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In this paper, we further investigate the use of a fully discontinuous Finite Element discrete formulation for the study of shallow water free surface flows in the fully nonlinear and weakly dispersive flow regime. We consider a decoupling strategy in which we approximate the solutions of the classical shallow water equations supplemented with a source term globally accounting for the nonhydrostatic effects. This source term can be computed through the resolution of elliptic second-order linear sub-problems, which only involve second order partial derivatives in space. We then introduce an associated Symmetric Weighted Internal Penalty discrete bilinear form, allowing to deal with the discontinuous nature of the elliptic problem's coefficients in a stable and consistant way. Similar discrete formulations are also introduced for several recent optimized fully nonlinear and weakly dispersive models. These formulations are validated again several benchmarks involving h-convergence, p-convergence and comparisons with experimental data, showing optimal convergence properties.

Introduction

Considering a homogeneous incompressible and inviscid fluid, the propagation and transformation of free surface waves can be described using the Euler equations with nonlinear boundary conditions at the surface and at the bottom. In its full generality, this problem is very complicated to solve, both mathematically and numerically. For this reason, an important endeavour has been undertaken for the derivation and mathematical understanding of asymptotic models describing the behavior of the solution in some specific physical regimes; see, e.g., [START_REF] Lannes | Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation[END_REF] for a review. We focus here on the shallow water and fully nonlinear regime:

(shallow water regime) µ :=

H 2 0 λ 2 ≪ 1, (large amplitude regime) ε := a H 0 = O(1), (1) 
where H 0 refers to the typical water depth, λ the typical wave length, and a the typical wave's amplitude. In this regime, the classical Nonlinear Shallow Water (NSW) equations can be derived from the full water waves equations by neglecting all the terms of order O(µ), see for instance [START_REF] Lannes | The water waves problem: mathematical analysis and asymptotics[END_REF]. This model provides an accurate description of important unsteady processes in the surf and swash zones, such as nonlinear wave transformations, run-up and flooding due to storm waves, see for instance [START_REF] Bonneton | Modelling of periodic wave transformation in the inner surf zone[END_REF], but it neglects the dispersive effects which are fundamental for the study of wave transformations in the shoaling area and, possibly, slightly deeper water areas. The corresponding equations where O(µ) terms are not neglected were first derived by Serre [START_REF] Serre | Contribution à l'étude des écoulements permanents et variables dans les canaux[END_REF] in the horizontal surface dimension, then by Green and Naghdi [START_REF] Green | A derivation of equations for wave propagation in water of variable depth[END_REF] for the two-dimensional case, and have been recently mathematically justified in [START_REF] Alvarez-Samaniego | Large time existence for 3d water-waves and asymptotics[END_REF].

Focusing on the one dimensional (horizontal) case, let x, z, and t denote, respectively, the horizontal, vertical, and time coordinates. We denote by ζ(t, x) the free surface elevation with respect to its rest state, by -H 0 + b(x) a parametrization of the bottom's variations, by H := H 0 + ζ -b the water depth, and by η = H + b the total free surface elevation, as shown in Figure 1. Denoting by u hor the horizontal component of the velocity field in the fluid domain, we define the vertically averaged horizontal velocity u ∈ R as

u(t, x) := 1 H ζ -H0+b
u hor (t, x, z)dz, and we denote by q := Hu the corresponding horizontal momentum. The classical Green-Naghdi (GN) equations read as follows:

∂ t ζ + ∂ x (Hu) = 0, (2a) 
(1 + T [H, b]) ∂ t u + u∂ x u + g∂ x ζ + Q[H, b](u) = 0, ( 2b 
)
where the linear operator T [H, b]• and the quadratic form Q[H, b](•) are defined for all smooth enough scalar-valued functions w by

T [H, b]w := R 1 [H, b](∂ x w) + R 2 [H, b](w∂ x b), Q[H, b](w) := R 1 [H, b](∂ x (w∂ x w) -2(∂ x w) 2 ) + R 2 [H, b]((w∂ x ) 2 b), where R 1 [H, b]w := - 1 3H ∂ x (H 3 w) - H 2 w∂ x b, R 2 [H, b]w := 1 2H ∂ x (H 2 w) + w∂ x b.
The numerical approximation of the GN equations has only been considered in recent years, and several methods have been proposed in one space dimension, including: Finite Differences (FD) [START_REF] Abbott | Accuracy of short wave numerical models[END_REF][START_REF] Wei | Time-dependent numerical code for extended Boussinesq equations[END_REF], Finite Volumes (FV) [START_REF] Cienfuegos | A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. I: Model development and analysis[END_REF][START_REF] Métayer | A numerical scheme for the Green-Naghdi model[END_REF], hybrid FV-FD or WENO-FD methods [START_REF] Bonneton | Recent advances in Serre-Green-Naghdi modelling for wave transformation, breaking and runup processes[END_REF][START_REF] Bonneton | A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model[END_REF][START_REF] Chazel | Numerical simulation of strongly nonlinear and dispersive waves using a Green-Naghdi model[END_REF], continuous Finite-Elements (CG) [START_REF] Filippini | A flexible genuinely nonlinear approach for wave propagation, breaking and runup[END_REF][START_REF] Mitsotakis | On the Galerkin/Finite-Element Method for the Serre equations[END_REF][START_REF] Mitsotakis | A modified Galerkin/finite element method for the numerical solution of the Serre-Green-Naghdi system[END_REF][START_REF] Woo | A Petrov-Galerkin finite element model for one-dimensional fully nonlinear and weakly dispersive wave propagation[END_REF] or even pseudo-spectral methods (SM) [START_REF] Dutykh | Finite volume and pseudo-spectral schemes for fully-nonlinear 1d Serre equations[END_REF]. The two-dimensional case has received less attention and, besides the pioneering FD approaches of [START_REF] Antunes Do Carmo | Numerical solution of the generalized Serre equations with the Mac-Cormack finite-difference scheme[END_REF], we can cite the pseudo-spectral method for the rotating case developed in [START_REF] Pearce | A pseudo-spectral algorithm and test cases for the numerical solution of the two-dimensional rotating Green-Naghdi shallow water equations[END_REF], the hybrid FV-FD approaches of [START_REF] Popinet | A quadtree-adaptive multigrid solver for the Serre-Green-Naghdi equations[END_REF][START_REF] Shi | A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation[END_REF], and the WENO-FD strategy of [START_REF] Lannes | A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2d simulations[END_REF] on Cartesian meshes. It is also worth mentioning here some related works concerning non-hydrostatic models [START_REF] Aissiouene | A combined finite volume -finite element scheme for a dispersive shallow water system[END_REF][START_REF] Choi | An efficient curvilinear non-hydrostatic model for simulating surface water waves[END_REF], or the so called high-level GN equations [START_REF] Zhao | Application of higher-level GN theory to some wave transformation problems[END_REF].

Recently, discontinuous Finite-Element (DG) discretizations of the Green-Naghdi equations have also been considered. The use of DG methods for free surface flows is an interesting alternative to FV and CG approximations for several reasons: (i) as in CG methods, accuracy can be improved by increasing the polynomial order within an element rather than by enlarging the stencil; (ii) upwinding and stability post-processing can be incorporated into the solution through the resolution of local Riemann problems, which is particularly well-suited to model the highly advective free surface flows under study; (iii) adaptive strategies can be easily implemented through nonconforming mesh refinement or by locally adapting the polynomial degree (possibly in an independent manner for each variable and mesh element). This is a particularly attractive feature when performing computations in complex domains, or when dealing with flows involving highly local processes, like wave shoaling, wave breaking, or run-up and submersion;

(iv) the mass equation is satisfied in a weak sense element by element. This property is particularly useful when coupling the GN equations to transport equations, bottom evolution models, or even floating body evolution laws; (v) domain decomposition strategies can be efficiently implemented thanks to the compact stencils and the minimal inter-elements exchanges, making DG methods highly parallelizable. In the onedimensional case, we can refer to [START_REF] Maojin | High order well-balanced CDG-FE methods for shallow water waves by a Green-Naghdi model[END_REF] for a hybrid centred DG-CG approach, to [START_REF] Dong | A reconstructed central discontinuous galerkin-finite element method for the fully nonlinear weakly dispersive Green-Naghdi model[END_REF][START_REF] Li | High order well-balanced central local discontinuous Galerkin-finite element methods for solving the Green-Naghdi model[END_REF] for reconstructed and central DG-CG and to [START_REF] Duran | Discontinuous-Galerkin discretization of a new class of Green-Naghdi equations[END_REF][START_REF] Panda | Discontinuous Galerkin methods for solving Boussinesq-Green-Naghdi equations in resolving non-linear and dispersive surface water waves[END_REF] for fully discontinuous approaches, while the two-dimensional case on unstructured meshes has recently been addressed in [START_REF] Duran | A discontinuous Galerkin method for a new class of Green-Naghdi equations on unstructured simplicial meshes[END_REF]. More precisely, in [START_REF] Duran | Discontinuous-Galerkin discretization of a new class of Green-Naghdi equations[END_REF][START_REF] Duran | A discontinuous Galerkin method for a new class of Green-Naghdi equations on unstructured simplicial meshes[END_REF], a decoupling strategy between the "hyperbolic" and "elliptic" parts of the equations is implemented and the authors consider the NSW equations supplemented by an additional algebraic source term accounting for the dispersive correction. The latter is obtained through the approximate resolution of elliptic second order linear problems that involves first and second order spatial derivatives. The (non-symmetric) discrete formulation associated with T [H, b] is built relying on a mixed form, applying the Local discontinuous Galerkin (LDG) method [START_REF] Cockburn | The Local Discontinuous Galerkin method for time-dependent convection-diffusion systems[END_REF]. Concerning the discrete versions of the quadratic form Q[H, b], the spatial derivatives of first and second orders are computed using discrete nodal operators relying on LDG fluxes.

