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Stability analysis of a system coupled to a
heat equation. ?

21 July 2017

Lucie Baudouin ∗, Alexandre Seuret ∗, Frederic Gouaisbaut ∗

∗ LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse,
France.

Abstract: As a first approach to the study of systems coupling finite and infinite dimensional
natures, this article addresses the stability of a system of ordinary differential equations coupled
with a classic heat equation using a Lyapunov functional technique. Inspired from recent
developments in the area of time delay systems, a new methodology to study the stability of
such a class of distributed parameter systems is presented here. The idea is to use a polynomial
approximation of the infinite dimensional state of the heat equation in order to build an enriched
energy functional. A well known efficient integral inequality (Bessel inequality) will allow to
obtain stability conditions expressed in terms of linear matrix inequalities. We will eventually
test our approach on academic examples in order to illustrate the efficiency of our theoretical
results.
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1. INTRODUCTION

Coupling a classical finite dimensional system to a partial
differential equation (PDE) presents not only interesting
theoretical challenges but can also formalize various ap-
plicative situations. Effectively, as the solution of the PDE
is a state belonging to an infinite dimensional functional
space, its coupling with a finite dimensional system brings
naturally new difficulties in stability study and/or control
of the coupled system. We can also list several specific
situations worth being modeled by this king of heteroge-
neous coupled system. For example, the finite dimensional
systems could represent a dynamic controller for a sys-
tem modeled by a PDE (see Krstic (2009) and references
therein). Instead, a system of ordinary differential equa-
tions (ODEs) can model a component coupled to a phe-
nomenon described by PDEs as in Daafouz et al. (2014).
Conversely, the PDE can model an actuator or sensor’s
behavior and the goal could be to study the stabilization
of a connected finite dimensional system in spite of it (as
e.g. in time delay systems). Actually, the last decade has
seen the emergence of number of papers concerning the
stability or control of this type of coupled systems (as in
Susto and Krstic (2010), Krstic (2009), see also references
therein). When considering such a coupling of equations
of different nature, it is important to highlight that the
notion of stability regarding PDEs is not as generic as for
classical systems of ODEs. It depends specifically on the
functional space where the solution belongs and the choice
of an appropriate norm (in other words the definition of
the energy of the infinite dimensional state), see Tang and
Xie (2011). Of course, the type of interconnection between
the ODE and the PDE and the boundary conditions of
the PDE also plays a role (see for instance the reference

? This work is supported by the ANR project SCIDiS contract
number 15-CE23-0014.

book Curtain and Zwart (1995) or Bastin and Coron
(2016) for a rather complete exposition of the stability
and stabilization problem).

One classical way to study the stability of such a coupled
system relies on discretization techniques leading to some
finite dimensional systems to be studied. The question of
convergence of the results is then quite natural and may
be complicated to deal with (see Morris (1994)). That’s
the reason why several researches have turned to direct
approaches: the objective is to determine a Lyapunov
functional for the overall system directly, without going
through a discretization scheme. This has given rise to
many interesting methodologies. Hence, a first one relies
on the semi-group theory to model the overall system and
it may lead, as in Fridman (2014), to some Linear Opera-
tor Inequalities to be solved numerically. Unfortunately,
this approach remains quite limited (see Fridman and
Orlov (2009)) and works finally only for small dimensional
ODE systems since no numerical tools are available to
solve these Linear Operator Inequalities. Furthermore, the
generic semi-group approach generally fails to develop a
constructive approach for the design of Lyapunov func-
tionals.

Another approach considers the design of a Lyapunov
functional as usually based on the sum of a classical
Lyapunov functional identified for each part of the system
under consideration. When dealing with the PDE of a
coupled system, its Lyapunov functional is actually the
”energy” of the PDE (see Prieur and Mazenc (2012),
Papachristodoulou and Peet (2006)). Another example is
given is Krstic (2009), where the control of a finite dimen-
sional system connected to an actuator/sensor modeled
by a heat equation with Neumann and Dirichlet boundary
conditions is considered. The author adopts the backstep-
ping method employed originally in the case of the trans-



port (or delay) equation. The resulting feedback system
is equivalent to a finite dimensional exponentially stable
system cascaded with a heat condition. The choice of an
appropriate Lyapunov function as a sum of the energy of
the heat equation and a classical quadratic function for
the finite dimensional system allows to prove the expo-
nential stability of the overall system. Recently, several
approaches based on an optimisation procedure have been
developped Gahlawat and Peet (2017). Starting from a
semi group modeling of the PDEs, the authors construct
a very general Lyapunov functional which parameters are
optimised via a sum of square procedure. This methodol-
ogy is then applied to the controller or observer design.

