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Strasbourg, France, email: laurent.navoret@math.unistra.fr

Abstract

Cell adhesion on the vascular wall is a highly coupled process where blood
flow and adhesion dynamics are closely linked. Cell dynamics in the vicin-
ity of the vascular wall is driven mechanically by the competition between
the drag force of the blood flow and the force exerted by the bonds created
between the cell and the wall. Bonds exert a friction force. Here, we pro-
pose a mathematical model of such a competitive system, namely leukocytes
whose capacity to create bonds with the vascular wall and transmigratory
ability are coupled by integrins and chemokines. The model predicts that
this coupling gives rise to a dichotomic cell dynamic, whereby cells switch
from rolling to firm arrest, through non linear effects. Cells can then trans-
migrate through the wall. These predicted dynamic regimes are compared
to in-vitro trajectories of leukocytes. We expect that competition between
friction and drag force in particle dynamics (such as shear stress-controlled
nanoparticle capture) can lead to similar dichotomic mode.

Keywords:

1. Introduction

Cell transmigration is a crucial process during many physiological and
pathological events, such as inflammation, cancer metastasis or atherosclero-
sis. Cell transmigration is a highly integrated multistep mechanism compris-
ing three well-defined steps, namely initial contact between the cell and the
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wall, cellwall adhesion and finally firm adhesion leading to cell transmigra-
tion. The molecular events orchestrating cell transmigration are still largely
unknown. Nonetheless, some key regulatory molecules involved in cell adhe-
sion have now been identified Shamri et al. (2005); Schwarz and Alon (2004).
Adhesion requires the creation of bonds between the circulating cell and en-
dothelial cells which counterbalance the drag force of the blood flow. Such
knowledge has allowed for cell adhesion events to be both experimentally and
mathematically reconstructed and further elucidated.

Leukocyte adhesion has been widely studied experimentally. The nature
of the bonds (slip and/or catch) has been the source of active debate during
the last decades (Bell (1978) for slip bond description, Finger et al. (1996)
for catch bond and see Korn (2007); Ley et al. (2007); Helms et al. (2016)
and references therein for more details).

Leukocytes are transported by the blood flow and penetrate the vascular
wall according to the so-called adhesion cascade. After an initial contact be-
tween the leukocyte and the endothelial cells (capture step), receptor-ligands
bonds are formed. The fast association and dissociation rates of these bonds
lead to the rolling step: new bonds form at the leukocyte front while old
bonds rupture at the rear of the leukocyte. This makes the leukocytes roll
on the endothelial wall. During rolling, due to the velocity decrease, leu-
cocytes may detect molecular infection signals such as chemokines (ICAM).
Integrins are then activated on its membrane and enable leukocytes to build
stronger bonds with the endothelial cells. This leads to the firm adhesion of
leukocytes and then finally to their transmigration through the arterial wall.
This final step involves the deformation of the cell.

Several models have been proposed to describe cell rolling and adhe-
sion phenomena. In Hammer and Lauffenburger (1987); Hammer and Apte
(1992), the leukocyte is modelled as a ligand-coated rigid sphere flowing near
a wall. In other works, the ligand-receptor binding follows a chemical kinetic
dynamics Bell (1978); Bell et al. (1984). Bonds then exert elastic forces
on the sphere while the linear shear flow exerts a hydrodynamic force and
torque. In Korn and Schwarz (2008), the Brownian motion of the sphere is
taken into account in order to model the spatial receptor-ligand encountering
in more details. In the absence of fluid flow, macroscopic models have been
developed for cell adhesion force (see Preziosi and Vitale (2011)). In our ap-
proach, bonds are not described individually but as a distribution function.
This bonds distribution follows a maturation-rupture equation (also called
renewal equation) as in Oelz and Schmeiser (2010). In the limit of large
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ligands binding turnover, a friction coefficient can be computed Preziosi and
Vitale (2011); Milisic and Oelz (2011).

In this paper, we propose a minimal 1D model to quantify favorable
conditions of adhesion in terms of the flow properties (shear stress, viscosity,
etc.) and the involved biochemical factors (adhesive molecule density, ligands
elasticity, etc.). The particle is described as a point convected by the fluid
flow and interacting with the endothelium. The endothelium is assimilated to
a straight line. Finally, the fluid velocity is assumed to be directed along the
endothelium. At the level of the individual receptor molecule, ligand binding
and dissociation are stochastic processes (Poisson processes). The modeling
parameters are the bond association-dissociation rates and the bond life-time
distribution.

One of the outstanding aims of binding models is to analyse the mecha-
nism of interaction of ligands with the receptor alone, and in combination.
Such information provides an important contribution to better understand
how an individual cell would potentially react once exposed to a stimulus
(inflammation). Therefore, in a second step we are interested in averaging
the model based on Poisson point process. Averaging this stochastic model
leads to a deterministic Volterra integro-differential equation similar to the
one considered in Preziosi and Vitale (2011); Milisic and Oelz (2011). The
deterministic one-dimensional model provides the particle location.

The main advantage of the model we present here is to incorporate few
adjustable parameters. More precisely, the convection force depends on the
Rayleigh friction force and on the convection velocity, whereas the bonds
force depends on the bond association/dissociation rates and on the strength
of receptorligand interactions. Introducing a scaling of the parameters and
variables, we obtain a model with only one scalar parameter. Therefore, this
model can be confronted with data in order to estimate cell adhesion.

