
HAL Id: hal-01566466
https://hal.science/hal-01566466v1

Submitted on 21 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Session-Based Concurrency, Reactively
Mauricio Cano, Jaime Arias, Jorge A. Pérez

To cite this version:
Mauricio Cano, Jaime Arias, Jorge A. Pérez. Session-Based Concurrency, Reactively. 37th Interna-
tional Conference on Formal Techniques for Distributed Objects, Components, and Systems (FORTE),
Jun 2017, Neuchâtel, Switzerland. pp.74-91, �10.1007/978-3-319-60225-7_6�. �hal-01566466�

https://hal.science/hal-01566466v1
https://hal.archives-ouvertes.fr


Session-based Concurrency, Reactively

Mauricio Cano1, Jaime Arias2, and Jorge A. Pérez3

1 University of Groningen, The Netherlands
2 Inria Grenoble Rhône-Alpes, France

3 University of Groningen and CWI, Amsterdam, The Netherlands

Abstract. This paper concerns formal models for the analysis of communica-
tion-centric software systems that feature declarative and reactive behaviors.
We focus on session-based concurrency, the interaction model induced by ses-
sion types, which uses (variants of) the π-calculus as specification languages.
While well-established, such process models are not expressive enough to specify
declarative and reactive behaviors common in emerging communication-centric
software systems. Here we propose the synchronous reactive programming par-
adigm as a uniform foundation for session-based concurrency. We present cor-
rect encodings of session-based calculi into ReactiveML, a synchronous reactive
programming language. Our encodings bridge the gap between process specifi-
cations and concurrent programs in which session-based concurrency seamlessly
coexists with declarative, reactive, timed, and contextual behaviors.

1 Introduction

In this paper, we introduce the synchronous reactive programming paradigm as a practi-
cal foundation for communication-centric software systems. Our motivation is twofold.
First, synchronous reactive programming allows us to uniformly integrate point-to-point
communications (as in the π-calculus) with declarative, reactive, timed, and contextual
behaviors—this is an elusive combination for process models such as the π-calculus.
Second, by relying on ReactiveML (a synchronous reactive programming language with
a formal semantics), we may bridge the gap between π-calculus processes and actual
concurrent programs, thus bringing a rigorous communication model to programmers.

Large software systems are deployed as aggregations of distributed interacting com-
ponents, which are built using a myriad of different programming platforms and/or
made available as black-boxes that expose minimal interaction interfaces. In these com-
plex, heterogeneous systems communication emerges as the key unifying glue. Certify-
ing that interacting components conform to their prescribed protocols is thus an impor-
tant but challenging task, and is essential in ensuring overall system correctness.

Besides protocol conformance, analyzing communication-centric software systems
entails addressing additional challenges, which can be seen as related to the increasing
ubiquity of these systems. Indeed, communication-centric software appears in emerg-
ing trends (e.g., collective adaptive systems) and as such is subject to various classes of
requirements that are orthogonal to communication correctness. We focus on communi-
cation-centric software systems featuring declarative, reactive, timed, and contextual
behaviors. (In §2 we illustrate these intended systems, using a transactional protocol

1



subject to failures.) By stipulating governing conditions (rather than how to imple-
ment such conditions), declarative approaches naturally specify, e.g., security policies.
Closely intertwined, constructs modeling reactivity, time, and context-awareness are at
the heart of mechanisms that enforce, e.g., self-adaptation and fault-tolerance in de-
pendable systems. Therefore, while not directly connected to protocol specifications,
declarative, reactive, timed, and contextual behaviors (and their interplay) do influence
communication and should be integrated into the analysis of protocol conformance.

Process calculi (such as the π-calculus [17]) have long offered a principled basis for
the compositional analysis of message-passing programs. Within these approaches, our
work concerns session-based concurrency, the interaction model induced by session
types [11], which organize protocols as sessions between two or more participants. In
session-based concurrency, a session type describes the contribution of each partner to
the protocol. Interactions are structured, and always occur in matching pairs; e.g., when
one partner sends, the other receives; when one partner offers a selection, the other
chooses. Different session type theories for binary (two-party) and multiparty protocols
have been developed [12]; here we focus on binary sessions.

Binary and multiparty session types rely on π-calculi with session constructs. These
session calculi have been extended with declarative, reactive, timed, and contextual be-
haviors, but none of these extensions captures all these features. For instance, session
calculi with assertions (logical predicates) [5,3] may describe certain declarative re-
quirements, but do not account for reactive and contextual behaviors. Frameworks with
time-related conditions, such as [4,1], have similar limitations. The framework in [13]
supports contextual information through events, but does not represent reactive, declar-
ative behaviors. Integrating these extensions into a single process framework seems
rather difficult, for they rely on different languages and often conflicting assumptions.

Here we pursue a different approach: we embed session-based concurrency within
the synchronous reactive programming (SRP) model for reactive, timed systems [2,10].
Hence, rather than extending session π-calculi with declarative, reactive, timed, and
contextual features, we encode session-based communication into a setting where these
features (and their interplay) are already well understood. We consider ReactiveML, a
programming language based on SRP [16,15], as target language in our developments.
ReactiveML is a general purpose functional language with a well-defined formal se-
mantics. Our technical contributions are two correct encodings of session π-calculi
into ReactiveML. In a nutshell, we use signals in ReactiveML to mimick names in ses-
sion π-calculi. Our encodings enable us to integrate, in a seamless and uniform way,
session-based constructs as “macros” in ReactiveML programs with declarative and
reactive constructs. Moreover, since our encodings are executable (well-typed) Reac-
tiveML programs, our results have a direct practical character, which serves to bridge
the gap between specifications in process models and actual concurrent programs.

This paper is structured as follows. §2 illustrates our approach via an example.
§3 summarizes the syntax and semantics of a session π-calculus and of ReactiveML. In
both cases, we consider languages with synchronous and asynchronous (queue-based)
communication. §4 presents our two encodings and states their correctness. §5 collects
closing remarks. An online appendix includes further examples and technical details
(omitted definitions and proofs) [7].

