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The work presented in this paper concerns Global Environment, focusing on 

Natural Risk Monitoring: our application is volcanic activity monitoring. 

The real-time data used in such a system generally comes from an array of sensors 

and are usually collected into a central database. With the now widespread 

addition of GPS, these data therefore have both temporal and spatial 

components. 

Therefore a major trouble encountered is the data structuring, so that it can 

store data effectively and process real-time queries on real-time objects. 

Our work offers a new indexing method dealing with multi-dimensional aspects of 

the data as well as storing and real-time querying. 
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INTRODUCTION 

More and more natural environment monitoring systems rely on small sensors disseminated within 

the environment to study. These sensors produce data that must be collected with real-time 

constraints into a database. The adjunction of GPS enabled sensors adds a spatial component to the 

temporal one in the definition of the data. A data is generated from a sensor and can be qualified by 

the spatial location of this sensor as well as by the timestamp associated with the measurement 

date. The database storing the data has to take into account these different properties, even more 

so in its access structure. The work presented in this paper concerns Global Environment Monitoring, 

more precisely Natural Risk Monitoring: our application is volcanic activity monitoring [2] 

Different indicators assess the risk level (seismic activity, gases components, slopes clinometry,...). 

They can be measured thanks to an array of geographically referenced sensors. They later on send 

the data to a centralized database. Our focus is the study of methods for an efficient structuring of 

the gathered data. These data have specific properties: they are multidimensional as well as real-

time. 

This paper is divided into four parts. The first one presents different characteristic of the data 

collected by such sensor data, more precisely the multidimensional and real-time aspects of the 

data. On the second part is described the volcanic activity monitoring process. From this, the third 

part details the PoTree, a spatio-temporal sensor based database indexing structure. Then, the 

fourth part consists of a description of the PasTree, another indexing structure aiming at widening 

the querying capacities, thanks to a more precise definition of the data dimensions. 

1. SENSOR DATA PROPERTIES 

The use of sensors in monitoring systems, for natural or industrial phenomenon, implies different 

properties [3] [6]. While the constant flow stemming from periodic measurements adds real-time 

constraints, the nature of the data adds multidimensional properties. 

1.1 Multidimensional data 

Multidimensional data imply in this case spatial, temporal and semantic properties. 



As the sensors are spatially referenced, it is possible to link every measurement to a specific 

location. In volcanic activity monitoring, measurements are linked to a 3D mapping of the volcano. 

Not all data stored within a monitoring system database are directly linked to measurements. As a 

matter of fact, aggregation of measurements can lead to further data. Triangulation is a common 

method for determining the true position where an event occurred. Passive sensors (sensors that 

record the data emitted by an event without probing the system) are usually used in such a context.  

- Just as the data are linked to a sensor, they also bear timestamps notifying the measurement date. 

Therefore they are also temporally defined. Data from a specific sensor can be ordered through their 

respective timestamps. It is to be noted that sensors can have different modes of measurement. 

While some sensors have strictly periodic measurements, others only send trap-like alerts when a 

threshold is reached. Therefore, while the timestamps of the periodic measurements can be 

predicted accurately under normal circumstances, event-driven sensor measurements only happen 

during specific activity phases. The timestamp associated to these data are therefore particularly 

important so as to determine the evolution of the studied system. 

- Finally, data come from different kind of sensors, providing more or less important data to users, 

or they can also stem from calculations based on measurements (e.g. epicenters localization derived 

from the data issued by seismographs). Therefore it is possible to define semantic properties linked 

to the data. More and more researches are dedicated toward the semantic properties of the data 

[14]. The main idea is to gather semantically similar data into specific clusters. This solution aims at 

accelerating query resolutions by directly forwarding the queries toward the corresponding clusters. 

Furthermore, it has been notified that queries that are emitted by the same user tend to access the 

same kind of data. Therefore, semantic storing of the data within the system can save query-

resolving time. However, these solutions are usually linked to the use of clusters, distributed 

databases and replication. These properties usually appear as troublesome when the updating 

scheme imply soft real-time properties. They usually are synonyms of longer processing and 

transmission time, leading to more transactions not being able to respect their real-time constraints. 

From all of these properties, it can be noted that the data stemming from sensor networks offer a 

wide array of multidimensional properties. While they are inherently spatially referenced, they also 

bear temporal properties. Finally, the variety of sensors leads to different semantic properties as 

well. The database managing these data can use some of all of these properties as access methods. 

