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Martingale driven BSDEs, PDEs and other

related deterministic problems

Adrien BARRASSO ∗ Francesco RUSSO†

July 20th 2017

Abstract. We focus on a class of BSDEs driven by a cadlag martingale
and corresponding Markov type BSDE which arise when the randomness of
the driver appears through a Markov process. To those BSDEs we associate a
deterministic problem which, when the Markov process is a Brownian diffusion,
is nothing else but a parabolic type PDE. The solution of the deterministic
problem is intended as decoupled mild solution, and it is formulated with the
help of a time-inhomogeneous semigroup.

MSC 2010 Classification. 60H30; 60H10; 35S05; 60J35; 60J60; 60J75.
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1 Introduction

Markovian backward stochastic differential equations (BSDEs) are BSDEs in
the sense of [28] involving a forward dynamics described by a Markov (often
a diffusion) process X . Those are naturally linked to a parabolic PDE, which
constitute a particular deterministic problem. In particular, under reasonable
conditions, which among others ensure well-posedness, the solutions of BSDEs
produce viscosity type solutions for the mentioned PDE. In this paper we focus
on Pseudo-PDEs which are the corresponding deterministic problems associated
to the case of a Markovian BSDE when this is driven by a cadlag martingale
and when the underlying forward process is a general Markov process. In that
case the concept of viscosity solution (based on comparison theorems) is not
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completely appropriated. For this we propose a new type of solution called
decoupled mild which extends the usual notion of mild solution which is very
familiar to the experts of PDEs. We establish an existence and uniqueness
theorem in the class of Borel functions having a certain growth condition.

In the Brownian framework, BSDEs were introduced first by E. Pardoux
and S. Peng in [28]. An interesting particular case appears when the random
dependence of the driver generally denoted by f comes through a diffusion
process X and the terminal condition only depends on XT . The solution, when
it exists, is usually indexed by the starting time s and starting point x of the
forward diffusion X = Xs,x, and it is expressed by
{

Xs,x
t = x+

∫ t

s
µ(r,Xs,x

r )dr +
∫ t

s
σ(r,Xs,x

r )dBr, t ∈ [0, T ]

Y s,xt = g(Xs,x
T ) +

∫ T

t
f (r,Xs,x

r , Y s,xr , Zs,xr ) dr −
∫ T

t
Zs,xr dBr, t ∈ [0, T ],

(1.1)
where B is a Brownian motion. In [30] and in [29] previous Markovian BSDE
was linked to the semilinear PDE
{

∂tu+ 1
2

∑

i,j≤d

(σσ⊺)i,j∂
2
xixj

u+
∑

i≤d

µi∂xi
u+ f((·, ·), u, σ∇u) = 0 on [0, T [×Rd

u(T, ·) = g.
(1.2)

In particular, if (1.2) has a classical smooth solution u then (Y s,x, Zs,x) :=
(u(·, Xs,x

· ), σ∇u(·, Xs,x
· )) solves the second line of (1.1). Conversely, only un-

der the Lipschitz type conditions on µ, σ, f, g, the solution of the BSDE can
be expressed as a function (u, v) of the forward process, i.e. (Y s,x, Zs,x) =
(u(·, Xs,x

· ), v(·, Xs,x
· )), see [19]. When f and g are continuous, u is a viscosity

solution of (1.2). In chapter 13 of [5], under some specific conditions on the
coefficients of a Brownian BSDE, one produces a solution in the sense of dis-
tributions of the parabolic PDE. Later, a first notion of mild solution of the
PDE was used in [2]. In [23] v was associated with a generalized form of σ∇u.
Excepted in the case when previous u has some minimal differentiability prop-
erties, it is difficult to say something more on v. To express v in the general
case, for instance when u is only a viscosity solution of the PDE, is not an easy
task. Some authors call this the identification problem.

In [4] the authors introduced a new kind of Markovian BSDE including a
term with jumps generated by a Poisson measure, where an underlying forward
processX solves a jump diffusion equation with Lipschitz type conditions. They
associated with it an Integro-Partial Differential Equation (in short IPDE) in
which some non-local operators are added to the classical partial differential
maps, and proved that, under some continuity and monotonicity conditions on
the coefficients, the BSDE provides a viscosity solution of the IPDE. Concerning
the study of BSDEs driven by more general martingales than Brownian motion,
we have already mentioned BSDEs driven by Poisson measures. In this re-
spect, more recently, BSDEs driven by marked point processes were introduced
in [13], see also [3]; in that case the underlying process does not contain any
diffusion term. Brownian BSDEs involving a supplementary orthogonal term
were studied in [19]. A notion of BSDE driven by a martingale also involving
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a supplementary orthogonal martingale has appeared, see for instance [10], [12]
and references therein.

In this paper, we consider a BSDE whose given data are a continuous in-
creasing process V̂ , a square integrable martingale M̂ , a terminal condition ξ
and a driver f̂ . A solution will be a couple (Y,M) verifying

Y = ξ +

∫ T

·

f̂

(

r, ·, Yr,
d〈M, M̂〉
dV̂

(r)

)

dV̂r − (MT −M·), (1.3)

where Y is cadlag adapted and M is a square integrable martingale. We show
existence and uniqueness of a solution for (1.3).

We will then be interested in a canonical Markov class (Ps,x)(s,x)∈[0,T ]×E

with time interval [0, T ] and state space E being a Polish space. This will be sup-
posed to be a solution of a martingale problem related to an operator (D(a), a)
and a non-decreasing function V , meaning that for any φ ∈ D(a), and (s, x) ∈
[0, T ] × E, M [φ]s,x := 1[s,T ]

(

φ(·, X·)− φ(s, x) −
∫ ·

s
a(φ)(r,Xr)dVr

)

is a Ps,x-
square integrable martingale. We will fix some function ψ := (ψ1, · · · , ψd) ∈
D(a)d and at Notation 5.7 we will introduce some special BSDEs driven by a
martingale which we will call Markovian type BSDEs.

Those will be indexed by some (s, x) ∈ [0, T ]×E, defined in some stochastic
basis (Ω,Fs,x, (Fs,x

t )t∈[0,T ],Ps,x) and will have the form

Y s,x = g(XT ) +

∫ T

·

f

(

r,Xr, Y
s,x
r ,

d〈M s,x,M [ψ]s,x〉
dV

(r)

)

dVr − (M s,x
T −M s,x

· ),

(1.4)
where X is the canonical process, g is a Borel function with some growth con-
dition and f is a Borel function with some growth condition with respect to the
second variable, and Lipschitz conditions with respect to the third and fourth
variables. Those Markovian BSDEs will be linked to the Pseudo-PDE

{

a(u) + f
(

·, ·, u,Γψ(u)
)

= 0 on [0, T ]× E
u(T, ·) = g,

(1.5)

where Γψ(u) := (a(uψi)− ua(ψi)− ψia(u))i∈[[1;d]], see Definition 5.3. We in-
troduce the notion of classical solution has to be an element of D(a) fulfilling
(1.5). We call Γψ the ψ-generalized gradient, due to the fact that when E = Rd,
a = ∂t +

1
2∆ and ψi : (t, x) 7−→ xi for all i ∈ [[1, d]] then Γψ(u) = ∇u. In

this particular setup, the forward Markov process is of course the Brownian
motion. In that case the space D(a) where classical solutions are defined is
C1,2([0, T ]× R

d).
We show the existence of a Borel function u in some extended domain D(a)

such that for every (s, x) ∈ [0, T ]× E, Y s,x is, on [s, T ], a Ps,x-modification of
u(·, X·). At Definition 5.9 we will introduce the notion of martingale solution for
the Pseudo-PDE (1.5). We then show that previous u is the unique martingale
solution of (1.5), which means that it solves (1.5) where the maps a and Γψ are
respectively replaced with some extended operators a and Gψ. We also show
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that previous u is the unique decoupled mild solution of the same equation. We
explain below that notion of solution which is introduced at Definition 5.14.

A Borel function u will be called decoupled mild solution if there exists anRd-valued Borel function v := (v1, · · · , vd) such that for every (s, x),


















u(s, x) = Ps,T [g](x) +
∫ T

s
Ps,r [f (·, ·, u, v) (r, ·)] (x)dVr

uψ1(s, x) = Ps,T [gψ1(T, ·)](x)−
∫ T

s
Ps,r [(v1 + ua(ψ1)− ψ1f (·, ·, u, v)) (r, ·)] (x)dVr

· · ·
uψd(s, x) = Ps,T [gψd(T, ·)](x) −

∫ T

s
Ps,r [(vd + ua(ψd)− ψdf (·, ·, u, v)) (r, ·)] (x)dVr ,

(1.6)
where P is the time-dependent transition kernel associated to the Markov class
and to the operator a, see Notation 5.12. v coincides with Gψ(u) and the couple
(u, v) will be called solution to the identification problem, see Definition 5.14.
The intuition behind this notion of solution relies to the fact that the equation
a(u) = −f(·, ·, u,Γψ(u)) can be decoupled into the system

{

a(u) = −f(·, ·, u, v)
vi = Γψi(u), i ∈ [[1; d]],

(1.7)

which may be rewritten
{

a(u) = −f(·, ·, u, v)
a(uψi) = vi + ua(ψi)− ψif(·, ·, u, v), i ∈ [[1; d]].

(1.8)

Martingale solutions were introduced in [6] and decoupled mild solutions in [7],
in relation to a specific type of Pseudo-PDE, for which v was one-dimensional
and which did not include the usual parabolic PDE related to classical BSDEs.
A first approach to classical solutions to a general deterministic problem, associ-
ated with forward BSDEs with applications to the so called Föllmer-Schweizer
decomposition was performed by [27].

The paper is organized as follows. In Section 3 we introduce an alternative
formulation (1.3) for BSDEs driven by cadlag martingales discussed in [12]: we
formulate in Theorem 3.3 existence and uniqueness for such equations. In Sec-
tion 4, we introduce a canonical Markov class and the martingale problem which
it is assumed to solve. We also define the extended domain D(a) in Definition
4.11 and the extended operator a (resp. Gψ) in Definition 4.13 (resp. Notation
4.16). In Section 5, we introduce the Pseudo-PDE (1.5) (see Definition 5.3),
the associated Markovian BSDEs (1.4), see Notation 5.7. We introduce the no-
tion of martingale solution of the Pseudo-PDE in (5.9) and of decoupled mild
solution in Definition 5.14. Propositions 5.16 and 5.17 show the equivalence
between martingale solutions and decoupled mild solutions. Proposition 5.18
states that any classical solution is a decoupled mild solution and conversely
that any decoupled mild solution belonging to D(Γψ) is a classical solution up
to what we call a zero potential set. Let (Y s,x,M s,x) denote the unique solution
of the associated BSDE (1.4), denoted by BSDEs,x(f, g). In Theorem 5.19 we
show the existence of some u ∈ D(a) such that for every (s, x) ∈ [0, T ] × E,
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Y s,x is a Ps,x-modification of u(·, X·) on [s, T ]. Theorem 5.21 states that the
function (s, x) 7−→ Y s,xs is the unique decoupled mild solution of (1.5). Propo-
sition 5.24 states that if the functions (u, v) verify (1.6), then for any (s, x), the

processes
(

u(t,Xt), u(t,Xt)− u(s, x) +
∫ t

s
f(·, ·, u, v)(r,Xr)dVr

)

t∈[s,T ]
has aPs,x-version which solves BSDEs,x(f, g) on [s, T ]. Finally in Section 6 we study

some examples of applications. In section 6.1 we deal with parabolic semi-linear
PDEs and in Section 6.2 with parabolic semi-linear PDEs with distributional
drift.

2 Preliminaries

In the whole paper we will use the following notions, notations and vocabulary.
For any integers k ≤ n, [[k;n]] will denote the set of integers i verifying k ≤ i ≤ n.
A topological space E will always be considered as a measurable space with its
Borel σ-field which shall be denoted B(E). If (F, dF ) is a metric space, C(E,F )
(respectively Cb(E,F ), B(E,F ), Bb(E,F )) will denote the set of functions from
E to F which are continuous (respectively bounded continuous, Borel, bounded
Borel). T will stand for a real interval, of type [0, T ] with T ∈ R∗

+ or R+.

On a fixed probability space (Ω,F ,P) , for any p > 0, Lp will denote the set of
random variables with finite p-th moment. A probability space equipped with
a right-continuous filtration (Ω,F , (Ft)t∈T,P) will be called called a stochas-

tic basis and will be said to fulfill the usual conditions if the probability
space is complete and if F0 contains all the P-negligible sets. We introduce now
some notations and vocabulary about spaces of stochastic processes, on a fixed
stochastic basis (Ω,F , (Ft)t∈T,P) . Most of them are taken or adapted from
[25] or [26]. We will denote V (resp V+) the set of adapted, bounded variation
(resp non-decreasing) processes vanishing at 0; Vp (resp Vp,+) the elements of
V (resp V+) which are predictable, and Vc (resp Vc,+) the elements of V (resp
V+) which are continuous; M will be the space of cadlag martingales. For
any p ∈ [1,∞], Hp will denote the Banach space of elements of M for which
‖M‖Hp := E[|sup

t∈TMt|p]
1
p < ∞ and in this set we identify indistinguishable

elements. Hp
0 will denote the Banach subspace of Hp of elements vanishing at

zero.
If T = [0, T ] for some T ∈ R∗

+, a stopping time will take values in [0, T ]∪{+∞}.
Let Y be a process and τ a stopping time, we denote by Y τ the stopped pro-

cess t 7→ Yt∧τ . If C is a set of processes, we define its localized class Cloc as the
set of processes Y such that there exist a localizing sequence (τn)n≥0 such that
for every n, the stopped process Y τn belongs to C. By localizing sequence

of stopping times we mean an increasing sequence of stopping times (τn)n≥0

such that there exists N ∈ N for which τN = +∞.
For any M,N ∈ Mloc, we denote [M,N ] their quadratic covariation and
simply [M ] if M = N and if moreover M,N ∈ H2

loc, 〈M,N〉 will denote their
(predictable) angular bracket, or simply 〈M〉 if M = N .

5



Pro will denote the σ-field generated by progressively measurable processes de-
fined on [0, T ]× Ω.

From now on, we are given T ∈ R∗
+. Until the end of Section 3, we also

fix a stochastic basis
(

Ω,F , (Ft)t∈[0,T ],P) fulfilling the usual conditions.

Definition 2.1. Let A and B be in V+. We will say that dB dominates dA in

the sense of stochastic measures (written dA ≪ dB) if for almost all ω,
dA(ω) ≪ dB(ω) as Borel measures on [0, T ].

We will say that dB and dA are mutually singular in the sense of stochastic

measures (written dA⊥dB) if for almost all ω, the Borel measures dA(ω) and
dB(ω) are mutually singular.

Let B ∈ V+. dB ⊗ dP will denote the positive measure on
(Ω× [0, T ],F ⊗ B([0, T ])) defined for any F ∈ F ⊗ B([0, T ]) by

dB⊗dP(F ) = E [∫ T0 1F (ω, r)dBr(ω)
]

. A property which holds true everywhere

except on a null set for this measure will be said to be true dB ⊗ dP almost
everywhere (a.e.).

The proposition below was the object of Proposition 3.2 in [6].

Proposition 2.2. For any A and B in Vp,+, there exists a (non-negative
dB ⊗ dP a.e.) predictable process dA

dB
and a process in Vp,+ A⊥B such that

dA⊥B⊥ dB and A = AB +A⊥B a.s.,

where AB =
∫ ·

0
dA
dB

(r)dBr . The process A⊥B is unique up to indistinguishability

and the process dA
dB

is unique dB ⊗ dP a.e.

The predictable process dA
dB

appearing in the statement of Proposition 2.2
will be called the Radon-Nikodym derivative of A by B.

If A belongs to V , we will denote by V ar(A) (resp. Pos(A), resp Neg(A))
the total (resp. positive, resp. negative) variation of A, meaning the unique pair
of elements V+ such that A = Pos(A) − Neg(A), see Proposition I.3.3 in [26]
for their existence. If A is in Vp, and B ∈ Vp,+. We set dA

dB
:= dPos(A)

dB
− dNeg(A)

dB

and A⊥B := Pos(A)⊥B −Neg(A)⊥B.
Below we restate Proposition 3.4 in [6].

Proposition 2.3. Let A1 and A2 be in Vp, and B ∈ Vp,+. Then,
d(A1+A2)

dB
= dA1

dB
+ dA2

dB
dB ⊗ dP a.e. and (A1 +A2)

⊥B = A⊥B
1 +A⊥B

2 .

The following lemma was the object of Lemma 5.12 in [6].

Lemma 2.4. Let V be a non-decreasing function. If two measurable processes
are P-modifications of each other, then they are also equal dV ⊗ dP a.e.
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3 An alternative formulation of BSDEs driven by

a cadlag martingale

We are now going to introduce here an alternative formulation for Backward
Stochastic Differential Equations driven by a general cadlag martingale investi-
gated for instance by [12].

