Mauricio Cano

Jaime Arias

Jorge A Pérez

Session-based Concurrency, Reactively

This paper concerns formal models for the analysis of communication-centric software systems that feature declarative and reactive behaviors. We focus on session-based concurrency, the interaction model induced by session types, which uses (variants of) the π-calculus as specification languages. While well-established, such process models are not expressive enough to specify declarative and reactive behaviors common in emerging communication-centric software systems. Here we propose the synchronous reactive programming paradigm as a uniform foundation for session-based concurrency. We present correct encodings of session-based calculi into ReactiveML, a synchronous reactive programming language. Our encodings bridge the gap between process specifications and concurrent programs in which session-based concurrency seamlessly coexists with declarative, reactive, timed, and contextual behaviors.

A Motivating Example

We use a toy example to illustrate (i) the limitations of session π-calculi in representing structured communications with declarative/reactive behaviors, and (ii) how our approach, based on encodings into ReactiveML, can neatly overcome such limitations. A Ride Protocol Suppose a conference attendee who finds himself in a foreign airport. To get in time for his presentation, he uses a mobile app in his phone to request a ride to the conference venue. The intended protocol may be intuitively described as follows:

Introduction

In this paper, we introduce the synchronous reactive programming paradigm as a practical foundation for communication-centric software systems. Our motivation is twofold. First, synchronous reactive programming allows us to uniformly integrate point-to-point communications (as in the π-calculus) with declarative, reactive, timed, and contextual behaviors-this is an elusive combination for process models such as the π-calculus. Second, by relying on ReactiveML (a synchronous reactive programming language with a formal semantics), we may bridge the gap between π-calculus processes and actual concurrent programs, thus bringing a rigorous communication model to programmers.

Large software systems are deployed as aggregations of distributed interacting components, which are built using a myriad of different programming platforms and/or made available as black-boxes that expose minimal interaction interfaces. In these complex, heterogeneous systems communication emerges as the key unifying glue. Certifying that interacting components conform to their prescribed protocols is thus an important but challenging task, and is essential in ensuring overall system correctness.

Besides protocol conformance, analyzing communication-centric software systems entails addressing additional challenges, which can be seen as related to the increasing ubiquity of these systems. Indeed, communication-centric software appears in emerging trends (e.g., collective adaptive systems) and as such is subject to various classes of requirements that are orthogonal to communication correctness. We focus on communication-centric software systems featuring declarative, reactive, timed, and contextual behaviors. (In §2 we illustrate these intended systems, using a transactional protocol subject to failures.) By stipulating governing conditions (rather than how to implement such conditions), declarative approaches naturally specify, e.g., security policies. Closely intertwined, constructs modeling reactivity, time, and context-awareness are at the heart of mechanisms that enforce, e.g., self-adaptation and fault-tolerance in dependable systems. Therefore, while not directly connected to protocol specifications, declarative, reactive, timed, and contextual behaviors (and their interplay) do influence communication and should be integrated into the analysis of protocol conformance.

Process calculi (such as the π-calculus [START_REF] Milner | A calculus of mobile processes[END_REF]) have long offered a principled basis for the compositional analysis of message-passing programs. Within these approaches, our work concerns session-based concurrency, the interaction model induced by session types [START_REF] Honda | Language Primitives and Type Discipline for Structured Communication-Based Programming[END_REF], which organize protocols as sessions between two or more participants. In session-based concurrency, a session type describes the contribution of each partner to the protocol. Interactions are structured, and always occur in matching pairs; e.g., when one partner sends, the other receives; when one partner offers a selection, the other chooses. Different session type theories for binary (two-party) and multiparty protocols have been developed [START_REF] Hüttel | Foundations of session types and behavioural contracts[END_REF]; here we focus on binary sessions.

Binary and multiparty session types rely on π-calculi with session constructs. These session calculi have been extended with declarative, reactive, timed, and contextual behaviors, but none of these extensions captures all these features. For instance, session calculi with assertions (logical predicates) [START_REF] Bonelli | Correspondence assertions for process synchronization in concurrent communications[END_REF][START_REF] Bocchi | A theory of design-by-contract for distributed multiparty interactions[END_REF] may describe certain declarative requirements, but do not account for reactive and contextual behaviors. Frameworks with time-related conditions, such as [START_REF] Bocchi | Timed multiparty session types[END_REF][START_REF] Bartoletti | Compliance and subtyping in timed session types[END_REF], have similar limitations. The framework in [START_REF] Kouzapas | On asynchronous eventful session semantics[END_REF] supports contextual information through events, but does not represent reactive, declarative behaviors. Integrating these extensions into a single process framework seems rather difficult, for they rely on different languages and often conflicting assumptions.

Here we pursue a different approach: we embed session-based concurrency within the synchronous reactive programming (SRP) model for reactive, timed systems [START_REF] Benveniste | The synchronous languages 12 years later[END_REF][START_REF] Halbwachs | Programming and verifying real-time systems by means of the synchronous data-flow language LUSTRE[END_REF]. Hence, rather than extending session π-calculi with declarative, reactive, timed, and contextual features, we encode session-based communication into a setting where these features (and their interplay) are already well understood. We consider ReactiveML, a programming language based on SRP [START_REF] Mandel | ReactiveML: a reactive extension to ML[END_REF][START_REF] Mandel | ReactiveML, ten years later[END_REF], as target language in our developments. ReactiveML is a general purpose functional language with a well-defined formal semantics. Our technical contributions are two correct encodings of session π-calculi into ReactiveML. In a nutshell, we use signals in ReactiveML to mimick names in session π-calculi. Our encodings enable us to integrate, in a seamless and uniform way, session-based constructs as "macros" in ReactiveML programs with declarative and reactive constructs. Moreover, since our encodings are executable (well-typed) Reac-tiveML programs, our results have a direct practical character, which serves to bridge the gap between specifications in process models and actual concurrent programs.