The associated nonlinear terms are then approximated using a collocation method, straightforwardly performed at the interpolation nodes in a quadrature-free way. This approach allows to perform efficient computations, alleviates the computation of L 2 -inner products of high order polynomials, but can be subjected to important aliasing-driven instabilities. Additionally, one well-known disadvantage of the LDG method is the loss of compactness: the associated stencil involves neighbors of neighbors through faces. We also observe that the discrete formulations proposed in [START_REF] Duran | Discontinuous-Galerkin discretization of a new class of Green-Naghdi equations[END_REF][START_REF] Duran | A discontinuous Galerkin method for a new class of Green-Naghdi equations on unstructured simplicial meshes[END_REF] for the linear operator T [H, b] depend on the interface values of the discontinuous approximations of H and b, leading to heterogenous and discontinuous coefficients in the discrete mixed form that may threaten the accuracy of the resulting approximation and induce a local dependency of the minimal threshold on the penalty parameter.

In the present work, we further investigate the numerical resolution of fully nonlinear and weakly dispersive free surface flow equations based on fully discontinuous methods, with the goal of improving on the original method of [START_REF] Duran | Discontinuous-Galerkin discretization of a new class of Green-Naghdi equations[END_REF][START_REF] Duran | A discontinuous Galerkin method for a new class of Green-Naghdi equations on unstructured simplicial meshes[END_REF]. Reformulating the regularizing operator T [H, b] so that it only involves second order derivatives in space, we construct a symmetric discrete bilinear form directly associated with the primal form of the auxiliary elliptic problems, leading to compact and simple discrete formulations. We focus, in particular, on the Weighted Symmetric Internal Penalty (SWIP) method (see [START_REF] Di Pietro | Discontinuous Galerkin methods for anisotropic semidefinite diffusion with advection[END_REF] and references therein), which appears particularly suitable for this problem: it is designed so that the stability threshold on the penalty parameter is independent of the interface values of both H and b; it naturally allows to deal with the discontinuous nature of the elliptic problem's coefficients in a stable and consistent way; it exhibits optimal convergence properties in the L 2 norm. We also carefully investigate the construction of discrete counterparts of the nonlinear operator Q[H, b], as well as the other nonlinear operators occurring in the equivalent asymptotic models under study. Key ingredients in this context are a discrete gradient operator inspired by [START_REF] Di Pietro | Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations[END_REF] and a discrete Laplace operators inspired by [START_REF] Kay | Discontinuous Galerkin finite element approximation of the Cahn-Hilliard equation with convection[END_REF], both accounting for the nonconformity of the discrete functions. Similar discrete formulations are also constructed for the optimized Green-Naghdi equations introduced in [START_REF] Lannes | A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2d simulations[END_REF], which was not investigated in [START_REF] Duran | Discontinuous-Galerkin discretization of a new class of Green-Naghdi equations[END_REF][START_REF] Duran | A discontinuous Galerkin method for a new class of Green-Naghdi equations on unstructured simplicial meshes[END_REF]. A thorough numerical validation is then carried out. In particular, polynomial approximations of very high order can be achieved in a stable way, exhibiting good energy conservation properties. The numerical tests show convergence with optimal orders and we also study p-convergence and show that for the considered test cases, the expected exponential convergence is observed for a fixed meshsize h.

The rest of this work is organized as follows: we recall some recent equivalent shallow water asymptotic models and associated notations in section Section 2, while Section 3 is devoted to the introduction of the discrete settings and the DG formulations. This approach is then validated in Section 4 through convergence analysis and comparisons with data taken from experiments on several discriminating benchmark problems. Several elements of comparisons between the asymptotic models under study are also provided. Following [START_REF] Bonneton | A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model[END_REF][START_REF] Duran | Discontinuous-Galerkin discretization of a new class of Green-Naghdi equations[END_REF], the Green-Naghdi equations can be written using (η, q) as flow variables as follows:

H 0 ζ(x, t) η(x, t) b(x) z x H(x, t) = ζ(x, t) + H 0 -b(x)
∂ t η + ∂ x q = 0 , (1 + T[H, b]) (∂ t q + ∂ x (uq)) + gH∂ x ζ + HQ 1 [H, b](u) = 0 , (3) 
where the linear operator T[H, b]• and the quadratic form

Q 1 [H, b](•)
are defined for all smooth enough scalar-valued functions w by

T[H, b]w := HT [H, b] w H , (4) 
Q 1 [H, b](w) := -2R 1 [H, b]((∂ x w) 2 ) + R 2 [H, b]((w∂ x ) 2 b). (5) 
Denoting by w := (η, q) the vector collecting the primal variables, using the following pre-balanced splitting of the hydrostatic pressure term (see [START_REF] Liang | Numerical resolution of well-balanced shallow water equations with complex source terms[END_REF]):

gH∂ x ζ = 1 2 g∂ x (η 2 -2ηb) + gη∂ x b, (6) 
and introducing an auxiliary variable d, we obtain our first model:

Model 1 (Green-Naghdi). ∂ t w + ∂ x f(w, b) + d(w, b) = b(w, b), (7a) 
(1+T[H, b])(d + gH∂ x η) = gH∂ x η + HQ 1 [H, b](u), (7b) 
where

f(w, b) := q f(w, b) , b(w, b) := 0 -gη∂ x b , d(w, b) := 0 d , (8) 
and the nonlinear pre-balanced flux is defined as

f(w, b) := q 2 H + 1 2 g∂ x (η 2 -2ηb).
Model 1 is equivalent to (2), and highlights the fact that the Green-Naghdi equations can be regarded as a dispersive correction of order O(µ) of the nonlinear hyperbolic shallow water equations. This dispersive correction corresponds to the source term d(w, b) in (7a), and is obtained as the solution of an auxiliary scalar and linear second-order elliptic sub-problem (7b). This formulation does not require the computation of third order derivatives and, as shown in the theoretical analysis of [START_REF] Alvarez-Samaniego | Large time existence for 3d water-waves and asymptotics[END_REF] and in our previous works [START_REF] Bonneton | A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model[END_REF][START_REF] Chazel | Numerical simulation of strongly nonlinear and dispersive waves using a Green-Naghdi model[END_REF][START_REF] Duran | Discontinuous-Galerkin discretization of a new class of Green-Naghdi equations[END_REF], the presence of the operator (1 + T[H, b]) -1 makes the model robust with respect to high frequency perturbations. In the flat bottom case, Model 1 admits solitary wave solutions of amplitude εH 0 , which have known formulae in a closed form:

η(x, t) = H 0 + εH 0 sech 2 (κ(x -ct)) , q(x, t) = c (η(t, x) -H 0 ) , (9) 
with κ := 3ε 4H 2 0 (1+ε) and c := gH 0 (1 + ε). Model 1 may also be supplemented by the following additional conservation law, obtained through a combination of (2a) and (2b) and corresponding to the conservation of energy e, see [START_REF] Castro | Fully nonlinear long-waves models in presence of vorticity[END_REF]:

∂ t e + ∂ x G = 0, (10) 
where the energy e is defined as the sum of the potential energy e p and the kinetic energy e k with

e p = 1 2 gζ 2 , e k = 1 2 Hu 2 + 1 2 H 1 3 (H∂ x u - 3 2 u∂ x b) 2 + 1 4 (u∂ x b) 2 ,
and the flux is defined as

G = (gζ H + e k + w)u, and w = - 1 3 H 2 ∂ t + u∂ x (H∂ x u) + 1 2 H 2 ∂ t + u∂ x (u∂ x b).
This energy conservation may also be formulated in a global sense:

d dt E(t) = 0, E(t) := R gζ 2 + H|u| 2 + H(T [H, b]u(t, x))u(t, x) dx. ( 11 
)
Remark 1 (Well-posedeness for the Green-Naghdi model). Model 1 is rigorously justified in [START_REF] Alvarez-Samaniego | Large time existence for 3d water-waves and asymptotics[END_REF], where a well-posedness result is proved for the general two-dimensional case with varying bottom using a Nash-Moser scheme. This result has also been obtained using a Picard iterative scheme in the one-dimensional case in [START_REF] Israwi | Large time existence for 1D Green-Naghdi equations[END_REF]. More precisely, assuming that (η 0 , u 0 ) ∈ H s (R) × H s+1 (R) with s > 3 2 (where H s (R) is the Sobolev space of functions v ∈ L 2 (R) such that their weak derivatives up to order s have a finite

L 2 -norm) and that b ∈ C ∞ b (R) (where C ∞ b (R)
is the space of infinitely differentiable functions that are bounded together with all their derivatives), then there exists a maximal time t max > 0, uniformly bounded with respect to µ, such that Model 1 admits a unique solution (η, u) ∈ C([0, t max ], H s (R) × H s+1 (R)). This result can be extended to finite domains and periodic boundary conditions.

Remark 2 (Alternative formulations of the Green-Naghdi equations). Many formulations of the Green-Naghdi equations can be found in the literature. In the horizontal one dimensional case, it is possible to show that continuity and momentum equations can be recast in a weak conservative form by defining an auxiliary variable k which aggregates all time derivatives in the momentum equations of system (2). This convenient mathematical form, introduced in [START_REF] Seabra-Santos | Contribution à l'étude des ondes de gravité bidimensionnelles en eau peu profonde[END_REF] (see also [START_REF] Bonneton | Recent advances in Serre-Green-Naghdi modelling for wave transformation, breaking and runup processes[END_REF][START_REF] Cienfuegos | A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. I: Model development and analysis[END_REF] for numerical applications) reads

∂ t η + ∂ x q = 0, ∂ t k + ∂ x f = 0, (12) 
where the auxiliary variable reads,

k = 1 + ∂ x H ∂ x b + (∂ x b) 2 + 1 2 H∂ 2 x b -H∂ x H ∂ x - H 2 3 ∂ 2 x u, (13) 
and

f = ku + gζ - 1 2 u 2 - 1 2 (∂ x b) 2 u 2 -Hu∂ x b ∂ x u + 1 2 H 2 (∂ x u) 2 .