We first consider a model in which bond forces are described by linear
elastic force and in which ligand binding and dissociation rates are constant.
After averaging, we obtain a linear Volterra integro-differential equation.
Such a linear model is not satisfactory. Indeed it has been observed that the
penetration of leukocytes is strongly dependent on the shear flow.

Besides, it has been observed for a long time that bonds life-time may
decrease as they are under tension: such bonds are called slip bonds Bell
(1978). However, in low stress conditions, it has also been observed that
some bonds have the opposite behavior: they become stronger (their life-
time increases) as they are stressed Finger et al. (1996). Such bonds are
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called catch bonds. This latter phenomenon leads to the shear threshold
effect: efficient adhesion occurs at sufficiently high shear stress.

In order to incorporate such phenomena, we enrich the stochastic linear
model in two different directions. We consider force-dependent bond rates
as in Bell (1978). We also consider non-linear elastic laws: we introduce
a maximal length of the bonds or we suppose that there is a saturation
bound on the bond force. For each of these enriched models we associate
an averaged model. In a first step, we verify the relevance of the averaged
model by numerically checking its agreement with the stochastic model. In
a second step we numerically study the deterministic model. In the case
where the model relies on a non-linear elastic law, we observe that there
exists a threshold on the convective velocity under which the cell velocity
vanishes (the cell stops) and above which the cell is weakly slowed down.
Each non-linear model leads to a different threshold velocity which depends
on physical parameters (maximal elongation, maximal bond force,...). The
model with force-dependent bond rates lead to a similar dichotomic behavior
when considering particular force-dependent bond rates. The same model,
with other force-dependent bond rates, can also be used to model in a simple
way the behavior of catch bonds and the shear threshold effect.

Last, we aim at comparing the results of the models with data of Alon
et al. (1997); Korn and Schwarz (2008). We check that the obtained threshold
velocities can be effective criteria for adhesion. Selective adhesion indeed
requires that the threshold value lies in the range of the physiological flow.
We show that the only relevant threshold value is the one coming from the
maximal bond elongation model. However due to the large range of the
parameters (especially for the association rate that can vary with a factor
100), the comparison with experimental data should be carried out more
precisely with specific experiments.

The outline of this article is the following. In Section 2, we present
the details of the linear model as well as its long-time asymptotic behavior,
recovering friction dynamics. In Section 3, we introduce non-linear versions
of the model and we exhibit the dichotomic behaviors. We investigate the
influence of two important parameters of the model on cell speed: (i) the
adhesion strength and (ii) the bond lifetimes, demonstrating how these two
parameters can lead to cell stop in finite time. Finally, we compare our
models with experimental data of the literature.
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2. Linear model

2.1. Microscopic linear model

Let us present the first (linear) microscopic model we consider to describe
the convection of a cell by a fluid with ligands binding.

The cell is considered as a point particle, its position at time t is denoted
Xt. The cell is advected by the fluid with a given velocity u in the vicinity
of an activated membrane, i.e. surrounded by an array of bond molecules.
We restrict our study to the one-dimensional dynamics. We also assume
that the Péclet number is large so that the diffusion may be neglected. In
such a frame, supposing that the Reynold number and the Stokes number
are small, the cell dynamics is non-inertial: the cell has a given drift and
is subjected to an active forcing Ft, which is generated by bonds created
between the receptors located on the cell surface and the molecules located
on the membrane, see Figure 1. Force balance yields the following equation:

ν (Vt − u) = Ft , (1)

where Vt is the velocity of the cell and ν is the friction coefficient (given by
Stokes law).

Figure 1: Sketch of the bond binding between the cell and the membrane.

We assume that after an initial binding occurred, each bond exerts a force
on the cell. At time t > s the cell occupies position Xt and the force exerted
by an individual bond created at time s depends on the signed elongation
(Xt −Xs). This force is supposed to be elastic

f(Xt, Xs) = −k(Xt −Xs) ,

where k is the microscopic stiffness coefficient of an individual bond.
However, due to the rupture dynamics of the microscopic bonds some

of them may have spontaneously broken. We therefore incorporate a bond
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life-time distribution: the survival probability density on R+ is supposed to
be given by gβ(a) := βg(βa) with β > 0, where g has unit integral and unit
first moment: ∫

R+

g(a)da = 1,

∫
R+

a g(a)da = 1.

Consequently, 1/β is the mean bond life-time:∫
R+

a gβ(a) da =
1

β
.

More precisely, the bonds dynamics is taken into account in model (1)
by assuming that the time distribution of bonds is described by a random
measure M on the tensorial time/life-time space R+ × R+: each cross in
Figure 2 (left) represents one bond ”activated” at time s and ”deactivated”
at time s+ a. The measure M is supposed to be a punctual Poisson process
of intensity α ds ⊗ gβ(a) da, where α is the bond association rate and β
is the bond dissociation rate. The two rates are supposed to be constant.
A particular attention is paid to the memoryless case, i.e. when g(a) =
exp(−a).

Figure 2: Poisson process on R+ × R+. Left: crosses represent the random mea-
sure on the state-space. Each cross represent one bond. Right: horizontal lines
represent the active time of each bond.

Note that the life-time of one bond is supposed to be independent of its
individual dynamics. Consequently, the force due to the interaction between
the bonds and the driven cell is given by:

Ft =

∫
f(Xt, Xs)106s6t6s+aM(ds, da) . (2)

The stochastic linear model is the written

ν (Vt − u) = −k
∫
f(Xt, Xs)106s6t6s+a α ds⊗ gβ(a) da ,
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which is our reference model. For a more detailed presentation of Poisson
processes, we refer to Allen (2011); Méléard (2013).