Given some V̂ ∈ Vc,+, we will indicate by L2(dV̂ ⊗dP) the set of (up to indistin-
guishability) progressively measurable processes φ such that E[∫ T0 φ2rdV̂r ] <∞.

L2,cadlag(dV̂ ⊗dP) will denote the subspace of cadlag elements of L2(dV̂ ⊗dP).
We will now fix a bounded process V̂ ∈ Vc,+, an FT -measurable random vari-
able ξ called the final condition, a square integrable reference martingale

M̂ := (M̂1, · · · , M̂d) taking values in Rd for some d ∈ N∗, and a driver

f̂ : ([0, T ]× Ω)×R×Rd −→ R, measurable with respect to Pro⊗B(R)⊗B(Rd).
We will assume that (ξ, f̂ , M̂) verify the following hypothesis.

Hypothesis 3.1.

1. ξ ∈ L2;

2. f̂(·, ·, 0, 0) ∈ L2(dV̂ ⊗ dP);
3. There exist positive constantsKY ,KZ such that, P a.s. for all t, y, y′, z, z′,

we have

|f̂(t, ·, y, z)− f̂(t, ·, y′, z′)| ≤ KY |y − y′|+KZ‖z − z′‖; (3.1)

4. d〈M̂〉

dV̂
is bounded.

We will now formulate precisely our BSDE.

Definition 3.2. We say that a couple (Y,M) ∈ L2,cadlag(dV̂ ⊗ dP) ×H2
0 is a

solution of BSDE(ξ, f̂ , V, M̂) if it verifies

Y = ξ +

∫ T

·

f̂

(

r, ·, Yr,
d〈M, M̂〉
dV̂

(r)

)

dV̂r − (MT −M·) (3.2)

in the sense of indistinguishability.

The proof of the theorem below is very similar to the one of Theorem 3.22
in [6]. For the convenience of the reader, it is therefore postponed to Appendix
A.

Theorem 3.3. If (ξ, f̂ , V̂ , M̂) verifies Hypothesis 3.1 then BSDE(ξ, f̂ , V̂ , M̂)
has a unique solution.
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Remark 3.4. Let (ξ, f̂ , V̂ , M̂) satisfying Hypothesis 3.1. We can consider a
BSDE on a restricted interval [s, T ] for some s ∈ [0, T [. Previous discussion
and Theorem 3.3 extend easily to this case. In particular there exists a unique
couple of processes (Y s,M s), indexed by [s, T ] such that Y s is adapted, cadlag

and verifies E[∫ T
s
(Y sr )

2dV̂r] < ∞, such that M s is a martingale vanishing in

s and such that Y s = ξ +
∫ T

·
f̂
(

r, ·, Y sr , d〈M
s,M̂〉

dV̂
(r)
)

dV̂r − (M s
T −M s

· ) in the

sense of indistinguishability on [s, T ].

Moreover, if (Y,M) denotes the solution of BSDE(ξ, f̂ , V̂ , M̂) then (Y,M· −
Ms) and (Y s,M s) coincide on [s, T ]. This follows by an uniqueness argument
resulting by Theorem 3.3 on time interval [s, T ].

4 Martingale Problem and Markov classes

In this section, we introduce the Markov process which will later explain the
random dependence of the driver f̂ of our BSDE driven by a cadlag martingale.
For that reason that BSDE will be called Markovian.

For details about the exact mathematical necessary background for our
Markov process, one can consult Section C of the Appendix. That process
will be supposed to solve a martingale problem described below.

Let E be a Polish space. From now on,
(

Ω,F , (Xt)t∈[0,T ], (Ft)t∈[0,T ]

)

de-
notes the canonical space defined in Definition C.1. We consider a canonical
Markov class (Ps,x)(s,x)∈[0,T ]×E associated to a transition kernel measurable in
time as defined in Definitions C.5 and C.4, and for any (s, x) ∈ [0, T ] × E,
(

Ω,Fs,x, (Fs,x
t )t∈[0,T ],Ps,x) will denote the stochastic basis introduced in Defi-

nition C.7 and which fulfills the usual conditions.

Our Martingale problem will be associated to an operator, in a close formalism
to the one of D.W. Stroock and S.R.S Varadhan in [35].

Definition 4.1. Let V : [0, T ] → R+ be a non-decreasing continuous function
vanishing at 0.
Let us consider a linear operator a : D(a) ⊂ B([0, T ]×E,R) −→ B([0, T ]×E,R),
where the domain D(a) is a linear space.

We say that a family of probability measures (Ps,x)(s,x)∈[0,T ]×E defined on
(Ω,F) solves the martingale problem associated to (D(a), a, V ) if, for any
(s, x) ∈ [0, T ]× E, Ps,x verifies the following.

(a) Ps,x(∀t ∈ [0, s], Xt = x) = 1;

(b) for every φ ∈ D(a), φ(·, X·) −
∫ ·

s
a(φ)(r,Xr)dVr, t ∈ [s, T ], is a cadlag

(Ps,x, (Ft)t∈[s,T ]) square integrable martingale.

We say that the Martingale Problem is well-posed if for any (s, x) ∈ [0, T ]×E,Ps,x is the only probability measure satisfying those two properties.
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We anticipate that well-posedness for the martingale problem will not be an
hypothesis in the sequel.

Notation 4.2. For every (s, x) ∈ [0, T ]× E and φ ∈ D(a), the process

t 7→ 1[s,T ](t)
(

φ(t,Xt)− φ(s, x) −
∫ t

s
a(φ)(r,Xr)dVr

)

will be denoted M [φ]s,x.

M [φ]s,x is a cadlag (Ps,x, (Ft)t∈[0,T ]) square integrable martingale equal to
0 on [0, s], and by Proposition C.8, it is also a (Ps,x, (Fs,x

t )t∈[0,T ]) square inte-
grable martingale.

Notation 4.3. Let φ ∈ D(a). We set, for 0 ≤ t ≤ u ≤ T

M [φ]tu :=

{

φ(u,Xu)− φ(t,Xt)−
∫ u

t
a(φ)(r,Xr)dVr if

∫ u

t
|a(φ)|(r,Xr)dVr <∞,

0 otherwise.
(4.1)

M [φ] is a square integrable Martingale Additive Functional (in short MAF), see
Definition C.9, whose cadlag version under Ps,x for every (s, x) ∈ [0, T ]×E, is
M [φ]s,x.

From now on we fix some d ∈ N∗ and a vector ψ = (ψ1, . . . , ψd) ∈ D(a)d.
For any (s, x) ∈ [0, T ]×E, the Rd-valued martingale (M [ψ1]

s,x, · · · ,M [ψd]
s,x)

will be denoted M [ψ]s,x.

Definition 4.4. For any φ1, φ2 ∈ D(a) such that φ1φ2 ∈ D(a) we set Γ(φ1, φ2) :=
a(φ1φ2)−φ1a(φ2)−φ2a(φ1). Γ will be called the carré du champs operator.
We set D(Γψ) :=

{

φ ∈ D(a) : ∀i ∈ [[1; d]], φψi ∈ D(a)
}

. We define the linear
operator Γψ : D(Γψ) −→ B([0, T ]× E,Rd) by

Γψ(φ) :=
(

Γψi(φ)
)

i∈[[1;d]]
:= (a(φψi)− φa(ψi)− ψia(φ))i∈[[1;d]] . (4.2)

Γψ will be called the ψ-generalized gradient operator.

We emphasize that this terminology is justified by the considerations below
(1.5). This operator appears in the expression of the angular bracket of the
local martingales that we have defined.

Proposition 4.5. If φ ∈ D(Γψ), then for any (s, x) ∈ [0, T ]× E and i ∈ [[1; d]]
we have

〈M [φ]s,x,M [ψi]
s,x〉 =

∫ ·∨s

s

Γψi(φ)(r,Xr)dVr, (4.3)

in the stochastic basis (Ω,Fs,x, (Fs,x
t )t∈[0,T ],Ps,x).

Proof. The result follows from a slight modification of the proof of Proposition
4.8 of [6] in which D(a) was assumed to be stable by multiplication and M [φ]s,x

could potentially be a local martingale which is not a martingale.

We will later need the following assumption.
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Hypothesis 4.6. For every i ∈ [[1; d]], the Additive Functional 〈M [ψi]〉 (see
Proposition C.10) is absolutely continuous with respect to dV , see Definition
C.9.

Taking φ = ψi for some i ∈ [[1; d]] in Proposition 4.5, yields the following.

Corollary 4.7. If ψ2
i ∈ D(a) for all i ∈ [[1; d]], then Hypothesis 4.6 is fulfilled.

We will now consider suitable extensions of the domain D(a).

For any (s, x) ∈ [0, T ] × E we define the positive bounded potential mea-

sure U(s, x, ·) on ([0, T ]× E,B([0, T ])⊗ B(E)) by

U(s, x, ·) :
B([0, T ])⊗ B(E) −→ [0, VT ]

A 7−→ Es,x [∫ T
s
1{(t,Xt)∈A}dVt

]

.

Definition 4.8. A Borel set A ⊂ [0, T ]×E will be said to be of zero potential

if, for any (s, x) ∈ [0, T ]× E we have U(s, x,A) = 0.

Notation 4.9. Let p > 0. We introduce

Lps,x := Lp(U(s, x, ·)) =
{

f ∈ B([0, T ]× E,R) : Es,x [∫ T
s
|f |p(r,Xr)dVr

]

<∞
}

.

For p ≥ 1, that classical Lp-space is equipped with the seminorm

‖ · ‖p,s,x : f 7→
(Es,x [∫ T

s
|f(r,Xr)|pdVr

])
1
p

. We also introduce

L0
s,x := L0(U(s, x, ·)) =

{

f ∈ B([0, T ]× E,R) : ∫ T
s
|f |(r,Xr)dVr <∞ Ps,x a.s.

}

.

For any p ≥ 0 we set

LpX =
⋂

(s,x)∈[0,T ]×E

Lps,x. (4.4)

Let N be the linear sub-space of B([0, T ]×E,R) containing all functions which
are equal to 0, U(s, x, ·) a.e. for every (s, x).
For any p ≥ 0, we define the quotient space LpX = LpX/N .
If p ≥ 1, LpX can be equipped with the topology generated by the family of semi-
norms (‖ · ‖p,s,x)(s,x)∈[0,T ]×E which makes it a separate locally convex topological

vector space, see Theorem 5.76 in [1].

We recall that Proposition 4.14 in [6] states the following.

Proposition 4.10. Let f and g be in L0
X . Then f and g are equal up to a

set of zero potential if and only if for any (s, x) ∈ [0, T ] × E, the processes
∫ ·

s
f(r,Xr)dVr and

∫ ·

s
g(r,Xr)dVr are indistinguishable under Ps,x. Of course

in this case f and g correspond to the same element of L0
X .

We introduce now our notion of extended generator starting from its
domain.

Definition 4.11. We first define the extended domain D(a) as the set of
functions φ ∈ B([0, T ]× E,R) for which there exists
χ ∈ L0

X such that under any Ps,x the process

1[s,T ]

(

φ(·, X·)− φ(s, x)−
∫ ·

s

χ(r,Xr)dVr

)

(4.5)
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(which is not necessarily cadlag) has a cadlag modification in H2
0.

A direct consequence of Proposition 4.16 in [6] is the following.

Proposition 4.12. Let φ ∈ B([0, T ]× E,R). There is at most one (up to zero
potential sets) χ ∈ L0

X such that under any Ps,x, the process defined in (4.5)
has a modification which belongs to H2.
If moreover φ ∈ D(a), then a(φ) = χ up to zero potential sets. In this case,
according to Notation 4.2, for every (s, x) ∈ [0, T ] × E, M [φ]s,x is the Ps,x
cadlag modification in H2

0 of 1[s,T ]

(

φ(·, X·)− φ(s, x) −
∫ ·

s
χ(r,Xr)dVr

)

.

Definition 4.13. Let φ ∈ D(a) as in Definition 4.11. We denote again by
M [φ]s,x, the unique cadlag version of the process (4.5) in H2

0. Taking Propo-
sition 4.10 into account, this will not generate any ambiguity with respect to
Notation 4.2. Proposition 4.10, also permits to define without ambiguity the
operator

a :
D(a) −→ L0

X

φ 7−→ χ.

a will be called the extended generator.

Remark 4.14. a extends a in the sense that D(a) ⊂ D(a) (comparing Defini-
tions 4.11 and 4.1) and if φ ∈ D(a) then a(φ) is an element of the class a(φ),
see Proposition 4.12.

We also introduce an extended ψ-generalized gradient.

Proposition 4.15. Assume the validity of Hypothesis 4.6. Let φ ∈ D(a) and
i ∈ [[1; d]]. There exists a (unique up to zero-potential sets) function in B([0, T ]×
E,R) which we will denote Gψi(φ) such that under any Ps,x, 〈M [φ]s,x,M [ψi]

s,x〉 =
∫ ·∨s

s
G
ψi(φ)(r,Xr)dVr up to indistinguishability.

Proof. We fix i ∈ [[1; d]]. Let M [ψi] be the square integrable MAF (see Defi-
nition C.9) presented in Notation 4.3. We introduce the random field M [φ] =
(M [φ]tu)(0≤t≤u≤T ) as follows. We fix some χ in the class a(φ) and set

M [φ]tu :=

{

φ(u,Xu)− φ(t,Xt)−
∫ u

t
χ(r,Xr)dVr if

∫ u

t
|χ|(r,Xr)dVr <∞, t ≤ u,

0 elsewhere,
(4.6)

We emphasize that, a priori, the function χ is only in L0
X implying that at fixed

t ≤ u,
∫ u

t
|χ|(r,Xr(ω))dVr is not finite for every ω ∈ Ω, but only on a set which

is Ps,x-negligible for all (s, x) ∈ [0, t]× E.
According to Definition C.9 M [φ] is an AF whose cadlag version under Ps,x is
M [φ]s,x. Of course M [ψi]

s,x is the cadlag version of M [ψi] under Ps,x.
By Definition 4.13, since φ ∈ D(a), M [φ]s,x is a square integrable martingale for
every (s, x), so M [φ] is a square integrable MAF. Then by Corollary 4.7, the AF
〈M [ψi]〉 is absolutely continuous with respect to dV . The existence of Gψi(φ)
now follows from Proposition C.11 and the uniqueness follows by Proposition
4.10.

11



Notation 4.16. If 4.6 holds, we can introduce the linear operator

G
ψ :

D(a) −→ (L0
X)d

φ 7−→ (Gψ1(φ), · · · ,Gψd(φ)),
(4.7)

which will be called the extended ψ-generalized gradient.

Corollary 4.17. Let φ ∈ D(Γψ). Then Γψ(φ) = Gψ(φ) up to zero potential
sets.

Proof. Comparing Propositions 4.5 and 4.15, for every (s, x) ∈ [0, T ]×E and i ∈
[[1; d]],

∫ ·∨s

s
Γψi(φ)(r,Xr)dVr and

∫ ·∨s

s
G
ψi(φ)(r,Xr)dVr are Ps,x-indistinguishable.

We can conclude by Proposition 4.10.

Gψ therefore extends Γψ as well as a extends a, see Remark 4.14.

5 Pseudo-PDEs and associated Markovian type

BSDEs driven by a cadlag martingale

5.1 The concepts

In this section, we still consider T ∈ R∗
+, a Polish space E and the associ-

ated canonical space
(

Ω,F , (Xt)t∈[0,T ], (Ft)t∈[0,T ]

)

, see Definition C.1. We also
consider a canonical Markov class (Ps,x)(s,x)∈[0,T ]×E associated to a transition
kernel measurable in time (see Definitions C.5 and C.4) which solves a martin-
gale problem associated to a triplet (D(a), a, V ), see Definition 4.1.

We will investigate here a specific type of BSDE driven by a cadlag martin-
gale, denoted by BSDE(ξ, f̂ , V̂ , M̂) which we will call of Markovian type,
or Markovian BSDE, in the following sense. The process V̂ will be the (de-
terministic) function V introduced in Definition 4.1, the final condition ξ will
only depend on the final value of the canonical process XT and the random-
ness of the driver f̂ at time t will only appear via the value at time t of the
forward process X . Given a function f : [0, T ]× E × R × R

d → R, we will set
f̂(t, ω, y, z) = f(t,Xt(ω), y, z) for t ∈ [0, T ], ω ∈ Ω, y ∈ R, z ∈ Rd.
Given d functions ψ1, · · · , ψd in D(a), we will set M̂ := (M [ψ1]

s,x, · · · ,M [ψd]
s,x).

That BSDE will be connected with the deterministic problem in Definition 5.3.

We fix an integer d ∈ N∗ and some functions ψ1, · · · , ψd ∈ D(a) which in
the sequel, will verify the following hypothesis.

Hypothesis 5.1. For any i ∈ [[1; d]] we have the following

• Hypothesis 4.6 holds;

• a(ψi) ∈ L2
X ;
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• Gψi(ψi) is bounded.