Model 2: Modified Green-Naghdi

In Model 1, the quantity (1+T[H, b]) appearing in (7b) is a time dependent operator. From the numerical point of view, this means that the computation of the dispersive correction requires the assembly and inversion of the corresponding matrix at each time step or sub-step. To avoid this computationally intensive operation, a new asymptotically equivalent model has been introduced in [START_REF] Lannes | A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2d simulations[END_REF]. Define the (time-independent) water depth at rest as follows:

H b := H 0 -b.
The modified Green-Naghdi equations read

∂ t η + ∂ x q = 0, 1 + T[H b ] (∂ t q + ∂ x (uq)) + gH∂ x ζ + Q[H, b](ζ, u) = 0,
where, for any smooth enough R-valued function w,

T[H b ]w := -D[H b ] w H b , (14) 
with

D[H]w := 1 3 ∂ x H 3 ∂ x w , (15) 
and

Q[H, b](ζ, w) := H(Q 1 [H, b](w) + gQ 2 [H, b](ζ)) + Q 3 [H, H b ] 1 + T[H b ] -1 (gH∂ x ζ) ,
is a second order nonlinear operator with

Q 2 [H, b](ζ) := - 1 2H ∂ x (H 2 ∂ x b∂ x ζ) + H 2 ∂ 2 x ζ -(∂ x b∂ x ζ) ∂ x b,
and, for all smooth enough R-valued functions w,

Q 3 [H, H b ]w := 1 6 ∂ x (H 2 -(H b ) 2 )∂ x w + H 2 -(H b ) 2 3 ∂ 2 x w - 1 6 ∂ 2 x (H 2 -(H b ) 2 )w.
Recalling that w := (η, q) collects the primal variables, using again [START_REF] Bonneton | Modelling of periodic wave transformation in the inner surf zone[END_REF], and introducing two novel auxiliary variables d and q, we obtain the following model:

Model 2 (Modified Green-Naghdi). Model 2 preserves the O(µ 2 ) asymptotic consistency with the free surface Euler equations. In contrast, it is only asymptotically equivalent to Model 1 up to O(µ 2 ) terms appearing in the momentum equation.

∂ t w + ∂ x f(w, b) + d(w, b) = b(w, b), 1+T[H b ] (d + gH∂ x η) = H(g∂ x η + Q 1 [H, b](u) + gQ 2 [H, b](η)) + Q 3 [H, H b ]q, 1+T[H b ] q = gH∂ x η, (16) 
As a consequence, it does not admit the solitary wave solutions given in closed form by [START_REF] Carter | The kinematics and stability of solitary and cnoidal wave solutions of the Serre equations[END_REF], and the energy ( 11) is only preserved up to O(µ 2 ) terms. Using Model 2 as a starting point for the discretization has two key advantages: (i) the discrete version of the operator (1 + T[H b ]) appearing in the equations defining the dispersive terms can be assembled and factorized once and for all, in a preprocessing step;

(ii) the quadratic term Q[H, b] does not require the computation of third order derivatives. The presence of third order derivatives can lead to high frequency instabilities, and it has been shown in [START_REF] Filippini | A flexible genuinely nonlinear approach for wave propagation, breaking and runup[END_REF] that, when third order derivatives on the free surface occur, it is important to introduce some sophisticated approximation strategies for the free surface gradient to reduce the dispersion error. As shown in [START_REF] Lannes | A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2d simulations[END_REF], these favorable features come at the price of an extra linear system to invert. In practice, this cost is largely off-set by the gain obtained by using the time independent operator T[H b ].

Model 3: Optimized Green-Naghdi

Following [START_REF] Lannes | A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2d simulations[END_REF], it is possible to improve the dispersive properties of Model 2 without modifying its asymptotic accuracy. This can be achieved by introducing three parameters α, θ, γ and considering the following change of variables for the velocity:

∀θ ≥ 0, u := 1 - θ H D[H] u θ .
The three-parameters optimized Green-Naghdi equations of [START_REF] Lannes | A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2d simulations[END_REF] read

1 + γT[H b ] ∂ t ζ + ∂ x (Hu θ ) -θ∂ x D[H]u θ = 0, 1 + α(1 + θ)T[H b ] ∂ t (Hu θ ) + ∂ x (Hu θ 2 ) + α -1 α gH∂ x ζ + 1 α gH∂ x ζ + Q[H, b](ζ, u θ ) = 0,
where, for any smooth enough scalar valued functions w,

Q[H, b](ζ, w) := H(Q 1 [H, b](w) + gQ 2 [H, b](ζ)) + (1 + θ)Q 3 [H, H b ] 1 + α(1 + θ)T[H b ] -1 (gH∂ x ζ) + θQ 4 [H]w,
and

Q 4 [H]w := -∂ x (D[H]w) w + 2 3 H 2 ∂ x (Hw)∂ 2 x w + H∂ x (H∂ x (Hw))∂ x u + 2 3 H 3 ∂ x w∂ 2 x w + Hw∂ x (H∂ x H) ∂ x w.
Using again [START_REF] Bonneton | Modelling of periodic wave transformation in the inner surf zone[END_REF], letting w θ = (η, q θ ) with q θ = Hu θ denote the vector of primal variables, and introducing three auxiliary variables d, q and r, we arrive at Model 3 (Optimized Green-Naghdi). 8), and D[H] defined by [START_REF] Cockburn | The Local Discontinuous Galerkin method for time-dependent convection-diffusion systems[END_REF].

∂ t w θ + ∂ x f(w θ , b) + d α,γ,θ (w θ , b) = b(w θ , b), 1+α(1 + θ)T[H b ] (d + 1 α gH∂ x η) = H( 1 α g∂ x η + Q 1 [H, b](u θ ) + gQ 2 [H, b](η)) + (1 + θ)Q 3 [H, H b ]q + θQ 4 [H]u θ , 1+α(1 + θ)T[H b ] q = gH∂ x η, 1+γT[H b ] r + θ∂ x D[H]u θ = 0, with dispersive correction d α,γ,θ (w θ , b) := r d , f(w θ , b) and b(w θ , b) defined in (
The interest of working with Model 3 is that the parameters can be carefully tuned to optimize the dispersive properties with respect to the properties of the free surface Euler equations; see [START_REF] Chazel | Numerical simulation of strongly nonlinear and dispersive waves using a Green-Naghdi model[END_REF][START_REF] Lannes | A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2d simulations[END_REF] for more details and Section 4. 

Discrete formulations

In this section, we derive Discontinuous Galerkin approximations of the three models discussed above. Although we work here in one space dimension, we keep the notation as close as possible to the classical one for DG methods in higher space dimensions; see, e.g., [START_REF] Di Pietro | Mathematical Aspects of Discontinuous Galerkin Methods[END_REF]. This is both to facilitate the reader familiar with Discontinuous Galerkin methods, and to facilitate the extension to two space dimensions, which we postpone to a future work.

Setting and notations

Let Ω ⊂ R denote an open segment with boundary ∂Ω. We consider a partition

T h of Ω in open disjoint segments T of boundary ∂T such that Ω = T ∈T h T .
The partition is characterized by the meshsize h := max T ∈T h h T , where h T is the length of the element T . For all T ∈ T h , we denote by n T the unit outward normal taking values in {-1, 1} on ∂T , and by x T its barycenter.

Mesh faces, reduced here to vertices, are collected in the set F h partitioned as

F h = F i h ∪ F b h
, where F i h collects the internal vertices and F b h the (two) boundary vertices. The abscissa of a vertex F ∈ F h is denoted by x F , and we let h F denote the minimum length of the mesh elements to which F belongs. For all T ∈ T h , F T := {F ∈ F h | F ⊂ ∂T } denotes the set of vertices in ∂T and, for all F ∈ F T , n T F is the unit normal to F pointing out of T . For any internal vertex F ∈ F i h , we choose an arbitrarily oriented but fixed unit normal n F , and we set n F := n T F for all boundary vertices F ⊂ ∂T ∩ ∂Ω.

Given an integer polynomial degree k ≥ 1, we consider the broken polynomial space

P k (T h ) := v ∈ L 2 (Ω) | v |T ∈ P k (T ) ∀ T ∈ T h , (17) 
where P k (T ) denotes the space of polynomials in T of total degree at most k.

For a given final computational time t max > 0, we consider a partition (t n ) 0≤n≤N of the time interval [0, t max ] with t 0 = 0, t N = t max and t n+1 -t n =: ∆t n . More details on the computation of the time step ∆t n and on the time marching algorithms are given in Section 3.5. For any sufficiently regular scalar-valued function of time w, we let w n := w(t n ).

Finally, we introduce the following shortcut notations for smooth enough scalar-valued functions v, w:

v, w Ω := Ω v(x)w(x)dx, v, w T := T v(x)w(x)dx ∀T ∈ T h , v, w F := (vw)(x F ) ∀F ∈ F h .