2



2 A Motivating Example

We use a toy example to illustrate (i) the limitations of session π-calculi in represent-
ing structured communications with declarative/reactive behaviors, and (ii) how our
approach, based on encodings into ReactiveML, can neatly overcome such limitations.
A Ride Protocol Suppose a conference attendee who finds himself in a foreign airport.
To get in time for his presentation, he uses a mobile app in his phone to request a ride
to the conference venue. The intended protocol may be intuitively described as follows:

1. Attendee sends his current location and destination to a neighbouring Driver.
2. Driver receives these two pieces of information and offers three options to At-

tendee: a ride right now, a ride at a later time, or to abort the transaction.
3. Attendee is in a hurry, and so he selects to be picked up right now.
4. Driver replies by sending an estimated arrival time at Attendee’s location.

Using session π-calculus processes (as in, e.g., [18]), this protocol may be implemented
as a process S = (νxy)(A(x) | D(y)), where processes A(x) and D(y), abstract the
behavior of Attendee and Driver as follows:

A(x) = x〈loc〉.x〈des〉.x / now.x(e).0
D(y) = y(l).y(d).y . {now : y〈eta〉.0 , later : y(t).y〈ok〉.0 , quit : Closey}

where process Closey denotes an unspecified sub-protocol for closing the transaction.
Above, we write x〈z〉.P (resp. x(w).P ) to denote the output (resp. input) along name x
with continuation P . Processes x/ l.P and x. {li : Pi}i∈I denote internal and external
labeled choices, respectively. Above, now, later, and quit denote labels. Process 0 de-
notes inaction. Process (νxy)P declares x and y as dual session endpoints in P . This
way, S says that A(x) and D(y) play complementary roles in the session protocol.
The Need for Richer Behaviors Session-based concurrency assumes that once a ses-
sion is established, communication may proceed without interruptions. This is unreal-
istic in most real-life scenarios, where established sessions are prone to failures or in-
terruptions. For instance, a connectivity issue in the middle of the protocol with Driver
may leave Attendee stuck in the airport. In such cases, notions of contextual informa-
tion, reactivity, and time become essential:

Contextual Information such as, e.g., external events signalling a malfunction, allows
relating the system with its environment. For instance, we may like to relate A(x)
and D(y) with a connectivity manager that triggers warning events.

Reactivity serves to detect unforeseen circumstances (e.g., failures) and to define ap-
propriate system behaviors to run in such cases. For instance, we may like to define
A(x) so that another driver is requested if a failure in a protocol with D(y) arises.

Time allows to track the instant in which a failure occurred, and also to establish a
deadline within which the failure should be resolved. For instance, in case of failure
A(x) may try contacting alternative drivers only until k instants after the failure.

As mentioned above, the session π-calculus does not support these features, and pro-
posed extensions do not comprehensively address them. We rely on synchronous re-
active programming (SRP) and ReactiveML, which already have the ingredients for
seamlessly integrating declarative, reactive behavior into session-based concurrency.

3



ReactiveML ReactiveML extends OCaml with reactive, timed behavior. Time is mod-
elled as discrete units, called instants; reactivity arises through signals, which may carry
values. In ReactiveML, expression signal x in e declares a new signal x. We use con-
structs emit s v and await s(x) in e to emit and await a signal s, respectively. Pre-
emption based on signals is obtained by the expression do (e1) until s → (e2), which
executes e1 until signal s is detected, and runs e2 in the next instant. Moreover, Reac-
tiveML can encode the parallel composition of expressions e1 and e2, denoted e1 ‖ e2.
Embedding Sessions in ReactiveML Our first encoding, denoted J·Kf (cf. Def. 14),
translates session π-calculus processes into ReactiveML expressions; we use substitu-
tion f to represent names in the session π-calculus using (fresh) signals in ReactiveML.
Our second encoding, denoted ([·]) (cf. Def. 17), supports an asynchronous semantics.

We illustrate J·Kf by revisiting our example above. Let us define a concurrent reac-
tive program in which JA(x)Kf , JD(y)Kf , and JD′(w)Kf represent ReactiveML snip-
pets that implement session-based communication. We consider a simple possibility for
failure: that Driver (D(y)) may cancel a ride anytime or that communication with At-
tendee (A(x)) fails and cannot be recovered. Ideally, we would like a new driverD′(w),
whose implementation may be the same asD(y), to continue with the protocol, without
disrupting the protocol from the perspective of A(x). This could be easily expressed in
ReactiveML as the expression S′ = signal w1, w2 in (RA ‖ RD) where:

RA = do (JA(x)K{x←w1}) until fail→ (await w2(z) in JA(x)K{x←z})
RD = do (JD(y)K{y←w1}) until fail→ (BD)
BD = signal w3 in (emit w2 w3; JD′(w)K{w←w3})

S′ declares two signals: while signal w1 connects a reactive attendee RA and the reac-
tive driver RD, signal w2 connects RA with a backup driver BD. If no failure arises,
RA andRD run their expected session protocol. Otherwise, the presence of signal fail
will be detected by both RA and RD: as a result, the attendee will await a new signal
for restarting the session; process JD(y)K stops and BD will become active in the next
instant. After emitting a fresh signal w3, BD can execute the protocol with RA.

3 Preliminaries

A Session π-calculus Our presentation follows closely that of [18]. We assume a count-
able infinite set of variables Vs, ranged over by x, y, . . .. A variable represents one of
the two endpoints of a session. We use v, v′, . . . to range over values, which include
variables and the boolean constants tt, ff. Also, we use l, l′, . . . to range over labels.
We write x̃ to denote a finite sequence of variables (and similarly for other elements).

Definition 1 (π). The set π of session processes is defined as:

P,Q ::= x〈v〉.P | x(y).P | x / l.P | x . {li : Pi}i∈I | v? (P ) :(Q) | P | Q | 0
| (νxy)P | ∗x(y).P

Process x〈v〉.P sends value v over x and then continues as P ; dually, process x(y).Q
expects a value v on x that will replace all free occurrences of y inQ. Processes x/lj .P
and x . {li : Qi}i∈I define a labeled choice mechanism, with labels indexed by the
finite set I: given j ∈ I , process x / lj .P uses x to select lj and trigger process Qj .

4



bCOMc (νxy)(x〈v〉.P | y(z).Q) −→ (νxy)(P | Q{v/z})
bSELc (νxy)(x / lj .P | y . {li:Qi}i∈I)−→(νxy)(P | Qj) (j ∈ I)
bREPc (νxy)(x〈v〉.P |∗ y(z).Q) −→(νxy)(P | Q{v/z} |∗ y(z).Q)

bIFTc tt? (P ) :(Q) −→ P bIFFc ff? (P ) :(Q) −→ Q

Fig. 1. Reduction relation for π processes (contextual congruence rules omitted).