Our task in this article will be to study a finite dimensional
ODE system coupled with a heat equation in 1-d in
space, where the interconnection is performed through
the boundary of the space domain. We aim at proving
exponential stability results, meaning that starting from
an arbitrary initial condition, the whole system’s solution
follows a time trajectory that exponentially converges in
spatial norm to an equilibrium state. Nevertheless, the
stability analysis is challenging since it depends strongly
on the norm chosen to measure the deviation with respect
to the steady state (for the PDE part specifically). But
above all, our goal is to provide practical stability tests
for the whole system that can take into account both the
finite dimensional state and its interplay with the infinite
dimensional state of the PDE. It will be performed thanks
to the construction of a general Lyapunov functional based
on the weighed classical energy of the full system enriched
by a quadratic term built on a truncation of the distributed
state. To this end, we will use the projection of the state
over a set of polynomials and take advantage of this
approximation to provide tractable stability conditions
for the whole coupled system. A first step of our study,
using only the mean value of the PDE state as a rough
approximation, was presented in the conference paper
Baudouin et al. (2017).

Notation. As usual, N denote the sets of positive integers,
R+, Rn, and Rn×m the positive reals, n-dimensional vec-
tors and n×m matrices ; the Euclidean norm writes |·|. For
any matrix P in Rn×n, we denote He(P ) = P +P> (where
P> is the transpose matrix) and P � 0 means that P is
symmetric positive definite, ie P ∈ Sn+. For a partitioned
matrix, the symbol ∗ stands for symmetric blocks and I is
the identity, 0 the zero matrix. The partial derivative on a
function u with respect to x is denoted ∂xu = ∂u

∂x (while the

time derivative of X is Ẋ = dX
dt ). Finally, using L2(0, 1)

for the Hilbert space of square integrable functions, one

writes ‖z‖2 =
∫ 1

0
|z(x)|2 dx = 〈z, z〉, and we also define the

Sobolev spaces H1(0, 1) = {z ∈ L2(0, 1), ∂xz ∈ L2(0, 1)}
and its norm by ‖z‖2H1(0,1) = ‖z‖2 + ‖∂xz‖2, H2(0, 1) =

{z ∈ L2(0, 1), ∂xz ∈ L2(0, 1), ∂xxz ∈ L2(0, 1)} and its
norm by ‖z‖2H2(0,1) = ‖z‖2 + ‖∂xz‖2 + ‖∂xxz‖2.

Outline. A thorough description of the system under study
will be given in Section 2. Then, Section 3 will detail the
main tools we will need for the proof of the stability result
presented in Section 4. We will conclude by an illustrating
example of this theoretical result in Section 5.

2. PROBLEM DESCRIPTION

2.1 A coupled system

Consider the coupling of a finite dimensional system in the
variable X ∈ Rn with a heat partial differential equation
in the scalar variable u, in the following way:

Ẋ(t) = AX(t) +Bu(1, t) t > 0,
∂tu(x, t) = γ∂xxu(x, t), x ∈ (0, 1), t > 0,
u(0, t) = CX(t), t > 0
∂xu(1, t) = 0, t > 0.

(1)

The state vector of the system is the pair (X(t), u(x, t)) ∈
Rn × R and it satisfies the compatible initial datum
(X(0), u(x, 0)) = (X0, u0(x)) for x ∈ (0, 1). The thermal
diffusivity is denoted γ ∈ R+ and the matrix A ∈ Rn×n,
the vectors B ∈ Rn×1 and C ∈ R1×n are constant.

Remark 1. One can imagine different situations that can
be translated into the coupled system (1). As a toy
problem of more complicated situations, the system we
study already allows to face several difficulties inherent to
a situation mixing finite and infinite dimensional states.
Nevertheless, we can describe two more physical situations
that could be simplified as our toy problem : either a
finite dimensional system confronted with a thermocouple
sensor, or a heat device connected to a finite dimension
dynamic controller. Anyway, these are only mere ideas that
could link ODEs with a heat PDE and we remain here at
a simplified but still challenging level.

2.2 Existence and regularity of the solutions

Before anything else, one should know that the partial
differential equation ∂tu − γ∂xxu = 0 in (1) of unknown
u = u(x, t) is a classic heat PDE and if the initial datum
u(·, 0) = u0 belongs to H1(0, 1) and the boundary data are
of Dirichlet homogeneous type (i.e. u(0, t) = u(1, t) = 0),
it has a unique solution u satisfying

u ∈ C([0,+∞[;H1
0 (0, 1)) ∩ L2(0,+∞;H2(0, 1))

∂tu ∈ L2(0,+∞;L2(0, 1)),

see e.g. Brezis (1983).