Symmetric weighted penalty diffusion bilinear form

Let κ ∈ L ∞ (Ω) de note a uniformly positive coefficient and set, for the sake of brevity, κ T := κ |T for all T ∈ T h . Following [START_REF] Di Pietro | Discontinuous Galerkin methods for anisotropic semidefinite diffusion with advection[END_REF][START_REF] Dryja | On discontinuous Galerkin methods for elliptic problems with discontinuous coefficients[END_REF], we define the jump and weighted average operators such that, for a sufficiently smooth function ϕ and an interior vertex

F ∈ F i h such that F ⊂ ∂T 1 ∩ ∂T 2 for distinct mesh elements T 1 and T 2 , ϕ := ϕ |T1 -ϕ |T2 , { {ϕ} } ω,F := ω 2 ϕ |T1 + ω 1 ϕ |T2 , ω i := κ Ti κ T1 + κ T2 ∀i ∈ {1, 2}. (18) 
In what follows, and when no confusion can arise, we omit the subscript F from both v ω,F and { {v} } ω,F . When κ ≡ C in Ω for some real number C > 0, we have ω 1 = ω 2 = 1 2 , and also the subscript ω is omitted. The definition of the average and jump operators at boundary vertices depends on the selected boundary condition. When considering periodic boundary conditions, the two boundary vertices can be regarded as an additional internal vertex F b ∈ F i h defined as the intersection of the boundaries of the first and last elements of the mesh. The average and jump operators { {•} } ω,F b (x) and • F b at this fictitious interface are then defined accordingly. We refer the reader to [20, Section 4.5] for a discussion on the role of weighted averages and harmonic means in the context of heterogeneous diffusion problems.

For further use, we consider the following diffusive bilinear form a h (κ; •, •) on P k (T h ) × P k (T h ):

a h (κ; v h , w h ) := T ∈T h κ∂ x v h , ∂ x w h T + F ∈F h ξ κ,F h F v h , w h F - F ∈F h { {κ∂ h x v h } } ω , w h F + v h , { {κ∂ h x w h } } ω F , with diffusion-dependent penalty coefficient ξ κ,F := ξ 2κT 1 κT 2 κT 1 +κT 2 if F ∈ F i h is such that F = ∂T 1 ∩ ∂T 2 , ξκ T if F ∈ F b h is such that F = ∂T ∩ ∂Ω,
where ξ denotes a user-defined parameter sufficiently large to ensure coercivity (see, e.g., [20, Lemmas 4.12 and 4.51]). Notice that, in (3.2), ∂ h x has to be intended as the broken partial derivative along x on T h .

Discrete gradient and Laplace operators

To discretize the linear and nonlinear operators that appear in our models, we need discrete counterparts of the gradient and of the Laplacian applied to broken polynomial functions. For any v h ∈ P k (T h ), we define the following global lifting of the jumps of v h (see, e.g. [20, Section 4.3]):

R k h ( v h ) := F ∈F h r k F ( v h ),
where, for all F ∈ F h , the local lifting operator r k F ( v h ) ∈ P k (T h ) is defined as the unique solution of the following problem:

r k F ( v h ), ψ h Ω = v h , { {ψ h } }n F F ∀ψ h ∈ P k (T h ),
with { {ψ h } } standard average operators given by [START_REF] Di Pietro | Discontinuous Galerkin methods for anisotropic semidefinite diffusion with advection[END_REF] with ω 1 = ω 2 = 1 2 at internal nodes and extended as described in the previous section to boundary nodes. Following [20, Section 2.3], we define the discrete gradient operator G k h :

P k (T h ) → P k (T h ) such that, for all v h ∈ P k (T h ), G k h (v h ) := ∂ h x v h -R k h ( v h ).
This gradient has better consistency properties than the broken (element-by-element) gradient ∂ h x , as it accounts for the jumps of its argument through the second contribution; see [START_REF] Di Pietro | Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations[END_REF]Theorem 2.2] for further insight into this point. Taking inspiration from [33, Eq. (2.10)], we also introduce the discrete Laplace operator L k h :

P k (T h ) → P k (T h ) such that, for all v h ∈ P k (T h ), L k h (v h ) solves -L k h (v h ), ψ h Ω = a h (1; v h , ψ h ) ∀ψ h ∈ P k (T h ),
where the bilinear form a h (1; v h , ψ h ) is given by (3.2) with κ ≡ 1. It can be proved that, for any

v ∈ H 1 0 (Ω) ∩ H k+1 (Ω), it holds inf v h ∈P k (T h ) ∇v -G k h (v h ) h k , inf v h ∈P k (T h ) △v -L k h (v h ) h k-1 ,
where a b means a ≤ Cb with real number C > 0 independent of the meshsize h, and the second estimate further requires mesh quasi-uniformity.

The discrete problems

Model 1

The discretization of Model 1 considered here hinges on a reformulation of (7b) leading to a symmetric operator in the left-hand side. Recalling the definition (4) of the linear operator T[H, b]•, and assuming that the water depth H is bounded away from zero, it holds for any sufficiently smooth scalar-valued function v that:

(1+T[H, b])v = (H +HT [H, b]) v H ,
where, for any sufficiently smooth scalar-valued function w,

(H +HT [H, b])w = - 1 3 ∂ x (H 3 ∂ x w) - H 2 2 ∂ x w∂ x b + 1 2 ∂ x (H 2 ∂ x b w) + Hw(∂ x b) 2 + Hw, = - 1 3 ∂ x (H 3 ∂ x w) + 1 2 w∂ x (H 2 ∂ x b) + Hw(∂ x b) 2 + Hw, since - H 2 2 ∂ x w∂ x b = - 1 2 ∂ x (H 2 ∂ x b w) + 1 2 ∂ x (H 2 ∂ x b)w.
As a consequence, we can write in a more compact form

H(1 + T [H, b])w = ∂ x (-ν[H]∂ x w) + β[H, b]w, (19a) 
where

ν[H] := 1 3 H 3 , β[H, b] := H + 1 2 ∂ x (H 2 ∂ x b) + H(∂ x b) 2 . (19b) Remark 3 (Sign of β[H, b]).
In contrast to the Modified and Optimized Green-Naghdi models detailed below, it is not possible to rigorously ensure that the reaction-like coefficient β[H, b] is always positive. As a result, we are not able to ensure the discrete coercivity for the discrete counterpart of the operator in the left-hand side of (19a). However, in the numerical experiments presented below, no invertibility problem was encountered. Indeed, considering the nondimensionalized form of β[H, b]:

β[H, b] = H + µH ∂ x H∂ x b + 1 2 H∂ 2 x b + (∂ x b) 2 ,
we observe that the sign of β[H, b] is mainly driven by the sign of H. Note also that at the continuous level, the proof of coercivity relies on the following form (see [START_REF] Lannes | The water waves problem: mathematical analysis and asymptotics[END_REF]):

H(1+T [H, b]) = H + (S 1 [H, b]) * H S 1 [H, b] + (S 2 [b]) * H S 2 [b],
with

S 1 [H, b] = H √ 3 ∂ x - √ 3 2 ∂ x b, S 2 [b] = 1 2 ∂ x b.
The construction of a symmetric and coercive internal penalty discrete formulation for Model 1 based on this formulation is still under investigation.

Accounting for the reformulation [START_REF] Di Pietro | Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations[END_REF], and provided that the exact solution is sufficiently regular, Model 1 can be rewritten as

∂ t w + ∂ x f(w, b) + d(w, b) -b(w, b) = 0, (20a) 
Hp = d + gH∂ x η, (20b) 
∂ x -ν[H]∂ x p + β[H, b]p = gH∂ x η + Q 1 [H, b](u), (20c) 
where (20b) has to be interpreted as the definition of the auxiliary variable p.

In practice, the numerical solution of ( 20) is sought in bounded spatial domains (which reduce to line segments since we work in 1d). To close [START_REF] Di Pietro | Mathematical Aspects of Discontinuous Galerkin Methods[END_REF], we prescribe periodic boundary conditions, obtained assuming that all the components of w = (η, q) as well as the auxiliary variable p are periodic.

Let now b h ∈ P k (T h ) denote a piecewise polynomial approximation of the topography parameterization b which can be obtained, e.g., by an L 2 -orthogonal projection or by interpolation. The semi-discrete in space Discontinuous Galerkin approximation of (20) reads: Find (η h , u h , p h ) ∈ (P k (T h )) 3 such that, for all (ψ h , φ h , ϕ h ) ∈ (P k (T h )) 3 ,

∂ t w h , ϕ h Ω + A h (w h ), ϕ h Ω = 0, (21a) 
H h p h , φ h Ω = d h , φ h Ω + gH h G k h (η h ), φ h Ω , (21b) 
a h (ν[H h ]; p h , ψ h ) + β h [H h , b h ]p h , ψ h Ω = Q (1) h [H h , b h ](η h , u h ), ψ h Ω , (21c) 
where (i) The discrete nonlinear operator A h in (21a) is defined by

A h (w h ), ϕ h Ω := - T ∈T h f(w h , b h ), ∂ x ϕ h T + T ∈T h F ∈FT f T F , ϕ h F + d h , ϕ h Ω -b(w h , b h ), ϕ h Ω , ( 22 
) with discrete dispersive correction d h := 0 d h ⊺ ∈ (P k (T h )) 2 .
Here, f T F is a numerical approximation of the normal face fluxes f(w h , b h ) • n T F whose precise expression will be given in Section 3. 

β h [H h , b h ] := H h + H h G k h (H h )G k h (b h ) + 1 2 H 2 h L k h (b h ) + H h G k h (b h ) 2 . ( 23 
) (iii) The discrete nonlinear operator Q (1) h [H h , b h ] in (21c) is defined by Q (1) h [H h , b h ](η h , u h ) := gH h G k h (η h ) + H h Q 1,h [H h , b h ](u h ).
where, for any w h ∈ P k (T h ),

Q 1,h [H h , b h ](w h ) := 2H h G k h (H h + b h 2 )G k h (w h ) 2 + 4 3 H 2 h G k h (w h )L k h (w h ) + H h L k h (b h )w h G k h (w h ) + G k h (η h )L k h (b h ) + H h 2 G k h (L k h (b h )) w 2 h .