In particular, for every i ∈ [[1; d]], previous hypothesis implies the following.

Proposition 5.2.

• For any (s, x) ∈ [0, T ]× E, M̂ := M [ψ]s,x verifies item 4. of Hypothesis
3.1 with respect to V̂ := V .

• for every (s, x) ∈ [0, T ]× E, sup
t∈[s,T ]

|ψi(t,Xt)|2 belongs to L1 under Ps,x;
• ψi ∈ L2

X .

Proof. The first item follows form the fact that for any (s, x) ∈ [0, T ] × E,
〈M [ψ]s,x〉 =

∫ ·∨s

s
Gψi(ψi)(r,Xr)dVr (see Proposition 4.15), and the fact that

G
ψi(ψi) is bounded. Concerning the second item, for any (s, x) ∈ [0, T ]×E, the

martingale problem gives ψ(·, X) = ψi(s, x)+
∫ ·

s
a(ψi)(r,Xr)dVr+M [ψi]

s,x, see
Definition 4.1. By Jensen’s inequality, we have sup

t∈[s,T ]

|ψi(t,Xt)|2 ≤ C(ψ2
i (s, x)+

∫ T

s
a2(ψi)(r,Xr)dVr+ sup

t∈[s,T ]

(M [ψi]
s,x
t )2) for some C > 0. It is therefore L1 since

a(ψi) ∈ L2
X and M [ψi]

s,x ∈ H2. The last item is a direct consequence of the
second one.

Definition 5.3. Let us consider some g ∈ B(E,R) and
f ∈ B([0, T ]× E × R× R,Rd).
We will call Pseudo-Partial Differential Equation related to (f, g) (in short
Pseudo− PDE(f, g)) the following equation with final condition:

{

a(u) + f
(

·, ·, u,Γψ(u)
)

= 0 on [0, T ]× E
u(T, ·) = g.

(5.1)

We will say that u is a classical solution of Pseudo−PDE(f, g) if u, uψi, i ∈
[[1; d]] belong to D(a) and if u verifies (5.1).

The connection between a Markovian BSDE and a Pseudo − PDE(f, g),
will be possible under a hypothesis on some generalized moments on X , and
some growth conditions on the functions (f, g). Those will be related to two
fixed functions ζ, η ∈ B(E,R+).

Hypothesis 5.4. The Markov class will be said to verify Hmom(ζ, η) if

1. for any (s, x) ∈ [0, T ]× E, Es,x[ζ2(XT )] is finite;

2. for any (s, x) ∈ [0, T ]× E, Es,x [∫ T0 η2(Xr)dVr

]

is finite.

Until the end of this section, we assume that some ζ, η are given and that
the Markov class verifies Hmom(ζ, η).
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Hypothesis 5.5. A couple of functions f ∈ B([0, T ] × E × R × Rd,R) and
g ∈ B(E,R) will be said to verify H lip(ζ, η) if there exist positive constants
KY ,KZ, C, C′ such that

1. ∀x : |g(x)| ≤ C(1 + ζ(x)),

2. ∀(t, x) : |f(t, x, 0, 0)| ≤ C′(1 + η(x)),

3. ∀(t, x, y, y′, z, z′) : |f(t, x, y, z)−f(t, x, y′, z′)| ≤ KY |y−y′|+KZ‖z−z′‖.

(f, g) will be said to verify Hgrowth(ζ, η) if the following lighter Hypothesis
hold. There exist positive constants C,C′ such that

1. ∀x : |g(x)| ≤ C(1 + ζ(x));

2. ∀(t, x, y, z) : |f(t, x, y, z)| ≤ C′(1 + η(x) + |y|+ ‖z‖).

Remark 5.6. We fix for now a couple (f, g) verifying H lip(ζ, η). For any
(s, x) ∈ [0, T ]×E, in the stochastic basis

(

Ω,Fs,x, (Fs,x
t )t∈[0,T ],Ps,x) and setting

V̂ := V , the triplet ξ := g(XT ), f̂ : (t, ω, y, z) 7−→ f(t,Xt(ω), y, z), M̂ :=
M [ψ]s,x verifies Hypothesis 3.1.

With the equation Pseudo−PDE(f, g), we will associate the following fam-
ily of BSDEs indexed by (s, x) ∈ [0, T ]× E, driven by a cadlag martingale.

Notation 5.7. For any (s, x) ∈ [0, T ]× E, we consider in the stochastic basis
(

Ω,Fs,x, (Fs,x
t )t∈[0,T ],Ps,x) and on the interval [0, T ] the BSDE(ξ, f̂ , V, M̂)

where ξ = g(XT ), f̂ : (t, ω, y, z) 7−→ f(t,Xt(ω), y, z), M̂ =M [ψ]s,x).
This BSDE will from now on be denoted BSDEs,x(f, g) and its unique solution
(see Theorem 3.3 and Remark 5.6) will be denoted (Y s,x,M s,x).

If H lip(ζ, η) is fulfilled by (f, g), then (Y s,x,M s,x) is therefore the unique
couple in L2(dV ⊗ dPs,x)×H2

0 verifying

Y s,x· = g(XT ) +

∫ T

·

f

(

r,Xr, Y
s,x
r ,

d〈M s,x,M [ψ]s,x〉
dV

(r)

)

dVr − (M s,x
T −M s,x

· ).

(5.2)

Remark 5.8. Even if the underlying process X admits no generalized moments,
given a couple (f, g) such that f(·, ·, 0, 0) and g are bounded, the considerations
of this section still apply. In particular the connections that we will establish
between the BSDEs,x(f, g) and the corresponding Pseudo−PDE(f, g) still take
place.

The goal of our work is to emphasize the precise link under general enough
conditions between the solutions of equations BSDEs,x(f, g) and of Pseudo−
PDE(f, g). In particular we will emphasize that a solution of BSDEs,x(f, g)
produces a solution of Pseudo− PDE(f, g) and reciprocally.

We now introduce a probabilistic notion of solution for Pseudo−PDE(f, g).
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Definition 5.9. A Borel function u : [0, T ] × E → R will be said to be a
martingale solution of Pseudo− PDE(f, g) if u ∈ D(a) and

{

a(u) = −f(·, ·, u,Gψ(u))
u(T, ·) = g.

(5.3)

Remark 5.10. The first equation of (5.3) holds in L0
X, hence up to a zero

potential set. The second one is a pointwise equality.

Proposition 5.11. Let (f, g) verify Hgrowth(ζ, η). Let u be a martingale so-
lution of Pseudo− PDE(f, g). Then for any (s, x) ∈ [0, T ]× E, the couple of
processes
(

u(t,Xt), u(t,Xt)− u(s, x) +

∫ t

s

f(·, ·, u,Gψ(u))(r,Xr)dVr

)

t∈[s,T ]

(5.4)

has a Ps,x-version which is a solution on [s, T ] of BSDEs,x(f, g), see Remark
3.4.

Moreover, u ∈ L2
X .

Proof. Let u ∈ D(a) be a solution of (5.3) and let (s, x) ∈ [0, T ]× E be fixed.
By Definition 4.11 and Remark 3.4, the process u(·, X·) under Ps,x admits
a cadlag modification Us,x on [s, T ], which is a special semi-martingale with
decomposition

Us,x = u(s, x) +
∫ ·

s
a(u)(r,Xr)dVr +M [u]s,x

= u(s, x)−
∫ ·

s
f
(

r,Xr, u(r,Xr),G
ψ(u)(r,Xr)

)

dVr +M [u]s,x

= u(s, x)−
∫ ·

s
f
(

r,Xr, U
s,x, d〈M [u]s,x,M [ψ]s,x〉

dV

)

dVr +M [u]s,x,

(5.5)
where the third equality of (5.5) comes from Lemma 2.4 and Proposition 4.15.
Moreover since u(T, ·) = g, then Us,xT = u(T,XT ) = g(XT ) a.s. so the couple
(Us,x,M [u]s,x) verifies the following equation on [s, T ] (with respect to Ps,x):
Us,x· = g(XT )+

∫ T

·

f

(

r,Xr, U
s,x
r ,

d〈M [u]s,x,M [ψ]s,x〉
dV

(r)

)

dVr−(M [u]s,xT −M [u]s,x· ).

(5.6)
M [u]s,x (introduced at Definition 4.13) belongs to H2

0 but we do not have a priori
information on the square integrability of Us,x. However we know that M [u]s,x

is equal to zero at time s, and that Us,xs is deterministic so square integrable.
We can therefore apply Lemma A.12 which implies that (Us,x,M [u]s,x) solves
BSDEs,x(f, g) on [s, T ]. In particular, Us,x belongs to L2(dV ⊗dPs,x) for every
(s, x), so by Lemma 2.4 and Definition 4.9, u ∈ L2

X .

5.2 Decoupled mild solutions of Pseudo-PDEs

In this section we introduce an analytical notion of solution of our Pseudo −
PDE(f, g) that we will denominate decoupled mild since it inspired by the mild
solution of partial differential equation. We will show that it is equivalent to
the notion of martingale solution introduced in Definition 5.9.
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Notation 5.12. Let P denote the transition kernel of the canonical class (see
Definition C.3). Let s, t in [0, T ] with s ≤ t, x ∈ E and φ ∈ B(E,R), if φ is
integrable with respect to Ps,t(x, ·), then Ps,t[φ](x) will denote its integral.

We recall two important measurability properties.

Remark 5.13.

• Let φ ∈ B(E,R) be such that for any (s, x, t), Es,x[|φ(Xt)|] < ∞, then
(s, x, t) 7−→ Ps,t[φ](x) is Borel, see Proposition A.12 in [7].

• Let φ ∈ L1
X , then (s, x) 7−→

∫ T

s
Ps,r[φ](x)dVr is Borel, see Lemma A.11

in [7].

Our notion of decoupled mild solution relies on the fact that the equation
a(u) + f

(

·, ·, u,Γψ(u)
)

= 0 can be naturally decoupled into
{

a(u) = −f(·, ·, u, v)
vi = Γψi(u), i ∈ [[1; d]].

(5.7)

Then, by definition of the carré du champ operator (see Definition 4.4), we
formally have i ∈ [[1; d]], a(uψi) = Γψi(u) + ua(ψi) + ψia(u). So the system of
equations (5.7) can be rewritten as

{

a(u) = −f(·, ·, u, v)
a(uψi) = vi + ua(ψi)− ψif(·, ·, u, v), i ∈ [[1; d]].

(5.8)

Inspired by the usual notions of mild solution, this naturally leads us to the
following definition of a mild solution.

Definition 5.14. Let (f, g) be a couple verifying Hgrowth(ζ, η). Let
u ∈ B([0, T ]× E,R) and v ∈ B([0, T ]× E,Rd).

1. The couple (u, v) will be called solution of the identification problem

determined by (f, g) or simply solution of IP (f, g) if u, v1, · · · , vd
belong to L2

X and if for every (s, x) ∈ [0, T ]× E,


















u(s, x) = Ps,T [g](x) +
∫ T

s
Ps,r [f (·, ·, u, v) (r, ·)] (x)dVr

uψ1(s, x) = Ps,T [gψ1(T, ·)](x) −
∫ T

s
Ps,r [(v1 + ua(ψ1)− ψ1f (·, ·, u, v)) (r, ·)] (x)dVr

· · ·
uψd(s, x) = Ps,T [gψd(T, ·)](x)−

∫ T

s
Ps,r [(vd + ua(ψd)− ψdf (·, ·, u, v)) (r, ·)] (x)dVr .

(5.9)

2. The function u will be called decoupled mild solution of Pseudo −
PDE(f, g) if there exist a function v such that the couple (u, v) is a
solution of IP (f, g).

Lemma 5.15. Let u, v1, · · · , vd ∈ L2
X , let (f, g) be a couple satisfying Hgrowth(ζ, η)

and let ψ1, · · · , ψd verify Hypothesis 5.1. Then f (·, ·, u, v) belongs to L2
X and

for every i ∈ [[1; d]], ψif (·, ·, u, v), and ua(ψi), belong to L1
X . For any (s, x) ∈

[0, T ]× E, i ∈ [[1; d]], g(XT )ψi(T,XT ) belongs to L1 under Ps,x. In particular,
all terms in (5.9) make sense.
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Proof. Thanks to the growth condition on f in Hgrowth(ζ, η), there exists a
constant C > 0 such that for any (s, x) ∈ [0, T ]× E,Es,x [∫ T

t
f2(r,Xr, u(r,Xr), v(r,Xr))dVr

]

≤ CEs,x [∫ T
t
(f2(r,Xr, 0, 0) + u2(r,Xr) + ‖v‖2(r,Xr))dVr

]

.
(5.10)

Previous quantity is finite since we have assumed that u, v1, · · · , vd belong to
L2
X , taking into account Hypothesis 5.4 and Hgrowth(ζ, η). This means that

f2 (·, ·, u, v) belongs to L1
X . All the other assertions are easily obtained taking

into account Hypothesis 5.1, Hgrowth(ζ, η) and the classical inequality 2|ab| ≤
a2 + b2.

Proposition 5.16. Let (f, g) verify Hgrowth(ζ, η). Let u be a martingale solu-
tion of Pseudo − PDE(f, g), then (u,Gψ(u)) is a solution of IP (f, g) and in
particular, u is a decoupled mild solution of Pseudo− PDE(f, g).

Proof. Let u be a martingale solution of Pseudo− PDE(f, g). By Proposition
5.11, u ∈ L2

X . Taking into account Definition 4.13, for every (s, x), M [u]s,x ∈ H2
0

under Ps,x. So by Lemma A.2, for any i ∈ [[1; d]], d〈M [u]s,x,M [ψi]s,x〉
dV

belongs
to L2(dV ⊗ dPs,x). Taking Proposition 4.15 into account, this means that
Gψi(u) ∈ L2

X for every i. By Lemma 5.15, it follows that f
(

·, ·, u,Gψ(u)
)

belongs to L2
X and so for any i ∈ [[1; d]], ψif

(

·, ·, u,Gψ(u)
)

and ua(ψi), belong
to L1

X .
We fix some (s, x) ∈ [0, T ]×E and the correspondent probability Ps,x, and we
are going to show that


















u(s, x) = Ps,T [g](x) +
∫ T

s
Ps,r

[

f
(

·, ·, u,Gψ(u)
)

(r, ·)
]

(x)dVr

uψ1(s, x) = Ps,T [gψ1(T, ·)](x)−
∫ T

s
Ps,r

[(

G(u, ψ1) + ua(ψ1)− ψ1f
(

·, ·, u,Gψ(u)
))

(r, ·)
]

(x)dVr
· · ·

uψd(s, x) = Ps,T [gψd(T, ·)](x) −
∫ T

s
Ps,r

[(

G(u, ψd) + ua(ψd)− ψdf
(

·, ·, u,Gψ(u)
))

(r, ·)
]

(x)dVr .
(5.11)

Combining Definitions 4.11, 4.13, 5.9, we know that on [s, T ], the process
u(·, X·) has a modification which we denote Us,x which is a special semimartin-
gale with decomposition

Us,x = u(s, x)−
∫ ·

s

f
(

·, ·, u,Gψ(u)
)

(r,Xr)dVr +M [u]s,x, (5.12)

and M [u]s,x ∈ H2
0.

Definition 5.9 also states that u(T, ·) = g, implying that

u(s, x) = g(XT ) +

∫ T

s

f
(

·, ·, u,Gψ(u)
)

(r,Xr)dVr −M [u]s,xT a.s. (5.13)

Taking the expectation, by Fubini’s theorem we get

u(s, x) = Es,x [g(XT ) +
∫ T

s
f
(

·, ·, u,Gψ(u)
)

(r,Xr)dVr

]

= Ps,T [g](x) +
∫ T

s
Ps,r

[

f
(

r, ·, u(r, ·),Gψ(u)(r, ·)
)]

(x)dVr .
(5.14)
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We now fix i ∈ [[1; d]]. By integration by parts, taking (5.12) and Definition 4.1
into account, we obtain

d(Us,xt ψi(t,Xt)) = −ψi(t,Xt)f
(

·, ·, u,Gψ(u)
)

(t,Xt)dVt + ψi(t
−, Xt−)dM [u]s,xt

+Us,xt a(ψi)(t,Xt)dVt + Us,x
t−
dM [ψi]

s,x
t + d[M [u]s,x,M [ψi]

s,x]t,
(5.15)

so integrating from s to T , we get

uψi(s, x)

= g(XT )ψi(T,XT ) +
∫ T

s
ψi(t,Xt)f

(

·, ·, u,Gψ(u)
)

(r,Xr)dVr −
∫ T

s
ψi(r

−, Xr−)dM [u]s,xr
−
∫ T

s
Us,xt a(ψi)(r,Xr)dVr −

∫ T

s
Us,x
r−
dM [ψi]

s,x
r − [M [u]s,x,M [ψi]

s,x]T

= g(XT )ψi(T,XT )−
∫ T

s

(

ua(ψi)− ψif
(

·, ·, u,Gψ(u)
))

(r,Xr)dVr −
∫ T

s
ψi(r

−, Xr−)dM [u]s,xr
−
∫ T

s
Us,x
r−
dM [ψi]

s,x
r − [M [u]s,x,M [ψi]

s,x]T ,
(5.16)

where the latter equality is a consequence of Lemma 2.4.
The next step will consist in taking the expectation in equation (5.16), but be-
fore, we will check that

∫ ·

s
Us,x
r−
dM [ψi]

s,x
r and

∫ ·

s
ψi(r

−, Xr−)dM [u]s,xr are mar-
tingales.
By Proposition 4.15, 〈M [ψi]

s,x〉 =
∫ ·∨s

s
Gψi(ψi)(r,Xr)dVr . So the angular

bracket of
∫ ·

s
Us,x
r−
dM [ψi]

s,x
r at time T is equal to

∫ T

s
u2Gψi(ψi)(r,Xr)dVr which

is an integrable r.v. since Gψi(ψi) is bounded and u ∈ L2
X . Therefore

∫ ·

s
Us,x
r−
dM [ψi]

s,x
r

is a square integrable martingale.
Then, by Hypothesis 5.1 and Proposition 5.2, sup

t∈[s,T ]

|ψi(t,Xt)|2 ∈ L1, and by

Definition 4.13, M [u]s,x ∈ H2 so by Lemma 3.15 in [6],
∫ ·

s
ψi(r

−, Xr−)dM [u]s,xr
is a martingale.