2.2. Averaged linear model

The previous stochastic microscopic model can be averaged to obtain a
deterministic one.

We denote v(t) = E[Vt] and x(t) = E[Xt] the expectations of the random
velocity Vt and random position Xt. They satisfy the following equation:

ν(v(t)− u) = −kα
∫ t

0

(x(t)− x(s))Pβ(t− s)ds ,

where Pβ(a) =
∫ +∞
a

gβ(τ)dτ is the survival probability, i.e. the age distribu-
tion of bonds. In the particular (memoryless) case gβ(a) = β exp(−βa), this
age distribution is given by Pβ(a) = exp(−βa).

To study this deterministic model, let us introduce dimensionless variables
and unknowns, for some reference velocity U

t = t̃/β, x(t) = U/βx̃(t̃), v(t) = Uṽ(t̃), u = Uũ. (3)

Omitting the tildes and performing a change of variable, the model becomes
the dimensionless equation (5) given below.

Model 1 (Linear elastic model).

x′(t) = v(t), (4)

v(t) = u− κ
∫ t

0

(x(t)− x(t− a))P (a) da , (5)

where P stands for P1 and κ = kα/(νβ2) is the unique parameter of the
model. Note that α/β is the number of bonds in a unit time while 1/β is the
mean life-time of one bond.

Supposing that the averaged position and velocity are related by (4),
equation (4)-(5) is a Volterra integro-differential equation. After integration
by parts, it can be written as a linear Volterra equation on the velocity:

v(t) = u− κ
∫ t

0

v(s) (Q(t)−Q(t− s)) ds , (6)
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where Q denotes the anti-derivative of P : Q′ = P with Q(0) = 0.
In the case P (a) = e−a, we can actually find out the explicit solution:

v(t) = u(1− κA(t)e−t),

where A(t) =

[∫ t

0

(es − 1)eκ(s+e−s)ds

]
e−κ(t+e−t).

Asymptotic friction force.. One way to understand the qualitative behavior
of this model is to study its long-time asymptotics.

It can be proved that the velocity v is bounded, with v(t) ∈ (0, u) for all
times t > 0 (see Grec et al. (2017)). Moreover, under some assumptions on
P , then

v(t) −→
t→+∞

u

1 +K
, with K = κ

∫ +∞

0

aP (a)da. (7)

Thus, the linear elastic microscopic force is asymptotically similar to a fric-
tion force of parameter K. In particular, this friction force only depends on
the second moment of gβ, which is actually the mean bond age. Indeed, we
can compute

K =
kα

ν

1

β2

∫ +∞

0

aP (a)da =
kα

2ν

∫ +∞

0

a2gβ(a)da.

In the case P (a) = e−a, we obtain K = κ, which means that lim
t→∞

v(t) =
u

1 + κ
.

3. Non-linear models

In the previous section, we have established that in the long-time limit,
the linear elastic microscopic force is similar to a friction force of parameter
K which is independent of the shear velocity u. Such a result does not agree
with in-vitro experiments Munn et al. (1994), which show that the friction
force depends on the flow.

In this section we investigate two ways to improve model (1): either by
considering a non-linear elastic bond force or by considering force dependent
bond rates. Starting from stochastic models, we consider “averaged models”
that all lead to a dichotomic asymptotic behavior with different thresholds
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on the convection velocity u in the following form

v(t) −→
t→+∞


u

1 +K(u)
, if u > ū,

0, if u 6 ū.
(8)

This kind of behavior is in accordance with the behavior of slip bonds. We
finally perform numerical simulations to assess the validity of these averaged
models.

3.1. Non-linear mechanisms in microscopic models

Non-linear elastic responses.. A way to take into account the dynamics into
the ligand binding is to change the elastic law of the bonds. Indeed, in model
1, the bonds are supposed to behave as linear springs (with Hookean law).
In particular, they could extend as long as they do not chemically dissociate.
However, since bonds are associations of chemical proteins, we could take
into account mechanical rupture events. This is done by assuming that there
exists a maximal elongation r̄ > 0 above which bonds break. The linear
elastic law with rupture becomes

f2(Xt, Xs) = −k (Xt −Xs)1|Xt−Xs|<r̄,

and the related microscopic model is then written

ν (Vt − u) = −k
∫

(Xt −Xs)1|Xt−Xs|<r̄ 106s6t6s+aM(ds, da). (9)

With such a law, the bonds life-time indirectly depends on the cell dynamics.
If the convection velocity is large, ligands rapidly break due to their elonga-
tion and the cell might be very weakly slowed down by the ligands. Inversely,
if the convection velocity is low enough, the bonds life-time increases and the
cell can be drastically slowed down.

Another possibility to model this phenomenon is to impose that the bonds
force is bounded: the maximal force exerted by a bond corresponds to the
one exerted by one bond of length r̄ > 0. The elastic law becomes

f3′(Xt, Xs) =

{
−k r̄ sign(Xt −Xs), if |Xt −Xs| > r̄,

−k (Xt −Xs), if |Xt −Xs| 6 r̄.
(10)
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Here we will study a modified model, where the cut-off part of the elastic
law is predominant over the linear part. The elastic behavior is replaced by
a constant force model:

f3(Xt, Xs) = −k r̄ sign(Xt −Xs).