Model 2

The discretization of Model 2 hinges on a reformulation obtained in the same spirit as in the previous section. Recalling the definition ( 14) of T[H b ]w, and assuming H b bounded away from 0, for any sufficiently smooth scalar-valued function v we note the following equivalence:

(1+T[H b ])v = H b - 1 3 ∂ x (H b ) 3 ∂ x • v H b = ∂ x -ν[H b ]∂ x v H b + β[H b , 0] v H b . ( 24 
)
Provided that the exact solution is sufficiently regular, the Modified Green-Naghdi equations ( 16) can be rewritten as

∂ t w + ∂ x f(w, b) + d(w, b) = b(w, b), (25a) 
H b p = d + gH∂ x η, (25b) 
∂ x -ν[H b ]∂ x p + β[H b , 0]p = H(g∂ x η + Q 1 [H, b](u) + gQ 2 [H, b](η)) + Q 3 [H, H b ]H q q), (25c) 
∂ x -ν[H b ]∂ x q + β[H b , 0]q = gH∂ x η, (25d) 
where (25b) should be intended as the definition of the auxiliary variable p (the difference with respect to (20b) is that H is replaced by H b in the left-hand side). Also in this case, we complete [START_REF] Duran | Discontinuous-Galerkin discretization of a new class of Green-Naghdi equations[END_REF] with periodic boundary conditions, obtained assuming that all the components of w = (η, q) as well p and q are periodic.

Let (b h , H b h ) ∈ (P k (T h )) 2 be broken polynomial approximations of the topography parameterization b and the water depth at rest H b . The discrete problem reads: Find w h = (η h , q h ) ∈ (P k (T h )) 2 and (p h , q h ) ∈ (P k (T h )) 2 such that, for all (π h , ψ h , φ h , ϕ h ) ∈ (P k (T h )) 4 ,

∂ t w h , ϕ h Ω + A h (w h ), ϕ h Ω = 0, ( 26 
)
d h , φ h Ω + gH h G k h (η h ), φ h Ω = H b h p h , φ h Ω , (27) 
a h (ν[H b h ]; q h , π h ) + β[H b h , 0]q h , π h Ω = gH h G k h (η h ), π h Ω , (28) 
a h (ν[H b h ]; p h , ψ h ) + β[H b h , 0]p h , ψ h Ω = Q (2) h [H h , b h ](η h , u h ), ψ h Ω , (29) 
where A h is again defined by [START_REF] Israwi | Large time existence for 1D Green-Naghdi equations[END_REF], while the discrete nonlinear operator

Q (2) h [H h , b h ] is such that Q (2) h [H h , b h ](η h , u h ) := H h gG k h (η h ) + Q 1,h [H h , b h ](u h ) + gQ 2,h [H h , b h ](η h ) + Q 3,h [H h , H b h ]H b h q h ,
with, for any

w h ∈ P k (T h ), Q 2,h [H h , b h ](w h ) := -G k h (H h )G k h (w h )G k h (b h ) - H h 2 L k h (b h )G k h (w h ) - H h 2 G k h (b h ) 2 G k h (w h ), and 
Q 3,h [H h , H b h ]w h := 1 6 G k h (H 2 h -(H b h ) 2 )G k h (w h ) + 1 3 (H 2 h -(H b h ) 2 )L k h (w h ) - 1 6 L k h (H 2 h -(H b h ) 2 )w h .
Remark 4. As β[H b , 0] ≥ 0, we observe that the discrete coercivity of the discrete bilinear form associated with (24) holds, ensuring the invertibility of the corresponding linear systems.

Model 3

The following reformulation of Model 3 is obtained using again the reformulation [START_REF] Duran | Recent advances on the discontinuous Galerkin method for shallow water equations with topography source terms[END_REF] for the operator (1+T[H b ]) (the details are omitted for the sake of brevity):

∂ t w θ + ∂ x f(w θ , b) + d α,γ,θ (w θ , b) = b(w θ , b), (30a) 
H b p = d + 1 α gH∂ x η, (30b) 
∂ x -α(1 + θ)ν[H b ]∂ x p + β[H b , 0]p = H( 1 α g∂ x η + Q 1 [H, b](u θ ) + gQ 2 [H, b](η)) + (1 + θ)Q 3 [H, H b ]H b q + θQ 4 [H]u θ , (30c) 
∂ x -α(1 + θ)ν[H b ]∂ x q + β[H b , 0]q = gH∂ x η, (30d) 
∂ x -γν[H b ]∂ x m + β[H b , 0]m + θ∂ x D[H]u θ = 0, (30e) 
where (30b) should be intended as the definition of the auxiliary variable p and the dispersive correction

is now defined as d α,γ,θ (w θ , b) := H b m d
. Periodic boundary conditions are obtained assuming that all the components of w = (η, q) as well as the auxiliary variables p, q, and m are periodic.

The corresponding Discontinuous Galerkin discretization reads: Find

w θ h = (η h , q θ h ) ∈ (P k (T h )) 2 and (p h , q h , m h ) ∈ (P k (T h )) 3 such that, for all (λ h , π h , ψ h , φ h , ϕ h ) ∈ (P k (T h )) 5 , ∂ t w θ h , ϕ h Ω + A α,θ,γ h (w θ h ), ϕ h Ω = 0, (31a) 
H b h p h , φ h Ω = d h + 1 α gH h G k h (η h ), φ h Ω , (31b) 
a h (α(1 + θ)ν[H b h ]; p h , ψ h ) + β[H b h , 0]p h , ψ h Ω = Q α,θ h , ψ h Ω , (31c) 
a h (α(1 + θ)ν[H b h ]; q h , π h ) + β[H b h , 0]q h , π h Ω = gH h G k h (η h ), π h Ω , (31d) 
a h (γν[H b h ]; m h , λ h ) + β[H b h , 0]v h , λ h Ω + θG h D h [H h ]u θ h , λ h Ω = 0, (31e) 
where (i) The discrete nonlinear operator A α,θ,γ h in (31a) is defined by

A α,θ,γ h (w θ h ), ϕ h Ω := - T ∈T h f(w θ h , b h ), ∂ x ϕ h T + T ∈T h F ∈FT f T F , ϕ h F + d α,θ,γ h , ϕ h Ω -b(w θ h , b h ), ϕ h Ω , (32) 
with discrete dispersive correction

d α,θ,γ h = H b h m h d h .
Here, f T F is a numerical approximation of the normal face fluxes f(w h , b h ) • n T F whose precise expression will be given in Section 3.4.4 below.

(ii) The discrete linear operator D h [H h ] in (31e) is such that, for all w h ∈ P k (T h ),

D h [H h ]w h := H 2 h G h (H h )G h (w h ) + 1 3 H 3 h L h (w h ). (iii) The discrete quadratic operator Q α,θ h in (31c) is defined by Q α,θ h := H h 1 α gG k h (η h ) + Q 1,h [H h , b h ](u h ) + gQ 2,h [H h , b h ](η h ) + (1 + θ)Q 3,h [H h , H b h ]H b h q h + θQ 4,h [H h ]u θ h ,
where, for any w h ∈ P k (T h ),

Q 4,h [H h ]w h := -G h (D h [H h ]w h ) w h + 2 3 H 2 h G h (H h w h )L h (w h ) + H h (G h (H h )G h (H h w h ) + H h L h (H h w h ))G h (w h ) + 2 3 H 3 h G h (w h )L h (w h ) + H h w h (G h (H h ) 2 + H h L h (H h ))G h (w h ).

Interface fluxes and well-balancing

We recall here a simple choice introduced in [START_REF] Duran | Recent advances on the discontinuous Galerkin method for shallow water equations with topography source terms[END_REF] to approximate the interface fluxes f(w, b) • n T , allowing to obtain a well-balanced scheme that preserves motionless steady states for Models 1, 2 and 3. Let T ∈ T h and F ∈ F T ∩ F i h (since we consider periodic boundary conditions, the treatment of boundary faces regarded as fictitious interfaces is essentially analogous). Denote by w -and w + , respectively, the interior and exterior traces of w h on F , with respect to the element T . Similarly, b -and b + stand for the interior and exterior traces of b h on F . We define:

b * := max(b -, b + ), b := b * -max(0, b * -η -) (33) 
and Ȟ-:= max(0, η --b * ), Ȟ+ := max(0, η + -b * ), η-:= Ȟ-+ b, η+ := Ȟ+ + b, leading to the new interior and exterior values:

w-:= t η-, Ȟ- η --b -q -, w+ := t η+ , Ȟ+ η + -b + q + . ( 34 
)
We define the numerical flux function through the interface F as follows:

f T F = f h ( w-, w+ , b, b, n T F ) + f T F , (35) 
where:

(i) The numerical flux function f h is the global Lax-Friedrichs flux:

f h (w -, w + , b -, b + , n T F ) := 1 2 f(w -, b -) • n T F + f(w + , b + ) • n T F -a(w + -w -) ,
with a := max

T ∈T h σ T and σ T := max ∂T q h|T η h|T -b h|T • n T + g(η h|T -b h|T ) .
(ii) f T F is a correction term defined as follows:

f T F := 0 g η-( b -b -) . ( 36 
)
Note that the modified interface flux [START_REF] Lannes | Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation[END_REF] only induces perturbations of order (k + 1) when compared to the traditional interface fluxes.

