik) n-p i p ][ n-1 j=1 (ik) j + (ik) n ] -(ik) n [ n-1 j=1 j p=0 C p j (ik) j-p i p + n p=0 C p n (ik) n-p i p ] = [(ik) n + n p=1 C p n (ik) n-p i p ][ n-1 j=1 (ik) j + (ik) n ] -(ik) n [ n-1 j=1 j p=0 C p j (ik) j-p i p + n p=1 C p n (ik) n-p i p + (ik) n ] = (ik) n [ n p=1 C p n (ik) n-p i p + n-1 j=1 (ik) j + n-1 j=1 j p=0 C p j (ik) j-p i p + n p=1 C p n (ik) n-p i p ] + ( n p=1 C p n (ik) n-p i p )( n-1 j=1 (ik) j ) = (ik) 2n [2 n p=1 C p n (ik) -p i p + n-1 j=1 (ik) j-n + n-1 j=1 j p=0 C p j (ik) j-p-n i p ] + (ik) n ( n p=1 C p n (ik) -p i p )( n-1 j=1 (ik) j ) = (ik) 2n [2 n p=1 C p n (ik) -p i p + n-1 j=1 (ik) j-n + n-1 j=1 j p=0 C p j (ik) j-p-n i p ] + (ik) 2n ( n p=1 C p n (ik) -p i p )( n-1 j=1 (ik) j-n ) = (ik) 2n [2 n p=1 C p n (ik) -p i p + n-1 j=1 (ik) j-n + n-1 j=1 j p=0 C p j (ik) j-p-n i p + n p=1 C p n (ik) -p i p n-1 j=1 (ik) j-n ] = (ik) 2n b k .
Step 3: We claim that

           sup k k(N k+1 -N k ) < ∞, sup k k(S k+1 -S k ) < ∞, sup k k(T k+1 -T k ) < ∞ (3.2)
By hypothesis we have, {N k } k∈Z and {S k } k∈Z are bounded. Then We have

sup k∈Z k(N k+1 -N k ) = sup k∈Z kN k+1 [( n j=1 (ik) j I -A -L k ) -( n j=1 (i(k + 1)) j I -A -L k+1 )]N k = sup k∈Z kN k+1 [( n j=1 (ik) j I -A -L k ) -( n j=1 j p=0 C p j (ik) j-p i p I -A -L k+1 )]N k = sup k∈Z -kN k+1 [ n-1 j=1 j p=1 C p j (ik) j-p i p + n p=1 C p n (ik) n-p i p ]N k + N k+1 k(L k -L k+1 )N k = sup k∈Z -kN k+1 [ n-1 j=1 j p=1 C p j (ik) j-p i p + n p=2 C p n (ik) n-p i p + in(ik) n-1 ]N k + N k+1 k(L k -L k+1 )N k = sup k∈Z -kN k+1 [n + 1 i(ik) n-1 n-1 j=1 j p=1 C p j (ik) j-p i p + 1 i(ik) n-1 n p=2 C p n (ik) n-p i p ]i(ik) n-1 N k + N k+1 k(L k -L k+1 )N k = sup k∈Z -N k+1 [n + n-1 j=1 j p=1 C p j (ik) j+1-n-p i p-1 + n p=2 C p n (ik) 1-p i p-1 ](ik) n N k + N k+1 k(L k -L k+1 )N k = sup k∈Z -N k+1 [n + n-1 j=1 j p=1 C p j (ik) j+1-n-p i p-1 + n p=2 C p n (ik) 1-p i p-1 ]S k + N k+1 k(L k -L k+1 )N k = sup k∈Z -N k+1 a k S k + N k+1 k(L k -L k+1 )N k
We obtain:

sup k∈Z k(N k+1 -N k ) < ∞ (3.3)
On the other hand, we have

sup k∈Z k(S k+1 -S k ) = sup k∈Z k[(i(k + 1)) n N k+1 -(ik) n N k ] = sup k∈Z kN k+1 [(ik + i) n ( n j=1 (ik) j I -A -L k ) -(ik) n ( n j=1 (i(k + 1)) j I -A -L k+1 )]N k = sup k∈Z kN k+1 [(ik + i) n ( n j=1 (ik) j I -A -L k ) -(ik) n ( n j=1 (ik + i) j I -A -L k+1 )]N k = sup k∈Z kN k+1 [(ik + i) n n j=1 (ik) j I -(ik) n n j=1 (ik + i) j I -(ik + i) n (A + L k ) + (ik) n (A + L k+1 )]N k = sup k∈Z kN k+1 [ n p=0 C p n (ik) n-p i p n j=1 (ik) j I -(ik) n n j=1 j p=0 C p j (ik) j-p i p I - n p=0 C p n (ik) n-p i p (A + L k ) + (ik) n (A + L k+1 )]N k = sup k∈Z kN k+1 [c k - n p=1 C p n (ik) n-p i p (A + L k ) + (ik) n (L k+1 -L k )]N k = sup k∈Z kN k+1 [(ik) 2n b k - n p=1 C p n (ik) n-p i p (A + L k ) + (ik) n (L k+1 -L k )]N k (by (3.1)) = sup k∈Z kN k+1 (ik) 2n b k N k -kN k+1 n p=1 C p n (ik) n-p i p (A + L k )N k + N k+1 k(L k+1 -L k )S k = sup k∈Z kN k+1 (ik) n b k S k -kN k+1 n p=1 C p n (ik) -p i p (A + L k )(ik) n N k + N k+1 k(L k+1 -L k )S k = sup k∈Z ( ik ik + i ) n S k+1 kb k S k - k (ik + i) n S k+1 n p=1 C p n (ik) -p i p (A + L k )S k + N k+1 k(L k+1 -L k )S k Then sup k∈Z k(S k+1 -S k ) < ∞ Finally we have sup k∈Z k(T k+1 -T k ) = sup k∈Z (k[L k+1 N k+1 -L k N k ] = sup k∈Z k(L k+1 -L k )N k+1 + L k k(N k+1 -N k ) ≤ sup k∈Z k(L k+1 -L k )N k+1 + sup k∈Z L k k(N k+1 -N k ) ≤ sup k∈Z k(L k+1 -L k )N k+1 + sup k∈Z L k sup k∈Z k(N k+1 -N k )
Then by (3.3) we have

sup k∈Z k(T k+1 -T k ) < ∞ so, (N k ) k∈Z , (S k ) k∈Z and (T k ) k∈Z are M-bounded.
Theorem 3.2. Let 1 ≤ p, q < ∞ and s > 0. Let X be a Banach space having Fourier type r ∈]1, 2] and A be a linear closed and bounded operator. If Suppose that ( n j=1 (ik) j I -A -L k ) is bounded invertible and (ik) n ( n j=1 (ik) j I -A -L k ) -1 is bounded. Then for every f ∈ B s p,q (T, X) there exist a unique strong B s p,q -solution of (1.1).

Proof.

Define P k = n j=1 (ik) j N k = (1 + n-1 j=1 (ik) j-n )S k for k ∈ Z.
Since by Lemma(3.1), (N k ) k∈Z , (S k ) k∈Z , (T k ) k∈Z and (P k ) k∈Z are M-bounded, we have by Theorem 2.1 that (N k ) k∈Z , (P k ) k∈Z and (T k ) k∈Z are an B s p,q -multipliers. Since P

k -AN k -L k N k = I (because (( n j=1 (ik) j I -A - L k )N k = I),
we deduce AN k is also an B s p,q -multiplicateur. Now let f ∈ B s p,q (T, X). Then there exist u, v, w, x ∈ B s p,q (T, X), such that û For the uniqueness we suppose two solutions u1 and u2, then u = u1 -u2 is strong L p -solution of equation (1.1) corresponding to the function f = 0, taking Fourier transform, we get ( n j=1 (ik) j I -A -L k )û(k) = 0, which implies that û(k) = 0 for all k ∈ Z and u(t) = 0. Then u1 = u2. The proof is completed.

(k) = N k f (k), v(k) = P k f (k), ŵ(k) = AN k f (k) and x(k) = T k f (k) for all k ∈ Z. So, We have û(k) ∈ D(A) and Aû(k) = ŵ(k) for all k ∈ Z,

Conclusion

We are obtained necessary and sufficient conditions to guarantee existence and uniqueness of periodic solutions to the equation 
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 3 dt 3 x(t) + ... + d n dt n x(t) = Ax(t) + L(xt) + f (t),(1.1)

  where A : D(A) → X and B : D(B) → X are closed linear operator such that D(A) ⊂ D(B) and

  we deduce that u(t) ∈ D(A). On the other hand ∃v ∈ B s p,q (T, X) such that v(k) = P k f (k) = n j=1 (ik) j N k f (k) = n j=1 (ik) j û(k). Then we obtain n j=1 d j dt j u(t) = v(t) a.e. Since u(t) ∈ B s+j p,q (T, X), j ∈ {1, ...n}. We have n j=1 d j dt j u(k) = n j=1 (ik) j û(k) and Lu.(k) = L k û(k) for all k ∈ Z, It follows from the identity n j=1 (ik) j N k -AN k -L k N k = I that n j=1 d j dt j u(t) = Au(t) + L(ut) + f (t)

  j u(t) = Au(t) + L(xt) + f (t) in terms of either the M-boundedness of the modified resolvent operator determined by the equation. Our results are obtained in the Besov space.