However, while these factors are important, the data updating rate also bears much weigh in the 

database management system design. While some sensor networks only provide few periodic data, 

an efficient system must be able to cope with heavy workloads of updates, periodic or aperiodic, 

corresponding to specific activity phases. Therefore, while some systems focus on query resolution, 

a sensor database must not underestimate the real-time updating constraints. 

1.2 Real-time 

As stated above, the use of a sensor network implies real-time constraints. As a matter of fact, 

measurements must be stored and indexed before a newer version reaches the central database 

[13]. 

From this statement, we can provide a more precise definition of real-time. In computer sciences, 

real-time means “time constraints respect”. In a database, this means that transactions bear a time 

limit. They must be answered before the end of this limit. Usually, it is recognized that no answers 

to a query is better than a late answer, which could bear outdated data. 

It is possible to distinguish three real-time constraints: 

Soft real-time imply that the query should be answered before their deadlines, but eventually, it 

could be acceptable that some queries cannot meet this requirement. 

Firm real-time imply that even though it is still possible for some queries to be unable to meet their 

real-time requirements, this tardiness can lead strongly negative results for the system. 

Strong real-time implies that under no circumstances a transaction should be allowed to miss its 

deadline. This could lead to a critical system failure. 



In most systems, real-time is often associated with the notion of priority. A real-time transaction has 

a priority according to the importance of the transaction. Different priority assignation methods 

exists (rate monotonic, earliest deadline first,… [8]). The management system then uses these 

priorities to schedule a computing solution that aims at respecting every time constraints. It should 

be noted that while some transactions or data have real-time properties, others might not be real-

time.  

In sensor networks, the measurement rate implies that the data collection and storing system must 

be able to cope with the flow of gathered data. Therefore, it is possible to recognize real-time 

properties linked to database updating. For periodic measurement systems, it is usually assumed 

that the evolution of the measurement values is more interesting than the values. As such, it is 

usually admissible to lose some measurement values, if these values do not show drastic evolution of 

the system. Such a concept has lead to the notion of epsilon-data, where data updating can be 

skipped when only minor changes are reported between two versions.  

For aperiodic measurement systems (systems based on thresholds), the lost of one measurement can 

be more significant. However, sensors usually use redundancy to cope with the lost of one specific 

sensor. If a given sensor disappears from the network, other sensors should be able to replace it. 

Furthermore, as measurement device configuration can drift through time (becoming less and less 

accurate), sensor redundancy allows for some data validity security. 

Therefore, it appears that some data updating could be skipped under normal circumstances. 

Therefore, the data updating method should aim at soft real-time constraints. 

There is also another real-time factor to consider. Actually, Environment Monitoring, and even more 

so Natural Risk Monitoring aims at providing tools for decision support. The pertinent data should be 

provided to the right people on time. Under normal circumstances, scientist and users as a whole 

accept some data processing delay before accessing the data they asked. Such data-accessing 

scheme is not real-time in itself. However, in times of crisis, pertinent data should be obtained 

within time constraints, so as to allow fast decision making and pertinent crisis response. Such data-

accessing scheme is real-time as it requires the data to be accessible within time constraints. 

As a partial conclusion, it should be noted that the data issued by a sensor network bear real-time 

properties. The data measurement flow is source to soft real-time constraints. As for data accessing, 

normal circumstances does not imply any real-time properties. However, during crisis, data should 

be available to the decision makers within time limits. This also means real-time… Therefore, sensor 

related data are inherently real-time, and data from Natural Disaster Management systems does 

comply with these properties. 

2 VOLCANIC ACTIVITY MONITORING 

Volcanic activity monitoring relies on the use of heterogeneous types of sensors, dispatched in 

different stations. While satellite imagery provides post-eruption data, day to day monitoring is 

usually conducted through sensor networks. 

Figure 1: Sensor network monitoring the activity of the Popocatepetl 



The Cenapred has been commissioned by the Mexican government to manage the data coming from 

the Popocatepetl monitoring network. The Popocatepetl is a volcano located between Mexico City 

and the city Puebla, and spans on three different states. An array of stations has been set up to 

gather the data from the volcano, as seen in figure 1. The sensors vary from different seismographs 

to clinometers. 