This paper is structured as follows. §2 illustrates our approach via an example. §3 summarizes the syntax and semantics of a session π-calculus and of ReactiveML. In both cases, we consider languages with synchronous and asynchronous (queue-based) communication. §4 presents our two encodings and states their correctness. §5 collects closing remarks. An online appendix includes further examples and technical details (omitted definitions and proofs) [START_REF] Cano | Session-based Concurrency, Reactively (Extended Version)[END_REF].

1. Attendee sends his current location and destination to a neighbouring Driver. 2. Driver receives these two pieces of information and offers three options to Attendee: a ride right now, a ride at a later time, or to abort the transaction. 3. Attendee is in a hurry, and so he selects to be picked up right now. 4. Driver replies by sending an estimated arrival time at Attendee's location.

Using session π-calculus processes (as in, e.g., [START_REF] Vasconcelos | Fundamentals of session types[END_REF]), this protocol may be implemented as a process S = (νxy)(A(x) | D(y)), where processes A(x) and D(y), abstract the behavior of Attendee and Driver as follows:

A(x) = x loc .x des .x now.x(e).0 D(y) = y(l).y(d).y {now : y eta .0 , later : y(t).y ok .0 , quit : Close y } where process Close y denotes an unspecified sub-protocol for closing the transaction. Above, we write x z .P (resp. x(w).P) to denote the output (resp. input) along name x with continuation P . Processes x l.P and x {l i : P i } i∈I denote internal and external labeled choices, respectively. Above, now, later, and quit denote labels. Process 0 denotes inaction. Process (νxy)P declares x and y as dual session endpoints in P . This way, S says that A(x) and D(y) play complementary roles in the session protocol. The Need for Richer Behaviors Session-based concurrency assumes that once a session is established, communication may proceed without interruptions. This is unrealistic in most real-life scenarios, where established sessions are prone to failures or interruptions. For instance, a connectivity issue in the middle of the protocol with Driver may leave Attendee stuck in the airport. In such cases, notions of contextual information, reactivity, and time become essential: Contextual Information such as, e.g., external events signalling a malfunction, allows relating the system with its environment. For instance, we may like to relate A(x) and D(y) with a connectivity manager that triggers warning events. Reactivity serves to detect unforeseen circumstances (e.g., failures) and to define appropriate system behaviors to run in such cases. For instance, we may like to define A(x) so that another driver is requested if a failure in a protocol with D(y) arises. Time allows to track the instant in which a failure occurred, and also to establish a deadline within which the failure should be resolved. For instance, in case of failure A(x) may try contacting alternative drivers only until k instants after the failure.

As mentioned above, the session π-calculus does not support these features, and proposed extensions do not comprehensively address them. We rely on synchronous reactive programming (SRP) and ReactiveML, which already have the ingredients for seamlessly integrating declarative, reactive behavior into session-based concurrency.

ReactiveML ReactiveML extends OCaml with reactive, timed behavior. We illustrate • f by revisiting our example above. Let us define a concurrent reactive program in which A(x) f , D(y) f , and D (w) f represent ReactiveML snippets that implement session-based communication. We consider a simple possibility for failure: that Driver (D(y)) may cancel a ride anytime or that communication with Attendee (A(x)) fails and cannot be recovered. Ideally, we would like a new driver D (w), whose implementation may be the same as D(y), to continue with the protocol, without disrupting the protocol from the perspective of A(x). This could be easily expressed in ReactiveML as the expression S = signal w 1 , w 2 in (RA RD) where:

RA = do (A(x) {x←w1}) until f ail → (await w 2 (z) in A(x) {x←z}) RD = do (D(y) {y←w1}) until f ail → (BD) BD = signal w 3 in (emit w 2 w 3 ; D (w) {w←w3})
S declares two signals: while signal w 1 connects a reactive attendee RA and the reactive driver RD, signal w 2 connects RA with a backup driver BD. If no failure arises, RA and RD run their expected session protocol. Otherwise, the presence of signal f ail will be detected by both RA and RD: as a result, the attendee will await a new signal for restarting the session; process D(y) stops and BD will become active in the next instant. After emitting a fresh signal w 3 , BD can execute the protocol with RA.

Preliminaries

A Session π-calculus Our presentation follows closely that of [START_REF] Vasconcelos | Fundamentals of session types[END_REF]. We assume a countable infinite set of variables V s , ranged over by x, y, A variable represents one of the two endpoints of a session. We use v, v , . . . to range over values, which include variables and the boolean constants tt, ff. Also, we use l, l , . . . to range over labels. We write x to denote a finite sequence of variables (and similarly for other elements).