We can now take the expectation in (5.16), to get

uψi(s, x)

= Es,x [g(XT )ψi(T,XT )−
∫ T

s

(

ua(ψi)− ψif
(

·, ·, u,Gψ(u)
))

(r,Xr)dVr − [M [u]s,x,M [ψi]
s,x]T

]

= Es,x [g(XT )ψi(T,XT )−
∫ T

s

(

ua(ψi) +Gψi(u)− ψif
(

·, ·, u,Gψ(u)
))

(r,Xr)dVr

]

,

(5.17)
since u and ψi belong to D(a). Indeed the second equality follows from the fact
[M [u]s,x,M [ψi]

s,x]− 〈M [u]s,x,M [ψi]
s,x〉 is a martingale and Proposition 4.15.

Since we have assumed that u ∈ L2
X , Lemma 5.15 says that f

(

·, ·, u,Gψ(u)
)

∈
L2
X , Hypothesis 5.1 implies that ψi and a(ψi) are in L2

X , so all terms in the in-
tegral inside the expectation in the third line belong to L1

X . We can therefore
apply Fubini’s theorem to get

uψi(s, x) = Ps,T [gψi(T, ·)](x)−
∫ T

s

Ps,r
[(

ua(ψi) +G
ψi(u)− ψif

(

·, ·, u,Gψ(u)
))

(r, ·)
]

(x)dVr .

(5.18)
This concludes the proof.

Proposition 5.16 admits a converse implication.
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Proposition 5.17. Let (f, g) verify Hgrowth(ζ, η). Every decoupled mild solu-
tion of Pseudo−PDE(f, g) is a also a martingale solution. Moreover, if (u, v)
solves IP (f, g), then v = Gψ(u), up to zero potential sets.

Proof. Let u and vi, i ∈ [[1; d]] in L2
X verify (5.9). We observe that the first line

of (5.9) with s = T , gives u(T, ·) = g.

We fix (s, x) ∈ [0, T ] × E and the associated probability Ps,x. On [s, T ], we
set U := u(·, X) and N := u(·, X)− u(s, x) +

∫ ·

s
f(r,Xr, u(r,Xr), v(r,Xr))dVr.

For some t ∈ [s, T ], we combine the first line of (5.9) applied in (s, x) = (t,Xt)
and the Markov property (C.3). Since f (·, ·, u, v) belongs to L2

X (see Lemma
5.15) we get the a.s. equalities

Ut = u(t,Xt)

= Pt,T [g](Xt) +
∫ T

t
Pt,r [f (r, ·, u(r, ·), v(r, ·))] (Xt)dVr

= Et,Xt

[

g(XT ) +
∫ T

t
f(r,Xr, u(r,Xr), v(r,Xr))dVr

]

= Es,x [g(XT ) +
∫ T

t
f(r,Xr, u(r,Xr), v(r,Xr))dVr |Ft

]

,

(5.19)

from which we deduce thatNt = Es,x [g(XT ) +
∫ T

s
f(r,Xr, u(r,Xr), v(r,Xr))dVr |Ft

]

−
u(s, x) a.s. and so N is a martingale. We can therefore consider on [s, T ] and
under Ps,x, the cadlag version Ns,x of N . We extend now Ns,x

t , to t ∈ [0, T ],
putting its value equal to zero on [0, s], and consider the special semi-martingale

Us,x := u(s, x)−
∫ ·

s

f(r,Xr, u(r,Xr), v(r,Xr))dVr +Ns,x, (5.20)

indexed on [s, T ] which is obviously a cadlag version of U .
By Jensen’s inequality, we haveEs,x[(Ns,x

T )2] = Es,x [(g(XT ) +
∫ T

s
f(r,Xr, u(r,Xr), v(r,Xr))dVr − u(s, x)

)2
]

≤ 3u2(s, x) + 3Es,x[g2(XT )] + 3Es,x [∫ T
s
f2(r,Xr, u(r,Xr), v(r,Xr))dVr

]

< ∞,
(5.21)

where the second term is finite because of Hmom(ζ, η) and Hgrowth(ζ, η), and
the third one because f (·, ·, u, v) belongs to L2

X , see Lemma 5.15. So Ns,x is
square integrable. We have therefore shown that under any Ps,x, the process
(

u(·, X·)− u(s, x) +
∫ ·

s
f(r,Xr, u(r,Xr), v(r,Xr))dVr

)

1[s,T ] has a modification
in H2

0 . According to Definitions 4.11 and 4.13 we have u ∈ D(a), a(u) =
−f(·, ·, u, v) and for any (s, x) ∈ [0, T ] × E, M [u]s,x = Ns,x in the sense of
P s,x-indistinguishability.
So to conclude that u is a martingale solution of Pseudo− PDE(f, g), there is
left to show Gψ(u) = v, up to zero potential sets. By Proposition 4.15, this is
equivalent to show that for every (s, x) ∈ [0, T ]× E and i ∈ [[1; d]],

〈M s,x[u],M s,x[ψi]〉 =
∫ ·∨s

s

vi(r,Xr)dVr, (5.22)
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in the sense of indistinguishability.

We fix again (s, x) ∈ [0, T ]× E, the associated probability, and some i ∈ [[1; d]]
Combining the (i+ 1)th line of (5.9) applied in (s, x) = (t,Xt) and the Markov
property (C.3), taking into account the fact that all terms belong to L1

X (see
Lemma 5.15, Hypothesis 5.1) we get the a.s. equalities

uψi(t,Xt) = Pt,T [gψi(T, ·)](Xt)−
∫ T

t
Pt,r [(vi + ua(ψi)− ψif (·, ·, u, v)) (r, ·)] (Xt)dVr

= Et,Xt

[

g(XT )ψi(T,XT )−
∫ T

t
(vi + ua(ψi)− ψif (·, ·, u, v)) (r,Xr)dVr

]

= Es,x [g(XT )ψi(T,XT )−
∫ T

t
(vi + ua(ψi)− ψif (·, ·, u, v)) (r,Xr)dVr |Ft

]

.

(5.23)
Setting, for t ∈ [s, T ],N i

t := uψi(t,Xt)−
∫ t

s
(vi+ua(ψ)

i−ψif(·, ·, u, v))(r,Xr)dVr ,
from (5.23) we deduce that, for any t ∈ [s, T ],

N i
t = Es,x [g(XT )ψi(T,XT )−

∫ T

s

(vi + ua(ψi)− ψif (·, ·, u, v)) (r,Xr)dVr

∣

∣

∣

∣

∣

Ft
]

a.s. So N i is a martingale. We can therefore consider on [s, T ] and under Ps,x,
the cadlag version N i,s,x of N i.

The process
∫ ·

s

(vi + ua(ψi)− ψif (·, ·, u, v)) (r,Xr)dVr +N i,s,x, (5.24)

is therefore a cadlag special semi-martingale which is a Ps,x-version of uψi(·, X)
on [s, T ]. But we also had shown, see (5.20), that
Us,x = u(s, x) −

∫ ·

s
f(r,Xr, u(r,Xr), v(r,Xr))dVr +Ns,x is a version of u(·, X)

which by integration by parts on the process Us,xψi(·, X·) implies that

uψi(s, x) +
∫ ·

s
Us,xr a(ψi)(r,Xr)dVr +

∫ ·

s
Us,x
r−
dM s,x[ψi]r

−
∫ ·

s
ψif(·, ·, u, v)(r,Xr)dVr +

∫ ·

s
ψi(r

−, Xr−)dM
s,x[u]r + [M s,x[u],M s,x[ψi]]

(5.25)
is another cadlag semi-martingale which is a Ps,x-version of uψi(·, X) on [s, T ].
Now (5.25) equals

Mi + V i, (5.26)

where

Mi
t = uψi(s, x) +

∫ t

s

Us,x
r−
dM s,x[ψi]r +

∫ t

s

ψi(r
−, Xr−)dM

s,x[u]r

+ ([M s,x[u],M s,x[ψi]]t − 〈M s,x[u],M s,x[ψi]〉t,

is a local martingale and

V it = 〈M s,x[u],M s,x[ψi]〉t+
∫ t

s

Us,xr a(ψi)(r,Xr)dVr−
∫ t

s

ψif(·, ·, u, v)(r,Xr)dVr ,
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is a predictable with bounded variation vanishing at zero process. Now (5.26)
and (5.24) are two cadlag version of uψi(·, X) on [s, T ].

By the uniqueness of the decomposition of a special semi-martingale, iden-
tifying the bounded variation predictable components and using Lemma 2.4 we
get
∫ ·

s

(vi + ua(ψi)− ψif(·, ·, u, v))(r,Xr)dVr

= 〈M s,x[u],M s,x[ψi]〉+
∫ ·

s

ua(ψi)(r,Xr)dVr −
∫ ·

s

ψif(·, ·, u, v)(r,Xr)dVr ,

This yields 〈M s,x[u],M s,x[ψi]〉 =
∫ ·∨s

s
vi(r,Xr)dVr as desired, which implies

(5.22).

Proposition 5.18. Let (f, g) verify Hgrowth(ζ, η). A classical solution of Pseudo−
PDE(f, g) is also a decoupled mild solution.

Conversely, a decoupled mild solution of Pseudo − PDE(f, g) belonging to
D(Γψ) is a classical solution of Pseudo− PDE(f, g) up to a zero-potential set,
meaning that it verifies the first equality of (5.1) up to a set of zero potential.

Proof. Let u be a classical solution of Pseudo− PDE(f, g). Definition 5.3 and
Corollary 4.17 imply that u(T, ·) = g, and the equalities up to zero potential
sets

a(u) = a(u) = −f(·, ·, u,Γψ(u)) = −f(·, ·, u,Gψ(u)), (5.27)

which shows that u is a martingale solution and by Proposition 5.16 it is also a
decoupled mild solution.

Similarly, the second statement follows by Proposition 5.17, Definition 5.9,
and again Corollary 4.17.

5.3 Existence and uniqueness of a decoupled mild solution

In this subsection, the positive functions ζ, η and the functions (f, g) appearing
in Pseudo−PDE(f, g) are fixed. We still assume that the Markov class verifies
Hmom(ζ, η).

Using arguments which are very close to those developed in [6], one can
show the following theorem. For the convenience of the reader, we postpone the
adapted proof to Appendix B.

Let (Y s,x,M s,x) be for any (s, x) ∈ [0, T ]× E the unique solution of (5.2),
see Notation 5.7.

Theorem 5.19. Let (f, g) verify H lip(ζ, η). There exists u ∈ D(a) such that
for any (s, x) ∈ [0, T ]× E

{

∀t ∈ [s, T ] : Y s,xt = u(t,Xt) Ps,xa.s.
M s,x = M [u]s,x,
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and in particular d〈Ms,x,M [ψ]s,x〉
dV

= Gψ(u)(·, X·) dV ⊗dPs,x a.e. on [s, T ]. More-
over, for every (s, x), Y s,xs is Ps,x a.s. equal to a constant (which we shall still
denote Y s,xs ) and u(s, x) = Y s,xs for every (s, x) ∈ [0, T ]× E.

Corollary 5.20. Let (f, g) verify H lip(ζ, η). For any (s, x) ∈ [0, T ] × E, the
functions u obtained in Theorem 5.19 verifies Ps,x a.s. on [s, T ]

u(t,Xt) = g(XT )+

∫ T

t

f
(

r,Xr, u(r,Xr),G
ψ(u)(r,Xr)

)

dVr−(M [u]s,xT −M [u]s,xt ),

and in particular, a(u) = −f(·, ·, u,Gψ(u)).
Proof. The corollary follows from Theorem 5.19 and Lemma 2.4.

Theorem 5.21. Let (Ps,x)(s,x)∈[0,T ]×E be a Markov class associated to a tran-
sition kernel measurable in time (see Definitions C.5 and C.4) which solves a
martingale problem associated with the triplet (D(a), a, V ). Moreover we suppose
Hypothesis Hmom(ζ, η) for some positive ζ, η. Let (f, g) be a couple verifying
H lip(ζ, η).

Then Pseudo− PDE(f, g) has a unique decoupled mild solution given by

u :
[0, T ]× E −→ R
(s, x) 7−→ Y s,xs ,

(5.28)

where (Y s,x,M s,x) denotes the (unique) solution of BSDEs,x(f, g) for fixed
(s, x).

Proof. Let u be the function exhibited in Theorem 5.19. In order to show that
u i.e. a decoupled mild solution of Pseudo−PDE(f, g), it is enough by Propo-
sition 5.16 to show that it is a martingale solution.
In Corollary 5.20, we have already seen that a(u) = −f(·, ·, u,Gψ(u)).
Concerning the second line of (5.3), for any x ∈ E, we have
u(T, x) = u(T,XT ) = g(XT ) = g(x) PT,x a.s., so u(T, ·) = g, in the determinis-
tic pointwise sense.
We now show uniqueness. By Proposition 5.17, it is enough to show that
Pseudo − PDE(f, g) admits at most one martingale solution. Let u, u′ be
two martingale solutions of Pseudo−PDE(f, g). We fix (s, x) ∈ [0, T ]×E. By
Proposition 5.11, both couples, indexed by [s, T ],
(

u(·, X), u(·, X)− u(s, x) +
∫ ·

s
f(·, ·, u,Gψ(u))(r,Xr)dVr

)

and
(

u′(·, X), u′(·, X)− u′(s, x) +
∫ ·

s
f(·, ·, u′,Gψ(u))(r,Xr)dVr

)

admit a Ps,x-version
which solvesBSDEs,x(f, g) on [s, T ]. By Theorem 3.3 and Remark 3.4,BSDEs,x(f, g)
admits a unique solution, so u(·, X·) and u′(·, X·) are Ps,x-modifications one of
the other on [s, T ]. In particular, considering their values at time s, we have
u(s, x) = u′(s, x). We therefore have u′ = u.

Corollary 5.22. Let (f, g) verify H lip(ζ, η). There is at most one classical
solution of Pseudo− PDE(f, g) and this only possible classical solution is the
unique decoupled mild solution (s, x) 7−→ Y s,xs , where (Y s,x,M s,x) denotes the
(unique) solution of BSDEs,x(f, g) for fixed (s, x).
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Proof. The proof follows from Proposition 5.18 and Theorem 5.21.

Remark 5.23. The function v such that (u, v) is the unique solution of the
identification problem IP (f, g) also has a stochastic representation since it ver-
ifies for every (s, x) ∈ [0, T ]× E, on the interval [s, T ],
d〈Ms,x,Ms,x[ψ]〉

dV
= v(·, X·) dV ⊗ dPs,x a.e. where M s,x is the martingale part of

the solution of BSDEs,x(f, g).

The existence of a decoupled mild solution of Pseudo−PDE(f, g) provides
in fact an existence theorem for BSDEs,x(f, g) for any (s, x). The following
constitutes the converse of Theorem 5.21.

Proposition 5.24. Assume (f, g) verifies Hmom(ζ, η). Let (u, v) be a solution
of IP (f, g), let (s, x) ∈ [0, T ] × E and the associated probability Ps,x be fixed.
The couple

(

u(t,Xt), u(t,Xt)− u(s, x) +

∫ t

s

f(·, ·, u, v)(r,Xr)dVr

)

t∈[s,T ]

(5.29)

has a Ps,x-version which solves BSDEs,x(f, g) on [s, T ].

In particular if (f, g) verifies the stronger hypothesis H lip(ζ, η) and (u, v) is
the unique solution of IP (f, g), then for any (s, x) ∈ [0, T ]× E,
(

u(t,Xt), u(t,Xt)− u(s, x) +
∫ t

s
f(·, ·, u, v)(r,Xr)dVr

)

t∈[s,T ]
is a Ps,x modi-

fication of the unique solution of BSDEs,x(f, g) on [s, T ].