One important fact in Natural Risk Monitoring is the potentially low lifetime of a sensor. Usually 

located in dangerous zones, under harsh meteorological conditions, sensor faults are to be expected 

[15]. Because of this phenomenon, the data measured by the sensors must be regularly sent to a 

central location. The data transmission policy must take into account the cost of transmission as well 

as the necessity to maintain a consistent database. 

The data are collected into a central database and processed accordingly. The current database uses 

the Earthworm system provided by the USGS [19]. The data are currently indexed according to the 

sensor identifier and the measurement timestamp. Spatial properties are seldom used. However, 

with the evolution of agile sensor networking (sensors that can change position), the spatial 

component of the measured data is becoming an important factor, as important as the temporal 

one. 

Usually specialists tend to admit that the most recent data is the most interesting, apart from data 

concerning specific activity phases. Analyzing process to recognize the current volcanic activity 

phase through pattern matching can use such data. 

Due to continuous acquisition of measurements, the database has to use mechanisms emphasizing 

the importance of the newest data. This is even truer for indexing methods. While traditional 

querying uses sensors identifiers, scientists now ask for the ability to use spatio-temporal queries. 

They wish to find the data issued during a specific time interval within a spatial zone. 

To sum it up, volcanic monitoring systems use the most recent data to determine the current state 

of the volcano, through pattern matching. While traditional query processing makes use of sensor 

identifiers, the development made in agile sensor networks now gives a new importance to the 

spatial dimension. This aspect must be included into the database management system. 

We have decided to focus our work on indexing methods for spatio-temporal data in a real-time 

environment. Many studies have already dealt with real-time constraints [8] [10] or spatio-temporal 

indexing [9] [12], however there appear to be little work on real-time spatio-temporal indexing. 

Therefore, we propose solutions. 

3. FIRST PROPOSITION THE POTREE 

The PoTree [11] has been designed for real-time spatio-temporal updating and real-time spatio-

temporal querying. It does not focus on the semantic aspects of the data but gathers the data from a 

specific sensor into specific subtrees. More specifically, it divides the global dataset through 

different subtrees, as seen in figure 2. A global spatial subtree acts as the root of the PoTree. Each 

of its leaves points to a temporal, sensor specific subtree. The spatial subtree is first used to 

determine which temporal subtree must be queried. 

3.1 PoTree structure 

Contrary to the approaches based on R-tree [4], the most commonly found indexing solution in 

actual spatio-temporal databases, the PoTree separate temporal and spatial dimensions. The 

specification of sensor network based data allow for such separation. As a matter of fact, current 

measurement sensors are mainly fixed, with limited additions of new stations.  

The number of sources of information (sensors) remains restricted in our case. The queries are 

usually linked to spatial and temporal components: “what are the data gathered in the zone defined 

by the rectangle <X1,Y1 ; X2,Y2>?” As the data are gathered from spatially referenced, fixed 

sensors, the spatial component of the query can be used as the most restrictive factor, therefore the 

most useful factor for limiting the data search. Queries first have to determine which sensor has 

emitted the queried data and from this find the data from the sensor through temporal search. This 

method limits the portion of data to be searched through in order to answer the query. 



Figure 2: PoTree structure 

The data emitted from a specific sensor must be added incrementally and in real-time. Linearization 

of the data proves to be helpful on this aspect.  

The PoTree uses a kd-tree [1] for the management of the spatial component of the data and 

modified B+ trees (actually closer to an AP trees) for the temporal one. On these subtrees, as the 

updates are incremental, new entries shall always be made on the rightmost leaf node. 

The choice of the kd-tree is justified by comparisons made with the R tree. As a result of these 

comparisons, it appeared that the kd-tree offers flexibility and fast build time when compared to 

the R-tree. Furthermore, the kd-tree can be updated on-line (addition of new sensors can be made 

while the system is running), which is harder to achieve with R-trees. Nonetheless, the properties of 

the kd-tree induce the fact that the shape of the spatial subtree of the PoTree is directly linked to 

the spatial data insertion order, therefore it may be unbalanced. As sensor additions are limited, 

this should not prove to be a crucial factor. 

The use of B+-tree to index temporal data (using the data timestamps) is justified by the possibilities 

offered as regards to update and other queries. Moreover, this structure could be developed in order 

to facilitate the integration of the database management system into a datawarehouse. The B+ tree 

has been modified to include a direct link between the root of the tree and the rightmost leaf node, 

the node where the most recent data shall be found. Therefore, a query within these substructures 

shall first search if the queried data are located within the last node. In that case, the query shall 

directly access this node, without crossing the different internal nodes of the subtree, thus saving 

processing time. 