Definition 1 (π). The set π of session processes is defined as:

P, Q ::= x v .P | x(y).P | x l.P | x {l i : P i } i∈I | v? (P) : (Q) | P | Q | 0 | (νxy)P | * x(y).P
Process x v .P sends value v over x and then continues as P ; dually, process x(y).Q expects a value v on x that will replace all free occurrences of y in Q. Processes x l j .P and x {l i : Q i } i∈I define a labeled choice mechanism, with labels indexed by the finite set I: given j ∈ I, process x l j .P uses x to select l j and trigger process

Q j . COM (νxy)(x v .P | y(z).Q) -→ (νxy)(P | Q{ v /z}) SEL (νxy)(x lj.P | y {li:Qi}i∈I) -→ (νxy)(P | Qj) (j ∈ I) REP (νxy)(x v .P | * y(z).Q) -→ (νxy)(P | Q{ v /z} | * y(z).Q) IFT tt? (P) : (Q) -→ P IFF ff? (P) : (Q) -→ Q Fig. 1.
Reduction relation for π processes (contextual congruence rules omitted).

We assume pairwise distinct labels. The conditional process v? (P) : (Q) behaves as P if v evaluates to tt; otherwise it behaves as Q. Parallel composition and inaction are standard. We often write

n i=1 P i to stand for P 1 | • • • | P n .
The double restriction (νxy)P binds together x and y in P , thus indicating that they are the two endpoints of a session. Process * x(y).P denotes a replicated input process, which allows us to express infinite server behaviors. In x(y).P (resp. (νyz)P) occurrences of y (resp. y, z) are bound with scope P . The set of free variables of P , denoted fv(P), is as expected.

The operational semantics for π is given as a reduction relation -→, the smallest relation generated by the rules in Fig. 1. Reduction expresses the computation steps that a process performs on its own. It relies on a structural congruence on processes, denoted ≡ S , which identifies processes up to consistent renaming of bound variables, denoted ≡ α . Formally, ≡ S is the smallest congruence that satisfies the axioms:

P | 0 ≡ S P P | Q ≡ S Q | P P ≡ S Q if P ≡ α Q (P | Q) | R ≡ S P | (Q | R) (νxy)(νwz)P ≡ S (νwz)(νxy)P (νxy)0 ≡ S 0 (νxy)P | Q ≡ S (νxy)(P | Q) if x, y ∈ fv(Q)
We briefly comment on the rules in Fig. 1. Reduction requires an enclosing restriction (νxy)(• • •); this represents the fact that a session connecting endpoints x and y has been already established. Rule COM represents the synchronous communication of value v through endpoint x to endpoint y. While Rule SEL formalizes a labeled choice mechanism, in which communication of a label l j is used to choose which of the Q i will be executed, Rule REPL is similar to Rule COM , and used to spawn a new copy of Q, available as a replicated server. Rules IFT and IFF are self-explanatory. Rules for reduction within parallel, restriction, and ≡ S (not given in Fig. 1) are as expected.

The following notion will be useful in stating properties of our translations.

Definition 2 (Contexts for π). The syntax of (evaluation) contexts in π is given by the following grammar:

E ::= [•] | E | P | P | E | (νxy)(E)
, where P is a π process and

'[•]' represents a 'hole'. We write C[•] to range over contexts (ν x y)([•] | P 1 | . . . | P n), with n ≥ 1. E[P] (resp. C[P]
) will denote the process obtained by filling [•] with P .

An Asynchronous Session π-calculus (aπ) Following [START_REF] Kouzapas | On asynchronous eventful session semantics[END_REF], we now define aπ, a variant of π with asynchronous (queue-based) semantics. The syntax of aπ includes variables x, y, . . . and co-variables, denoted x, y. Intuitively, x and x denote the two endpoints of a session, with x = x. We write V a to denote the set of variables and covariables; k, k will be used to range over V a . As before, values include booleans and variables. The syntax of processes is as follows:

SEND x v .P | x[i : m1, o : m2] -→A P | x[i : m1, o : m2 • v] SEL x l.P | x[i : m1, o : m2] -→A P | x[i : m1, o : m2 • l] COM x[i : m1, o : m • m2] | x[i : m1, o : m2] -→A x[i : m1, o : m2] | x[i : m1 • m, o : m2] RECV x(y).P | x[i : v • m1, o : m2] -→A P { v /y} | x[i : m1, o : m2] BRA x {li : Pi}i∈I | x[i : lj • m1, o : m2] -→A Pj | x[i : m1, o : m2] (j ∈ I) IFT tt? (P) : (Q) -→A P IFF ff? (P) : (Q) -→A Q Fig. 2.
Reduction relation for aπ processes (contextual congruence rules omitted).

Definition 3 (aπ and aπ). The set aπ of asynchronous session processes is defined as:

P, Q ::= k v .P | k(y).P | k l.P | k {l i : P i } i∈I | v? (P) : (Q) | P | Q | 0 | (νx)P | µX.P | X | k[i : m; o : m]
We write aπ to denote the sub-language of aπ without queues.

Differences with respect to Def. 1 appear in the second line of the above grammar.

The usual (single) restriction (νx)P is convenient in a queue-based setting; it binds both x and x in P . We consider recursion µX.P rather than input-guarded replication.