The microscopic models is then written

ν (Vt − u) = −k r̄
∫

sign(Xt −Xs)106s6t6s+aM(ds, da) . (11)

Force dependent bond rates. Another approach is to take into account the
dependance of bonds association and dissociation rates on the microscopic
force exerted on one bond. To this end, we observe that the force exerted
by the bonds can be modelled as depending on the velocity of the cell. This
viewpoint can be justified by the following approximation for the microscopic
elastic force at creation time

f4 (Xt, Xs) = −k (Xt −Xs) ∼
(t−s)→0

−k (t− s)Vt.

Thus, we consider in first approximation that the instantaneous force exerted
on one bond is a linear function of the velocity for the whole lifetime of the
bond. This leads to introducing the dimensionless quantity kVs/(βFd), where
Fd is the detachment force (see Korn and Schwarz (2008)). We suppose that
each bond created at time s exerts a force proportional to c

(
kVs/(βFd)

)
,

where c : R+ 7→ R+ is a positive function. Moreover, the life-time of each bond
created at time s is given by A/b

(
kVs/(βFd)

)
where the random variable A

has gβ for probability density function and b : R+ 7→ R+ is a positive function
of the velocity. Under these assumptions, the microscopic model writes:

ν (Vt − u) = −k r̄
∫

(Xt −Xs)106s6t6s+a/b(kVs/βFd) c
(
kVs/βFd

)
M(ds, da) .

(12)
If the function b is increasing, the bond life-time decreases as the velocity
(and the force) increases: such bonds are called slip bonds. For example,
in Bell’s model Bell (1978), b is an exponential function of the microscopic
force. Conversely, if the function b is decreasing, the bond life-time increases
as the velocity (and the force) increases: such bonds are called catch bonds.
The bonds involved in the cell adhesion process combine the behaviors of
both catch and slip bonds.
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3.2. Averaged nonlinear models

Non-linear elastic responses.. Averaging microscopic models (9) or (11), we
obtain the following equation:

ν (E[Vt]− u) = −k
∫ t

0

E [f(Xt, Xs)] Pβ(t− s)α ds .

In the case of non-linear forces, this expression can not be further simplified.
However, we suppose that the approximation

E [f(Xt, Xs)] ≈ f(E [Xt] ,E [Xs])

is valid and we consider the following deterministic dimensionless models,
with the same dimensionless quantities introduced in (3).

Model 2 (Bond maximal elongation).

x′(t) = v(t),

v(t)− u = −κ
∫ t

0

(
x(t)− x(s)

)
1|x(t)−x(s)|<ρ P (t− s) ds , (13)

where κ = kα/(νβ2) and ρ = (β/U)r̄ are the two dimensionless parameters.

Model 3 (Constant bond force).

x′(t) = v(t),

v(t)− u = −κ ρ
∫ t

0

sign
(
x(t)− x(s)

)
P (t− s) ds ,

where κρ = kαr̄/(νβU) is the unique dimensionless parameter.

Force-dependent bond rates.. Taking the expectation of (12), we obtain:

ν(E[Vt]− u) =

∫
E
[
(Xt −Xs) c(kVs/βFd)106s6t6s+a/b(kVs/βFd)

]
gβ(a) daα ds .

The non-linearity prevents us again from obtaining a closed deterministic
equation. However, we consider the following dimensionless model:
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Model 4 (Velocity-dependent bond rates).

x′(t) = v(t)

v(t)− u = −κ
∫ t

0

(
x(t)− x(s)

)
c
(
φv(s)

)
Pb(φv(s)) (t− s) ds . (14)

where κ = kα/(νβ2) and φ = kU/(βFd) are the two dimensionless parame-
ters.

Note that we recover the same expression of the elastic force as in Preziosi
and Vitale (2011), where several functions b are considered.

3.3. Dichotomic asymptotic behaviors

Contrary to the linear equation (section 2.2), we are not able to rigorously
compute the long-time behavior of the velocity v for the previous models 2-4.
However, in some cases, we will see that the three non-linear models lead to
a velocity-dependent friction parameter and dichotomic behaviors.

Asymptotic behavior of model 2 (Bond maximal elongation). We provide a
first result concerning the asymptotic behavior of model 2.

Assuming that the velocity v(t) solution to (13) converges towards v∞ as t
tends to +∞ and if P ∈ L1(R+), then the asymptotic velocity is solution to
the non-linear equation (see proposition Appendix A.1, appendix Appendix
A):

v∞ = u− κv∞
∫ ρ/v∞

0

aP (a) da. (15)

In particular, if aP (a) ∈ L1, the limit velocity is non-zero. The large time
convergence assumption is not analytically proven but is numerically vali-
dated.
Formally, the asymptotic friction coefficient is thus given by:

K = κ

∫ ρ/v∞

0

aP (a) da.

Contrary to the linear case (see eq. (7)), this coefficient depends non-linearly
on the asymptotic velocity v∞ and consequently depends on the convective
velocity u. To better characterize this non-linearity, we can identify a velocity
threshold on u that separates stopping from rolling. Considering the infinite
bond life-time limit β → +∞, which corresponds to κ → +∞ with κρ2 =
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constant, then, as proved in proposition Appendix A.2 (appendix Appendix
A), the asymptotic velocity satisfies the second degree polynomial equation:

0 = v2
∞ − uv∞ +

κρ2

2
. (16)

This exactly corresponds to the infinite life-time distribution (case P (a) = 1),
which implies in particular that the asymptotic velocity is independent of
the age distribution of the bonds in this scaling. In particular, the following
dichotomy holds:

v∞ =


u

2

(
1±

√
1− ū2

2

u2

)
if u > ū2 ,

0 if u < ū2 ,

(17)

where ū2 =
√

2κρ2 (the subscript refers to model 2) is the threshold velocity.
Note that two asymptotic values are possible in the case u > ū2. We actu-
ally conjecture (by monotony argument) that the right asymptotic velocity is
the largest one. The simulations confirm this ansatz (see section 3.4). Note
also that the asymptotic behavior is independent of the life-time distribu-
tion function P : in the limit we consider, all the life-time distribution can
be identified to the infinite life-time distribution since mechanical ruptures
happen long before chemical dissociation.