We assume pairwise distinct labels. The conditional process v? (P ) : (Q) behaves as
P if v evaluates to tt; otherwise it behaves as Q. Parallel composition and inaction
are standard. We often write

∏n
i=1 Pi to stand for P1 | · · · | Pn. The double restriction

(νxy)P binds together x and y in P , thus indicating that they are the two endpoints
of a session. Process ∗x(y).P denotes a replicated input process, which allows us to
express infinite server behaviors. In x(y).P (resp. (νyz)P ) occurrences of y (resp. y, z)
are bound with scope P . The set of free variables of P , denoted fv(P ), is as expected.

The operational semantics for π is given as a reduction relation −→, the smallest
relation generated by the rules in Fig. 1. Reduction expresses the computation steps
that a process performs on its own. It relies on a structural congruence on processes,
denoted ≡S, which identifies processes up to consistent renaming of bound variables,
denoted ≡α. Formally, ≡S is the smallest congruence that satisfies the axioms:

P | 0 ≡S P P | Q ≡S Q | P P ≡S Q if P ≡α Q
(P | Q) | R ≡S P | (Q | R) (νxy)(νwz)P ≡S (νwz)(νxy)P
(νxy)0 ≡S 0 (νxy)P | Q ≡S (νxy)(P | Q) if x, y 6∈ fv(Q)

We briefly comment on the rules in Fig. 1. Reduction requires an enclosing restriction
(νxy)(· · · ); this represents the fact that a session connecting endpoints x and y has
been already established. Rule bCOMc represents the synchronous communication of
value v through endpoint x to endpoint y. While Rule bSELc formalizes a labeled choice
mechanism, in which communication of a label lj is used to choose which of theQi will
be executed, Rule bREPLc is similar to Rule bCOMc, and used to spawn a new copy of
Q, available as a replicated server. Rules bIFTc and bIFFc are self-explanatory. Rules
for reduction within parallel, restriction, and ≡S (not given in Fig. 1) are as expected.

The following notion will be useful in stating properties of our translations.

Definition 2 (Contexts for π). The syntax of (evaluation) contexts in π is given by the
following grammar:E ::= [·] | E | P | P | E | (νxy)(E), where P is a π process and
‘[·]’ represents a ‘hole’. We writeC[·] to range over contexts (νx̃ỹ)([·] | P1 | . . . | Pn),
with n ≥ 1. E[P ] (resp. C[P ]) will denote the process obtained by filling [·] with P .

An Asynchronous Session π-calculus (aπ) Following [13], we now define aπ, a vari-
ant of π with asynchronous (queue-based) semantics. The syntax of aπ includes vari-
ables x, y, . . . and co-variables, denoted x, y. Intuitively, x and x denote the two end-
points of a session, with x = x. We write Va to denote the set of variables and co-
variables; k, k′ will be used to range over Va. As before, values include booleans and
variables. The syntax of processes is as follows:

5



bSENDc x〈v〉.P | x[i : m̃1, o : m̃2] −→A P | x[i : m̃1, o : m̃2 · v]
bSELc x / l.P | x[i : m̃1, o : m̃2] −→A P | x[i : m̃1, o : m̃2 · l]
bCOMc x[i : m̃1, o : m · m̃2] | x[i : m̃1, o : m̃2] −→A x[i : m̃1, o : m̃2] | x[i : m̃1 ·m, o : m̃2]

bRECVc x(y).P | x[i : v · m̃1, o : m̃2] −→A P{v/y} | x[i : m̃1, o : m̃2]

bBRAc x . {li : Pi}i∈I | x[i : lj · m̃1, o : m̃2] −→A Pj | x[i : m̃1, o : m̃2] (j ∈ I)
bIFTc tt? (P ) :(Q) −→A P bIFFc ff? (P ) :(Q) −→A Q

Fig. 2. Reduction relation for aπ processes (contextual congruence rules omitted).

Definition 3 (aπ and aπ?). The set aπ of asynchronous session processes is defined as:

P,Q ::= k〈v〉.P | k(y).P | k / l.P | k . {li : Pi}i∈I | v? (P ) :(Q) | P | Q | 0
| (νx)P | µX.P | X | k[i : m̃; o : m̃]

We write aπ? to denote the sub-language of aπ without queues.

Differences with respect to Def. 1 appear in the second line of the above grammar.
The usual (single) restriction (νx)P is convenient in a queue-based setting; it binds
both x and x in P . We consider recursion µX.P rather than input-guarded replication.
Communication in aπ is mediated by queues of messages m (values v or labels l), one
for each endpoint k; these queues, denoted k[i : m̃; o : m̃], have output and input
parts. Synchronization proceeds as follows: the sending endpoint first enqueues the
messagem in its own output queue; then,m is moved to the input queue of the receiving
endpoint; finally, the receiving endpoint retrieves m from its input queue. We will use ε
to denote the empty queue. Notions of free/bound (recursive) variables are as expected.

The operational semantics of aπ is defined as a reduction relation coupled with a
structural congruence relation ≡A. The former is defined by the rules in Fig. 2, which
either follow the above intuitions for queue-based message passing or are exactly as
for π; the latter is defined as the smallest congruence on processes that considers stan-
dard principles for parallel composition and inaction, together with the axioms:

(νx)(νy)P ≡A (νy)(νx)P (νx)0 ≡A 0 µX.P ≡A P{µX.P/X}
k[i : ε; o : ε] ≡A 0 (νx)P | Q ≡A (νx)(P | Q) if x 6∈ fv(Q).

The notion of contexts for aπ includes unary contexts E and binary contexts C:

Definition 4 (Contexts for aπ). The syntax of contexts in aπ is given by the following
grammar: E ::= [·] | E | P | P | E | (νx)E, where P is an aπ process and ‘[·]’ rep-
resents a ‘hole’. We write C[·1, ·2] to denote binary contexts (νx̃)([·1] | [·2] |

∏n
i=1 Pi)

with n ≥ 1. We will write E[P ] (resp. C[P,Q]) to denote the aπ process obtained by
filling the hole in E[·] (resp. C[·1, ·2]) with P (resp. P and Q).