Time discretization

Supplementing Models 1, 2 and 3 with an initial datum w(0, •) = w 0 , the time stepping is carried out using the explicit SSP-RK schemes of [START_REF] Gottlieb | Strong stability preserving high order time discretization methods[END_REF]. For k < 3, we consider RK-SSP schemes of order (k + 1). For instance, writing the semi-discrete equation (21a) in the operator form

∂ t w h + A h (w h ) = 0,
we advance from time level n to (n + 1) as follows with the third-order scheme as follows:

w n,1 h = w n h -∆t n A h (w n h ), w n,2 h = 1 4 (3w n h + w n,1 h ) - 1 4 ∆t n A h (w n,1 h ) , w n+1 h = 1 3 (w n h + 2w n,2 h ) - 2 3 ∆t n A h (w n,2 h ) ,
where w n,i h , 1 ≤ i ≤ 2, are the intermediate stages, ∆t n is obtained from the CFL condition [START_REF] Métayer | A numerical scheme for the Green-Naghdi model[END_REF], and the discrete initial data w 0 h is defined either as the L 2 -projection or interpolation on (P k (T h )) 2 of w 0 . For k ≥ 3, the five stages fourth order SSP-RK scheme of [START_REF] Spiteri | Non-linear evolution using optimal fourth-order strong-stabilitypreserving Runge-Kutta methods[END_REF] is used (the details are omitted for the sake of simplicity) The corresponding time step ∆t n is computed adaptively using the following CFL condition (see [START_REF] Cockburn | Runge-Kutta Discontinuous Galerkin methods for convectiondominated problems[END_REF]):

∆t n = 3 4 1 2k + 1 min T ∈T h h T σ T . ( 37 
)
Remark 5. It is well known that for highly nonlinear problems, possibly with non-conservative products, and discrete formulations with very low numerical diffusion, aliasing errors may be generated, especially when high-order approximations are used and/or long time integration is considered. Numerical stability may therefore be achieved, when needed, by applying a general filtering or de-aliasing method and we use a simple (mild) exponential filter, as detailed in [START_REF] Hesthaven | Nodal Discontinuous Galerkin Methods[END_REF], Chapter 5.

Arbitrary order well-balancing property

We have the following result: Proposition 6. The discrete formulation (21) together with the numerical fluxes ( 35) and a first order Euler time-marching algorithm preserves the motionless steady states, providing that the integrals of (21a) are exactly computed for the motionless steady states: For all n ∈ N and all η e ∈ R, (η n h ≡ η e and q n h ≡ 0) =⇒ η n+1 h ≡ η e and q n+1 h ≡ 0 .

Proof. Assuming w h ≡ w e h := (η e , 0), we have to show that, for all T ∈ T h and all

φ h ∈ P k (T h ), T f(w e h , b h )∂ x φ h - F ∈FT F f e T F φ h - T d h φ h + T b(w e h , b h )φ h = 0,
where f e T F is the interface numerical flux obtained at equilibrium. Recalling [START_REF] Lannes | Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation[END_REF], and noticing that for each interface F we have η-= η+ = η e and, therefore, w-= w+ , the consistency of the numerical flux function f h implies f e T F = f(w -, b -) • n T F . A similar result is obtained for boundary faces considering the periodic boundary conditions. Consequently, we have

T f(w e h , b h )∂ x φ h - F ∈FT F f e T F φ h = - T ∂ x f(w e h , b h )φ h = - T b(w e h , b h )φ h ,
assuming that the integrals are computed exactly, and observing that we locally have

∂ x f(w e h , b h ) = b(w e h , b h ).
For the dispersive source term, it is straightforward to check from (24) that Q 1,h (w h ) = 0 whenever w h = 0. Moreover, using the fact that G h (η e ) = 0 and that p h = 0 at boundary faces (using periodic boundary conditions), we get p h = 0 as solution of (21c), and therefore d h = 0 as solution of (21b). Following a similar reasoning, an analogous result can be obtained for Models 2 and 3. This analysis can also be extended to the high order SSP schemes of Section 3.5 exploiting the fact that the intermediate stages w n,i h are obtained as convex combinations of forward Euler substeps; see, e.g., [START_REF] Xing | Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water equations on unstructured triangular meshes[END_REF]. Remark 7 (Preservation of the water height's positivity). Concerning the issue of the preservation of the water height's positivity, which is a paramount for "real-life" applications, the strategy of [START_REF] Duran | Discontinuous-Galerkin discretization of a new class of Green-Naghdi equations[END_REF][START_REF] Duran | A discontinuous Galerkin method for a new class of Green-Naghdi equations on unstructured simplicial meshes[END_REF] may be straightforwardly extended to the present approach and it is not recalled here. Note however that for Model 1, one has to strictly enforce H h > 0, as the matrix associated with the bilinear form a h may become singular in the limit H h → 0. On the contrary, Model 2 is not concerned with such an issue, as one may use the slightly modified definition H b = max(H 0 -b, ε b ) suggested in [START_REF] Lannes | A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2d simulations[END_REF], with ε b a freely chosen threshold, ensuring that H b remains always bounded away from 0 without affecting the consistency of the model. Note also that ensuring the preservation of the water height's positivity for Model 3 is a difficult problem which will deserve further investigation.

Numerical validation and applications

In this section, we validate the discrete formulations of Section 3 through several benchmark problems. In all the test cases, the time step restriction is computed according to [START_REF] Métayer | A numerical scheme for the Green-Naghdi model[END_REF]. Exploiting the symmetry of the discrete bilinear forms, the sparse linear systems are solved using a Cholesky methods. For Models 2 and 3, the matrices are built and factorized once and for all in a pre-processing step.

Accuracy validation and convergence studies

The first set of benchmark problems aim at assessing the approximation properties of the proposed discretizations, and includes comparisons among the different asymptotic models.

Test 1: Nonlinear shallow water equations

In this first test, we study the order of convergence for a smooth solution of the nonlinear shallow water equations (we therefore neglect the dispersive correction). We use the following bottom function and initial conditions taken from [START_REF] Xing | A new approach of high orderwell-balanced finite volume weno schemes and discontinuous galerkin methods for a class of hyperbolic systems with source terms[END_REF]: h(0, x) = 5 + e cos(2πx) , q(0, x) = sin(cos(2πx)), b(x) = sin 2 (πx), defined on Ω = (0, 1). Since the exact solution is not explicitly known, we use as a reference solution the one obtained for k = 10 on a uniform mesh containing 2048 elements. The L 2 -error on the total free surface elevation η at t = 0.1 s (when no shock wave has developed yet) is depicted in Figures 2 (for k = 2, 3, 4, 5, 6) and 3 (for k = 7, 8, 9, 10). In all the cases, the error scales as h k+1 . 

Test 2 : Solitary waves propagation

We consider now the time evolution of the solitary wave profiles defined by [START_REF] Carter | The kinematics and stability of solitary and cnoidal wave solutions of the Serre equations[END_REF]. We recall that, while such solitary waves are exact solutions for Model 1, they only approximate solutions up to O(µ 2 ) terms for Models 2 and 3. However, for ε and µ small enough, the profiles are expected to propagate over flat bottoms without noticeable deformations. We investigate various computational aspects: h-convergence, p-convergence, stability through long time propagation, and propagation of highly nonlinear waves. We also give an example of usage of a very high order scheme and compare the computational cost needed to achieve a required level of accuracy. We use a computational domain of 200 m in length, take h 0 = 1 m as reference water depth, and ǫ = 0.2 for the relative amplitude of the wave; see Figure 4 for an illustration. 21) of Model 1, we compute the L 2 -error for η and q at t = 0.1 s on a sequence of refined meshes with uniform meshsize and time step refined accordingly. For k = 2, 3, 4, 5, we start from a uniform spatial mesh containing 2048 elements, and the computation is performed in double precision arithmetic. For k = 6, 7, 8, 9, we start from a uniform spatial mesh containing 512 elements, and the computations are performed in quadruple precision arithmetic, as the errors are small already on coarse meshes. The obtained results are gathered in Figures 5 (k = 2, 3, 4, 5) and Figure 6 (k = 6, 7, 8, 9). The scaling of the numerical error lies between the expected theoretical O(h k+ 1

2 ) estimate for a Lax-Friedrichs DG solution to a problem mainly controlled by nonlinear fluxes (see, e.g., [START_REF] Zhang | Error estimates to smooth solutions of runge-kutta discontinuous galerkin methods for scalar conservation laws[END_REF]) and O(h k+1 ). p-convergence. We next investigate the p-convergence properties of the method. In Figure 7, we display the L 2 -error on the total free surface elevation η at time t max = 0.1 (logarithmic scale) vs. the polynomial degree (linear scale) using two uniform spatial meshes containing 512 and 1024 elements, respectively. We observe the expected exponential convergence rate with respect to k. A similar behavior is observed for the discharge, although the numerical errors are always slightly larger than those obtained for the free surface. In numerical experiments not reported here for the sake of brevity, similar convergence orders are observed for Model 2 and Model 3. Energy conservation. We next study the discrete conservation of the energy invariant ( 11) by monitoring the following normalized error on the energy:

N (t) = |E(t) -E(0)| E(0) . (38) 
We report in Table 1 the relative error on the computed discrete energy [START_REF] Li | High order well-balanced central local discontinuous Galerkin-finite element methods for solving the Green-Naghdi model[END_REF] at several times up to t = 150 s and for increasing polynomial degrees for the discretization (21) of Model 1. We observe very good conservation properties, especially for polynomial orders greater than k = 3. Notice that this relative error improves by increasing the polynomial degree up to k = 5.