The use of a dual structure makes it possible to associate each spatial localisation to a temporal 

subtree. This way, each of these subtrees represents the data stemming from a source of 

information, a specific fixed sensor.  

As it appears on the diagram (figure 2), the leaves of the spatial subtree (kd-tree) point are towards 

temporal subtrees (B+trees). As for this subtree, the leaves point to the actual data. The nodes of 

the kd-tree comprise only data relating to the spatial position of the objects. They do not carry 

information relating to the temporal dimension. As for the temporal subtrees, the nodes of B-trees 

do not carry information relating to the geographical position of the objects, but only information 

relating to time. While this feature limits data duplication, it also limits the possibilities of mobility 

management. As sensor agility is becoming a reality, this could prove to be limitation of the 

structure if mobility is aimed at. 
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3.2 Structure tests 

Comparisons has been carried out between the PoTree and R*trees, as these kind of trees as 

regularly encountered in spatio-temporal databases. Different tests have used both computer 

generated data and real seismic data collected from the Japanese K-net [7].  

The comparisons have been carried out on a computer running under Linux, with a processor at 1.6 

GHz and 128 MB of RAM. The language used was Java. The R* tree source code used was the one 

provided by Hadjieleftheriou [5]. The tests focused on the tree construction time of the trees and on 

spatial-windows / temporal-interval queries, the most common queries. 

Figure 3: influence of the number of fixed sensors on the construction time of the PoTree 

The first test focused on the tree construction time. The figure 3 shows the evolution of the 

construction time according to the number of different sensor to index. The figure shows the 

equivalent of 1 second of computer-generated data (seismographs with a frequency of 100 Hz). As 

shown on the figure, it is possible to index data coming from up to 1200 different sensors while 

respecting the real-time updating constraints. However, on a real-system, other queries, such as 

continuous queries would lower this number.  

The PoTree divides the data according to the spatial references of the sensors. For the temporal 

dimension, the updates are made incrementally. Therefore, under normal circumstances, the 

temporal subtrees take the full advantage of the direct link between the root and the last leaf node. 

Therefore, it can be assumed that the global construction time is )))1ln(((
1

+∑ i

i

i NNO where i is 

the number of different spatial position used and Ni is the number of data issued from the position i. 

Figure 4: influence of the number of sensors on the construction time of the PoTree and R* tree 

The figure 4 shows the construction times of the PoTree and R*-trees. As the R*-tree doesn't 

differentiate the spatial and temporal dimensions, and as updates needs to take into account the 

whole dataset, the construction time for such a tree can lead to a situation where it becomes 

impossible to answer the real-time constraints. On the other hand, the Po-tree subdivides the 

dataset. It uses different temporal trees to index the data, according to the sensors they are linked 
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to. Figure 5 shows the construction times for both of these structures. It appears that the Po-tree 

construction time is far less, as the number of spatial locations is limited and temporal sub-trees 

only needs to access the root and last nodes, with the exception of the B+ tree splits when a node is 

filled. 

Figure 5: influence of the number of data on spatial windows / temporal interval queries (last 10% of 

the entered data) 

Other queries have shown interesting properties as well. The interval queries took an advantage of 

the linking of the temporal nodes of the Po-tree. For point-interval queries, the Po-tree can be up to 

8 times faster the R*-tree. While for windows-interval queries the difference has shown much 

lighter, it still remains in favour of our solution, as shown in figure 5. On this figure, the last 10% of 

the entered data where fetched. The spatial range covered the whole possible locations. For a low 

number of data the R*-tree fares better, yet when the amount of data rises past 6000, it is the Po-

tree that gains the advantage. These results can be explained by the fact that R*-trees need to 

consider the whole set of data so as to perform a query. Therefore, the more data are indexed, the 

longer it takes to find specific values. 

Tests with real data (indexing an earthquake followed by 68 seismographs at 100 Hz) have confirmed 

the results from the computer-generated data. 

The PoTree have proven an effective solution for indexing data from a network of fixed sensors. The 

structure, sensor oriented, gives satisfying results. However, the advances in agile sensor 

technologies now call for the development of structures able to cope with sensor position changes. 