Communication in aπ is mediated by queues of messages m (values v or labels l), one for each endpoint k; these queues, denoted k[i : m; o : m], have output and input parts. Synchronization proceeds as follows: the sending endpoint first enqueues the message m in its own output queue; then, m is moved to the input queue of the receiving endpoint; finally, the receiving endpoint retrieves m from its input queue. We will use to denote the empty queue. Notions of free/bound (recursive) variables are as expected.

The operational semantics of aπ is defined as a reduction relation coupled with a structural congruence relation ≡ A . The former is defined by the rules in Fig. 2, which either follow the above intuitions for queue-based message passing or are exactly as for π; the latter is defined as the smallest congruence on processes that considers standard principles for parallel composition and inaction, together with the axioms:

(νx)(νy)P ≡ A (νy)(νx)P (νx)0 ≡ A 0 µX.P

≡ A P { µX.P /X} k[i : ; o :] ≡ A 0 (νx)P | Q ≡ A (νx)(P | Q) if x ∈ fv(Q).
The notion of contexts for aπ includes unary contexts E and binary contexts C: Definition 4 (Contexts for aπ). The syntax of contexts in aπ is given by the following grammar:

E ::= [•] | E | P | P | E | (νx)E, where P is an aπ process and '[•]' rep- resents a 'hole'. We write C[• 1 , • 2] to denote binary contexts (ν x)([• 1] | [• 2] | n i=1 P i)
with n ≥ 1. We will write E[P] (resp. C[P, Q]) to denote the aπ process obtained by filling the hole in

E[•] (resp. C[• 1 , • 2]
) with P (resp. P and Q).

Both π and aπ abstract from an explicit phase of session initiation in which endpoints are bound together. We thus find it useful to identify aπ processes which are properly initialized (PI): intuitively, processes that contain all queues required to reduce.

Definition 5 (Properly Initialized Processes). Let P ≡ A (ν x)(P 1 | P 2) be an aπ process such that P 1 is in aπ (i.e., it does not include queues) and fv(P 1) = {k 1 , . . . , k n }. We say P is properly initialized (PI) if P 2 contains a queue for each session declared in P 1 , i.e., if

P 2 = k 1 [i : , o :] | • • • | k n [i : , o :].
ReactiveML: A synchronous reactive programming language Based on the reactive model given in [START_REF] Boussinot | The SL synchronous language[END_REF], ReactiveML [START_REF] Mandel | ReactiveML: a reactive extension to ML[END_REF] is an extension of OCaml that allows unbounded time response from processes, avoiding causality issues present in other SRP approaches. ReactiveML extends OCaml with processes: state machines whose behavior can be executed through several instants. Processes are the reactive counterpart of OCaml functions, which ReactiveML executes instantaneously. In ReactiveML, synchronization is based on signals: events that occur in one instant. Signals can trigger reactions in processes; these reactions can be run instantaneously or in the next instant. Signals carry values and can be emitted from different processes in the same instant.

We present the syntax of ReactiveML following [START_REF] Mandel | Reactivity of Cooperative Systems -Application to ReactiveML[END_REF], together with two semantics, with synchronous and asynchronous communication. We will assume countable infinite sets of variables V r and names N r (ranged over by x 1 , x 2 and n 1 , n 2 , respectively). x in one instant. When d and g are unimportant (e.g., when the signal will only be emitted once), we will write simply signal x in P . We will also write signal x 1 , . . . , x n in e when declaring n > 1 distinct signals in e. If expression e 1 transitions to the name of a signal then emit e 1 e 2 emits a signal carrying the value from the instantaneous execution of e 2 . Expression pause postpones execution to the next instant. The conditional expression present e 1 ? (e 2) : (e 3) checks the presence of a signal: if e 1 transitions to the name of a signal present in the current instant, then e 2 is run in the same instant; otherwise, e 3 is run in the next instant. Expression do e when e 1 executes e only when e 1 transitions to the name of a signal present in the current instant, and suspends its execution otherwise. Expression do (e 1) until e(x) → (e 2) executes e 1 until e transitions into the name of a signal currently present that carries a value which will substitute x. If this occurs, the execution of e 1 stops at the end of the instant and e 2 is executed in the next one. Using these basic constructs, we may obtain the useful derived expressions reported in Fig. 3, which include the parallel composition e 1 e 2 . We will say that an expression with no parallel composition operator at top level is a thread. We write ≡ R to denote the smallest equivalence that satisfies the following axioms: (i) e () ≡ R e; (ii) e 1 e 2 ≡ R e 2 e 1 ; (iii) (e 1 e 2) e 3 ≡ R e 1 (e 2 e 3). A Synchronous Semantics for RML Following [START_REF] Mandel | Reactivity of Cooperative Systems -Application to ReactiveML[END_REF], we define a big-step operational semantics for RML. We require some auxiliary definitions for signal environments and events. Below, and denote usual multiset union and inclusion, respectively. Definition 7 (Signal Environment). Let D, G, M be sets of default values, gathering functions, and multisets, respectively. A signal environment is a function

S : N r → (D × G × M), denoted S = [(d 1 , g 1 , m 1)/n 1 , . . . , (d k , g k , m k)/n k], with k ≥ 1.
We use the following notations: S d (n i) = d i , S g (n i) = g i , and S m (n i) = m i . Also, S v = fold g i m i d i where fold recursively gathers multiple emissions of different values in the same signal; see [START_REF] Mandel | ReactiveML: a reactive extension to ML[END_REF][START_REF] Mandel | Reactivity of Cooperative Systems -Application to ReactiveML[END_REF] for details. An event E associates a signal n i to a multiset m i that represents the values emitted during an instant:

Definition 8 (Events). An event is defined as a function

E : N r → M, i.e., E = [m 1 /n 1 , . . . , m k /n k], with k ≥ 1.
Given events E 1 and E 2 , we say that

E 1 is included in E 2 (written E 1 E E 2) if and only if ∀n ∈ Dom(E 1) ∪ Dom(E 2) ⇒ E 1 (n) E 2 (n). The union E 1 and E 2 (written E 1 E E 2) is defined for all n ∈ Dom(E 1) ∪ Dom(E 2) as (E 1 E E 2)(n) = E 1 (n) E 2 (n).
We now define the semantics of RML expressions. A big-step transition in RML captures reactions within a single instant, and is of the form e Fig. 4 gives selected transition rules; see [START_REF] Cano | Session-based Concurrency, Reactively (Extended Version)[END_REF] for a full account. Rules L-PAR and L-DONE handle let expressions, distinguishing when (a) at least one of the parallel branches has not yet terminated, and (b) both branches have terminated and their resulting values can be used. Rule RUN ensures that declared processes can only be executed while they are preceded by run . Rules LP-STU and LP-UN handle loop expressions: the former decrees that a loop will stop executing when the termination boolean of its body becomes ff; the latter executes a loop until Rule LP-STU is applied. Rule SIG-DEC declares a signal by instantiating it with a fresh name in the continuation; its default value and gathering function must be instantaneous expressions. Rule EMIT governs signal emission. Rule PAUSE suspends the process for an instant. Rules SIG-P and SIG-NP check for presence of a signal n: when n is currently present, the body e 2 is run in the same instant; otherwise, e 3 is executed in the next instant. Rules DU-END , DU-P , and DU-NP handle expressions do (e 1) until e 2 (x) → (e 3). Rule DU-END says that if e 1 terminates instanta- -------------→ S () neously, then the whole expression terminates. Rule DU-P says that if e 2 transitions to a currently present signal n, then e 3 is executed in the next instant, substituting x with the values gathered in n. Rule DU-NP executes e 1 as long as e 2 does not reduce to a currently present signal. We shall rely on a simple notion of equality:

L-PAR e1 E 1 ,b 1 ----→ S e 1 e2 E 2 ,b 2 ----→ S e 2 b1 ∧ b2 = ff let x1 = e1 and x2 = e2 in e3 E 1 E E 2 ,ff -------→ S let x1 = e 1 and x2 = e 2 in e3 L-DONE e1 E 1 ,tt ---→ S v1 e2 E 2 ,tt ---→ S v2 e3{ v1, v2 /x1, x2} E 3 ,b ---→ S e 3 let x1 = e1 and x2 = e2 in e3 E 1 E E 2 E E 3 ,b ----------→ S e 3 RUN e E 1 ,tt ---→ S process e e
---→ S v loop e E 2 ,b ---→ S e loop e E 1 E E 2 ,b ------→ S e SIG-DEC e1 E 1 ,tt ---→ S v1 e2 E 2 ,tt ---→ S v2 e3{ n /x} E 3 ,b ---→ S e 3 n fresh S(n) = (v1, v2, m) signal e 2 x : e1 in e3 E 1 E E 2 E E 3 ,b ----------→ S e 3 EMIT e1 E 1 ,tt ---→ S n e2 E 2 ,tt ---→ S v emit e1 e2 E 1 E E 2 E [{v}/n],tt
PAUSE pause ∅,ff --→ S ()
SIG-P e1 E 1 ,tt ---→ S n n ∈ S e2 E 2 ,b ---→ S e 2 present e1? (e2) : (e3) E,ff ---→ S e 2 SIG-NP e1 E,tt ---→ S n n ∈ S present e1? (e2) : (e3) E,ff ---→ S e3 DU-END e2 E 2 ,tt ---→ S n e1 E 1 ,tt ---→ S v do (e1) until e2(x) → (e3) E 1 E E 2 ,tt -------→ S v DU-P e2 E 2 ,tt ---→ S n n ∈ S e1 E 1 ,ff ---→ S e 1 do (e1) until e2(x) → (e3) E 1 E E 2 ,ff -------→ S e3{ S v (n) /x} DU-NP e2 E 2 ,tt ---→ S n n ∈ S e1 E 1 ,ff ---→ S e 1 do (e1) until e2(x) → (e3) E 1 E E 2 ,ff -------→ S do (e 1) until e2(x) → (e3)
Definition 9 (Equality with case normalization). Let → R denote the extension of ≡ R with the axiom match c j with {c i → P i } i∈I → R P j , where c j is a constant and j ∈ I.

RMLq: ReactiveML with a Queue-based Semantics We extend RML with an explicit store of queues that keeps the state of the executed program. Unlike signals, the store of queues is preserved throughout time. The syntax of RML is extended with constructs that modify the queues located in the store; the resulting language is called RMLq:

Definition 10 (RMLq). RMLq expressions are obtained by extending the grammar of values in Def. 6 with the following forms:

v ::= • • • | pop | put | isEmpty. PUT-Q put q v ; Σ, q : h ∅,tt S () ; Σ, q : h • v POP-Q pop q ; Σ, q : v • h ∅,tt S v ; Σ, q : h NEMPTY isEmpty q ; Σ, q : h ∅,tt S () ; Σ, q : h POP-Q pop q ; Σ, q :
∅,ff S pop q ; Σ, q :

EMPTY isEmpty q ; Σ, q :

∅,ff S isEmpty q ; Σ, q : Fig. 5. Big-step semantics for RMLq: Queue-related operations.