Proof. It follows from Propositions 5.17, and 5.11.

6 Examples of applications

We now develop some examples. In all the items below there will be a canonical
Markov class with transition kernel being measurable in time which is solution
of a Martingale Problem associated to some triplet (D(a), a, V ) as introduced
in Definition 4.1. Therefore all the results of this paper will apply to all the
examples below. In particular, Propositions 5.17, 5.18, Theorem 5.21, Corollary
5.22 and Proposition 5.24 will apply but we will mainly emphasize Theorem 5.21
and Corollary 5.22.

In all the examples T > 0 will be fixed.

6.1 A new approach to Brownian BSDEs and associate

semilinear PDEs

In this subsection, the state space will be E := Rd for some d ∈ N∗.
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Notation 6.1. A function φ ∈ B([0, T ]×Rd,R) will be said to have polynomial

growth if there exists p ∈ N and C > 0 such that for every (t, x) ∈ [0, T ]×Rd,
|φ(t, x)| ≤ C(1 + ‖x‖p). For any k, p ∈ N, Ck,p([0, T ]×Rd) (resp. Ck,pb ([0, T ]×Rd), resp. Ck,ppol ([0, T ]×Rd)) will denote the sublinear algebra of C([0, T ]×Rd,R)
of functions admitting continuous (resp. bounded continuous, resp. continuous
with polynomial growth) derivatives up to order k in the first variable and order
p in the second.

We consider bounded Borel functions µ ∈ Bb([0, T ] × Rd,Rd) and α ∈
Bb([0, T ] × Rd, S+

d (R)) where S+
d (R) is the space of symmetric non-negative

d× d real matrices. We define for φ ∈ C1,2([0, T ]× Rd) the operator a by

a(φ) = ∂tφ+
1

2

∑

i,j≤d

αi,j∂
2
xixj

φ+
∑

i≤d

µi∂xi
φ. (6.1)

We will assume the following.

Hypothesis 6.2. There exists a canonical Markov class (Ps,x)(s,x)∈[0,T ]×Rd

which solves the Martingale Problem associated to (C1,2
b ([0, T ]× Rd), a, Vt ≡ t)

in the sense of Definition 4.1.

We now recall a non-exhaustive list of sets of conditions on µ, α under which
Hypothesis 6.2 is satisfied.

1. α is continuous non-degenerate, in the sense that for any t, x, α(t, x) is
invertible, see Theorem 4.2 in [34];

2. µ and α are continuous in the second variable, see Exercise 12.4.1 in [35];

3. d = 1 and α is uniformly positive on compact sets, see Exercise 7.3.3 in
[35].

Remark 6.3. When the first or third item above is verified, the mentioned
Markov class is unique, but if the second one holds, uniqueness may not hold.
We therefore fix a Markov class which solves the martingale problem. We wish
to emphasize that given a fixed Markov class, we will obtain some uniqueness
results concerning the martingale solution and the decoupled mild solution of an
associated PDE, but that for every Markov class solving the martingale problem
may correspond a different solution.

In this context, for φ, ψ in D(a), the carré du champs operator (see Definition
4.4) is given by Γ(φ, ψ) =

∑

i,j≤d

αi,j∂xi
φ∂xj

ψ.

Remark 6.4. By a localization procedure, it is also clear that for every (s, x) ∈
[0, T ]×Rd, Ps,x verifies that for any φ ∈ C1,2([0, T ]×Rd), φ(·, X·)−

∫ ·

s
a(φ)(r,Xr)dr ∈

H2
loc and that Proposition 4.5 extends to all φ ∈ C1,2([0, T ]× Rd).
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We set now D(a) = C1,2
pol([0, T ]× Rd).

For any i ∈ [[1; d]], the function Idi denotes (t, x) 7−→ xi which belongs to
D(a) and Id := (Id1, · · · , Idd).
It is clear that for any i, a(Idi) = µi, and for any i, j, IdiIdj ∈ D(a) and
Γ(Idi, Idj) = αi,j . In particular, by Corollary 4.7, (Id1, · · · , Idd) verify Hy-
pothesis 4.6 and since µ, α are bounded, they verify Hypothesis 5.1.

For any i we can therefore consider the MAF M [Idi] : (t, u) 7→ X i
u − X i

t −
∫ u

t
µi(r,Xr)dr whose cadlag version under Ps,x for every (s, x) ∈ [0, T ]× Rd is

M [Idi]
s,x = 1[s,T ]

(

X i − xi −
∫ ·

s
µi(r,Xr)dr

)

and we have for any i, j 〈M [Idi]
s,x,M [Idj ]

s,x〉 =
∫ ·∨s

s
αi,j(r,Xr)dr.

Lemma 6.5. Let (s, x) ∈ [0, T ]× Rd and associated probability Ps,x, i ∈ [[1; d]]
and p ∈ [1,+∞[ be fixed. Then sup

t∈[s,T ]

|X i
t |p ∈ L1.

Proof. We have X i = xi +
∫ ·

s
µi(r,Xr)dr + M [Idi]

s,x where µi is bounded
so it is enough to show that sup

t∈[s,T ]

|M [Idi]
s,x
t |p ∈ L1. Since 〈M [Idi]

s,x〉 =

∫ ·∨s

s
αi,i(r,Xr)dr, which is bounded, the result holds by Burkholder-Davis-

Gundy inequality.

Corollary 6.6. (Ps,x)(s,x)∈[0,T ]×Rd solves the Martingale Problem associated

to (C1,2
pol([0, T ]× Rd), a, Vt ≡ t) in the sense of Definition 4.1.

Proof. By Remark 6.4, for any φ ∈ C1,2
pol([0, T ] × Rd) and (s, x) ∈ [0, T ] × Rd,

φ(·, X·) −
∫ ·

s
a(φ)(r,Xr)dr is a Ps,x-local martingale. Since φ and a(φ) have

polynomial growth, Lemma 6.5 and Jensen’s inequality imply that it is also a
square integrable martingale.

We now consider a couple (f, g) verifying H lip(‖ · ‖p, ‖ · ‖p) for some p ≥ 1.
In this case Hypothesis 5.5 can be retranslated into what follows.

• g is Borel with polynomial growth;

• f is Borel with polynomial growth in x (uniformly in t), and Lipschitz in
y, z.

We consider the PDE
{

∂tu+ 1
2

∑

i,j≤d

αi,j∂
2
xixj

u+
∑

i≤d

µi∂xi
u+ f(·, ·, u, α∇u) = 0

u(T, ·) = g.
(6.2)

We emphasize that for u ∈ C1,2
pol([0, T ] × Rd), α∇u = ΓId(u). The associated

decoupled mild equation is given by
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{

u(s, x) = Ps,T [g](x) +
∫ T

s
Ps,r [f (·, ·, u, v) (r, ·)] (x)dr

u(s, x)xi = Ps,T [gIdi](x) −
∫ T

s
Ps,r [(vi + uµi − Idif (·, ·, u, v)) (r, ·)] (x)dr, i ∈ [[1; d]],

(6.3)
(s, x) ∈ [0, T ]× Rd, where P is the transition kernel of the Markov class.

Proposition 6.7. Assume that Hypothesis 6.2 is verified and that (f, g) verifies
H lip(‖ · ‖p, ‖ · ‖p) for some p ≥ 1. Then equation (6.2) has a unique decoupled
mild solution u.

Moreover it has at most one classical solution which (when it exists) equals
this function u.

Proof. (Ps,x)(s,x)∈[0,T ]×Rd verifies a martingale problem in the sense of Defi-
nition 4.1 and has a transition kernel which is measurable in time. Moreover
(Id1, · · · , Idd) verify Hypothesis 5.1, (Ps,x)(s,x)∈[0,T ]×Rd verifies (by Lemma
6.5) Hmom(‖ · ‖p, ‖ · ‖p) for some p ≥ 1 and (f, g) verifies H lip(‖ · ‖p, ‖ · ‖p). So
Theorem 5.21 and Corollary 5.22 apply.

Remark 6.8. The unique decoupled mild solution mentioned in the previous
proposition admits the probabilistic representation given in Theorem 5.21.

Remark 6.9. In the classical literature, a Brownian BSDE is linked to a slightly
different type of parabolic PDE, see the introduction of the present paper, or [29]
for more details.

The PDE which is generally considered is of the type

{

∂tu+
1
2

∑

i,j≤d

(σσ⊺)i,j∂
2
xixj

u+
∑

i≤d

µi∂xi
u+ f(·, ·, u, σ∇u) = 0

u(T, ·) = g,
(6.4)

(where σ =
√
α in the sense of non-negative symmetric matrices) rather than

(6.2). In fact, the only difference is that the term σ∇u replaces α∇u in the
fourth argument of the driver f .

We recall that the Markovian BSDE was given in (1.1).
Under the probability Ps,x (for some fixed (s, x)), one can introduce the

square integrable martingale M̃ [Id]s,x :=
∫ ·

s
(σ⊺)+(r,Xr)dM [Id]s,xr where A 7→

A+ denotes the Moore-Penrose pseudo-inverse operator, see [9] chapter 1. The
Brownian BSDE (1.1) can then be reexpressed here as

Y s,xt = g(XT ) +

∫ T

t

f

(

r,Xr, Y
s,x
r ,

d〈M s,x, M̃ [Id]s,x〉r
dr

)

dr − (M s,x
T −M s,x

t ).

(6.5)
Under the assumptions of Proposition 6.7 where α = σσ⊺), it is possible to show
that (6.5) constitutes the probabilistic representation of (6.4) performing similar
arguments as in our approach for (6.2). In particular we can show existence and
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uniqueness of a function u ∈ L2
X for which there exists v1, · · · , vd ∈ L2

X such
that for all (s, x) ∈ [0, T ]× Rd,
{

u(s, x) = Ps,T [g](x) +
∫ T

s
Ps,r [f (·, ·, u, (σ⊺)+v) (r, ·)] (x)dr

u(s, x)xi = Ps,T [gIdi](x) −
∫ T

s
Ps,r [(vi + uµi − Idif (·, ·, u, (σ⊺)+v)) (r, ·)] (x)dr, i ∈ [[1; d]],

(6.6)
and that this function u is the only possible classical solution of (6.4) in C1,2

pol([0, T ]×Rd). (6.6) constitutes the ”good” version of decoupled mild solution for the (6.4).
This technique is however technically more complicated and for purpose of illus-
tration we prefer to remain in our set up (which is by the way close to (6.4)) to
keep our notion of decoupled-mild solution more comprehensible.

Remark 6.10. It is also possible to treat jump diffusions instead of continu-
ous diffusions (see [34]), and under suitable conditions on the coefficients, it is
also possible to prove existence and uniqueness of a decoupled mild solution for
equations of type
{

∂tu+ 1
2Tr(α∇2u) + (µ,∇u) +

∫

(

u(·, ·+ y)− u− (y,∇u)
1+‖y‖2

)

K(·, ·, dy) + f(·, ·, u,ΓId(u)) = 0

u(T, ·) = g,
(6.7)

where K is a Lévy kernel: this means that for every (t, x) ∈ [0, T ]×Rd, K(t, x, ·)
is a σ-finite measure on Rd\{0}, sup

t,x

∫ ‖y‖2

1+‖y‖2K(t, x, dy) < ∞ and for every

Borel set A ∈ B(Rd\{0}), (t, x) 7−→
∫

A

‖y‖2

1+‖y‖2K(t, x, dy) is Borel. In that

framework we have

ΓId : φ 7−→ α∇φ+

(
∫

yi(φ(·, ·+ y)− φ(·, ·))K(·, ·, dy)
)

i∈[[1;d]]

. (6.8)

6.2 Parabolic semi-linear PDEs with distributional drift

In this subsection we will use the formalism and results obtained by in [21] and
[22], see also [32] and [14] for more recent developments in dimension 1. Those
authors make reference to stochastic differential equations with distributional
drift whose solution are possibly non-semimartingales. Those papers introduced
a suitable framework of Martingale Problem related to a PDE operator involving
a distributional drift b′ which is the derivative of a continuous function. [20]
established a first work in the n-dimensional setting, later developments were
discussed by [11]. Other Markov processes associated to diffusion operators
which are not semimartingales were produced when the diffusion operator is in
divergence form, see e.g. [31] or Markov processes associated to singular PDEs
involving paracontrolled distributions introduced in [11].

Let b, σ ∈ C0(R) such that σ > 0. By a mollifier, we intend a function
Φ ∈ S(R) with

∫

Φ(x)dx = 1.
We denote Φn(x) = nΦ(nx), σ2

n = σ2 ∗ Φn, bn = b ∗ Φn.
We then define Lng =

σ2
n

2 g
′′+ b′ng

′. f ∈ C1(R) is said to be a solution to Lf = l̇
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where l̇ ∈ C0(R), if for any mollifier Φ, there are sequences (fn) in C2(R), (l̇n)
in C0(R) such that

Lnfn = (l̇n), fn
C1(R)−→ f , l̇n

C0(R)−→ l̇. (6.9)

We will assume that Σ(x) = lim
n→∞

2
∫ x

0
b′n
σ2
n
(y)dy exists in C0(R) independently

from the mollifier.

By Proposition 2.3 in [21] there exists a solution h ∈ C1(R) to Lh = 0, h(0) =
0, h′(0) = 1. Moreover it verifies h′ = e−Σ.

DL is defined as the set of f ∈ C1(R) such that there exists some l̇ ∈ C0(R)
with Lf = l̇ and it is a linear algebra.

Let v be the unique solution to Lv = 1, v(0) = v′(0) = 0 (see Remark 2.4 in
[21]), we will assume that

v(−∞) = v(+∞) = +∞, (6.10)

which represents a non-explosion condition. In this case, Proposition 3.13 in [21]
states that a certain martingale problem associated to (DL, L) is well-posed. Its
solution will be denoted (Ps,x)(s,x)∈[0,T ]×Rd .

X is a Ps,x-Dirichlet process for every (s, x) and (Ps,x)(s,x)∈[0,T ]×Rd defines
a Markov class and Proposition B.2 in [7] implies that its transition kernel is
measurable in time.

We introduce the domain that we will indeed use.

Definition 6.11. We set

Dmax(a) =

{

φ ∈ C1,1([0, T ]× R) : ∂xφ
h′

∈ C1,1([0, T ]× R)} (6.11)

On Dmax(a), we set Lφ := σ2h′

2 ∂x(
∂xφ
h′

) and a(φ) := ∂tφ+ Lφ. We then define
the smaller domain

D(a) =
{

φ ∈ Dmax(a) : σ∂xφ ∈ C0,0
pol([0, T ]× R)} . (6.12)

We formulate here some supplementary assumptions that we will make, the
first one being called (TA) in [21].

Hypothesis 6.12.

• There exists c1, C1 > 0 such that c1 ≤ σh′ ≤ C1;

• σ has linear growth.

The first item states in particular that σh′ is bounded so h ∈ D(a). Proposi-
tion 3.2 in [21] states that for every (s, x), 〈M [h]s,x〉 =

∫ ·∨s

s
(σh′)2(Xr)dr. More-

over the AF 〈M [h]〉tu =
∫ u

t
(σh′)2(Xr)dr is absolutely continuous with respect

to V̂t ≡ t. Therefore Hypothesis 4.6 is verified (for ψ = h) and Gh(h) = (σh′)2.
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Since this function is bounded and clearly a(h) = 0 then h verifies Hypothesis
5.1.

We will therefore consider Γh the h-generalized gradient associated to a, and
Proposition 4.23 in [7] implies the following.

Proposition 6.13. Let φ ∈ D(Γh), then Γh(φ) = σ2h′∂xφ.

Remarking that b′ is a distribution, the equation that we will study in this
section is the following.
{

∂tu+ 1
2σ

2∂2xu+ b′∂xu+ f(·, ·, u, σ2h′∂xu) = 0 on [0, T ]× R
u(T, ·) = g.

(6.13)

The associated PDE in the decoupled mild sense is given by
{

u(s, x) = PT−s[g](x) +
∫ T

s
Pr−s [f (·, ·, u, v) (r, ·)] (x)dr

u(s, x)h(x) = PT−s[gh](x)−
∫ T

s
Pr−s [(v − hf (·, ·, u, v)) (r, ·)] (x)dr,

(6.14)
(s, x) ∈ [0, T ]×R, where P is the (homogeneous) transition kernel of the Markov
class.

In order to consider the BSDEs,x(f, g) for functions (f, g) having polynomial
growth in x, we had shown in [7] the following result, stated as Proposition 4.26.

Proposition 6.14. We suppose that Hypothesis 6.12 is fulfilled. Then, for any

p ∈ N and (s, x) ∈ [0, T ] × R, Es,x[|XT |p] < ∞ and Es,x[∫ T
s
|Xr|pdr] < ∞.