Both π and aπ abstract from an explicit phase of session initiation in which endpoints
are bound together. We thus find it useful to identify aπ processes which are properly
initialized (PI): intuitively, processes that contain all queues required to reduce.

Definition 5 (Properly Initialized Processes). Let P ≡A (νx̃)(P1 | P2) be an aπ pro-
cess such that P1 is in aπ? (i.e., it does not include queues) and fv(P1) = {k1, . . . , kn}.
We say P is properly initialized (PI) if P2 contains a queue for each session declared in
P1, i.e., if P2 = k1[i : ε, o : ε] | · · · | kn[i : ε, o : ε].

6



ReactiveML: A synchronous reactive programming language Based on the reac-
tive model given in [6], ReactiveML [16] is an extension of OCaml that allows un-
bounded time response from processes, avoiding causality issues present in other SRP
approaches. ReactiveML extends OCaml with processes: state machines whose behav-
ior can be executed through several instants. Processes are the reactive counterpart of
OCaml functions, which ReactiveML executes instantaneously. In ReactiveML, syn-
chronization is based on signals: events that occur in one instant. Signals can trigger
reactions in processes; these reactions can be run instantaneously or in the next instant.
Signals carry values and can be emitted from different processes in the same instant.

We present the syntax of ReactiveML following [14], together with two semantics,
with synchronous and asynchronous communication. We will assume countable infinite
sets of variables Vr and names Nr (ranged over by x1, x2 and n1, n2, respectively).

Definition 6 (RML). The set RML of ReactiveML expressions is defined as:
v, v′ ::= c | (v, v) | n | λx.e | process e
e, e′ ::= x | c | (e, e) | λx.e | e e | rec x = v

| match e with {ci → ei}i∈I | let x = e and x = e in e | run e | loop e
| signale x : e in e | emit e e | pause | process e
| present e? (e) : e | do e when e | do (e) until e(x)→ (e)

Values v, v′, . . . include constants c (booleans and the unit value ()), pairs, names, ab-
stractions, and also processes, which are made of expressions. The syntax of expres-
sions e, e′ extends a standard functional substrate with match and let expressions and
with process- and signal-related constructs. Expressions run e and loop e follow the
expected intuitions. Expression signalg x : d in e declares a signal x with default value
d, bound in e; here g denotes a gathering function that collects the values produced by
x in one instant. When d and g are unimportant (e.g., when the signal will only be emit-
ted once), we will write simply signal x in P . We will also write signal x1, . . . , xn in e
when declaring n > 1 distinct signals in e. If expression e1 transitions to the name of a
signal then emit e1 e2 emits a signal carrying the value from the instantaneous execu-
tion of e2. Expression pause postpones execution to the next instant. The conditional
expression present e1? (e2) : (e3) checks the presence of a signal: if e1 transitions to
the name of a signal present in the current instant, then e2 is run in the same instant;
otherwise, e3 is run in the next instant. Expression do e when e1 executes e only when
e1 transitions to the name of a signal present in the current instant, and suspends its ex-
ecution otherwise. Expression do (e1) until e(x)→ (e2) executes e1 until e transitions
into the name of a signal currently present that carries a value which will substitute x. If
this occurs, the execution of e1 stops at the end of the instant and e2 is executed in the
next one. Using these basic constructs, we may obtain the useful derived expressions
reported in Fig. 3, which include the parallel composition e1 ‖ e2. We will say that an
expression with no parallel composition operator at top level is a thread.

We write ≡R to denote the smallest equivalence that satisfies the following axioms:
(i) e ‖ () ≡R e; (ii) e1 ‖ e2 ≡R e2 ‖ e1; (iii) (e1 ‖ e2) ‖ e3 ≡R e1 ‖ (e2 ‖ e3).
A Synchronous Semantics for RML Following [14], we define a big-step operational
semantics for RML. We require some auxiliary definitions for signal environments and
events. Below, ] and v denote usual multiset union and inclusion, respectively.

7



e1 ‖ e2
M
= let _ = e1 and _ = e2 in () e1; e2

M
= let _ = () and _ = e1 in e2

await e1(x) in e2
M
= do (loop pause ) until e1(x)→ (e2)

let rec process f x1. . .xn = e1 in e2
M
= let f = (rec f = λx1. . .xn.process e1) in e2 (n ≥ 1)

if e1 then e2 else e3
M
= match e1 with {tt→ e2 | ff→ e3}

Fig. 3. Derived RML expressions.

Definition 7 (Signal Environment). Let D, G,M be sets of default values, gathering
functions, and multisets, respectively. A signal environment is a function S : Nr →
(D × G ×M), denoted S M

= [(d1, g1,m1)/n1, . . . , (dk, gk,mk)/nk], with k ≥ 1.

We use the following notations: Sd(ni) = di, Sg(ni) = gi, and Sm(ni) = mi. Also,
Sv = fold gi mi di where fold recursively gathers multiple emissions of different
values in the same signal; see [16,14] for details. An event E associates a signal ni to a
multiset mi that represents the values emitted during an instant:

Definition 8 (Events). An event is defined as a function E : Nr → M, i.e., E M
=

[m1/n1, . . . ,mk/nk], with k ≥ 1. Given events E1 and E2, we say that E1 is included
in E2 (written E1 vE E2) if and only if ∀n ∈ Dom(E1) ∪ Dom(E2) ⇒ E1(n) v
E2(n). The union E1 and E2 (written E1 tE E2) is defined for all n ∈ Dom(E1) ∪
Dom(E2) as (E1 tE E2)(n) = E1(n) ] E2(n).