The new constructs allow RMLq programs to modify queues, which are ranged over by q, q , Construct put receives a queue and an element as parameters and pushes the element into the end of the queue. Construct pop takes a queue and dequeues its first element; if the queue is empty in the current instant the process will block the current thread until an element is obtained. Construct isEmpty blocks a thread until the instant in which a queue stops being empty.

The semantics of RMLq includes a state Σ, Σ ::= ∅ | Σ, q : v (i.e., a possibly empty collection of queues) and configurations K, K ::= e ; Σ . The big-step semantics then has transitions of the form e ; Σ E,b S e ; Σ , where S is a signal environment, b is a termination boolean, and E is an event. The corresponding transition system is generated by rules including those in Fig. 5 (see also [START_REF] Cano | Session-based Concurrency, Reactively (Extended Version)[END_REF]). Most transition rules for RMLq are interpreted as for RML; we briefly discuss queue-related rules in Fig. 5. Rule PUT-Q pushes an element into a queue and terminates instantaneously. Rule POP-Q takes the first element from the queue (if not empty) and terminates instantaneously. Rule NEMPTY enables isEmpty to terminate instantaneously if the queue is not empty. Rule POP-Q keeps the thread execution stuck for at least one instant if the queue is empty; Rule EMPTY is similar. We rule out programs with parallel pop/put operations along the same session in the same instant.

Expressiveness Results

We present our main results: correct translations of π into RML and of aπ into RMLq.

The Formal Notion of Encoding We define notions of language, translation, and encoding by adapting those from Gorla's framework for relative expressiveness [START_REF] Gorla | Towards a unified approach to encodability and separation results for process calculi[END_REF].

Definition 11 (Languages & Translations).

A language L is a tuple P, -→, ≈ , where P is a set of processes, -→ denotes an operational semantics, and ≈ is a behavioral equality on P. A translation from L s = P s , -→ s , ≈ s into L t = P t , -→ t , ≈ t (each with countably infinite sets of variables V s and V t , respectively) is a pair • , ψ • , where • : P s → P t is a mapping, and ψ • : V s → V t is a renaming policy for • .

We are interested in encodings: translations that satisfy certain correctness criteria: Definition 12 (Encoding). Let L s = P s , -→ s , ≈ s and L t = P t , -→ t , ≈ t be languages; also let • , ψ • be a translation between them (cf. Def. 11). We say that such a translation is an encoding if it satisfies the following criteria:

1. Name invariance: For all S ∈ P s and substitution σ, there exists σ such that Sσ = S σ , with ψ • (σ(x)) = σ (ψ • (x)), for any x ∈ V s . 2. Compositionality: Let res s (•, •) and par s (•, •) (resp. res t (•, •) and par t (•, •)) denote restriction and parallel composition operators in P s (resp. P t). Then, we define: res s (x, P) = res t (ψ • (x), P) and par s (P, Q) = par t (P , Q). 3. Operational correspondence, i.e., it is sound and complete: (1) Soundness: For all S ∈ P s , if S -→ s S , there exists T ∈ P t such that S =⇒ t T and T ≈ t S .

(2) Completeness: For all S ∈ P s and T ∈ P t , if S =⇒ t T , there exists S such that S =⇒ s S and T ≈ t S .

While name invariance and compositionality are static correctness criteria, operational correspondence is a dynamic correctness criterion. Notice that our notion of compositionality is less general than that in [START_REF] Gorla | Towards a unified approach to encodability and separation results for process calculi[END_REF]: this is due to the several important differences in the structure of the languages under comparison (π vs. RML and aπ vs. RMLq).

We shall present translations of π into RML and of aπ into RMLq, which we will show to be encodings. We instantiate Def. 11 with the following languages: Definition 13 (Concrete Languages). We shall consider:

-L π will denote the tuple π, -→, ≡ S , where π is as in Def. 1; -→ is the reduction semantics in Fig. 1; and ≡ S is the structural congruence relation for π.

-L RML will denote the tuple RML,

E,b --→ S , → R , where RML is as in Def. 6; E,b --→ S is
the big-step semantics for RML; and → R is the equivalence in Def. 9. -L aπ will denote the tuple aπ, -→ A , ≡ A , where aπ is as in Def. 3; -→ A is the reduction semantics in Fig. 2; and ≡ A is the structural congruence relation for aπ.

-L RMLq will denote the tuple RMLq, is the big-step semantics for RMLq; and ≡ R is the equivalence for RML.

When events, termination booleans, and signal environments are unimportant, we write

P -→ Q instead of P E,b --→ S Q, and K K instead of K E,b S K .
Encoding L π into L RML Key aspects in our translation of L π into L RML are: (i) the use of value carrying signals to model communication channels; and (ii) the use of a continuation-passing style (following [START_REF] Dardha | Session types revisited[END_REF]) to model variables in π using RML signals.

Definition 14 (Translating L π into L RML). Let • f , ψ • f be a translation where:

(1) ψ • f (x) = x, i.e., every variable in π is mapped to the same variable in RML.