In Figure 3 (left), we compute numerically solutions of the non-linear
equation (A.1) (with a Newton method) when P (a) = e−a for several values
of κ, and plot the relative velocity with respect to u. We observe a dichotomy
behavior for any value of κ: for high convective velocity u, the bonds friction
is not active (cells are weakly slowed down), whereas the friction is much
higher for small u. When increasing κ with κρ2 = 1, the dichotomy behavior
is strengthened. The asymptotic curve when κ → +∞ is exactly the one
obtained for P (a) = 1. This suggests that the right dichotomic threshold to
consider is given by ū2 =

√
2κρ2.

Asymptotic behavior of model 3.. To study the asymptotic behavior of model
3, let us introduced a regularized model:

x′(t) = v(t),

v(t)− u = −κ ρ
∫ t

0

fε(x(t)− x(s))P (t− s)ds , (18)
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where the elastic law fε is given by

fε(`) =

{
sign(`), if |`| > ε,

`/ε, if |`| 6 ε.

The limit ε → 0 gives formally the constant force model. Note that taking
ε = r, we recover the bounded force model (10). Assuming that the velocity
v(t) solution to (18) is positive and converges towards v∞ as t tends to +∞,
the asymptotic velocity satisfies the following non-linear equation:

vε∞ = u− κ ρ
∫
a>ε/vε∞

P (a)da− κ ρv
ε
∞
ε

∫
a<ε/vε∞

aP (a)da. (19)

The asymptotics ε→ 0 gives:

v∞ =

{
u− ū3, if u > ū3,

0, if u < ū3.
(20)

with ū3 = κρ. Note that, as for the previous model, the asymptotic behavior
does not depend on the particular life-time distribution P .

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
u

A
sy

m
p

to
ti

c 
ve

lo
ci

ty
/u

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10
u

A
sy

m
p

to
ti

c 
ve

lo
ci

ty
/u

Figure 3: Left (Elastic bond with elongation rupture): Asymptotic velocity v∞
divided by u as a function of the initial velocity u with κ ρ2 = 1. Continuous line:
Case P (a) = e−a with, from top to down, κ = 1, κ = 5, κ = 10. Dashed line: Case
P (a) = 1. Right (Constant bond force): Asymptotic velocity v∞ divided by u as
a function of the initial velocity u with κρ = 1. In black continuous lines: from
top to down, ε = 0.2, ε = 0.1, ε = 0.02. In red dashed line: asymptotic ε→ 0.
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In the particular case where P (a) = e−a, equation (19) is written

vε∞ = u− κ ρ v
ε
∞
ε

(1− exp(−ε/vε∞)). (21)

In Figure 3 (right), we plot the asymptotic velocity as a function of the
convection velocity u by solving (21) (by Newton method) for different values
of ε. We compare with the limit behavior (20).

Asymptotic behavior of model 4.. Assuming that the velocity v(t) solution
to (14) is positive and converges towards v∞ as t tends to +∞, then the
asymptotic velocity satisfies the following non-linear equation (see proposi-
tion Appendix A.3, appendix Appendix A) :

v∞ = u− κ v∞ c(φv∞)

∫ +∞

0

aPb(φv∞)(a)da. (22)

As for the previous model, these assumptions are not analytically proven
but they are numerically validated. For this model, we do not obtain general
threshold behavior independent of the life-time distribution. In the particular
case Pb(a) = exp(−ba), equation (A.6) becomes:

v∞ = u− κ v∞ c(φv∞)/b(φv∞)2. (23)

Depending on the rates functions b and c, we can obtain the same asymptotic
behavior as the previous models.

• For c(φv) = 1, b(φv) = φv, we recover the same dichotomic asymp-
totic behavior as for model 2 (maximal elongation) but with threshold
velocity

ū4 = 2
√
κ/φ.

• Similarly, for c(φv) = φv, b(φv) = φv, we now recover a similar di-
chotomic asymptotic behavior for model 3 (constant force) with thresh-
old velocity

ū5 = κ/φ.

Both previous cases would correspond to slip bonds since the dissocia-
tion rate increases as the microscopic force increases.
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• This model can also be used to describe catch bonds. Choosing c(φv) =
1 and b(φv) = 1/

√
φv + 1, the only positive solution of equation (A.7)

is given by

v∞ =

√
(κ+ 1)2 + 4κφu− (κ+ 1)

2κφ

=
u

(κ+ 1)

2

(
√

1 + 4κφu/(κ+ 1)2 + 1)
. (24)

The relative damped velocity v∞/u is thus a decreasing function with
respect to the drift velocity u, due to the fact that catch bonds becomes
more resistant when submitted to larger stress. Note that for low value
of drift velocity u, we recover the damping factor of the linear model
(4)-(5).

3.4. Numerical simulations

In this section, we compare the averaged models with the underlying
stochastic dynamics. We also illustrate numerically that the models indeed
converge to the formal asymptotic behaviors obtained in the previous section,
and check the positivity and convergence assumptions made previously.