In this article, we are dealing with a coupled system for
which we should start with the existence and regularity of
the solution (X,u). A Galerkin method is the key of the
proof of such a result (see e.g. Evans (2010)).Actually, in
the sake of consistency with the Lyapunov approach we
will use in the proof of stability of our coupled system, we
give here only the formal idea of this Galerkin energy based
method. Hence, let us define the total energy of System (1)
by:

E(X(t), u(t)) = |X(t)|2n + ‖u(t)‖2H1(0,1).

In the sequel, we will write E(t) = E(X(t), u(t)) in order
to simplify the notations.

Easy calculations based on the use of the equations in
System (1) and integrations by parts give :

Ė(t) = X(t)>
(
A> +A

)
X(t)

+ u(1, t)
(
B>X(t) +X(t)>B

)
− 2γ‖∂xu(t)‖2 − 2γ∂xu(0, t)(C + CA)X(t)

− 2γ∂xu(0, t)CBu(1, t)− 2γ‖∂xxu(t)‖2.



Since we have the Sobolev embeddings H1(0, 1) ⊂ C([0, 1])
and H2(0, 1) ⊂ C1([0, 1]), one can write, omitting the time
variable t, that

|u(1)|2 ≤ ‖∂xu‖2 and |∂xu(0)|2 ≤ ‖∂xxu‖2.

Therefore, using Young’s inequality (ab ≤ a2

2ε + εb2

2 ),
it’s easy to obtain that there exists a contant K =
K(A,B,C, ε) > 0 such that

Ė(t)≤K|X(t)|2n +K|u(1, t)|2 − 2γ‖∂xu(t)‖2

+ 2ε|∂xu(0, t)|2 − 2γ‖∂xxu(t)‖2

≤K|X(t)|2n +K‖∂xu(t)‖2 + 2(ε− γ)‖∂xxu(t)‖2.

Hence, choosing 0 < ε < γ, we can either eliminate the last
term so that we get Ė(t) ≤ KE(t) ensuring the existence
of a unique solution (X,u) in the space

Rn × C([0,+∞[;H1(0, 1))

or we can move this term to the left hand side of the
estimate and get that

u ∈ L2(0,+∞;H2(0, 1))

so that we also have, using the heat equation in (1),

∂tu ∈ L2(0,+∞;L2(0, 1)).

These terse explanations allows us to manipulate the
solution (X,u) in the appropriate space along this article.

2.3 Equilibrium and stability

As proved in the preliminary study Baudouin et al. (2017),
if the matrix A+BC is non singular, then system (1) has
a unique equilibrium (Xe = 0, ue ≡ 0) ∈ Rn ×H1(0, 1;R).
The main result of this article is a possibility, through the
verification of tractable conditions, to obtain the following
exponential stability around the steady state (0, 0) :

Definition 1. System (1) is said to be exponentially stable
if for all initial conditions (X0, u0) ∈ Rn ×H1(0, 1), there
exist K > 0 and δ > 0 such that for all t > 0,

E(X(t), u(t)) ≤ Ke−δt
(
|X0|2n + ‖u0‖2H1(0,1)

)
. (2)

More precisely, our goal is to construct a Lyapunov func-
tional in order to narrow the proof of the stability of the
complete infinite dimensional system (1) to the resolution
of linear matrix inequalities (LMI).

3. MAIN TOOLS

Before stating our main result in the next section, we
need to give precise informations about the technical tools
we will use in the proof : a Lyapunov functional, some
Legendre polynomials and the Bessel inequality.

3.1 Lyapunov functional

Inspired by the complete Lyapunov-Krasovskii functional,
which is a necessary and sufficient conditions for stability
for delay systems Gu et al. (2003), we consider a Lyapunov
functional candidate for system (1) of the form:

V (X(t), u(t)) = X>(t)PX(t) + 2X>(t)

∫ 1

0

Q(x)u(x, t)dx

+

∫ 1

0

∫ 1

0

u>(x1, t)T (x1, x2)u(x2, t)dx1dx2

+ α

∫ 1

0

|u(x, t)|2dx+ β

∫ 1

0

|ux(x, t)|2dx,

where the matrix P ∈ S+n and the functions Q ∈
C(L2(0, 1;Rn×m)) and T ∈ C(L2(0, 1;Sm)) have to be
determined.

The first term and the two last terms of V are a weighted
version of the classical energy E(t) of the system. The term
depending on the function T has been recently considered
in the literature in Gahlawat and Peet (2017); Ahmadi
et al. (2016). The term depending on Q is introduced
in order to represent the coupling between the system of
ODEs and the heat equation.