We now define the semantics of RML expressions. A big-step transition in RML cap-

tures reactions within a single instant, and is of the form e
E,b−−→
S

e′ where S stands for

the smallest signal environment (wrt vE and Sm) containing input, output, and local
signals; E is the event made of signals emitted during the reaction; b ∈ {tt, ff} is a
boolean value that indicates termination: b is false if e is stuck during that instant and
is true otherwise. At each instant i, the program reads an input Ii and produces an out-
put Oi. The reaction of an expression obeys four conditions: (C1) (Ii tE Ei) vE S

m
i

(i.e., S must contain the inputs and emitted signals); (C2) Oi vE Ei (i.e., the output
signals are included in the emitted signals); (C3) Sdi ⊆ Sdi+1; and (C4) Sgi ⊆ S

g
i+1 (i.e.,

default values and gathering functions are preserved throughout instants).
Fig. 4 gives selected transition rules; see [7] for a full account. Rules bL-PARc and

bL-DONEc handle let expressions, distinguishing when (a) at least one of the paral-
lel branches has not yet terminated, and (b) both branches have terminated and their
resulting values can be used. Rule bRUNc ensures that declared processes can only
be executed while they are preceded by run . Rules bLP-STUc and bLP-UNc handle
loop expressions: the former decrees that a loop will stop executing when the termina-
tion boolean of its body becomes ff; the latter executes a loop until Rule bLP-STUc
is applied. Rule bSIG-DECc declares a signal by instantiating it with a fresh name in
the continuation; its default value and gathering function must be instantaneous ex-
pressions. Rule bEMITc governs signal emission. Rule bPAUSEc suspends the process
for an instant. Rules bSIG-Pc and bSIG-NPc check for presence of a signal n: when
n is currently present, the body e2 is run in the same instant; otherwise, e3 is exe-
cuted in the next instant. Rules bDU-ENDc, bDU-Pc, and bDU-NPc handle expres-
sions do (e1) until e2(x)→ (e3). Rule bDU-ENDc says that if e1 terminates instanta-

8



bL-PARc
e1

E1,b1−−−−→
S

e′1 e2
E2,b2−−−−→
S

e′2 b1 ∧ b2 = ff

let x1 = e1 and x2 = e2 in e3
E1tEE2,ff−−−−−−−→

S
let x1 = e′1 and x2 = e′2 in e3

bL-DONEc
e1

E1,tt−−−→
S

v1 e2
E2,tt−−−→
S

v2 e3{v1, v2/x1, x2}
E3,b−−−→
S

e′3

let x1 = e1 and x2 = e2 in e3
E1tEE2tEE3,b−−−−−−−−−−→

S
e′3

bRUNc
e
E1,tt−−−→
S

process e′ e′
E2,b−−−→
S

e′′

run e
E1tEE2,b−−−−−−→

S
e′′

bLP-STUc
e
E,ff−−−→
S

e′

loop e
E,ff−−−→
S

e′; loop e

bLP-UNc
e
E1,tt−−−→
S

v loop e
E2,b−−−→
S

e′

loop e
E1tEE2,b−−−−−−→

S
e′

bSIG-DECc
e1

E1,tt−−−→
S

v1 e2
E2,tt−−−→
S

v2 e3{n/x}
E3,b−−−→
S

e′3 n fresh S(n) = (v1, v2,m)

signale2 x : e1 in e3
E1tEE2tEE3,b−−−−−−−−−−→

S
e′3

bEMITc
e1

E1,tt−−−→
S

n e2
E2,tt−−−→
S

v

emit e1 e2
E1tEE2tE[{v}/n],tt−−−−−−−−−−−−−→

S
()
bPAUSEc

pause
∅,ff−−→
S

()

bSIG-Pc
e1

E1,tt−−−→
S

n n ∈ S e2
E2,b−−−→
S

e′2

present e1? (e2) : (e3)
E,ff−−−→
S

e′2

bSIG-NPc
e1

E,tt−−−→
S

n n 6∈ S

present e1? (e2) : (e3)
E,ff−−−→
S

e3

bDU-ENDc
e2

E2,tt−−−→
S

n e1
E1,tt−−−→
S

v

do (e1) until e2(x)→(e3)
E1tEE2,tt−−−−−−−→

S
v

bDU-Pc
e2

E2,tt−−−→
S

n n ∈ S e1
E1,ff−−−→
S

e′1

do (e1) until e2(x)→(e3)
E1tEE2,ff−−−−−−−→

S
e3{S

v(n)/x}

bDU-NPc
e2

E2,tt−−−→
S

n n 6∈ S e1
E1,ff−−−→
S

e′1

do (e1) until e2(x)→ (e3)
E1tEE2,ff−−−−−−−→

S
do (e′1) until e2(x)→ (e3)

Fig. 4. Big-step semantics for RML expressions (selection).

neously, then the whole expression terminates. Rule bDU-Pc says that if e2 transitions
to a currently present signal n, then e3 is executed in the next instant, substituting x
with the values gathered in n. Rule bDU-NPc executes e1 as long as e2 does not reduce
to a currently present signal. We shall rely on a simple notion of equality:

Definition 9 (Equality with case normalization). Let ↪→R denote the extension of ≡R

with the axiom match cj with {ci → Pi}i∈I ↪→R Pj , where cj is a constant and j ∈ I .

RMLq: ReactiveML with a Queue-based Semantics We extend RML with an explicit
store of queues that keeps the state of the executed program. Unlike signals, the store
of queues is preserved throughout time. The syntax of RML is extended with constructs
that modify the queues located in the store; the resulting language is called RMLq:

Definition 10 (RMLq). RMLq expressions are obtained by extending the grammar of
values in Def. 6 with the following forms: v ::= · · · | pop | put | isEmpty.

9



bPUT-Qc

〈put q v ; Σ, q : h̃〉
∅,tt
9999
S

K 〈() ; Σ, q : h̃ · v〉

bPOP-Qc

〈pop q ; Σ, q : v · h̃〉
∅,tt
9999
S

K 〈v ; Σ, q : h̃〉

bNEMPTYc

〈isEmpty q ; Σ, q : h̃〉
∅,tt
9999
S

K 〈() ; Σ, q : h̃〉

bPOP-Qεc

〈pop q ; Σ, q : ε〉
∅,ff
9999
S

K 〈pop q ; Σ, q : ε〉

bEMPTYc 〈isEmpty q ; Σ, q : ε〉
∅,ff
9999
S

K 〈isEmpty q ; Σ, q : ε〉

Fig. 5. Big-step semantics for RMLq: Queue-related operations.

The new constructs allow RMLq programs to modify queues, which are ranged over by
q, q′, . . .. Construct put receives a queue and an element as parameters and pushes the
element into the end of the queue. Construct pop takes a queue and dequeues its first
element; if the queue is empty in the current instant the process will block the current
thread until an element is obtained. Construct isEmpty blocks a thread until the instant
in which a queue stops being empty.