Maximal elongation model.. Although it is not possible to prove mathemati-
cally the convergence of (9) towards Model 2, numerical simulations indicate
that the two models behave analogously. On Figure 4, we consider the case
P (a) = e−a and we plot two different simulations of the microscopic model,
compared with the deterministic one, with κ = 0.7, u = 1, ρ = 5, in which
case ū2 ' 5.92. Then, u < ū2, and we indeed observe that the asymptotic
velocity is much smaller than u = 1. This somehow confirms that ū2 could be
the right threshold to consider. We see that the asymptotic behavior of both
microscopic and averaged models is the same. Moreover, it converges towards
the asymptotic value predicted by the computations (solution of (A.1)).

In order to numerically check the convergence, we computed the average
of the results of 40 simulations. This average is compared with the simulation
of the deterministic model (Figure 5 (right)). Moreover, we also plotted the
relative L2(0, T )-norm of the difference between the deterministic model and
this microscopic average as a function of i, which is given on Figure 5 (left).

We can also perform the same numerical verification in the case of an
infinite life-time distribution (case P (a) = 1). In this case, we recover the
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Figure 4: (Maximal elongation model) Case P (a) = e−a. Velocity v as a function
of time using the microscopic model (9) and the deterministic model 2. Diamond
line: Asymptotic value computed by (A.1).

Figure 5: (Maximal elongation model) Case P (a) = e−a. Left: Relative L2-error
between the deterministic model and the average of i runs of the microscopic
one. Right: Comparison between the velocity of the deterministic model and the
average of 40 runs of the microscopic one.

dichotomy described (A.3) depending on the value of u. In particular, if we
choose u < ū2 =

√
2κρ2, the velocity converges to zero, whereas for u > ū2,

it converges towards a non-zero value given by the formula (A.3) (see Figure
6 with the following values for the parameters κ = 0.7, ρ = 5 and u = 5 (left)
or u = 7 (right), since ū2 ' 5.92).

Constant bond force. In a similar way, we can consider the model of a con-
stant force and compare again its microscopic and deterministic versions.
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Figure 6: (Maximal elongation model) Case P (a) = 1. Velocity v as a function
of time using the microscopic model (9) and the deterministic model 2. Diamond
line: Asymptotic value computed by (A.3). Left: u < ū2 =

√
2κρ2. Right: u > ū2.

This is done on Figure 7, with ū3 = κρ = 0.7, for two different values
u = 2 > ū3 (thus u − ū3 = 1.3) and u = 0.6 < ū3. Again, we see that the
deterministic model has the same behavior as the microscopic one. More-
over, we recover the asymptotic dichotomic behavior with the right values
predicted by the theory in the case ε → 0 (equation (20)). The velocity is
highly oscillating as soon as it vanishes for the first time, which is the case
when u < ū3. However, the corresponding position is almost constant due to
oscillation balancing.

This model can be approximated by the regularized one introduced in
(18), for which we obtain the same asymptotic behaviors as long as ε is small
enough. Of course, for a fixed non zero value of ε, the asymptotic value of
(18) when u < ū3 is not exactly zero, but it converges to zero when ε tends
to zero. Therefore, the dichotomic behavior is only true in the limit ε → 0.
Numerical simulations also confirm these results.

Force dependent bond rates. For the velocity-dependent bond rate model, we
consider several functions b and c as in Section 3.3.

• On Figure 8, we consider the case c(φv) = 1 and Pb(a) = e−ba with
b(φv) = v (slip bonds). We plot again two different simulations of the
microscopic model, compared with the deterministic one, with κ = 0.7,
u = 1 < ū4 (left) or u = 2 > ū4 (right) (since ū4 = 2

√
κ ' 1.67). We

see once again that the long-time behavior is the same. Moreover, it
converges towards the asymptotic value predicted by the computations
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Figure 7: (Constant bond force) Velocity v as a function of time using the mi-
croscopic model (11) and the deterministic model 3. Diamond line: Asymptotic
value. Left: u < ū3. Right: u > ū3.

(solution of (A.6)). We observe on Figure 8 (left) that although the
velocity tends to zero for large time, the convergence to zero is much
slower than for the case of the bond maximal elongation of the bonds
(Figure 6).

Figure 8: (Velocity dependent bond rates) Case b(φv) = v and c(φv) = 1. Velocity
v as a function of time using the microscopic model (12) and the deterministic
model 4. Diamond line: Asymptotic value. Left: u < ū4. Right: u > ū4.

• The same is observed for the case c(φv) = 1 and Pb(a) = e−ba with
b(φv) = 1/

√
v + 1 (catch bonds), where we recover the value v∞ given

by (24) (see Figure 9, with the parameters κ = 0.7 and u = 2).
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Figure 9: (Velocity dependent bond rates) Case b(φv) = 1/
√
v + 1 and c(φv) =

1. Velocity v as a function of time using the microscopic model (12) and the
deterministic model 4. Diamond line: Asymptotic value computed by (24).

We also note that in the case of catch bonds, the velocity of the deter-
ministic model is not monotonic. Numerically, if the velocity v equals
v∞ at some time t, it does not ensure that it remains equal to v∞.

4. Discussion and comparison with experimental data

In this discussion, we compare the theoretical friction laws (7) and (8)
obtained asymptotically for the linear and non-linear models with experi-
mental data mostly taken from Alon et al. (1997); Korn and Schwarz (2008).
More precisely, we discuss how the linear and non-linear models introduced
in previous sections could match experimental data.