In other words, for any p ≥ 1, the Markov class (Ps,x)(s,x)∈[0,T ]×Rd verifies
Hmom(| · |p, | · |p), see Hypothesis 5.4.

Proposition 6.15. We suppose that Hypothesis 6.12 is fulfilled. Then (Ps,x)(s,x)∈[0,T ]×Rd

solves the Martingale Problem associated to (a,D(a), Vt ≡ t) in the sense of Def-
inition 4.1.

Proof. Let (s, x) ∈ [0, T ] × R be fixed. Proposition 4.24 in [7] implies that
for any φ ∈ D(a), φ(·, X·) −

∫ ·

s
a(φ)(r,Xr)dr is a (continuous) Ps,x-local mar-

tingale, so taking Definition 4.1 into account, it is enough to show that this
local martingale is a square integrable martingale. Considering Definition 4.22,
Proposition 4.23 and Proposition 2.7 in [7], we know that the angular bracket
of this local martingale is given by

∫ ·

s
(σ∂xφ)

2(r,Xr)dr. Since φ ∈ D(a) then

σ∂xφ has polynomial growth, so by Proposition 6.14,
∫ T

s
(σ∂xφ)

2(r,Xr)dr ∈ L1

and this implies that the overmentioned local martingale is a square integrable
martingale.

We can now state the main result of this section.

Proposition 6.16. Assume that the non-explosion condition (6.10) is verified,
that Hypothesis 6.12 is fulfilled and (f, g) verifies H lip(| · |p, | · |p) for some p ≥ 1,
see Hypothesis 5.5. Then equation (6.13) has a unique decoupled mild solution
u. It has at most one classical solution which can only be equal to u.
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Remark 6.17. The unique decoupled mild solution u can be of course repre-
sented by (5.28), Theorem 5.21.

Proof. The assertions come from Theorem 5.21 and Corollary 5.22 which applies
thanks to Propositions 6.15, 6.14, and the fact that h verifies Hypothesis 5.1.

Remark 6.18.

1. [33] has made a first analysis linking elliptic PDEs (in fact second order
ODEs) with distributional drift and BSDEs. In those BSDEs the final
horizon was a stopping time.

2. [24] have considered a class of BSDEs involving distributions in their
setting.

Appendices

A Proof of Theorem 3.3 and related technicali-

ties

We adopt here the same notations as at the beginning of Section 3. We will
denote L2(dV̂ ⊗ dP) the quotient space of L2(dV̂ ⊗ dP) with respect to the
subspace of processes equal to zero dV̂ ⊗ dP a.e.
L2(dV̂ ⊗ dP) is a Hilbert space equipped with its usual norm.
L2,cadlag(dV̂ ⊗dP)) will denote the subspace of L2(dV̂ ⊗dP)) of elements having
a cadlag representative. We emphasize that L2,cadlag(dV̂ ⊗ dP) is not a closed
subspace of L2(dV̂ ⊗ dP).
The application which to a process associate its class will be denoted φ 7→ φ̇.

Proposition A.1. If (Y,M) solves BSDE(ξ, f̂ , V, M̂), and if we denote

f̂
(

r, ·, Yr, d〈M,M̂〉

dV̂
(r)
)

by f̂r, then for any t ∈ [0, T ], a.s. we have







Yt = E [ξ + ∫ T
t
f̂rdV̂r

∣

∣

∣
Ft
]

Mt = E [ξ + ∫ T0 f̂rdV̂r

∣

∣

∣
Ft
]

− E [ξ + ∫ T0 f̂rdV̂r

∣

∣

∣
F0

]

.
(A.1)

Proof. Since Yt = ξ +
∫ T

t
f̂rdV̂r − (MT −Mt) a.s., Y being an adapted process

and M a martingale, taking the expectation in (3.2) at time t, we directly get

Yt = E [ξ + ∫ T
t
f̂rdV̂r

∣

∣

∣
Ft
]

and in particular that Y0 = E [ξ + ∫ T
0
f̂rdV̂r

∣

∣

∣
F0

]

.

Since M0 = 0, looking at the BSDE at time 0 we get

MT = ξ +

∫ T

0

f̂rdV̂r − E[ξ + ∫ T

0

f̂rdV̂r

∣

∣

∣

∣

∣

F0

]

.

Taking the expectation with respect to Ft in the above inequality gives the
second line of (A.1).
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Lemma A.2. Let M ∈ H2 and φ be a bounded positive process. Then there
exists a constant C > 0 such that for any i ∈ [[1; d]],
∫ T

0
φr

(

d〈M,M̂i〉

dV̂
(r)
)2

dV̂r ≤ C
∫ T

0
φrd〈M〉r. In particular, d〈M,M̂i〉

dV̂
belongs to

L2(dV̂ ⊗ dP).
Proof. We fix i ∈ [[1; d]]. By Hypothesis 3.1 d〈M̂i〉

dV̂
is bounded; using Proposition

B.1 and Remark 3.3 in [6], we show the existence of C > 0 such that

∫ T

0
φr

(

d〈M,M̂i〉

dV̂
(r)
)2

dV̂r ≤
∫ T

0
φr

d〈M̂i〉

dV̂
(r)d〈M〉

dV̂
(r)dV̂r

≤ C
∫ T

0
φr

d〈M〉

dV̂
(r)dV̂r

≤ C
∫ T

0 φrd〈M〉r.
(A.2)

In particular, setting φ = 1, we have
∫ T

0

(

d〈M,M̂i〉

dV̂
(r)
)2

dV̂r ≤ C〈M〉T which

belongs to L1 since M ∈ H2
0.

We fix for now a couple (U̇ , N) ∈ L2(dV̂ ⊗ dP) × H2
0 and we consider a

representative U of U̇ . Until Proposition A.6 included, we will use the notation

f̂r := f̂
(

r, ·, Ur, d〈N,M̂〉

dV̂
(r)
)

.

Proposition A.3. For any t ∈ [0, T ],
∫ T

t
f̂2
r dV̂r belongs to L1 and

(

∫ T

t
f̂rdV̂r

)

is in L2.

Proof. By Jensen’s inequality, thanks to the Lipschitz conditions on f̂ in Hy-
pothesis 3.1 and by Lemma A.2 there exist positive constants C,C′, C” such
that, for any t ∈ [0, T ], we have

(

∫ T

t
f̂rdV̂r

)2

≤ C
∫ T

t
f̂2
r dV̂r

≤ C′

(

∫ T

t
f̂2 (r, ·, 0, 0)dV̂r +

∫ T

t
U2
r dV̂r +

d
∑

i=1

∫ T

t

(

d〈N,M̂i〉

dV̂
(r)
)2

dV̂r

)

≤ C”
(

∫ T

t
f̂2 (r, ·, 0, 0)dV̂r +

∫ T

t
U2
r dV̂r + (〈N〉T − 〈N〉t)

)

.

(A.3)
All terms on the right-hand side are in L1. Indeed, N is taken in H2, U̇ in
L2(dV̂ ⊗dP) and by Hypothesis 3.1, f(·, ·, 0, 0) is in L2(dV̂ ⊗dP). This concludes
the proof.

We can therefore state the following definition.

Definition A.4. Let M be the cadlag version of the martingale t 7→ E [ξ + ∫ T
0
f̂rdV̂r

∣

∣

∣
Ft
]

−E [ξ + ∫ T
0
f̂rdV̂r

∣

∣

∣
F0

]

.

M is square integrable by Proposition A.3. It admits a cadlag version taking
into account Theorem 4 in Chapter IV of [16], since the stochastic basis fulfills
the usual conditions. We denote by Y the cadlag process defined by

31



Yt = ξ +
∫ T

t
f̂rdV̂r − (MT − Mt). This will be called the cadlag reference

process and we omit its dependence to (U̇ , N).

Proposition A.5. Y and M take square integrable values.

Proof. We already know that M is a square integrable martingale. As we have
seen in Proposition A.3,

∫ T

t
f̂rdV̂r belongs to L2 for any t ∈ [0, T ] and by

Hypothesis 3.1, ξ ∈ L2. So by (A.1) and Jensen’s inequality for conditional
expectation we haveE [Y 2

t

]

= E [E [ξ + ∫ T
t
f̂rdV̂r

∣

∣

∣
Ft
]2
]

≤ E [E [(ξ + ∫ T
t
f̂rdV̂r

)2
∣

∣

∣

∣

Ft
]]

≤ E [2ξ2 + 2
∫ T

t
f̂2
r dV̂r

]

,

which is finite.

Proposition A.6. sup
t∈[0,T ]

|Yt| ∈ L2 and in particular, Y ∈ L2,cadlag(dV̂ ⊗ P).
Proof. Since dYr = −f̂rdV̂r + dMr, by integration by parts formula we get

d(Y 2
r e

−V̂r ) = −2e−V̂rYr f̂rdV̂r + 2e−V̂rYr−dMr + e−V̂rd[M ]r − e−V̂rY 2
r dV̂r .

So integrating from 0 to some t ∈ [0, T ], we get

Y 2
t e

−V̂t = Y 2
0 − 2

∫ t

0 e
−V̂rYr f̂rdV̂r + 2

∫ t

0 e
−V̂rYr−dMr

+
∫ t

0 e
−V̂rd[M ]r −

∫ t

0 e
−V̂rY 2

r dV̂r
≤ Y 2

0 +
∫ t

0 e
−V̂rY 2

r dV̂r +
∫ t

0 e
−V̂r f̂2

r dV̂r

+2
∣

∣

∣

∫ t

0
e−V̂rYr−dMr

∣

∣

∣
+
∫ t

0
e−V̂rd[M ]r −

∫ t

0
e−V̂rY 2

r dV̂r

≤ Z + 2
∣

∣

∣

∫ t

0
e−V̂rYr−dMr

∣

∣

∣
,

where Z = Y 2
0 +

∫ T

0 e−V̂r f̂2
r dV̂r +

∫ T

0 e−V̂rd[M ]r. Therefore, for any t ∈ [0, T ]

we have (Yte
−V̂t)2 ≤ Y 2

t e
−V̂t ≤ Z +2

∣

∣

∣

∫ t

0
e−V̂rYr−dMr

∣

∣

∣
. Thanks to Propositions

A.3 and A.5, Z is integrable, so we can conclude by Lemma 3.16 in [6] applied
to the process Y e−V̂ , and the fact that V̂ is bounded.

Since Y is cadlag progressively measurable, sup
t∈[0,T ]

|Yt| ∈ L2 and since V̂ is

bounded, it is clear that Y ∈ L2,cadlag(dV̂ ⊗ dP) and the corresponding class Ẏ
belongs to L2,cadlag(dV̂ ⊗ dP).

Thanks to Propositions A.5 and A.6, we are allowed to introduce the follow-
ing operator.
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Notation A.7. We denote by Φ the operator which associates to a couple (U̇ , N)
the couple (Ẏ ,M).

Φ :
L2(dV̂ ⊗ dP)×H2

0 −→ L2,cadlag(dV̂ ⊗ dP)×H2
0

(U̇ , N) 7−→ (Ẏ ,M).

Proposition A.8. The mapping (Y,M) 7−→ (Ẏ ,M) induces a bijection between

the set of solutions of BSDE(ξ, f̂ , V̂ , M̂) and the set of fixed points of Φ.

Proof. First, let (U,N) be a solution ofBSDE(ξ, f̂ , V, M̂), let (Ẏ ,M) := Φ(U̇ , N)
and let Y be the reference cadlag process associated to U as in Definition A.4.
By this same definition, M is the cadlag version of

t 7→ E [ξ + ∫ T
0
f̂
(

r, ·, Ur, d〈N,M̂〉

dV̂
(r)
)

dV̂r

∣

∣

∣
Ft
]

−E [ξ + ∫ T
0
f̂
(

r, ·, Ur, d〈N,M̂〉

dV̂
(r)
)

dV̂r

∣

∣

∣
F0

]

,

but by Proposition A.1, so is N , meaning M = N . Again by Definition A.4,

Y = ξ+
∫ T

· f̂
(

r, ·, Ur, d〈N,M̂〉

dV̂
(r)
)

dV̂r− (NT −N·) which is equal to U thanks to

(3.2), so Y = U in the sense of indistinguishability. In particular, U̇ = Ẏ , imply-
ing (U̇ , N) = (Ẏ ,M) = Φ(U̇ , N). Therefore, the mapping (Y,M) 7−→ (Ẏ ,M)

does indeed map the set of solutions of BSDE(ξ, f̂ , V, M̂) into the set of fixed
points of Φ.

The map Φ is surjective. Indeed let (U̇ , N) be a fixed point of Φ, the couple

(Y,M) of Definition A.4 verifies Y = ξ+
∫ T

· f̂
(

r, ·, Ur, d〈N,M̂〉

dV̂
(r)
)

dV̂r − (MT −
M·) in the sense of indistinguishability, and (Ẏ ,M) = Φ(U̇ , N) = (U̇ , N), so by

Lemma 3.9 in [6],
∫ T

·
f̂
(

r, ·, Yr, d〈M,M̂〉

dV̂
(r)
)

dV̂r and
∫ T

·
f̂
(

r, ·, Ur, d〈N,M̂〉

dV̂
(r)
)

dV̂r

are indistinguishable and Y = ξ +
∫ T

· f̂
(

r, ·, Yr, d〈M,M̂〉

dV̂
(r)
)

dV̂r − (MT −M·),

meaning that (Y,M) (which is a preimage of (U̇ , N)) solves BSDE(ξ, f̂ , V, M̂).

We finally show that it is injective. Let us consider two solutions (Y,M) and
(Y ′,M) of BSDE(ξ, f̂ , V, M̂) with Ẏ = Ẏ ′. By Lemma 3.9 in [6] the pro-

cesses
∫ T

·
f̂
(

r, ·, Yr, d〈M,M̂〉

dV̂
(r)
)

dV̂r and
∫ T

·
f̂
(

r, ·, Y ′
r ,

d〈M,M̂〉

dV̂
(r)
)

dV̂r are indis-

tinguishable, so taking (3.2) into account, we have Y = Y ′.

Proposition A.9. Let λ ∈ R, let (U̇ , N), (U̇ ′, N ′) ∈ L2(dV̂ ⊗ dP) × H2
0,

let (Ẏ ,M), (Ẏ ′,M ′) be their images through Φ and let Y, Y ′ be the cadlag

representatives of Ẏ , Ẏ ′ introduced in Definition A.4. Then
∫ ·

0 e
λV̂rYr−dMr,

∫ ·

0 e
λV̂rY ′

r−
dM ′

r,
∫ ·

0 e
λV̂rYr−dM

′
r and

∫ ·

0 e
λV̂rY ′

r−
dMr are martingales.

Proof. V̂ is bounded and thanks to Proposition A.6 we know that sup
t∈[0,T ]

|Yt|

and sup
t∈[0,T ]

|Y ′
t | are L2. Moreover, since M and M ′ are square integrable, the

statement yields therefore as a consequence Lemma 3.15 in [6].
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Starting from now, if (Ẏ ,M) is the image by Φ of some
(U̇ , N) ∈ L2(dV̂ ⊗ dP) × H2

0, by default, we will always refer to the cadlag
reference process Y of Ẏ defined in Definition A.4.

For any λ ≥ 0, on L2(dV̂ ⊗ dP)×H2
0 we define the norm

‖(Ẏ ,M)‖2λ := E [∫ T
0
eλV̂rY 2

r dV̂r

]

+ E [∫ T
0
eλV̂rd〈M〉r

]

. Since V̂ is bounded,

these norms are all equivalent.

Proposition A.10. There exists λ > 0 such that for any

(U̇ , N) ∈ L2(dV̂ ⊗ dP)×H2
0,
∥

∥

∥
Φ(U̇ , N)

∥

∥

∥

2

λ
≤ 1

2

∥

∥

∥
(U̇ , N)

∥

∥

∥

2

λ
. In particular, Φ is a

contraction in L2(dV̂ ⊗ dP)×H2
0 for the norm ‖ · ‖λ.

Proof. Let (U̇ , N) and (U̇ ′, N ′) be two couples belonging to L2(dV̂ ⊗ dP)×H2
0,

let (Ẏ ,M) and (Ẏ ′,M ′) be their images via Φ and let Y, Y ′ be the cadlag refer-
ence process of Ẏ , Ẏ ′ introduced in Definition A.4. We will write Ȳ for Y − Y ′

and we adopt a similar notation for other processes. We will also write

f̄t := f̂
(

t, ·, Ut, d〈N,M̂〉

dV̂
(t)
)

− f̂
(

t, ·, U ′
t ,
d〈N ′,M̂〉

dV̂
(t)
)

.

By additivity, we have dȲt = −f̄tdV̂t + dM̄t. Since ȲT = ξ − ξ = 0, apply-
ing the integration by parts formula to Ȳ 2

t e
λV̂t between 0 and T we get

Ȳ 2
0 −2

∫ T

0

eλV̂r Ȳr f̄rdV̂r+2

∫ T

0

eλV̂r Ȳr−dM̄r+

∫ T

0

eλV̂rd[M̄ ]r+λ

∫ T

0

eλV̂r Ȳ 2
r dV̂r = 0.