Our objective is to specify this Lyapunov functional in
order to reduce the proof of the stability of the complete
infinite dimensional system (1) to the resolution of LMIs.
Since a part of the state (X,u) of the system is distributed
(u being the solution of a heat equation and depending on
a space variable x in addition to the time t), it is proposed
to impose a special struycture for the functions Q and T in
order to obtain numerically tractable stability conditions.
The two functions will actually be build as projection
operators over a finite dimensional orthogonal family : the
N + 1 first shifted Legendre polynomials.

3.2 Properties of Legendre Polynomials

Let us define here the shifted Legendre polynomials consid-
ered over the interval [0, 1] and denoted {Lk}k∈N. Instead
of giving the explicit formula of these polynomials, we
detail here their principal properties. One can find details
and proofs in the book by Courant and Hilbert (1989).
To begin with, the family {Lk}k∈N is known to form an
orthogonal basis of L2(0, 1;R) since

〈Lj ,Lk〉 =

∫ 1

0

Lj(x)Lk(x)dx =
1

2k + 1
δjk,

where δjk denotes the Kronecker delta, equal to 1 if j = k
and to 0 otherwise. We denote the corresponding norm of
this inner scalar product ‖Lk‖ =

√
〈Lk,Lk〉 = 1/

√
2k + 1.

The boundary values are given by:

Lk(0) = (−1)k, Lk(1) = 1. (3)

The first few shifted Legendre polynomials are: L0(x) = 1,
L1(x) = 2x− 1, L2(x) = 6x2 − 6x+ 1.

Remark 2. For the record, the classical Legendre polyno-
mials are defined on [−1, 1] as the orthonormalization of
the family {1, x, x2, x3, ...} but we need here to work on
the interval [0, 1].

Furthermore, the following derivation formula holds:

L′k(x) =


0, k = 0,
k−1∑
j=0

(2j + 1)(1− (−1)k+j)Lj(x), k ≥ 1,
(4)

from which, denoting

`kj =

{
(2j + 1)(1− (−1)k+j) if j ≤ k − 1,
0 if j ≥ k, (5)



we deduce that

L′′k(x) =


0 if k = 0 or 1,
k−1∑
j=1

j−1∑
i=0

`kj`jiLi(x) ∀k ≥ 2.
(6)

It is now important to notice that any element y ∈ L2(0, 1)
can be written

y =
∑
k≥0

〈
y,
Lk
‖Lk‖

〉
Lk
‖Lk‖

.

Let us set here

UN (t) = Vectk=0..N 〈u(t),Lk〉 in RN+1,

1N = [1 1 . . . 1]
>

in RN+1,

1∗N =
[
1 −1 . . . (−1)N

]>
in RN+1,

LN = (`ij)i,j=0..N in RN+1,N+1,
IN = diag(1, 3, . . . , 2N + 1) in RN+1,N+1.

(7)

One should notice that for all N ∈ N∗, the LN matrices are
strictly lower triangular thanks to the definition (5). The
following notations, that we will use below, stems from
this:

LN = [L1,N 0N+1,1] with L1,N in RN+1,N ,
L2
N = [L2,N 0N+1,2] with L2,N in RN+1,N−1.

(8)

The following properties will be useful for the stability
analysis hereafter.

Property 1. Let u ∈ C(R+;L2(0, 1)) satisfy the heat equa-
tion and its boundary conditions in (1). The following
formula holds:

Vect k=0..N 〈∂xu(t),Lk〉
= −LNUN (t) + 1Nu(1, t)− 1∗NCX(t) (9)

= −L1,NUN−1(t) + 1Nu(1, t)− 1∗NCX(t) (10)

=

[ − 1∗NC
1N
− L1,N

]> [
X(t)
u(1, t)
UN−1(t)

]
.

Proof : We obtain easily, using an integration by parts,
and the first derivation formula (4) of the Legendre poly-
nomials, that

〈∂xu(t),L0〉= u(1, t)− u(0, t),

and ∀k ≥ 1

〈∂xu(t),Lk〉=−
k−1∑
j=1

`kj 〈u(t),Lj〉+ u(1, t)− u(0, t)(−1)k.