In vitro experiments have been carried out in order to measure the friction
force induced by different ligands and the resulting rolling velocity. In Alon
et al. (1997), the authors consider neutrophils rolling on a P-selectin coated
membrane. Ligands P-selectin on the leukocyte surface binds to receptors
PSGL1 (P-selectin glycoprotein ligand-1) on the membrane. The different
parameters of the experiment are reported in Table 1.

Let us make some comments on these parameters.
Bonds are located at the end of microvilli which are large (up to 4 µm)

compared to the ligand-receptor complex. The “ligand stiffness” is here the
stiffness of the association of the microvilli and the ligand-receptor. For
estimating the ligand creation rate, we determine the number of ligands
present in the contact zone: in Korn and Schwarz (2008), this radius of the
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Parameters Symbol Typical Value Ref.

Leucocyte radius R 4 µm
Bell
(1978)Alon
et al. (1997)

Blood dynamic viscosity η 1 mPa s
Korn and
Schwarz (2008)

Flow friction coefficient
(Stokes Law)

ν = 6πηR
7.5 × 10−8 kg
s−1

Ligand stiffness k
4.3 × 10−5 N
m−1

Korn and
Schwarz (2008)

Ligand dissociation rate β 1 s−1 Alon et al.
(1997)

Ligand density on the
wall

cw 30 µm−2 Alon et al.
(1997)

Number of receptor on
the leukocyte

Nr 103 Korn and
Schwarz (2008)

Receptor density on the
leukocyte

cleuk =
Nr/(4πR

2)
4.9 µm−2 Alon et al.

(1997)

Contact radius r0 = 10−2R 40 nm
Korn and
Schwarz (2008)

Number of ligands in
contact zone

N =
πr2

0cleuk
2.5× 10−2

Ligand association rate kon 103 s−1 Korn and
Schwarz (2008)

Effective creation rate α = Nkon 25 s−1

Dimensionless effective
friction parameter in
model 1

κ =
kα/(νβ2)

14000

Table 1: Parameters for leukocytes in flow chamber experiment: neutrophil rolling
on P-selectin coated membrane and P-selectin binds PSGL1.

contact zone is estimated to be one hundredth of the leucocyte radius. Since
the receptor density on the leukocyte is smaller than the ligand density on
the wall, we consider that the receptor density on the leukocyte is relevant.
From the concentration of receptors cleuk and the chemical association rate
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kon, we obtain the effective creation rate α. The dissociation rate is measured
from experiments Alon et al. (1997). We finally obtain a friction parameter
equal to κ = 14000.

From the linear model 1, the rolling velocity is interpreted as the non-zero
asymptotic value of the velocity. It is thus expected to be equal to u/(1+κ),
where u is the convective velocity of flow near the endothelial wall. The
convective velocity u can be expressed as a function of the shear rate γ̇, by
making the following assumption:

u = Rγ̇.

More precise approximations can be found in Hammer and Lauffenburger
(1987); Goldman et al. (1967). In Table 2, we first provide the rolling velocity
for the linear model for several values of the shear stress varying from 0.5
to 1.5 dyn cm−2. The rolling velocity is of order 10−2 µm s−1: neutrophils
are nearly stopped. This is not in agreement with results of (Alon et al.,
1997, Figure 1 – bottom), where the asymptotic velocity is of order 50 µm
s−1. Consequently, this confirms that the linear model does not seem to be
precise enough to capture the right behavior.

Parameters Symbol Range Ref.

Shear rate γ̇ 50− 150 s−1

Korn
and
Schwarz
(2008)

Shear stress τ = ηγ̇
0.5 − 1.5 dyn
cm−2

Convective velocity u ≈ Rγ̇ 200− 600 µm s−1

Drag force νu 14− 42 pN

Rolling velocity for the
linear model

u/(1 + κ)
1.4−4×10−2 µm
s−1

Table 2: Flow parameters for leukocytes in flow chamber experiment and rolling
velocity obtained by model 1.

In Table 3, we also compute the threshold velocities obtained for the
different non-linear models. We note that only the maximal elongation model

22



Parameters Symbol, Formula Range Ref.

Maximum microvilli
length

r̄ 1− 4 µm
Alon
et al.
(1997)

Detachment force Fd 200 pN

Korn
and
Schwarz
(2008)

φ/U 215× 103m s−1

Threshold in model 2
ū2U =

√
2κ ρU =√

2κ r̄β
170− 677 µm s−1

Threshold in model 3 ū3U = κ ρU = κr̄β 14− 56 mm s−1

Threshold in model 3 ū4U = 2
√
κU/φ 1.1 mm s−1

(c(v) = 1, b(v) = v)
Threshold in model 4 ū4U = κU/φ 65 mm s−1

(c(v) = v, b(v) = v)

Rolling velocity in model
2 with P = 1

u
2

(
1 +

√
1− ū2

u2

)
100− 588 µm s−1

Rolling velocity in
model 3 or 4

0 (since u < ūiU) 0 µm s−1

Table 3: Flow parameters for leukocytes in flow chamber experiment and rolling
velocities for the different nonlinear models.

2 gives a threshold velocity in the range of the typical flow velocity. We can
then compute the corresponding rolling velocity, which gives at least a better
order of magnitude than the linear model. Nevertheless, the value of the
threshold is highly dependent on the parameters of the model, e.g. the value
of the maximal length of microvilli. The value of the rolling velocity can only
be captured by this model 2 ; in other models, the threshold velocity being
too high (u < ū3 and u < ū4), the asymptotic velocity is zero.