Since, by Proposition A.9, the stochastic integral with respect to M̄ is a real
martingale, by taking the expectations we getE [Ȳ 2

0

]

−2E[∫ T

0

eλV̂r Ȳr f̄rdV̂r

]

+E[∫ T

0

eλV̂rd〈M̄〉r
]

+λE[∫ T

0

eλV̂r Ȳ 2
r dV̂r

]

= 0.

So by re-arranging previous expression, by the Lipschitz condition on f̂ stated
in Hypothesis 3.1, by the linearity of the Radon-Nikodym derivative stated in
Proposition 2.3 and by Lemma A.2, we get

λE [∫ T
0
eλV̂r Ȳ 2

r dV̂r

]

+ E [∫ T
0
eλV̂rd〈M̄〉r

]

≤ 2E [∫ T0 eλV̂r |Ȳr||f̄r|dV̂r
]

≤ 2KYE [∫ T
0
eλV̂r |Ȳr||Ūr|dV̂r

]

+ 2KZ
d
∑

i=1

E [∫ T
0
eλV̂r |Ȳr|

∣

∣

∣

d〈N̄,M̂i〉

dV̂
(r)
∣

∣

∣
dV̂r

]

≤ (KY α+ dKZβ)E [∫ T
0
eλV̂r Ȳ 2

r dV̂r

]

+ KY

α
E [∫ T

0
eλV̂r Ū2

r dV̂r

]

+KZ

β

d
∑

i=1

E [∫ T0 eλV̂r

(

d〈N̄,M̂i〉

dV̂
(r)
)2

dV̂r

]

≤ (KY α+ dKZβ)E [∫ T
0
eλV̂r Ȳ 2

r dV̂r

]

+ KY

α
E [∫ T

0
eλV̂r Ū2

r dV̂r

]

+CdKZ

β
E [∫ T0 eλV̂rd〈N̄ 〉r

]

,
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for some positive C and any positive α and β. The latter equality holds by
Hypothesis 3.1 4. Then we pick α = 2KY and β = 2CdKZ , which gives us

λE [∫ T
0
eλV̂r Ȳ 2

r dV̂r

]

+ E [∫ T
0
eλV̂rd〈M̄〉r

]

≤ 2((KY )2 + C(dKZ)2)E [∫ T0 eλV̂r Ȳ 2
r dV̂r

]

+ 1
2E [∫ T0 eλV̂r Ū2

r dV̂r

]

+ 1
2E [∫ T0 eλV̂rd〈N̄ 〉r

]

.

We choose now λ = 1 + 2((KY )2 + C(dKZ)2) and we getE [∫ T
0
eλV̂r Ȳ 2

r dV̂r

]

+ E [∫ T
0
eλV̂rd〈M̄〉r

]

≤ 1
2E [∫ T0 eλV̂r Ū2

r dV̂r

]

+ 1
2E [∫ T0 eλV̂rd〈N̄ 〉r

]

,
(A.4)

which proves the contraction for the norm ‖ · ‖λ.

Proof of Theorem 3.3.
The space L2(dV̂ ⊗ dP)×H2

0 is complete and Φ defines on it a contraction
for the norm ‖(·, ·)‖λ for some λ > 0, so Φ has a unique fixed point in
L2(dV̂ ⊗ dP)×H2

0. Then by Proposition A.8, BSDE(ξ, f̂ , V, M̂) has a unique
solution.

Remark A.11. Let (Y,M) be the solution of BSDE(ξ, f̂ , V, M̂) and Ẏ the
class of Y in L2(dV̂ ⊗ dP). Thanks to Proposition A.8, we know that
(Ẏ ,M) = Φ(Ẏ ,M) and therefore by Propositions A.6 and A.9 that sup

t∈[0,T ]

|Yt| is

L2 and that
∫ ·

0 Yr−dMr is a real martingale.

The lemma below shows that, in order to verify that a couple (Y,M) is the
solution of BSDE(ξ, f̂ , V, M̂), it is not necessary to verify the square integra-
bility of Y since it will be automatically fulfilled.

Lemma A.12. In this lemma we consider (ξ, f̂ , V, M̂) such that ξ, M̂ verify
items 1., 2. of Hypothesis 3.1 but where item 3. is replaced by the weaker
following hypothesis on f̂ . There exists C > 0 such that P a.s., for all t, y, z,

|f̂(t, ω, y, z)| ≤ C(1 + |y|+ ‖z‖). (A.5)

Assume that there exists a cadlag adapted process Y with Y0 ∈ L2 , and
M ∈ H2

0 such that

Y = ξ +

∫ T

·

f̂

(

r, ·, Yr,
d〈M, M̂〉
dV̂

(r)

)

dV̂r − (MT −M·), (A.6)

in the sense of indistinguishability. Then sup
t∈[0,T ]

|Yt| is L2. In particular,

Y ∈ L2(dV̂ ⊗ dP) and if (ξ, f̂ , V, M̂) verify Hypothesis 3.1 (Y,M) is the unique

solution of BSDE(ξ, f̂ , V, M̂) in the sense of Definition 3.2.
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On the other hand if (Y,M) verifies (A.6) on [s, T ] with s < T , Ys ∈ L2 and
Ms = 0 then sup

t∈[s,T ]

|Yt| is L2.

In particular if (ξ, f̂ , V, M̂) verify Hypothesis 3.1 and if we denote (U,N) the

unique solution of BSDE(ξ, f̂ , V, M̂), then (Y,M) and (U,N· −Ns) are indis-
tinguishable on [s, T ].

Proof. Let λ > 0 and t ∈ [0, T ]. By integration by parts formula applied to
Y 2e−λV̂ between 0 and t we get

Y 2
t e

−λV̂t − Y 2
0 = −2

∫ t

0
e−λV̂rYr f̂

(

r, ·, Yr, d〈M,M̂〉

dV̂
(r)
)

dV̂r + 2
∫ t

0
e−λV̂rYr−dMr

+
∫ t

0
e−λV̂rd[M ]r − λ

∫ t

0
e−λV̂rY 2

r dV̂r.

By re-arranging the terms and using the Lipschitz conditions item 3. of in
Hypothesis 3.1, we get

Y 2
t e

−λV̂t + λ
∫ t

0
e−λV̂rY 2

r dV̂r

≤ Y 2
0 + 2

∫ t

0 e
−λV̂r |Yr||f̂ |

(

r, ·, Yr, d〈M,M̂〉

dV̂
(r)
)

dV̂r + 2
∣

∣

∣

∫ t

0 e
−λV̂rYr−dMr

∣

∣

∣

+
∫ t

0 e
−λV̂rd[M ]r

≤ Y 2
0 +

∫ t

0 e
−λV̂r f̂2(r, ·, 0, 0)dV̂r + (2KY + 1 +KZ)

∫ t

0 e
−λV̂rY 2

r dV̂r

+KZ
d
∑

i=1

∫ t

0
e−λV̂r

(

d〈M,M̂i〉

dV̂
(r)
)2

dV̂r + 2
∣

∣

∣

∫ t

0
e−λV̂rYr−dMr

∣

∣

∣
+
∫ t

0
e−λV̂rd[M ]r.

Picking λ = 2KY + 1 +KZ and using Lemma A.2, this gives

Y 2
t e

−λV̂t ≤ Y 2
0 +

∫ t

0
e−λV̂r |f̂ |2(r, ·, 0, 0)dV̂r +KZC

∫ t

0
e−λV̂rd〈M〉r

+2
∣

∣

∣

∫ t

0
e−λV̂rYr−dMr

∣

∣

∣
+
∫ t

0
e−λV̂rd[M ]r,

for some C > 0. Since V̂ is bounded, there is a constant C′ > 0, such that for
any t ∈ [0, T ]

Y 2
t ≤ C′

(

Y 2
0 +

∫ T

0

|f̂ |2(r, ·, 0, 0)dV̂r + 〈M〉T + [M ]T +

∣

∣

∣

∣

∫ t

0

Yr−dMr

∣

∣

∣

∣

)

.

By Hypothesis 3.1 and since we assumed Y0 ∈ L2 and M ∈ H2, the first four
terms on the right-hand side are integrable and we can conclude by Lemma 3.16
in [6].

An analogous proof also holds on the interval [s, T ] taking into account Re-
mark 3.4. In particular, if (U,N) is the unique solution of BSDE(ξ, f̂ , V, M̂)
then (U,N − Ns) is a solution on [s, T ]. The final statement result follows by
the uniqueness argument of Remark 3.4.

Notation A.13. Let Φ : L2(dV̂ ⊗ dP) × H2
0 be the operator introduced in

Notation A.7.
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In the sequel we will not distinguish between a couple (Ẏ ,M) in L2(dV̂ ⊗
dP) ×H2

0 and (Y,M), where Y is the reference cadlag process of Ẏ , according
to Definition A.4. We then convene the following.

1. (Y 0,M0) := (0, 0);

2. ∀k ∈ N∗ : (Y k,Mk) := Φ(Y k−1,Mk−1),

meaning that for k ∈ N∗, (Y k,Mk) is the solution of the BSDE

Y k = ξ +

∫ T

·

f̂

(

r, ·, Y k−1,
d〈Mk−1, M̂〉

dV̂
(r)

)

dV̂r − (Mk
T −Mk

· ). (A.7)

Definition A.14. The processes (Y k,Mk)k∈N will be called the Picard itera-

tions associated to BSDE(ξ, f̂ , V̂ , M̂).

We know that Φ is a contraction in L2(dV̂ ⊗dPs,x)×H2
0 for a certain norm,

so that (Y k,Mk) tends to (Y,M) in this topology. The proposition below also
shows an a.e. corresponding convergence, adapting the techniques of Corollary
2.1 in [19].

Proposition A.15. Y k −→
k→∞

Y dV̂ ⊗ dP a.e. and for any i ∈ [[1; d]],

d〈Mk,M̂i〉

dV̂
−→
k→∞

d〈M,M̂i〉

dV̂
dV̂ ⊗ dP a.e.

Proof of Proposition A.15.

For any i ∈ [[1; d]] and k ∈ N we set Zi,k := d〈Mk,M̂i〉

dV̂
and Zi := d〈M,M̂i〉

dV̂
.

By Proposition A.10, there exists λ > 0 such that for any k ∈ N∗E [∫ T
0
e−λV̂r |Y k+1

r − Y kr |2dV̂r +
∫ T

0
e−λV̂rd〈Mk+1 −Mk〉r

]

≤ 1
2E [∫ T0 e−λV̂r |Y kr − Y k−1

r |2dV̂r +
∫ T

0
e−λV̂rd〈Mk −Mk−1〉r

]

,

therefore
∑

k≥0

E [∫ T
0
e−λV̂r |Y k+1

r − Y kr |2dV̂r
]

+ E [∫ T
0
e−λV̂rd〈Mk+1 −Mk〉r

]

≤ ∑

k≥0

1
2k

(E [∫ T0 e−λV̂r |Y 1
r |2dV̂r

]

+ E [∫ T0 e−λV̂rd〈M1〉r
])

< ∞.
(A.8)

For every fixed (i, k), the linearity property stated in Proposition 2.3) says that

Zi,k+1
r − Zi,kr = d〈Mk+1−Mk,M̂i〉

dV̂
. Therefore combining equation (A.8) and

Lemma A.2, we get
∑

k≥0

(E [∫ T0 e−λV̂r |Y k+1
r − Y kr |2dV̂r

]

+
d
∑

i=1

E [∫ T0 e−λV̂r |Zi,k+1
r − Zi,kr |2dV̂r

]

)

<∞.

So by Fubini’s theorem we haveE[∫ T0 e−λV̂r

(

∑

k≥0

(

|Y k+1
r − Y kr |2 +

d
∑

i=1

|Zi,k+1
r − Zi,kr |2

)

)

dV̂r

]

<∞.
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Consequently the sum
∑

k≥0

(

|Y k+1
r (ω)− Y kr (ω)|2 +

d
∑

i=1

|Zi,k+1
r (ω)− Zi,kr (ω)|2

)

is finite on a set of full dV̂ ⊗ dP measure. So on this set of full measure, the
sequence (Y kt (ω), (Z

i,k
t (ω))i∈[[1;d]]) converges, and the limit is necessarily equal

to (Yt(ω), (Z
i
t(ω))i∈[[1;d]]) dV̂ ⊗dP a.e. Indeed, as we have mentioned in the lines

before the statement of the present Proposition A.15, we already know that Y k

converges to Y in L2(dV̂⊗dP). Since by Lemma A.2, E [∫ T
0
e−λV̂r |Zi,kr − Zir|2dV̂r

]

≤
CE [∫ T0 e−λV̂rd〈Mk −M〉r

]

, for every (i, k), where C is a positive constant

which does not depend on (i, k), the convergence of Mk to M in H2
0 also implies

the convergence of Zi,k to Zi in L2(dV̂ ⊗ dP).
B Proof of Theorem 5.19

Lemma B.1. Let f̃ ∈ L2
X . For every (s, x) ∈ [0, T ]×E, let (Ỹ s,x, M̃ s,x) be the

unique (by Theorem 3.3 and Remark 3.4) solution of

Ỹ s,x· = g(XT ) +

∫ T

·

1[s,T ](r)f̃ (r,Xr) dVr − (M̃ s,x
T − M̃ s,x

· ) (B.1)

in
(

Ω,Fs,x, (Fs,x
t )t∈[0,T ],Ps,x) . Then there exist ũ ∈ D(a)

such that for any (s, x) ∈ [0, T ]× E

{

∀t ∈ [s, T ] : Ỹ s,xt = ũ(t,Xt) Ps,xa.s.
M̃ s,x = M [ũ]s,x,

and in particular d〈M̃s,x,M [ψ]s,x〉
dV

= Gψ(ũ)(·, X·) dV ⊗ dPs,x a.e. on [s, T ].

Proof. We set ũ : (s, x) 7→ Es,x [g(XT ) +
∫ T

s
f̃ (r,Xr) dVr

]

which is Borel by

Proposition A.10 and Lemma A.11 in [7]. Therefore by (C.3) in Remark C.6,
for every fixed t ∈ [s, T ] we have P

s,x- a.s.

ũ(t,Xt) = Et,Xt

[

g(XT ) +
∫ T

t
f̃ (r,Xr) dVr

]

= Es,x [g(XT ) +
∫ T

t
f̃ (r,Xr) dVr

∣

∣

∣
Ft
]

= Es,x [Ỹ s,xt + (M̃ s,x
T − M̃ s,x

t )|Ft
]

= Ỹ s,xt .

By (B.1) we have dỸ s,xt = −f̃(t,Xt)dVt + dM̃ s,x
t , so for every fixed t ∈ [s, T ],

ũ(t,Xt) = ũ(s, x) −
∫ t

s
f̃(r,Xr)dVr − M̃ s,x

t P
s,x- a.s. Since M̃ s,x is square in-

tegrable and since previous relation holds for any (s, x) and t, Definition 4.13
implies that ũ ∈ D(a), a(ũ) = −f̃ and M̃ s,x = M [ũ]s,x for every (s, x), hence
the announced results.
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Notation B.2. For a fixed (s, x) ∈ [0, T ]×E, we will denote by (Y k,s,x,Mk,s,x)k∈N
the Picard iterations associated to BSDEs,x(f, g).

Proposition B.3. For each k ∈ N, there exists uk ∈ D(a), such that for every
(s, x) ∈ [0, T ]× E

{

∀t ∈ [s, T ] : Y k,s,xt = uk(t,Xt) Ps,xa.s.
Mk,s,x = M [uk]

s,x (B.2)

Remark B.4. In particular, (B.2) implies that d〈M
k,s,x,M [ψ]s,x〉

dV
= Gψ(uk)(·, X·)

dV ⊗ dPs,x a.e. on [s, T ].

Proof. We proceed by induction on k. It is clear that u0 = 0 verifies the assertion
for k = 0.
Now let us assume that the function uk−1 exists, for some integer k ≥ 1, verifying
(B.2) and in particular Remark B.4, for k replaced with k − 1.

We fix (s, x) ∈ [0, T ] × E. By Lemma 2.4, (Y k−1,s,x, d〈M
k−1,s,x,M [ψ]s,x〉

dV
) =

(uk−1,G
ψ(uk−1))(·, X·) dV ⊗ Ps,x a.e. on [s, T ]. Therefore by (A.7), on [s, T ]

Y k,s,x = g(XT ) +
∫ T

· f
(

r,Xr, uk−1(r,Xr),G
ψ(uk−1)(r,Xr)

)

dVr − (Mk,s,x
T −

Mk,s,x
· ).

Since Φs,x maps L2(dV ⊗ dPs,x)×H2
0 into itself (see Definition A.7), obviously

all the Picard iterations belong to L2(dV ⊗dPs,x)×H2
0. In particular, by Lemma

A.2 Y k−1,s,x and for every i ∈ [[1; d]], d〈M
k−1,s,x,M [ψi]

s,x〉
dV

belong to
L2(dV ⊗ dPs,x). So, by recurrence assumption on uk−1, it follows that uk−1

and for any i ∈ [[1; d]], Gψi(uk−1) belong to L2
X .