For comparison purposes, a similar study is also performed using the modified Green-Naghdi equations (Model 2). We recall that solitary waves [START_REF] Carter | The kinematics and stability of solitary and cnoidal wave solutions of the Serre equations[END_REF] are not exact solutions of Model 2. However, for small to moderate wave amplitudes, the solitary wave profiles can be expected to propagate without too much deformation. Also, even if this modified model is not expected to exactly preserve the energy (11), we still observe good conservation of the energy in time, up to the asymptotic accuracy of the model. Note however that it does not seem possible to improve the relative error by increasing k beyond 3. To obtain a wider picture and give an assessment of the computational time savings obtained using the modified Green-Naghdi equations (Model 2), we also report in Table 1 the ratio of the CPU-time needed to compute the 150 s of propagation for Model 1 (t cpu 1 ) over the CPU-time for Model 2 (t cpu 2 ), showing a dramatic improvement, especially for higher order approximations. This emphasizes here that the choice of using Model 1 or Model 2 is a matter of a trade-off, as using Model 2 allows to substantially reduce the computational time, while maintaining good conservation properties on the energy. Nonlinear waves and long time propagation. To conclude this first test case, we study the propagation of multiple nonlinear solitary waves and/or for larger time, applying a mild exponential stabilizing filter, as described in Remark 5. When carefully applied, such an anti-aliasing processes can preserve the good non-dissipating properties of the discrete formulation. As an example, we compute the propagation of a solitary wave of amplitude ǫ = 0.5 up to t = 1000 s, setting k = 6 and h = 1 m. The filter parameters are set to s = 32, α = 16 and N c = 0. Even using such a coarse mesh, the shape of the solitary wave remains almost unchanged at t = 1000 s, as shown in x (m) 

k
ζ (m) t (s) N (t)

Test 3 -Cnoidal waves propagation

We recall that, whenever b = 0, Model 1 admits a three-parameter family of cnoidal wave solutions, see [START_REF] Carter | The kinematics and stability of solitary and cnoidal wave solutions of the Serre equations[END_REF]. Such solutions can be formulated as follows:

h(x, t) = a 0 + a 1 dn 2 κ(x -ct), k , (39a) u 
(x, t) = c 1 - h 0 h(x, t) , (39b) 
κ = √ 3a 1 2 a 0 (a 0 + a 1 )(a 0 + (1 -k 2 )a 1 ) , c = ga 0 (a 0 + a 1 )(a 0 + (1 -k 2 )a 1 ) h 0 , (39c) 
where k ∈ [0, 1], a 0 > 0, a 1 > 0 are real parameters, and dn(•, k) is a Jacobi elliptic function with elliptic modulus k. The parameters of this solution can be related to physical variables in order to define [START_REF] Liang | Numerical resolution of well-balanced shallow water equations with complex source terms[END_REF] in terms of wave height H, wave period T , and mean water depth h 0 . This can be achieved by solving the equations:

a 1 = H k 2 , a 0 = h 0 -a 1 E(k) K(k) , ω2 = 3π 2 ga 1 4 [a 0 K(k) + a 1 E(k)] 2 ,
where ω = 2π/T is the angular frequency, while K(k) and E(k) are the complete elliptic integrals of the first and second kind respectively.

In this test case, we study the propagation of non-linear cnoidal waves defined with H = 0.2 m, h 0 = 1 m and T = 5s. The computational domain length is set to 3 wave-lengths (which gives approximately 41.68 m) and we use periodic boundary conditions. In Figure 9 we show the corresponding free surface at t = 0 s. A convergence study leads to sensibly similar rates as those observed for the solitary wave, although generally closer to O(h k ). As far as the preservation of the energy invariant is concerned, we compute the propagation up to t = 500 s, using a uniform spatial mesh contanining 150 elements and for increasing polynomial orders, and report the relative error in Table 2. Again, despite the fact that ( 39) is not a solution for Model 2, we also compute the propagation starting from the same initial condition, and we observe very small perturbations for such moderate amplitude cnoidal waves. Again, we observe that using polynomial approximations k ≥ 3 does not help reduce this error. 

Test 4 -Head-on collision of solitary waves

Another usual validation test concerns the head-on collision of two identical solitary waves propagating in opposite directions, which has been extensively studied in [START_REF] Craig | Solitary water wave interactions[END_REF]. The collision of the two waves implies a change of the nonlinear dispersion characteristics and the discrete formulation must be designed so as to ensure the equilibrium between amplitude and frequency dispersion to propagate the wave profile at constant shape and speed.

The computational domain is Ω = (-200 m, 200 m) and we initialize the computation with two solitary waves (9) of relative amplitude ε = 0.2 initially located at x = -50 m and x = 50 m and with opposite velocities, qualitatively reproducing the set up of [START_REF] Mitsotakis | On the Galerkin/Finite-Element Method for the Serre equations[END_REF]. The number of mesh elements is set to 800, corresponding to a uniform meshsize of h = 0.5 m, and the polynomial order to k = 3. We show in Figure 10 some snapshots of the free surface at various times during the propagation with Model 1, including a zoom on the dispersive tail generated after the collision. We observe as expected that the maximum wave amplitude during the collision is slightly larger than twice the initial amplitude, in agreement with the results of [START_REF] Mitsotakis | On the Galerkin/Finite-Element Method for the Serre equations[END_REF][START_REF] Ricchiuto | Upwind Residual discretization of enhanced Boussinesq equations for wave propagation over complex bathymetries[END_REF] and those exhibited in [START_REF] Craig | Solitary water wave interactions[END_REF] using Euler equations. The dispersive tail is very well reproduced, even with this relatively coarse mesh. The same computation is also performed with Model 2, and the corresponding results are shown in Figure 11. We observe very minor discrepancies on the wave profile during the propagation. The maximum amplitude during the collision is qualitatively similar to the one obtained with Model 1 and there is no phase shift. We notice, however, some small variations in the oscillations of the amplitude decreasing in the dispersive tail after the collision, mainly explained by the fact that ( 9) is not an exact solution of Model 2.

- x (m) 

x (m) ζ (m) ζ (m) ζ (m)

Applications

We consider in this section applications and comparisons with experimental data.

Test 5 -Reflections of solitary waves on a vertical wall

We investigate the propagation and reflection of solitary waves of various nonlinearity against a vertical wall for Model 1. In this case, periodic boundary conditions are replaced by reflective boundary condition obtained enforcing that ∂ x η |∂Ω = 0, q |∂Ω = p |∂Ω = 0. Such a reflection process, which involves non-linear and dispersive interactions, has been recently used as a validation test case, e.g., in [START_REF] Mitsotakis | A modified Galerkin/finite element method for the numerical solution of the Serre-Green-Naghdi system[END_REF][START_REF] Panda | Discontinuous Galerkin methods for solving Boussinesq-Green-Naghdi equations in resolving non-linear and dispersive surface water waves[END_REF]. Note that a vertical wall at the boundary may be modeled only through the assumption that there is no flux at the corresponding boundary, and thus only enforcing u = 0 at the vertical wall. It is however generally observed and admitted that the reflection at a vertical wall is equivalent to the head-on collision of two counter-propagating solitary waves of the same shape, and in this case we may observe that ∂ x η = 0 at the crest. In practice, during the interaction of a solitary wave with a wall, the derivative ∂ x η on the boundary is indeed negligible. We reproduce here the numerical configuration of [START_REF] Power | On reflection of a planar solitary wave at a vertical wall[END_REF], and consider a 50 m long channel and a solitary wave free surface profile (9) initially located at x 0 = 20 m. We use a uniform spatial mesh of 100 mesh elements, set k = 3, enforce reflective boundary conditions at both boundaries, and study the maximum wave amplitude at the wall located at x = 50 m, for a range of wave amplitudes from ε = 0.1 to ε = 0.5. As highlighted in [START_REF] Chan | A computer study of finite-amplitude water waves[END_REF], we observe that the maximum run up of a solitary wave on a vertical wall is greater than twice the initial wave amplitude. We compare in Figure 12 our numerical results with both experimental data taken from [START_REF] Chan | A computer study of finite-amplitude water waves[END_REF][START_REF] Maxworthy | Experiments on collisions between solitary waves[END_REF] and the asymptotic analytical solution for the maximum elevation proposed in [START_REF] Mirie | Collision between two solitary waves. Part 2. A numerical study[END_REF]. We observe an excellent agreement with the asymptotic solution, and an overall good matching with the 2 sets of experimental data, very similar to the numerical results obtained in the references above. Considering now a varying topography, we study the propagation and transformations of a solitary wave over a composite beach. The original experiment was performed in a tank by the U.S. Army Corps of Engineers at the Coastal Engineering Research Center in Vicksburg, Mississippi. The constructed beach consists of three piece-wise linear segments, terminated with a vertical wall on the left. The slope s of the topography is define as follows: The schematics of the beach is shown on Figure 13. In the following, our numerical results are compared with experimental data measured from gages 5, 7 and 9, respectively located at x 5 = 15.04 m, x 7 = 19.4 m and x 9 = 22.33 m (exactly at the locations corresponding to the slope variations). Three wave configurations were intially studied in the original experiment, with targeted solitary waves of relative amplitudes 0.05 (A), 0.3 (B) and 0.7 (C). Only (B) is computed here. Indeed, (A) involves a very small relative amplitude wave and can be quite accurately reproduced with a classical non-dispersive shallow water model, while (C) involves wave breaking during the propagation towards the wall and we choose not to include wave breaking mechanism in this work. We provide the solitary wave of targeted height, centered at x = 0 as the initial condition and we observe the propagation, reflection on the wall before traveling back to the inlet boundary. Experimental data are provided as time series of the wave elevation at several gages located along the wave flume. We show in Figure 14 the comparison between data and computed results for (B) at wave gages 5, 7 and 9. We obtain similar qualitative results for the remaining gages. We focus here on the Model 3 and highlight its ability to compute the propagation and the interaction of highly dispersive waves. Using the set-up introduced in [START_REF] Beji | Numerical simulation of nonlinear wave propagation over a bar[END_REF], and first used as a test in [START_REF] Dingemans | Comparison of computations with Boussinesq-like models and laboratory measurements[END_REF], we compute the propagation of regular periodic waves over a submerged bar, see Figure 15. For this test, we need to generate periodic waves at the left boundary, with an amplitude of 0.01 m, a time period of 2.02 s and mean water depth h 0 = 0.4 m. We therefore need to use suitable generating and absorbing boundary conditions, allowing the dissipation of the incoming waves energy together with an efficient damping of possibly non-physical reflections, and generating boundary conditions that mimic a wave generator of free surface waves. We use a relaxation method and we enforce periodic waves combined with generation/absorption by mean of a generation/relaxation zone, following the ideas of [START_REF] Madsen | Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: derivation and analysis[END_REF], using the relaxation functions described in [START_REF] Wei | Time-dependent numerical code for extended Boussinesq equations[END_REF], and the computational domain is locally extended to include sponge layers which may also include a generating layer.