The semantics of RMLq includes a state Σ,Σ′ ::= ∅ | Σ, q : ṽ (i.e., a possi-
bly empty collection of queues) and configurations K,K ′ ::= 〈e ; Σ〉. The big-step

semantics then has transitions of the form 〈e ; Σ〉
E,b
999
S
K 〈e′ ; Σ′〉, where S is a signal

environment, b is a termination boolean, andE is an event. The corresponding transition
system is generated by rules including those in Fig. 5 (see also [7]).

Most transition rules for RMLq are interpreted as for RML; we briefly discuss
queue-related rules in Fig. 5. Rule bPUT-Qc pushes an element into a queue and ter-
minates instantaneously. Rule bPOP-Qc takes the first element from the queue (if not
empty) and terminates instantaneously. Rule bNEMPTYc enables isEmpty to terminate
instantaneously if the queue is not empty. Rule bPOP-Qεc keeps the thread execution
stuck for at least one instant if the queue is empty; Rule bEMPTYc is similar. We rule out
programs with parallel pop/put operations along the same session in the same instant.

4 Expressiveness Results

We present our main results: correct translations of π into RML and of aπ into RMLq.

The Formal Notion of Encoding We define notions of language, translation, and en-
coding by adapting those from Gorla’s framework for relative expressiveness [9].

Definition 11 (Languages & Translations). A language L is a tuple 〈P,−→,≈〉, where
P is a set of processes, −→ denotes an operational semantics, and ≈ is a behavioral
equality on P. A translation from Ls = 〈Ps,−→s,≈s〉 into Lt = 〈Pt,−→t,≈t〉 (each
with countably infinite sets of variables Vs and Vt, respectively) is a pair 〈J·K, ψJ·K〉,
where J·K : Ps → Pt is a mapping, and ψJ·K : Vs → Vt is a renaming policy for J·K.

We are interested in encodings: translations that satisfy certain correctness criteria:

Definition 12 (Encoding). Let Ls = 〈Ps,−→s,≈s〉 and Lt = 〈Pt,−→t,≈t〉 be lan-
guages; also let 〈J·K, ψJ·K〉 be a translation between them (cf. Def. 11). We say that such
a translation is an encoding if it satisfies the following criteria:

10



1. Name invariance: For all S ∈ Ps and substitution σ, there exists σ′ such that
JSσK = JSKσ′, with ψJ·K(σ(x)) = σ′(ψJ·K(x)), for any x ∈ Vs.

2. Compositionality: Let ress(·, ·) and pars(·, ·) (resp. rest(·, ·) and part(·, ·)) denote
restriction and parallel composition operators in Ps (resp. Pt). Then, we define:
Jress(x̃, P )K = rest(ψJ·K(x̃), JP K) and Jpars(P,Q)K = part(JP K, JQK).

3. Operational correspondence, i.e., it is sound and complete: (1) Soundness: For all
S ∈ Ps, if S −→s S

′, there exists T ∈ Pt such that JSK =⇒t T and T ≈t JS′K.
(2) Completeness: For all S ∈ Ps and T ∈ Pt, if JSK =⇒t T , there exists S′ such
that S =⇒s S

′ and T ≈t JS′K.

While name invariance and compositionality are static correctness criteria, operational
correspondence is a dynamic correctness criterion. Notice that our notion of composi-
tionality is less general than that in [9]: this is due to the several important differences
in the structure of the languages under comparison (π vs. RML and aπ vs. RMLq).

We shall present translations of π into RML and of aπ into RMLq, which we will
show to be encodings. We instantiate Def. 11 with the following languages:

Definition 13 (Concrete Languages). We shall consider:

- Lπ will denote the tuple 〈π,−→,≡S〉, where π is as in Def. 1; −→ is the reduction
semantics in Fig. 1; and ≡S is the structural congruence relation for π.

- LRML will denote the tuple 〈RML,
E,b−−→
S
, ↪→R〉, where RML is as in Def. 6;

E,b−−→
S

is

the big-step semantics for RML; and ↪→R is the equivalence in Def. 9.
- Laπ will denote the tuple 〈aπ,−→A,≡A〉, where aπ is as in Def. 3; −→A is the

reduction semantics in Fig. 2; and ≡A is the structural congruence relation for aπ.

- LRMLq will denote the tuple 〈RMLq,
E,b
999
S
K,≡R〉, where RMLq is as in Def. 10;

E,b
999
S
K

is the big-step semantics for RMLq; and ≡R is the equivalence for RML.

When events, termination booleans, and signal environments are unimportant, we write

P 7−→ Q instead of P
E,b−−→
S

Q, and K 7999KK ′ instead of K
E,b
999
S
KK ′.

Encoding Lπ into LRML Key aspects in our translation of Lπ into LRML are: (i) the
use of value carrying signals to model communication channels; and (ii) the use of a
continuation-passing style (following [8]) to model variables in π using RML signals.

Definition 14 (Translating Lπ into LRML). Let 〈J·Kf , ψJ·Kf 〉 be a translation where:
(1) ψJ·Kf (x) = x, i.e., every variable in π is mapped to the same variable in RML.
(2) J·Kf : Lπ → LRML is as in Fig. 6, where f is a substitution function.

Function f in J·Kf ensures that fresh signal identifiers are used in each protocol ac-
tion. The translation of x〈v〉.P declares a new signal x′ which will be sent paired with
value v through signal x; process JP Kf,{x←x′} is executed in the next instant. Dually,
the translation of x(y).P awaits a signal carrying a pair, composed of a value and the
signal name that to be used in the continuation, which is executed in the next instant.
Translations for selection and branching are special cases of those for output and in-
put. Restriction (νxy)P is translated by declaring a fresh signal w, which replaces

11



Jx〈v〉.P Kf
M
= signal x′ in (emit fx (v, x′); pause ; JP Kf,{x←x′})

Jx(y).P Kf
M
= await fx(y, w) in JP Kf,{x←w}

Jx / l.P Kf
M
= signal x′ in (emit fx (l, x′); pause ; JP Kf,{x←x′})

Jx . lj{li : Pi}i∈IKf
M
= await fx(l, w) in match l with {li → JPiKf,{x←w}}

Jv? (P ) :(Q)Kf
M
= if v then (pause ;P ) else (pause ;Q)

J(νxy)P Kf
M
= signal w in JP Kf,{x←w,y←w}

J∗x(y).P Kf
M
= let rec process repl α β =

signal x′ in
do (loop present fα? (emit x′ ; pause ) : (())) until fα(y, w)
→ (run β{α←w})
‖ await x′ in run (repl α β)

in run repl x (process JP Kf )
JP | QKf

M
= JP Kf ‖ JQKf J0Kf

M
= ()

Fig. 6. Translation from Lπ to LRML (Def. 14). Notice that fx is a shorthand for f(x).

x, y in JP Kf . Conditionals, parallel composition and inaction are translated homomor-
phically. Input-guarded replication is a special case of recursion, enabling at most one
copy of the spawned process in the same instant; such a copy will be blocked until the
process that spawned it interacts with some process. In Fig. 6, α, β denote variables
inside the declaration of a recursive process, distinct from any other variables.