Combining Hmom(ζ, η) and the growth condition of f (item 3.) in H lip(ζ, η)
(see Hypotheses 5.4 and 5.5), f(·, ·, 0, 0) also belongs to L2

X . Therefore thanks
to the Lipschitz conditions on f assumed in H lip(ζ, η), f(·, ·, uk−1,G

ψ(uk−1)) ∈
L2
X .

The existence of uk now comes from Lemma B.1 applied to f̃ := f(·, ·, uk−1,G
ψ(uk−1)),

which establishes the induction step for a general k and allows to conclude the
proof.

Proof of Theorem 5.19. We set ū := limsup
k∈N uk, in the sense that for any

(s, x) ∈ [0, T ] × E, ū(s, x) = limsup
k∈N uk(s, x) and v := limsup

k∈N vk. ū and v are

Borel functions. Let us fix now (s, x) ∈ [0, T ] × E. We know by Propositions
B.3, A.15 and Lemma 2.4 that

{

uk(·, X·) −→
k→∞

Y s,x dV ⊗ dPs,x a.e. on [s, T ]

Gψ(uk)(·, X·) −→
k→∞

Zs,x dV ⊗ dPs,x a.e. on [s, T ],

where Zs,x := d〈Ms,x,M [ψ]s,x〉
dV

. Therefore, and on the subset of [s, T ]× E of full
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dV ⊗ dPs,x measure on which these convergences hold we have






ū(t,Xt(ω)) = limsup
k∈N uk(t,Xt(ω)) = lim

k∈Nuk(t,Xt(ω)) = Y s,xt (ω)

v(t,Xt(ω)) = limsup
k∈N Gψ(uk)(t,Xt(ω)) = lim

k∈NGψ(uk)(t,Xt(ω)) = Zs,xt (ω).

(B.3)
Thanks to the dV ⊗ dPs,x equalities concerning v and ū stated in (B.3),

under Ps,x we actually have

Y s,x = g(XT ) +

∫ T

·

f (r,Xr, ū(r,Xr), v(r,Xr)) dVr − (M s,x
T −M s,x

· ). (B.4)

Now (B.4) can be considered as a BSDE where the driver does not depend
on y and z. Y s,x and Zs,x belong to L2(dV ⊗ dPs,x) (see Lemma A.2), then
by (B.3), so do ū(·, X·)1[s,T ] and v(·, X·)1[s,T ], meaning that ū and v belong
to L2

X . Combining Hmom(ζ, η) and the Lipschitz condition on f assumed in
H lip(ζ, η), f(·, ·, ū, v) also belongs to L2

X . We can therefore apply Lemma B.1
to f̃ := f(·, ·, ū, v), and conclude.
Concerning the last statement of the theorem, for any (s, x) ∈ [0, T ] × E, we
have Y s,xs = u(s,Xs) = u(s, x) Ps,x a.s. so Y s,xs is Ps,x a.s. equal to a constant
and u is the mapping (s, x) 7−→ Y s,xs .

C Markov classes and Martingale Additive Func-

tionals

We recall in this Appendix section some basic definitions and results concerning
Markov processes. For a complete study of homogeneous Markov processes, one
may consult [17], concerning non-homogeneous Markov classes, our reference
was chapter VI of [18]. Some results are only stated, but the interested reader
can consult [8] in which all announced results are carefully proved in our exact
setup.

The first definition refers to the canonical space that one can find in [25],
see paragraph 12.63.

Notation C.1. In the whole section E will be a fixed Polish space (a separable
completely metrizable topological space). It will be called the state space.

We consider T ∈ R∗
+. We denote Ω := D(E) the Skorokhod space of func-

tions from [0, T ] to E right-continuous with left limits and continuous at time
T (for which we also use the french acronym cadlag). For any t ∈ [0, T ] we
denote the coordinate mapping Xt : ω 7→ ω(t), and we introduce on Ω the σ-field
F := σ(Xr |r ∈ [0, T ]).

On the measurable space (Ω,F), we introduce the canonical process

X :
(t, ω) 7−→ ω(t)

([0, T ]× Ω,B([0, T ])⊗F) −→ (E,B(E)),
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and the right-continuous filtration (Ft)t∈[0,T ] where Ft :=
⋂

s∈]t,T ]

σ(Xr|r ≤ s) if

t < T , and FT := σ(Xr|r ∈ [0, T ]) = F .

(

Ω,F , (Xt)t∈[0,T ], (Ft)t∈[0,T ]

)

will be called the canonical space (associated to
T and E).

For any t ∈ [0, T ] we denote Ft,T := σ(Xr|r ≥ t), and for any 0 ≤ t ≤ u < T
we will denote Ft,u :=

⋂

n≥0

σ(Xr|r ∈ [t, u+ 1
n
]).

Remark C.2. Previous definitions and all the notions of this Appendix, extend
to a time interval equal to R+ or replacing the Skorokhod space with the space
of continuous functions from [0, T ] (or R+) to E. but since our goal is to work
on a finite time interval, we will not consider this situation.

Definition C.3. The function

P :
(s, t, x, A) 7−→ Ps,t(x,A)

[0, T ]2 × E × B(E) −→ [0, 1],

will be called transition kernel if, for any s, t in [0, T ], x ∈ E, A ∈ B(E), it
verifies the following.

1. Ps,t(·, A) is Borel,

2. Ps,t(x, ·) is a probability measure on (E,B(E)),

3. if t ≤ s then Ps,t(x,A) = 1A(x),

4. if s < t, for any u > t,
∫

E
Ps,t(x, dy)Pt,u(y,A) = Ps,u(x,A).

The latter statement is the well-known Chapman-Kolmogorov equation.

Definition C.4. A transition kernel P for which the first item is reinforced sup-
posing that (s, x) 7−→ Ps,t(x,A) is Borel for any t, A, will be said measurable

in time.

Definition C.5. A canonical Markov class associated to a transition kernel
P is a set of probability measures (Ps,x)(s,x)∈[0,T ]×E defined on the measurable
space (Ω,F) and verifying for any t ∈ [0, T ] and A ∈ B(E)Ps,x(Xt ∈ A) = Ps,t(x,A), (C.1)

and for any s ≤ t ≤ uPs,x(Xu ∈ A|Ft) = Pt,u(Xt, A) Ps,x a.s. (C.2)

Remark C.6. Formula 1.7 in Chapter 6 of [18] states that for any F ∈ Ft,T
yields Ps,x(F |Ft) = Pt,Xt(F ) = Ps,x(F |Xt) Ps,xa.s. (C.3)

Property (C.3) will be called Markov property.
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For the rest of this section, we are given a canonical Markov class (Ps,x)(s,x)∈[0,T ]×E

which transition kernel is measurable in time.

Definition C.7. For any (s, x) ∈ [0, T ]×E we will consider the (s, x)-completion
(

Ω,Fs,x, (Fs,x
t )t∈[0,T ],Ps,x) of the stochastic basis

(

Ω,F , (Ft)t∈[0,T ],Ps,x) by
defining Fs,x as the Ps,x-completion of F , by extending Ps,x to Fs,x and fi-
nally by defining Fs,x

t as the Ps,x-closure of Ft for every t ∈ [0, T ].

We remark that, for any (s, x) ∈ [0, T ]×E,
(

Ω,Fs,x, (Fs,x
t )t∈[0,T ],Ps,x) is a

stochastic basis fulfilling the usual conditions.
We recall the following simple consequence of Remark 32 in [15] Chapter II.

Proposition C.8. Let (s, x) ∈ [0, T ]×E be fixed, Z be a random variable and
t ∈ [s, T ], then Es,x[Z|Ft] = Es,x[Z|Fs,x

t ] Ps,x a.s.

We now introduce the notion of non-homogeneous Additive Functional that
we use in the paper.

Definition C.9. We denote ∆ := {(t, u) ∈ [0, T ]2|t ≤ u}. On (Ω,F), we define
a non-homogeneous Additive Functional (shortened AF) as a random-field
A := (Atu)(t,u)∈∆ with values in R verifying the two following conditions.

1. For any (t, u) ∈ ∆, Atu is Ft,u-measurable;

2. for any (s, x) ∈ [0, T ]×E, there exists a real cadlag Fs,x-adapted process
As,x (taken equal to zero on [0, s] by convention) such that for any x ∈ E
and s ≤ t ≤ u, Atu = As,xu −As,xt Ps,x a.s.

As,x will be called the cadlag version of A under Ps,x.
An AF will be called a non-homogeneous square integrable Martingale

Additive Functional (shortened square integrable MAF) if under any Ps,x its
cadlag version is a square integrable martingale. More generally an AF will
be said to verify a certain property (being non-negative, increasing, of bounded
variation, square integrable, having L1 terminal value) if under any Ps,x its
cadlag version verifies it.

Finally, given an increasing AF A and an increasing function V , A will be said
to be absolutely continuous with respect to V if for any (s, x) ∈ [0, T ]×E,
dAs,x ≪ dV in the sense of stochastic measures.

The two following results are proven in [8].

Proposition C.10. Let M , M ′ be two square integrable MAFs, let M s,x (re-
spectively M ′s,x) be the cadlag version of M (respectively M ′) under Ps,x. Then
there exists a bounded variation AF with L1 terminal condition denoted 〈M,M ′〉
such that under any Ps,x, the cadlag version of 〈M,M ′〉 is 〈M s,x,M ′s,x〉. If
M =M ′ the AF 〈M,M ′〉 will be denoted 〈M〉 and is increasing.
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Proposition C.11. Let V be a continuous non-decreasing function. Let M,N
be two square integrable MAFs, and assume that the AF 〈N〉 is absolutely con-
tinuous with respect to V . There exists a function v ∈ B([0, T ]×E,R) such that
for any (s, x), 〈M s,x, Ns,x〉 =

∫ ·∨s

s
v(r,Xr)Vr.

ACKNOWLEDGMENTS. The authors are grateful to Andrea Cosso for
stimulating discussions. The research of the first named author was provided
by a PhD fellowship (AMX) of the Ecole Polytechnique.

References

[1] C. D. Aliprantis and K. C. Border. Infinite-dimensional analysis. Springer-
Verlag, Berlin, second edition, 1999. A hitchhiker’s guide.

[2] V. Bally, E. Pardoux, and L. Stoica. Backward stochastic differential equa-
tions associated to a symmetric Markov process. Potential Anal., 22(1):17–
60, 2005.

[3] E. Bandini. Existence and uniqueness for backward stochastic differential
equations driven by a random measure. Electronic Communications in
Probability, 20(71):1–13, 2015.

[4] G. Barles, R. Buckdahn, and E. Pardoux. Backward stochastic differential
equations and integral-partial differential equations. Stochastics: An In-
ternational Journal of Probability and Stochastic Processes, 60(1-2):57–83,
1997.

[5] G. Barles and E. Lesigne. SDE, BSDE and PDE. In Backward stochastic
differential equations (Paris, 1995–1996), volume 364 of Pitman Res. Notes
Math. Ser., pages 47–80. Longman, Harlow, 1997.

[6] A. Barrasso and F. Russo. Backward Stochastic Differential Equations with
no driving martingale, Markov processes and associated Pseudo Partial
Differential Equations. 2017. Preprint, hal-01431559, v2.

[7] A. Barrasso and F. Russo. Decoupled Mild solutions for Pseudo Partial
Differential Equations versus Martingale driven forward-backward SDEs.
2017. Preprint, hal-01505974.

[8] A. Barrasso and F. Russo. Non homogeneous additive functionals. 2017.
Preprint.

[9] A. Ben-Israel and Th. N. E. Greville. Generalized inverses, volume 15
of CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC.
Springer-Verlag, New York, second edition, 2003. Theory and applications.

[10] R. Buckdahn. Backward stochastic differential equations driven by a mar-
tingale. Unpublished, 1993.

43



[11] G. Cannizzaro and K. Chouk. Multidimensional sdes with singular drift and
universal construction of the polymer measure with white noise potential.
arXiv preprint arXiv:1501.04751, 2015.

[12] R. Carbone, B. Ferrario, and M. Santacroce. Backward stochastic differ-
ential equations driven by càdlàg martingales. Teor. Veroyatn. Primen.,
52(2):375–385, 2007.

[13] F. Confortola, M. Fuhrman, and J. Jacod. Backward stochastic differential
equation driven by a marked point process: an elementary approach with
an application to optimal control. Ann. Appl. Probab., 26(3):1743–1773,
2016.

[14] F. Delarue and R. Diel. Rough paths and 1d SDE with a time depen-
dent distributional drift: application to polymers. Probab. Theory Related
Fields, 165(1-2):1–63, 2016.

[15] C. Dellacherie and P.-A. Meyer. Probabilités et potentiel, volume A. Her-
mann, Paris, 1975. Chapitres I à IV.

[16] C. Dellacherie and P.-A. Meyer. Probabilités et potentiel. Chapitres V
à VIII, volume 1385 of Actualités Scientifiques et Industrielles [Current
Scientific and Industrial Topics]. Hermann, Paris, revised edition, 1980.
Théorie des martingales. [Martingale theory].

[17] C. Dellacherie and P.-A. Meyer. Probabilités et potentiel. Chapitres XII–
XVI. Publications de l’Institut de Mathématiques de l’Université de Stras-
bourg [Publications of the Mathematical Institute of the University of
Strasbourg], XIX. Hermann, Paris, second edition, 1987. Théorie des pro-
cessus de Markov. [Theory of Markov processes].

[18] E. B. Dynkin. Markov processes and related problems of analysis, volume 54
of London Mathematical Society Lecture Note Series. Cambridge University
Press, Cambridge-New York, 1982.

[19] N. El Karoui, S. Peng, and M. C. Quenez. Backward stochastic differential
equations in finance. Mathematical finance, 7(1):1–71, 1997.

[20] F. Flandoli, E. Issoglio, and F. Russo. Multidimensional stochastic dif-
ferential equations with distributional drift. Trans. Amer. Math. Soc.,
369(3):1665–1688, 2017.

[21] F. Flandoli, F. Russo, and J. Wolf. Some SDEs with distributional drift. I.
General calculus. Osaka J. Math., 40(2):493–542, 2003.

[22] F. Flandoli, F. Russo, and J. Wolf. Some SDEs with distributional drift. II.
Lyons-Zheng structure, Itô’s formula and semimartingale characterization.
Random Oper. Stochastic Equations, 12(2):145–184, 2004.

44



[23] M. Fuhrman and G. Tessitore. Generalized directional gradients, backward
stochastic differential equations and mild solutions of semilinear parabolic
equations. Appl. Math. Optim., 51(3):279–332, 2005.

[24] E. Issoglio and S. Jing. Forward-Backward SDEs with distributional coef-
ficients. preprint - ArXiv 2016 (arXiv:1605.01558 ).

[25] J. Jacod. Calcul stochastique et problèmes de martingales, volume 714 of
Lecture Notes in Mathematics. Springer, Berlin, 1979.

[26] J. Jacod and A. N. Shiryaev. Limit theorems for stochastic processes, vol-
ume 288 of Grundlehren der Mathematischen Wissenschaften [Fundamen-
tal Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second
edition, 2003.

[27] I. Laachir and F. Russo. BSDEs, càdlàg martingale problems, and orthog-
onalization under basis risk. SIAM J. Financial Math., 7(1):308–356, 2016.

[28] É. Pardoux and S. Peng. Adapted solution of a backward stochastic differ-
ential equation. Systems Control Lett., 14(1):55–61, 1990.

[29] É. Pardoux and S. Peng. Backward stochastic differential equations and
quasilinear parabolic partial differential equations. In Stochastic partial
differential equations and their applications (Charlotte, NC, 1991), volume
176 of Lecture Notes in Control and Inform. Sci., pages 200–217. Springer,
Berlin, 1992.

[30] S. Peng. Probabilistic interpretation for systems of quasilinear parabolic
partial differential equations. Stochastics Stochastics Rep., 37(1-2):61–74,
1991.

[31] A. Rozkosz. Weak convergence of diffusions corresponding to divergence
form operators. Stochastics Stochastics Rep., 57(1-2):129–157, 1996.

[32] F. Russo and G. Trutnau. Some parabolic PDEs whose drift is an irregular
random noise in space. Ann. Probab., 35(6):2213–2262, 2007.

[33] F. Russo and L. Wurzer. Elliptic PDEs with distributional drift and back-
ward SDEs driven by a càdlàg martingale with random terminal time. To
appear in Stochastics and Dynamics., 2015. arXiv:1407.3218v2.

[34] D. W. Stroock. Diffusion processes associated with Lévy generators. Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete, 32(3):209–244, 1975.

[35] D. W. Stroock and S. R. S. Varadhan. Multidimensional diffusion processes.
Classics in Mathematics. Springer-Verlag, Berlin, 2006. Reprint of the 1997
edition.

45