Using the notations introduced in (7) we obtain equation
(9) and one can deduce (10) from (8). �

Property 2. Let u ∈ C(R+;L2(0, 1)) satisfy the heat equa-
tion and its boundary conditions in (1). The following time
derivative formula holds if ∂tu ∈ C(R+;L2(0, 1)):

1

γ

d

dt
UN (t) =

1

γ
Vectk=0..N 〈∂tu(t),Lk〉

= L2
NUN (t) + LN1

∗
NCX(t)− LN1Nu(1, t)− 1∗Nux(0, t)(11)

= L2,NUN−2(t) + LN1
∗
NCX(t)− LN1Nu(1, t)− 1∗Nux(0, t)

=

 LN1
∗
NC

− LN1N
− 1∗N
L2,N


>  X(t)

u(1, t)
ux(0, t)
UN−2(t)

 . (12)

Proof : We obtain easily, using the heat equation and
integrations by parts, along with formulas (3) and (6) of
the Legendre polynomials, that

d

dt
〈u(t),L0〉=−γux(0, t),

d

dt
〈u(t),L1〉= 2γu(0, t)− 2γu(1, t) + γux(0, t),

d

dt
〈u(t),Lk〉= γ

k−1∑
j=1

j−1∑
i=0

`jk`ij 〈u(t),Li〉

+γu(0, t)

k−1∑
j=0

`jk(−1)j − γu(1, t)

k−1∑
j=0

`jk

−γux(0, t)(−1)k, ∀k ≥ 2.

The notations introduced in (7) allow to conclude to equa-
tion (11). It is then easy to deduce (12) from (8) �

Remark 3. It is important to notice here that the main
reason for the choice of a base of polynomials to truncate
the infinite dimensional state u is the fact that the deriva-
tion matrices LN and L2

N are strictly lower triangular.
It has interesting consequences on the stability study of
the whole system (1) and is the cornerstone to obtain a
hierarchy of tractable LMIs, in the same vein as in Seuret
and Gouaisbaut (2015).

3.3 Bessel-Legendre Inequality

When constructing the projection of the infinite dimen-
sional state u on the N + 1 first Legendre polynomials to
build the approximate vector state UN of dimension N+1,
capturing an estimate of the approximation error is crucial.
The following lemma provides a useful information.

Lemma 1. Let u ∈ C(R+;L2(0, 1)). The following integral
inequality holds for all N ∈ N:

||u(t)||2 ≥ UN (t)>INUN (t). (13)

Proof : Estimate (13) can be called the Bessel-Legendre
Inequality. Since u(t) =

∑
k≥0 〈u(t),Lk〉 Lk/‖Lk‖2, using

the orthogonality of the Legendre polynomials and the fact
that ‖Lk‖2 = 〈Lk,Lk〉 = 1/(2k + 1), we easily get∫ 1

0

|u(x, t)|2dx=
∑
k≥0

|〈u(t),Lk〉|2 /‖Lk‖2

≥
N∑
k=0

(2k + 1) |〈u(t),Lk〉|2 .

The formulation of Lemma 1 stems from the last notation
in (7). �



4. STABILITY ANALYSIS

4.1 Exponential stability result

Following the previous developments,N being a prescribed
positive integer, we introduce an approximate state of size
n + N + 1, composed by the state of the ODE system X
and the projection of the infinite dimensional state u over
the set of the Legendre polynomial of degree less than N .
In other words, the approximate finite dimensional state
vector is given by[

X(t)
UN (t)

]
=

[
X(t)

Vectk=0..N 〈u(t),Lk〉

]
.

The main objective of this article is to provide the follow-
ing stability result for the coupled system (1), which is
based on an appropriate Lyapunov functional and the use
of Property 2 and Lemma 1.

Theorem 1. Consider system (1) with a given thermal
diffusivity γ > 0. If there exist an integer N ≥ 0, such
that there exists δ > 0, α > 0, P ∈ Sn, Q ∈ Rn,(N+1)m

and T ∈ S(N+1)m satisfying the following LMIs

ΦN =

[
P Q
Q> T

]
� 0, (14)

ΨN (γ) = Ψ̃N − αγΨN,2 − 2βγΨN,3 ≺ 0, (15)

where

Ψ̃N =

 Ψ11 PB − γQLN1N Ψ13 Ψ14

∗ 0 −βB>C> Ψ24

∗ ∗ 0 −γ1∗>N T
∗ ∗ ∗ Ψ44


(16)

with
Ψ11 = He(PA+ γQLN1

∗
NC)

Ψ13 = −γQ1∗N − αγC> − βA>C>
Ψ14 = A>Q+ γC>1∗>N L>NT + γQL2

N

Ψ24 = B>Q− γ1TNL>NT
Ψ44 = He(γL>NT ),

(17)

ΨN,2 =

 − 1
∗
N+1C

1N+1

0N+1,1

− L1,N+1

 IN+1

 − 1
∗
N+1C

1N+1

0N+1,1

− L1,N+1


>

(18)

and

ΨN,3 =

 LN+21
∗
N+2C

− LN+21N+2

− 1∗N+2
L2,N+2

IN+2

 LN+21
∗
N+2C

− LN+21N+2

− 1∗N+2
L2,N+2


>

(19)

then the coupled system (1) is exponentially stable. In-
deed, there exist constants K > 0 and δ > 0 such that:

E(t) ≤ Ke−δt
(
|X0|2n + ‖u0‖2

)
,∀t > 0. (20)

Remark 4. One can point out the robustness of the ap-
proach with respect to the triplet (A,B, γ), meaning that
we could have A,B and γ uncertain, switched of time-
varying... without loosing the stability property. It suffices
indeed then to test these LMIs at the vertices of a polytope
defining the uncertainties of the triplet.