Furthermore, different data processing activity can also generate new kind of data (spatio-temporal 

aggregates, [20]), which can be considered as sensor related data to some extend. For example, 

seism epicentre localisation can be determined from triangulation. The epicentres from different 

seism can be considered as data issued from an agile sensor. The PoTree cannot manage this kind of 

data efficiently. Thus the Pastree specifications were developed… 

4 SECOND PROPOSITION: THE PASTREE 

An evolution of the PoTree is the current development of the PasTree. This structure widens the 

possibilities of the PoTree by blurring the dimensional separation between subtrees. Changing the 

spatial subtree to include multiversion properties enables indexing of sensors with low to medium 

agility. Adding a differentiation between spatially similar updates and position changing updates 

allows for sensor specific queries. A dedicated subtree can be introduced to refer the sensors 

through their identifiers to allow for a wider range of possible queries. 
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Figure 6: PasTree structure 

As shown in figure 6, the PasTree is to use different subtrees to index the data. As shown with the 

PoTree, storing the data according to the sensors can help in saving processing time, both on 

updates and other queries. However, strict separation of temporal and spatial substructures is not 

welcome with agile sensors, sensors that can change of position through time. 

Furthermore, while the PoTree provides new spatio-temporal querying patterns, some queries still 

require the use of sensor identifiers. Just as the MV3R [16] enabled to query the structure according 

to different perspectives, the PasTree shall have to provide different querying patterns. A secondary 

structure could have been developed for the PoTree to access the temporal subtrees directly 

through the sensor identifiers. Such a structure has been integrated into the PasTree design, labeled 

Sensor Identifier subtree in figure 6. 

The spatial subtree is to be changed so as to take into account multiversion properties [17]. While 

the kd-tree offers interesting properties for fixed structures, the PasTree shall use multiversion 

quadtrees [18] to index the sensor position through time. This substructure, labeled Multiversion 

spatial subtree in figure 6 shall integrate some temporal properties. 

The sensor related subtree (sensor subtree in figure 6), copied from the temporal subtree of the 

PoTree has to be improved so as to include two distinct kinds of data. Most updates shall be made 

from fixed positions, the sensors seldom changing positions. Therefore, it shall not be necessary to 

keep track of the positions of spatially fixed updates. On the other hand, the sensors may change of 

position between two updates. This position change is sent to the PasTree structure. The sensor 

subtree shall have to keep track of the spatial changes so as to provide the possibility to follow the 

sensor movements through time thanks to its sensor identifier. 

Adding an abstraction layer on this subtree could do this. Normal updates shall be considered as 

simple data while movements shall be recorded as a temporal timestamp, a new spatial position, 

and a link to the previous known spatial position. Furthermore, on the leaf node level, a link shall 

point to the last position record of the sensor for this node temporal interval. 

These subtrees shall induce data duplication when the sensors shall change of position, with the 

addition of temporal components to the spatial subtree and of spatial component to the temporal 

subtree. However, this shall also allow for more detailed queries, based both on spatio-temporal 

properties and on sensor identifiers.  

However, new querying patterns shall emerge, taking advantage of the spatio-temporal queries and 

of other more classical queries. The PasTree aims at answering queries such as “Follow the different 

position of the sensor X47 between the time T1 and T2”, “What were the movements between T1 

and T2 of the 2 closest sensors from the point <X1,Y1> at time T1” or “What are the data of the 

sensors in the region defined by the rectangle <X1,Y1 ;X2,Y2> in the last 10 seconds.” 

While the development of the PasTree shall lead to new tools for monitoring natural phenomenon, 

other developments should also be studied to improve the global structure. 
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FUTURE DEVELOPMENTS 

While our work focuses on indexing technologies, other factors must be taken into account in order 

to address Natural Risk Monitoring through databases.  

- Sensor failures should be detected rapidly. 

- Data quality should also be analyzed, according to the quality level required, the drift in sensor 

measurements and their frequency. 

- Data localization must be taken into account. Different studies survey the differences between 

centralized and distributed databases. 

- Database saturation is finally a major concern for high frequency updates. Solutions must be 

provided to store data without clogging up the database. 

CONCLUSION 

To conclude, our work focuses on Natural Risk Monitoring. We propose a database indexing solution, 

the PoTree that allows fast spatio-temporal updates in real-time and also real-time spatio-temporal 

queries. It does so using different subtrees to discern the spatial and temporal (sensor related) 

dimensions and focusing on the newest data. The PasTree (evolved PoTree) is to add new capacities 

to the structure by redefining the subtrees. Future works shall focus on database saturation, 

amongst other things. 
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