s(x) =        0 if x ≤ 15.
Explicitly, the relaxed solution along the domain will take the form :

w relax = F a w h + (1 -F a )F g R(t)w imp , (41) 
where F a , F g describe the absorption and generation profiles and R governs the time evolution of the generation process. Above, w imp contains the enforced time series of the generated free surface.

Concerning the relaxation functions, we follow [START_REF] Wei | Time-dependent numerical code for extended Boussinesq equations[END_REF], taking the exponential forms :

F a (x) = 1 -exp ((x r ) n -1)) exp(1) -1 , F g (x) = 1 -exp ((1 -x r ) n -1)) exp(1) -1 ,

where x r = x -x R ∆ R
, n is a positive parameter, and x R , ∆ R are respectively the beginning and the width of the relaxation zone. In agreement with other works, the length of the sponge layers ∆ R is calibrated for each test case (generally 2 or 3 wavelengths); the parameter n is fixed to 3. The reader is referred to the above references for more details.

When the incident wave encounters the upward part of the bar, it shoals and steepens, which generates higher-harmonics as the nonlinearity increases. These higher-harmonics are then freely released on the downward slope, and become deep-water waves behind the bar.

Comparisons are performed between two sets of parameters (α = 1.159, γ = 0, θ = 0) and (α = 1.024, θ = 0.188, γ = 0.112) and the data taken from the experiment, for the last four wave gauges. Time series of the free surface elevation at the four last wave gauges of the experiment are plotted on Figure 16. These results are obtained using 1000 elements and k = 2. We observe that using the first set of parameters, the model is not able to provide an accurate free surface evolution at the wave gauge 11. This last gauge is the most discriminating one as the higher-harmonics are completely released and can be regarded as highly dispersive waves. We observe the improvements obtained using the second set of parameters at the last two wave gauges. Note that we need to introduce a substantial amount of viscosity through filtering to stabilize the computations associated with the discrete formulation for Model 3 with θ = 0. This may be due to the occurrence of third order spatial derivatives on the velocity u θ , occurring both in Q 4 [H] and ∂ x D[H]u θ , which dit not receive any particular treatment. 

Conclusion

In this work, we further investigated the construction of fully discontinuous Finite-Element discrete formulations for several fully nonlinear and weakly dispersive shallow water asymptotic models. We propose a compact formulation of the operator T [H, b], involving only second order derivatives, and introduce a corresponding Symmetric Internal Penalty Discontinuous Galerkin method, especially designed to deal with the discontinuous nature of the elliptic problem's coefficients in a stable and consistant way, and with a stability threshold on the penalty parameter that is independent of the interface values of the system's coefficients. Special attention has been paid on devising discrete counterparts of all the dispersive operators which can be straightforwardly extended to the two dimensional case, which is left for future work. The resulting approaches exhibit optimal convergence properties on the proposed test cases, and the study of the conservation properties shows that Model 2 may be an interesting trade-off between accuracy and computational efficiency. Future works will be dedicated to further investigation on the construction of a symmetric and coercive discrete bilinear form for Model 1, and the extension to the two dimensional case on general meshes.
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 22 for an example of optimization. Additionally, for given values of α, γ, θ, the discrete versions of both the operators 1 + γT[H b ] and 1+α(1 + θ)T[H b ] can be assembled and factorized once and for all, in a preprocessing step. It can be shown that Model 3 is asymptotically equivalent to Model 2 up to O(µ 2 ) terms appearing both in the mass and momentum equations. In particular, Model 2 can be recovered setting α = 1 and γ = θ = 0. Model 3 does not admit solitary wave solutions in the closed form[START_REF] Carter | The kinematics and stability of solitary and cnoidal wave solutions of the Serre equations[END_REF], and both mass and energy are conserved only up to O(µ 2 ) terms. A difference with Model 2 is the presence of third order spatial derivatives of the velocity u θ , occurring both in Q 4 [H] and ∂ x D[H]u θ .

  4.4 below. (ii) The discrete linear operator β h [H h , b h ] in (21c) is obtained replacing in the expression (19b) b by b h and the gradient and Laplace operators by their discrete counterparts defined in Section 3.3:
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 62103 Figure 2: Test 1 -L 2 -error for the total free surface elevation η at t max = 0.1 s vs. h (k = 2, 3, 4, 5, 6).
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 4 Figure 4: Test 2 -Initial free surface
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 5 Figure 5: Test 2 -h-convergence -L 2 -error for the total free surface elevation η at t max = 0.1 s vs. h (k = 2, 3, 4, 5).
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 96 Figure 6: Test 2 -h convergence L 2 -error for the total free surface elevation η at t max = 0.1 s vs. h (k = 7, 8, 9).
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 7 Figure 7: Test 2 -p-convergence -L 2 -error for the free surface elevation at t max = 0.1 s.
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 8 (top), corresponding to almost 20 periods around the domain. The corresponding relative error during the evolution is reported on Figure[START_REF] Bonneton | A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model[END_REF] (bottom), showing that the energy is conserved with at least 6 digits during the evolution.
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 8 Figure 8: Test 2 -Nonlinear waves and long time propagation -Free surface at t = 1000 s (top) and time series of the energy relative error (bottom) for ǫ = 0.5, k = 6 and h = 1 m.
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 9 Figure 9: Test 3 -Initial free surface
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 10 Figure 10: Test 4 -Model 1 : free surface at several time during the propagation
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 11 Figure 11: Test 4 -Model 2 : free surface at several time during the propagation
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 12 Figure 12: Test 5 -Maximum relative amplitude at the vertical wall vs. nonlinearity
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 13 Figure 13: Shoaling and reflection of a solitary wave on a composite beach: topography and initial free surface
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 14 Figure 14: Shoaling and reflection of a solitary wave over a composite beach: time series of the free surface at wave gages. Comparison between experimental data at wave gauges (o) and numerical results (-).
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 2215 Figure 15: Test 6 -Locations of wave gages.
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 16 Figure 16: Test 6 -Time series of the free surface at the last 4 wage gauges. Comparison between experimental data at wave gauges (o) and numerical results (-).

Table 1 :

 1 .04 10 -7 2.63 10 -8 1.83 10 -11 3.61 10 -12 2.58 10 -12 100 s 8.71 10 -7 2.77 10 -8 1.72 10 -11 7.49 10 -12 5.41 10 -12 150 s 1.12 10 -6 2.90 10 -8 2.47 10 -11 9.75 10 -12 8.76 10 -12 Test 2 -Energy conservation -Relative error on the energy for Models 1 and 2, at several times and various polynomial degrees and ratio of the corresponding CPU times.

	t	2	3	4	5	6
	Model 1 50 s 6Model 2 50 s 6.97 10 -7 1.17 10 -8 1.59 10 -8	1.60 10 -8	1.62 10 -8
	100 s 1.07 10 -6 1.08 10 -8 1.78 10 -8	1.79 10 -8	1.83 10 -8
	150 s 1.43 10 -6 1.17 10 -8 1.82 10 -8	1.84 10 -8	3.05 10 -8
	t cpu 1 /t cpu 2	2.6	3.1	3.5	3.9	4.4

Table 2 :

 2 -4 4.15 10 -6 6.27 10 -9 4.73 10 -9 200 s 3.31 10 -4 5.90 10 -6 7.57 10 -9 5.11 10 -9 300 s 4.63 10 -4 7.68 10 -6 8.13 10 -9 5.42 10 -9 400 s 5.84 10 -4 9.46 10 -6 8.67 10 -9 5.69 10 -9 500 s 6.97 10 -4 1.12 10 -5 9.45 10 -9 5.94 10 -9 Test 3 -Relative error on the energy for Models 1 and 2, at several times and various polynomial degrees and ratio of the corresponding CPU times.

	Model 2	100 s 2.70 10 -4 1.82 10 -6 2.66 10 -6 2.75 10 -6
		200 s 4.82 10 -4 3.89 10 -6 2.99 10 -6 3.04 10 -6
		300 s 6.75 10 -4 8.51 10 -6 2.21 10 -6 2.26 10 -6
		400 s 8.86 10 -4 1.08 10 -5 2.45 10 -6 2.50 10 -6
		500 s 1.01 10 -3 1.33 10 -5 3.01 10 -6 3.03 10 -6
	t cpu 1 /t cpu 2	2.1	2.6	2.9	3.3
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