In order to reveal the approximate state UN in the can-
didate Lyapunov functional V written in section 3.1, we
select the functions Q and T as follows:

Q(x) =

N∑
k=0

QkLk(x), T (x1, x2) =

N∑
i=0

N∑
j=0

TijLi(x1)Lj(x2)

where {Qi}i=0..N belong to Rn and {Tij = T>ji }i,j=0..N to
R. Therefore we can write

VN (t) := V (X(t), u(t)) =

[
X(t)
UN (t)

]> [
P Q
Q> T

] [
X(t)
UN (t)

]
+ α

∫ 1

0

|u(x, t)|2dx+ β

∫ 1

0

|∂xu(x, t)|2dx, (21)

where
Q = [Q0 . . . QN ] in Rn,N+1,
T = (Tjk)j,k=0..N in RN+1,N+1.

In the following subsection, conditions for exponential
stability of the origin of system (1) can be obtained using
the LMI framework. More particularly, we aim at proving
that the functional VN is positive definite and satisfies

V̇N (t) + 2δVN (t) ≤ 0

for a prescribed δ > 0 and under LMIs to be determined.

4.2 Proof of the Stability Theorem

The proof consists in showing that, if the LMI conditions
(14) and (15) are verified for a given N ≥ 0, then there
exist three positive scalars ε1, ε2 and ε3 such that for all
t > 0,

ε1E(t)≤ VN (t) ≤ ε2E(t), (22)

V̇N (t)≤−ε3E(t). (23)

Indeed, on the one hand, its suffices to notice that we
obtain directly from (22) and (23)

V̇N (t) +
ε3
ε2
VN (t) ≤ 0

so that
d

dt

(
VN (t)eε3t/ε2

)
≤ 0

and integrating in time, we get VN (t) ≤ VN (0)e−ε3t/ε2 for
all t ≥ 0. On the other hand, with the help of (22), we can
finally write

ε1E(t) ≤ VN (t) ≤ VN (0)e−ε3t/ε2 ≤ ε2E(0)e−ε3t/ε2 ,

allowing to conclude (20).

Existence of ε1: Since α > 0, β > 0 and ΦN � 0, there
exists a sufficiently small ε1 > 0 such that

ε1 ≤ α, ε1 ≤ β and ΦN =

[
P Q
Q> T

]
� ε1

[
In 0
0 0

]
.

Since ε1 ≤ α and ε1 < β, we obtain a lower bound of VN
depending on the energy function E(t):

VN (t) ≥ ε1(|X(t)|2n + ‖u(t)‖2) + β||∂xu(t)||2 ≥ ε1E(t).

Existence of ε2: There exists a sufficiently large scalar
λ > 0 such that [

P Q
Q> T

]
� λ

[
In 0
0 IN

]
,

yielding

VN (t)≤ λ|X(t)|2n + λU>N (t)INUN (t)

+α‖u(t)‖2 + β‖∂xu(t)‖2.



Applying Lemma 1 to the second term of the right-hand
side ensures that

VN (t) ≤ ε2E(t)

with ε2 = max{λmax

(
P Q
Q> T

)
+ α, β}.

Existence of ε3: In order to prove now that (23) relies
on the solvability of the LMI (15), we need to define an
augmented approximate state vector of size n+N+3 given
by

ξN (t) =

 X(t)
u(1, t)
ux(0, t)
UN (t)

 .
Step 1: Let us split the computation of V̇N into three
terms, namely V̇N,1, V̇N,2 and V̇N,3 corresponding to each
term of VN in (21). We omit the variable t in the sequel.

On the one hand, using the first equation in system (1)
and Property 2, we have :

d

dt

[
X
UN

]
=[

AX +Bu(1)
γL2

NUN + γLN1
∗
NCX − γLN1Nu(1)− γ1∗Nux(0)

]
so that we can calculate

V̇N,1 =
d

dt

([
X
UN

]> [
P Q
Q> T

] [
X
UN

])
= ξ>N ΨN,1(γ) ξN

with

ΨN,1 =

 Ψ11 PB − γQLN1N −γQ1∗N Ψ14

∗ 0 0 Ψ24

∗ ∗ 0 −γ1∗>N T
∗ ∗ ∗ Ψ44

 (24)

where Ψ11, Ψ14, Ψ24 and Ψ44 are defined in (17).