In order to compare more precisely with experimental values given in
(Alon et al., 1997, Figure 1 – bottom), we choose the fluid velocity to be u =
650 µm s−1. The rolling velocity given by model 2 in the case P = 1 is at least
' 340 µm s−1 (obtained for r̄ ' 4 µm). This value is largely overestimated
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when comparing to experimental data. Moreover, we see that the predicted
asymptotic velocity given by (A.3) always remains in the interval [u

2
;u], thus

it cannot be expected to reproduce a rolling velocity v∞ ' 30 µm s−1 ' 0.04u.
In order to recover such values, model 2 has to be considered with a finite

lifetime distribution, i.e. in the case P non constant, for example P (a) =
exp(−βa). Then, the solution to (A.1) is not explicit anymore but can be
computed numerically. We observe that v∞ ' 30 µm s−1 corresponds to a
microvilli length equals to r̄ ' 13 µm. This value is of the right order of
magnitude, but slightly overestimated.

Another parameter for which the values given in Table 1 can have some
variability is the chemical association rate kon. Again, the solution to (A.1)
is computed numerically. We observe that v∞ ' 30 µm s−1 corresponds to
an association rate equals to kon = 1.1× 104 s−1, which remains in the order
of magnitude given in Korn and Schwarz (2008).

Moreover, it has been observed in the literature that the velocity of a
neutrophil depends strongly on its deformability Dong and Lei (2000); Czer-
winska et al. (2017), which could also explain the variability for fitting the
parameters.

To conclude, parameter estimation shows that the linear model overes-
timates the friction force. Non-linear models could provide some hints for
studying the impact of the convective flow on adhesion. Specific experi-
ments could be carried out to validate or invalidate the different hypotheses.
Note also that the threshold velocities are specific for the chemical bonds:
therefore, this could explain the role of the different ligands involved in the
adhesion cascade (selectin, integrin) Ley et al. (2007).

In addition, similarly as previous models for leukocyte adhesion Korn and
Schwarz (2008), this type of simple models with very few parameters could
also be used in other types of applications, e.g. adsorption of a homopolymeric
gobule (see for example Radtke and Netz (2015)), or glycomechanics of the
metastatic cascade (see for example Geng et al. (2012)).

Appendix A. Proof of the dichotomic asymptotic behaviors of mod-
els 2 and 4

Proposition Appendix A.1 (Asymptotic behavior of model 2). Assuming
that the velocity v(t) solution to (13) converges towards v∞ as t tends to +∞
and if P ∈ L1(R+), then the asymptotic velocity is solution to the non-linear
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equation:

v∞ = u− κv∞
∫ r/v∞

0

aP (a) da. (A.1)

In particular, if aP (a) ∈ L1, the limit velocity is non-zero.

Proof. Assuming that v(t) converges to v∞, then we see that

1|x(t)−x(t−a)|<r(x(t)− x(t− a))P (a)→ 1v∞a<r v∞aP (a).

Since 1|x(t)−x(t−a)|<r(x(t)− x(t− a))P (a) < rP (a) ∈ L1, the dominated con-
vergence theorem implies the first result.

Proposition Appendix A.2 (Asymptotic behavior of model 2, limit β → +∞).
Considering the limit κ→ +∞ with κr2 = constant, then the asymptotic ve-
locity satisfies the second degree polynomial equation:

0 = v2
∞ − uv∞ +

κr2

2
. (A.2)

This exactly corresponds to the infinite life-time distribution (case P (a) = 1).
In particular, the following dichotomy holds:

v∞ =

u
2

(
1±

√
1− ū22

u2

)
if u > ū2 ,

0 if u < ū2 ,
(A.3)

where ū2 =
√

2κr2 (the subscript refers to model 2).

Proof. Starting from (A.1), we have:

v∞ = u− κr2 v∞

∫ r/v∞

0

a

r
P (a)

da

r

= u− κr2 v∞

∫ 1/v∞

0

sP (rs) ds

Taking the limit r → 0 while keeping κr2 constant, we obtain equation (A.2)
since P (0) = 1.

In the case P (a) = 1, the asymptotic velocity satisfies

v∞ = u− κv∞
∫ r/v∞

0

a da , (A.4)
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which also turns into equation (A.2).
This second order equation has real solutions only if its discriminant is

positive, which provides the condition

u > ū2 =
√

2κr2. (A.5)

Under this condition, the dynamics has two non-zero positive asymptotic
velocities given by

v±∞ =
u

2

(
1±

√
1− ū2

2

u2

)
.

Suppose u < ū2. Since (A.2) has no real solution, the integral has to be non
definite, which implies v∞ = 0.

Proposition Appendix A.3 (Asymptotic behavior of model 4). Assuming
that the velocity v(t) solution to (14) is positive and converges towards v∞ as
t tends to +∞, then the asymptotic velocity satisfies the following non-linear
equation:

v∞ = u− κ v∞ c(φv∞)

∫ +∞

0

aPb(φv∞)(a)da. (A.6)

Proof. Assuming that v(t) converges to v∞ > 0, then we see that

(x(t)− x(t− a))c(φv(t− a))Pb(φv(t−a))(a)→ v∞ac(φv∞)Pb(φv∞)(a).

Since |(x(t)− x(t− a))|P (a, v(t− a)) < vMaP (a, vm) ∈ L1, where 0 < vm <
v(t) < vM are lower and upper bounds of v(t), we can apply the dominated
convergence theorem. We obtain:

v∞ = u− κv∞c(φv∞)

∫ +∞

0

aPb(φv∞)(a)da. (A.7)
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