(2) • f : L π → L RML is as in Fig. 6, where f is a substitution function.

Function f in • f ensures that fresh signal identifiers are used in each protocol action. The translation of x v .P declares a new signal x which will be sent paired with value v through signal x; process P f,{x←x } is executed in the next instant. Dually, the translation of x(y).P awaits a signal carrying a pair, composed of a value and the signal name that to be used in the continuation, which is executed in the next instant.

Translations for selection and branching are special cases of those for output and input. Restriction (νxy)P is translated by declaring a fresh signal w, which replaces

x v .P f = signal x in (emit fx (v, x); pause ; P f,{x←x }) x(y).P f = await fx(y, w) in P f,{x←w} x l.P f = signal x in (emit fx (l, x); pause ; P f,{x←x }) x lj{li : Pi}i∈I f = await fx(l, w) in match l with {li → Pi f,{x←w} } v? (P) :

(Q) f = if v
) P | Q f = P f Q f 0 f = ()
Fig. 6. Translation from Lπ to L RML (Def. 14). Notice that fx is a shorthand for f (x).

x, y in P f . Conditionals, parallel composition and inaction are translated homomorphically. Input-guarded replication is a special case of recursion, enabling at most one copy of the spawned process in the same instant; such a copy will be blocked until the process that spawned it interacts with some process. In Fig. 6, α, β denote variables inside the declaration of a recursive process, distinct from any other variables. We state our first technical result: the translation of L π into L RML is an encoding. In the proof, we identify a class of well-formed π processes that have at most one output and selection per endpoint in the same instant; see [START_REF] Cano | Session-based Concurrency, Reactively (Extended Version)[END_REF] for details.

Theorem 1. Translation • f , ψ • f is an encoding, in the sense of Def. 12.

Encoding L aπ into L RMLq The main intuition in translating aπ into RMLq is to use the queues of RMLq coupled with a handler process that implements the output-input transmission between queues. We start by introducing some auxiliary notions.

Notation 1 Let

P ≡ A (ν x)(i∈{1,...,n} Q i | kj ∈ k k j [i : , o :] be PI (cf. Def. 5)
with variables k. We will write P as

C l [Q l , K(k)], where l ∈ {1, . . . , n}, C l [• 1 , • 2] = j∈{1,...,n}\{l} Q j | [• 1] | [• 2], and K(k) = kj ∈ k k j [i : , o :].
This notation allows us to distinguish two parts in a PI process: the non-queue processes and the queue processes K(k). We now define the key notion of handler process: Definition 15 (Handler process). Given k = {k 1 , . . . , k n }, the handler process H(k) is defined as i∈{1,...,n} I(k i) O(k i), where I(k) and O(k) are as in Fig. 7.

Given an endpoint k, a handler defines parallel processes I k and O k to handle input and output queues. Transmission is a handshake where both O k and I k (or viceversa) must be ready to communicate. If ready, O k sends a pair containing the message (pop k o) and a fresh signal for further actions (α). Once the pair is received, it is enqueued in k i (i.e., the dual I k). The process is recursively called in the next instant with the new endpoints. The translation of aπ into RMLq requires a final auxiliary definition: queues. Because of this two-part structure, static correctness properties are established for {[•]} (for this is the actual translation of source processes), whereas operational correspondence is established for ([•]) (which generates an RMLq configuration). 1. Soundness:

If C[Q, K(k)] -→ A C[Q , K (k)] then ([C[Q, K(k)]]) ([C [Q , K (k)]]), for some Q , K (x), C where C[Q, K(x)] -→ A C[Q , K (x)] -→ * A (ν x)C [Q , K (x)]. 2. Completeness: If ([C[Q, K(x)]]) R then there exist Q ,C ,K (x) such that C[Q, K(x)] -→ * A (ν x)C [Q , K (x)] and R = ([C [Q , K (x)
]]). In soundness, a single RMLq step mimicks one or more steps in aπ, i.e., several source computations can be grouped into the same instant. This way, e.g., the interaction of several outputs along the same session with their queue (cf. Rule SEND) will take place in the same instant. In contrast, several queue synchronizations in the same session (cf. Rule COM) will be sliced over different instants. Conversely, completeness ensures that our encoding does not introduce extraneous behaviors: for every RMLq transition of a translated process there exists one or more corresponding aπ reductions.

Closing Remarks

We have shown that ReactiveML can correctly encode session-based concurrency, covering both synchronous and asynchronous (queue-based) communications. 4 Our encodings are executable: as such, they enable to integrate session-based concurrency in actual RML programs featuring declarative, reactive, timed, and contextual behavior. This is an improvement with respect to previous works, which extend the π-calculus with some (but not all) of these features and/or lack programming support. Interestingly, since ReactiveML has a well-defined semantics, it already offers a firm basis for both foundational and practical studies on session-based concurrency. Indeed, ongoing work concerns the principled extension of our approach to the case of multiparty sessions.