We state our first technical result: the translation of Lπ into LRML is an encoding. In
the proof, we identify a class of well-formed π processes that have at most one output
and selection per endpoint in the same instant; see [7] for details.

Theorem 1. Translation 〈J·Kf , ψJ·Kf 〉 is an encoding, in the sense of Def. 12.

Encoding Laπ into LRMLq The main intuition in translating aπ into RMLq is to use
the queues of RMLq coupled with a handler process that implements the output-input
transmission between queues. We start by introducing some auxiliary notions.

Notation 1 Let P ≡A (νx̃)(
∏
i∈{1,...,n}Qi |

∏
kj∈k̃ kj [i : ε, o : ε] be PI (cf. Def. 5)

with variables k̃. We will write P as Cl[Ql,K(k̃)], where l ∈ {1, . . . , n}, Cl[·1, ·2] =∏
j∈{1,...,n}\{l}Qj | [·1] | [·2], and K(k̃) =

∏
kj∈k̃ kj [i : ε, o : ε].

This notation allows us to distinguish two parts in a PI process: the non-queue processes
and the queue processes K(k̃). We now define the key notion of handler process:

Definition 15 (Handler process). Given k̃ = {k1, . . . , kn}, the handler process H(k̃)
is defined as

∏
i∈{1,...,n} I(ki) ‖ O(ki), where I(k) and O(k) are as in Fig. 7.

Given an endpoint k, a handler defines parallel processes Ik andOk to handle input and
output queues. Transmission is a handshake where both Ok and Ik (or viceversa) must
be ready to communicate. If ready, Ok sends a pair containing the message (pop ko)
and a fresh signal for further actions (α′). Once the pair is received, it is enqueued in
ki (i.e., the dual Ik). The process is recursively called in the next instant with the new
endpoints. The translation of aπ? into RMLq requires a final auxiliary definition:

12



I(k)
M
= let rec process I α =

(present ackα? (emit ackα ; await α(x, α′) in (put x ki); run I α′) : (I α)
in run I k

O(k)
M
= let rec process O α =

signal α′ in isEmpty αo; emit ackα ;
(present ackα? (emit α ((pop ko), α

′); pause ; run O α′) : (run O α)
in run O k

Fig. 7. Components of handler processes (Def. 15)

{[x(y).P ]} M
= let y = pop xi in {[P ]} {[x〈v〉.P ]} M

= put xo v; {[P ]}
{[x . {li : Pi}i∈I ]}

M
= let y = pop xi in {[x / l.P ]} M

= put xo l; {[P ]}
match l with {li : {[Pi]}}i∈I {[P | Q]} M

= {[P ]} ‖ {[Q]}
{[b? (P ) :(Q)]} M

= if b then {[P ]} else {[Q]} {[(νx)P ]} M
= signal x, x in {[P ]}

{[µX.P ]} M
= let rec process αX = {[P ]} in {[X]} M

= pause ; run αX

run αX {[0]} M
= ()

Fig. 8. Auxiliary translation from aπ? into RMLq (Def. 17).

Definition 16. We define δ(·) as a function that maps aπ processes into RMLq states:
δ(k[i : h̃; o : m̃]) = {ki : h̃, ko : m̃} δ(P | Q) = δ(P ) ∪ δ(Q) δ((νx)P ) = δ(P )

and as δ(P ) = ∅ for every other aπ process.

Definition 17 (Translating Laπ into LRMLq). Let 〈([·]), ψ([·])〉 be a translation where:

- ψ([·])(k) = k, i.e., every variable in aπ is mapped to the same variable in RMLq.
- ([·]) : Laπ → LRMLq is defined for properly initialized aπ processes C[Q,K(k̃)],

which are translated into RMLq configurations as follows:

([C[Q,K(k̃)]]) = 〈{[C[Q,0]]} ‖ H(k̃) ; δ(K(k̃))〉

where {[·]} : Laπ? → LRMLq is in Fig. 8;H(k̃) is in Def. 15; and δ(·) is in Def. 16.

Two key ideas in translation ([·]) are: queues local to processes and compositional
(queue) handlers. Indeed, communication between an endpoint k and its queues ki, ko
proceeds instantaneously, for such queues should be local to the process implement-
ing session k. Queue handlers effectively separate processes/behavior from data/state.
As such, it is conceivable to have handlers that have more functionalities than those of
H(k̃). In [7] we provide an example of a handler more sophisticated thanH(k̃).

Translation ([·]) is in two parts. First, {[·]} translates non-queue processes: output and
input are translated into queuing and dequeuing operations, respectively. Selection and
branching are modeled similarly. Translations for the conditional, inaction, parallel, and
recursion is as expected. Recursion is limited to a pause-guarded tail recursion in {[·]} to
avoid loops of instantaneous expressions and nondeterminism when accessing queues.
Second, ([·]) creates an RML configuration by composing the RMLq process obtained
via {[·]}with appropriate handlers and with the state obtained from the information in aπ

13



queues. Because of this two-part structure, static correctness properties are established
for {[·]} (for this is the actual translation of source processes), whereas operational cor-
respondence is established for ([·]) (which generates an RMLq configuration).

Theorem 2 (Name invariance and compositionality for {[·]}). Let P , σ, x, and E[·]
be an aπ? process, a substitution, a variable in aπ?, and an evaluation context (cf.
Def. 4), respectively. Then: (1) {[Pσ]} = {[P ]}σ, and (2) {[E[P ]]} = {[E]}

[
{[P ]}

]
.