On the other hand, using the heat equation in (1), and an
integration by parts, we get both

V̇N,2 = α

∫ 1

0

∂t

(
|u(x)|2

)
dx = 2α

∫ 1

0

u(x)∂tu(x)dx

= 2αγ

∫ 1

0

u(x)∂xxu(x)dx

=−2αγ

∫ 1

0

|∂xu(x)|2 dx+ 2αγ [u∂xu]
1
0

=−2αγ‖∂xu‖2 − 2αγCXux(0)

and

V̇N,3 = β

∫ 1

0

∂t

(
|∂xu(x)|2

)
dx = 2β

∫ 1

0

∂txu(x)∂xu(x)dx

=−2β

∫ 1

0

∂tu(x)∂xxu(x)dx+ 2β [∂tu∂xu]
1
0

=−2
β

γ

∫ 1

0

|∂tu(x)|2 dx− 2β∂tu(0)∂xu(0)

=−2
β

γ
‖∂tu‖2 − 2β∂xu(0)C(AX +Bu(1)).

Merging the expressions of V̇N,1, V̇N,2 and V̇N,3, we can
write

V̇N = ξ>N ΨN,1(γ) ξN − 2αγ‖∂xu‖2 − 2
β

γ
‖∂tu‖2

−2αγCXux(0)− 2β∂xu(0)C(AX +Bu(1))

= ξ>N Ψ̃N (γ) ξN − 2αγ‖∂xu‖2 − 2
β

γ
‖∂tu‖2 (25)

where Ψ̃N (γ) is defined in (16).

Step 2: Let us explain here how we can deal with the terms
‖∂xu(t)‖2 and ‖∂tu(t)‖2.

Following the proof of Lemma 1, up to the order N+1, we
can write, using an integration by parts and the derivation
formula in Property 1 of the Legendre polynomial

‖∂xu(t)‖2 ≥
N+1∑
k=0

(2k + 1) |〈∂xu,Lk〉|2

≥

[
X
u(1)
UN

]> [ − 1∗N+1C
1N+1

− L1,N+1

]
IN+1

[ − 1∗N+1C
1N+1

− L1,N+1

]> [
X
u(1)
UN

]

One can deduce that with ΨN,2 defined in (18),

−‖∂xu(t)‖2 ≤ −ξ>N (t) ΨN,2 ξN (t). (26)

Similarly, using Property 2 and Lemma 1 up to the order
N + 2, we have

1

γ
‖∂tu(t)‖2 ≥ 1

γ

dU>N+2

dt
IN+2

dUN+2

dt

≥ γ

 X
u(1)
ux(0)
UN


>

ΨN,3

 X
u(1)
ux(0)
UN


with ΨN,3 defined in (19) so that

− 1

γ
‖∂tu(t)‖2 ≤ −γξ>N (t)ΨN,3 ξN (t). (27)

Step 3: Since we assume the LMI (15) that writes ΨN ≺ 0,
there exists ε > 0 such that

ΨN ≺ −ε

In 0 0 0
∗ 2 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

 .
For instance, ε = λmin(−ΨN )/2.

Therefore, we can write from (25), (26) and (27), choosing
ε3 = min

{
1
3αγ, λmin(−ΨN )/2

}
,

V̇N (t)≤ ξ>N (t) Ψ̃N ξN (t)− αγ‖∂xu(t)‖2 − 2
β

γ
‖∂tu(t)‖2

−3ε3‖∂xu(t)‖2

≤ ξ>N (t)
(

Ψ̃N − αγΨN,2 − 2βγΨN,2

)
ξN (t)

−3ε3‖∂xu(t)‖2

≤ ξ>N (t) ΨN ξN (t)− 3ε3‖∂xu(t)‖2

≤−ε3|X(t)|2n − 2ε3|u(1)|2 − 3ε3‖∂xu(t)‖2.
Finally, since one can easily prove that for any u ∈
H1(0, 1),

‖u‖2 ≤ 2|u(1)|2 + 2‖∂xu‖2,
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Fig. 1. Stability region in the plan (K, γ), obtained using
Theorem 1 for N = 0, . . . , 12.

we obtain

V̇N (t) ≤ −ε3|X(t)|2n − ε3‖u(t)‖2 − ε3‖∂xu(t)‖2 (28)

which is precisely (23).

One can therefore conclude to the exponential stability of
system (1).

5. NUMERICAL EXAMPLE

Consider system (1) with the following value

A =

 0 0 1 0

0 0 0 1

−10−K 10 0 0

5 −15 0 −0.25

 , B =

 0

0

1

0

 , C =

K

0

0

0

T .
This data triplet (A,B,C) has already been considered
in the context of time delay systems where the delayed
matrix is Ad = BC. The main motivation for studying
this TDS arises from the fact the stability region has a
very complicated shape, that is hard to detect using a
Lyapunov-Krasovskii functional approach. We will see that
the stability region is difficult to detect for our system (1)
as well.