We have not considered types in source/target languages, but we do not foresee major obstacles. In fact, we have already shown that our encoding • f supports a large class of well-typed π processes in the system of [START_REF] Vasconcelos | Fundamentals of session types[END_REF], covering a typed form of operational correspondence but also type soundness: if P is a well-typed π process, then P f is a well-typed RML expression-see [START_REF] Cano | Session-based Concurrency, Reactively (Extended Version)[END_REF]. We conjecture a similar result for ([•]), under an extension of [START_REF] Vasconcelos | Fundamentals of session types[END_REF] with queues. On the ReactiveML side, we can exploit the typeand-effect system in [START_REF] Mandel | Reactivity of Cooperative Systems -Application to ReactiveML[END_REF] to enforce cooperative programs (roughly, programs without infinite loops). Since • f and ([•]) already produce well-typed, executable ReactiveML expressions, we further conjecture that they are also cooperative, in the sense of [START_REF] Mandel | Reactivity of Cooperative Systems -Application to ReactiveML[END_REF].

Definition 6 (

 6 RML). The set RML of ReactiveML expressions is defined as: v, v ::= c | (v, v) | n | λx.e | process e e, e ::= x | c | (e, e) | λx.e | e e | rec x = v | match e with {c i → e i } i∈I | let x = e and x = e in e | run e | loop e | signal e x : e in e | emit e e | pause | process e | present e? (e) : e | do e when e | do (e) until e(x) → (e) Values v, v , . . . include constants c (booleans and the unit value ()), pairs, names, abstractions, and also processes, which are made of expressions. The syntax of expressions e, e extends a standard functional substrate with match and let expressions and with process-and signal-related constructs. Expressions run e and loop e follow the expected intuitions. Expression signal g x : d in e declares a signal x with default value d, bound in e; here g denotes a gathering function that collects the values produced by

Fig. 3 .

 3 Fig. 3. Derived RML expressions.

Fig. 4 .

 4 Fig. 4. Big-step semantics for RML expressions (selection).

,

 ≡ R , where RMLq is as in Def. 10;

Theorem 2 (

 2 Name invariance and compositionality for {[•]}). Let P , σ, x, and E[•] be an aπ process, a substitution, a variable in aπ , and an evaluation context (cf. Def. 4), respectively. Then: (1) {[P σ]} = {[P]}σ, and (2) {[E[P]]} = {[E]} {[P]} . Theorem 3 (Operational correspondence for ([•])). Given a properly initialized aπ process C[Q, K(k)], it holds that:

 Time is modelled as discrete units, called instants; reactivity arises through signals, which may carry values. In ReactiveML, expression signal x in e declares a new signal x. We use constructs emit s v and await s(x) in e to emit and await a signal s, respectively. Preemption based on signals is obtained by the expression do (e 1) until s → (e 2), which executes e 1 until signal s is detected, and runs e 2 in the next instant. Moreover, Reac-tiveML can encode the parallel composition of expressions e 1 and e 2 , denoted e 1 e 2 .

	Embedding Sessions in ReactiveML Our first encoding, denoted • f (cf. Def. 14),
	translates session π-calculus processes into ReactiveML expressions; we use substitu-
	tion f to represent names in the session π-calculus using (fresh) signals in ReactiveML.
	Our second encoding, denoted ([•]) (cf. Def. 17), supports an asynchronous semantics.

 then (pause ; P) else (pause ; Q) (νxy)P f = signal w in P f,{x←w,y←w} * x(y).P f = let rec process repl α β = signal x in do (loop present fα? (emit x ; pause) : (())) until fα(y, w) → (run β {α←w}) await x in run (repl α β) in run repl x (process P f

Synchronous communication as in the (session) π-calculus should not be confused with the synchronous programming model of ReactiveML.

Acknowledgements We thank Ilaria Castellani, Cinzia Di Giusto, and the anonymous reviewers for useful remarks and suggestions. This work has been partially sponsored by CNRS PICS project 07313 (SuCCeSS) and EU COST Actions IC1201 (BETTY), IC1402 (ARVI), and IC1405 (Reversible Computation).

Fig. 8. Auxiliary translation from aπ into RMLq (Def. 17).

Definition 16. We define δ(•) as a function that maps aπ processes into RMLq states:

and as δ(P) = ∅ for every other aπ process.

Definition 17 (Translating

) be a translation where:

-

, every variable in aπ is mapped to the same variable in RMLq.

-

which are translated into RMLq configurations as follows:

where {[•]} : L aπ → L RMLq is in Fig. 8; H(k) is in Def. 15; and δ(•) is in Def. [START_REF] Mandel | ReactiveML: a reactive extension to ML[END_REF].

Two key ideas in translation ([•]) are: queues local to processes and compositional (queue) handlers. Indeed, communication between an endpoint k and its queues k i , k o proceeds instantaneously, for such queues should be local to the process implementing session k. Queue handlers effectively separate processes/behavior from data/state. As such, it is conceivable to have handlers that have more functionalities than those of H(k). In [START_REF] Cano | Session-based Concurrency, Reactively (Extended Version)[END_REF] we provide an example of a handler more sophisticated than H(k).

Translation ([•]

) is in two parts. First, {[•]} translates non-queue processes: output and input are translated into queuing and dequeuing operations, respectively. Selection and branching are modeled similarly. Translations for the conditional, inaction, parallel, and recursion is as expected. Recursion is limited to a pause-guarded tail recursion in {[•]} to avoid loops of instantaneous expressions and nondeterminism when accessing queues. Second, ([•]) creates an RML configuration by composing the RMLq process obtained via {[•]} with appropriate handlers and with the state obtained from the information in aπ