Theorem 3 (Operational correspondence for ([·])). Given a properly initialized aπ

process C[Q,K(k̃)], it holds that:
1. Soundness: If C[Q,K(k̃)] −→A C[Q

′,K′(k̃)] then

([C[Q,K(k̃)]]) 7999K ([C ′[Q′′,K′′(k̃)]]), for some Q′′,K′′(x̃), C ′ where
C[Q,K(x̃)] −→A C[Q

′,K′(x̃)] −→∗A (νx̃)C ′[Q′′,K′′(x̃)].
2. Completeness: If ([C[Q,K(x̃)]]) 7999K R then there exist Q′,C ′,K′(x̃) such that
C[Q,K(x̃)] −→∗A (νx̃)C ′[Q′,K′(x̃)] and R = ([C ′[Q′,K′(x̃)]]).

In soundness, a single RMLq step mimicks one or more steps in aπ, i.e., several source
computations can be grouped into the same instant. This way, e.g., the interaction of
several outputs along the same session with their queue (cf. Rule bSENDc) will take
place in the same instant. In contrast, several queue synchronizations in the same ses-
sion (cf. Rule bCOMc) will be sliced over different instants. Conversely, completeness
ensures that our encoding does not introduce extraneous behaviors: for every RMLq
transition of a translated process there exists one or more corresponding aπ reductions.

5 Closing Remarks

We have shown that ReactiveML can correctly encode session-based concurrency, cov-
ering both synchronous and asynchronous (queue-based) communications.4 Our encod-
ings are executable: as such, they enable to integrate session-based concurrency in ac-
tual RML programs featuring declarative, reactive, timed, and contextual behavior. This
is an improvement with respect to previous works, which extend the π-calculus with
some (but not all) of these features and/or lack programming support. Interestingly,
since ReactiveML has a well-defined semantics, it already offers a firm basis for both
foundational and practical studies on session-based concurrency. Indeed, ongoing work
concerns the principled extension of our approach to the case of multiparty sessions.

We have not considered types in source/target languages, but we do not foresee ma-
jor obstacles. In fact, we have already shown that our encoding J·Kf supports a large
class of well-typed π processes in the system of [18], covering a typed form of opera-
tional correspondence but also type soundness: if P is a well-typed π process, then JP Kf
is a well-typed RML expression—see [7]. We conjecture a similar result for ([·]), under
an extension of [18] with queues. On the ReactiveML side, we can exploit the type-
and-effect system in [14] to enforce cooperative programs (roughly, programs without
infinite loops). Since J·Kf and ([·]) already produce well-typed, executable ReactiveML
expressions, we further conjecture that they are also cooperative, in the sense of [14].

4 Synchronous communication as in the (session) π-calculus should not be confused with the
synchronous programming model of ReactiveML.

14



Acknowledgements We thank Ilaria Castellani, Cinzia Di Giusto, and the anonymous
reviewers for useful remarks and suggestions. This work has been partially sponsored
by CNRS PICS project 07313 (SuCCeSS) and EU COST Actions IC1201 (BETTY),
IC1402 (ARVI), and IC1405 (Reversible Computation).

References

1. M. Bartoletti, T. Cimoli, M. Murgia, A. S. Podda, and L. Pompianu. Compliance and sub-
typing in timed session types. In FORTE, volume 9039 of LNCS, pages 161–177. Springer,
2015.

2. A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic, and R. de Simone. The
synchronous languages 12 years later. Proceedings of the IEEE, 91(1):64–83, 2003.

3. L. Bocchi, K. Honda, E. Tuosto, and N. Yoshida. A theory of design-by-contract for dis-
tributed multiparty interactions. In CONCUR 2010, volume 6269 of LNCS, pages 162–176.
Springer - Verlag, 2010.

4. L. Bocchi, W. Yang, and N. Yoshida. Timed multiparty session types. In Proc. of CON-
CUR’14, volume 8704, pages 419–434. Springer, 2014.

5. E. Bonelli, A. B. Compagnoni, and E. L. Gunter. Correspondence assertions for process
synchronization in concurrent communications. J. Funct. Program., 15(2):219–247, 2005.

6. F. Boussinot and R. de Simone. The SL synchronous language. IEEE Trans. Software Eng.,
22(4):256–266, 1996.

7. M. Cano, J. Arias, and J. A. Pérez. Session-based Concurrency, Reactively (Extended Ver-
sion), 2017. Available at http://www.jperez.nl/publications.

8. O. Dardha, E. Giachino, and D. Sangiorgi. Session types revisited. In Proc. of PPDP’12,
pages 139–150, 2012.

9. D. Gorla. Towards a unified approach to encodability and separation results for process calculi.
Inf. Comput., 208(9):1031–1053, 2010.

10. N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying real-time systems
by means of the synchronous data-flow language LUSTRE. IEEE Trans. Software Eng.,
18(9):785–793, 1992.

11. K. Honda, V. T. Vasconcelos, and M. Kubo. Language Primitives and Type Discipline for
Structured Communication-Based Programming. In Proc. of ESOP’98, volume 1381, pages
122–138. Springer, 1998.

12. H. Hüttel, I. Lanese, V. T. Vasconcelos, L. Caires, M. Carbone, P.-M. Deniélou, D. Mostrous,
L. Padovani, A. Ravara, E. Tuosto, H. T. Vieira, and G. Zavattaro. Foundations of session types
and behavioural contracts. ACM Comput. Surv., 49(1):3:1–3:36, Apr. 2016.

13. D. Kouzapas, N. Yoshida, R. Hu, and K. Honda. On asynchronous eventful session seman-
tics. Mathematical Structures in Computer Science, 26(2):303–364, 2016.

14. L. Mandel and C. Pasteur. Reactivity of Cooperative Systems - Application to ReactiveML.
In 21st International Symposium, SAS 2014, Munich, Germany, 2014., pages 219–236, 2014.

15. L. Mandel, C. Pasteur, and M. Pouzet. ReactiveML, ten years later. In M. Falaschi and
E. Albert, editors, Proc. of PPDP 2015, pages 6–17. ACM, 2015.

16. L. Mandel and M. Pouzet. ReactiveML: a reactive extension to ML. In Proc. of PPDP’05,
pages 82–93. ACM, 2005.

17. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I. Inf. Comput.,
100(1):1–40, 1992.

18. V. T. Vasconcelos. Fundamentals of session types. Inf. Comput., 217:52–70, 2012.

15

http://www.jperez.nl/publications

	Session-based Concurrency, Reactively