In order to illustrate the potential of Theorem 1, we have
generated Figure 1, depicting in the plan (K, γ) and in
logarithmic scales, for which values of N solutions to the
LMI problem (14-15) have been found. The white area
corresponds to values of (K, γ) for which no solutions have
been obtained for N < 13. The darkest area corresponds
to the stability region obtained with N = 0 in Theorem 1.
The general tendency presented in Figure 1 is that for large
values of γ, stability is guaranteed. However, for small
values of γ, peculiar stability regions are detected. One can
see that increasing N in Theorem 1 allows to enlarge the
stability regions as illustrated in the hierarchical structure
of LMIs (14-15). Interestingly, Figure 1 also detects two
instability zones, where (14) or (15) are not solvable, even
for larger values of N .

Remark 5. Figure 1 has also the interest of illustrating the
hierarchy that our approach suggests. One sees clearly the
progression of the guaranteed domain of stability with the
increase of N .

(a) Simulations results obtained with γ = 1.
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(b) Simulations results obtained with γ = 0.2.
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(c) Simulations results obtained with γ = 0.05.

Fig. 2. Figure representing the evolution of the state (X,u)
with respect to time with K = 100 and for several
values of γ.

In order to illustrate the stability regions depicted in
Figure 1, several temporal simulations of the coupled-
system have been provided in Figure 2. They correspond
to system (1) with the same numerical values (A,B,C)
and the particular choice of K = 100. This selection of K
is relevant since there is an interval of values of γ included
in [0.1, 0.2] such that the LMIs conditions of Theorem 1
are not verified even for large values of N . Under the initial
conditions

u0(x) = CX0 − 20x(x− 2) + 10(1− cos(8πx))
X0 = [0 1 −1 0]

and noting that this is compatible with the requirements
u0(0) = CX0 and ∂xu

0(1) = 0, three simulations are
provided with



(a) γ = 1, corresponding to a stable region according to
Theorem 1 with N = 0;

(b) γ = 0.2, corresponding to a region for which Theo-
rem 1 has no solution for any N ≤ 12;

(c) γ = 0.05, which, according to Theorem 1 with N ≥ 5,
is exponentially stable.

Simulations of the coupled ODE - Heat PDE have been
performed using classical tools available in the literature.
The ODE has been discretized using a Runge-Kutta algo-
rithm of order 4 with a principal step δt. The PDE have
been simulated by performing a backward in time central
order difference in space with a step δx, with δt ≤ δ2x/(2γ)
and δx = 1/20 to ensure the numerical stability of the
approximation.

Figure 2(a) obviously shows the stable behaviors detected
by Theorem 1 with N = 0, with a quite fast convergence
to the equilibrium. The illustration of the second case
Figure 2(b) is consistent with Figure 1, since the solution
of this system diverges. This is consistent with the fact that
no solutions to the conditions of Theorem 1 can be found
for any N ≤ 12. More interestingly, the last situation,
presented in Figure 2(c), shows simulations results which
are very slowly converging to the origin, with however a
lightly damped oscillatory behavior of the state of the
ODE and of the PDE close to the boundary x = 0. On
the other side, the state function u(x, t) for sufficiently
large values of x is clearly smooth and converges slowly to
the origin. This slow convergent behavior of the solution
for case (c) can illustrate the fact that the order N for
which the conditions of Theorem 1 are verified is quite
large: N ≥ 5.

6. DISCUSSION AND CONCLUSION

This article has provided a new and fruitful approach
to numerically check the exponential stability of coupled
ODE - Heat PDE systems. Our approach relies on the
efficient construction of specific Lyapunov functionals al-
lowing to derive diffusion parameter-dependent stability
conditions. These tractable conditions of stability are ex-
pressed in terms of LMIs and obtained using the Bessel
inequality. This work is a first contribution in the study of
coupled ODE-Heat PDE systems using this framework and
has the ambition to provide a method that could prove to
be robust and useful in more intricate situations, such as
other parabolic PDEs (e.g. reaction-diffusion, Kuramoto-
Sivashinski...), or vectorial infinite dimensional state u to
handle MIMO systems. A very interesting but challenging
question is also the study of the convergence of our result
when the order N of truncation grows. We would like to
prove that if the stability of the coupled system holds,
then there exists an order N for which our LMIs are
verified. Future research will also include the study of the
robustness of our technique with respect to the whole data
quadruplet (A,B,C, γ).
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