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Weighted Interior Penalty discretization of fully nonlinear and

weakly dispersive free surface shallow water flows

Daniele A. Di Pietro∗1 and Fabien Marche†1

1University of Montpellier, Institut Montpelliérain Alexander Grothendieck, 34095 Montpellier, France

Abstract

In this paper, we further investigate the use of a fully discontinuous Finite Element discrete

formulation for the study of shallow water free surface flows in the fully nonlinear and weakly dis-

persive flow regime. We consider a decoupling strategy in which we approximate the solutions of the

classical shallow water equations supplemented with a source term globally accounting for the non-

hydrostatic effects. This source term can be computed through the resolution of elliptic second-order

linear sub-problems, which only involve second order partial derivatives in space. We then introduce

an associated Symmetric Weighted Internal Penalty discrete bilinear form, allowing to deal with the

discontinuous nature of the elliptic problem’s coefficients in a stable and consistant way. Similar

discrete formulations are also introduced for several recent optimized fully nonlinear and weakly dis-

persive models. These formulations are validated again several benchmarks involving h-convergence,

p-convergence and comparisons with experimental data, showing optimal convergence properties.

Keywords: Green–Naghdi equations, discontinuous Galerkin, Internal Penalty methods, high-order

schemes, free surface flows, shallow water equations, dispersive equations

1 Introduction

Considering a homogeneous incompressible and inviscid fluid, the propagation and transformation of
free surface waves can be described using the Euler equations with nonlinear boundary conditions at
the surface and at the bottom. In its full generality, this problem is very complicated to solve, both
mathematically and numerically. For this reason, an important endeavour has been undertaken for the
derivation and mathematical understanding of asymptotic models describing the behavior of the solution
in some specific physical regimes; see, e.g., [32] for a review. We focus here on the shallow water and
fully nonlinear regime:

(shallow water regime) µ :=
H2

0

λ2
≪ 1,

(large amplitude regime) ε :=
a

H0
= O(1), (1)

where H0 refers to the typical water depth, λ the typical wave length, and a the typical wave’s amplitude.
In this regime, the classical Nonlinear Shallow Water (NSW) equations can be derived from the full water
waves equations by neglecting all the terms of order O(µ), see for instance [31]. This model provides
an accurate description of important unsteady processes in the surf and swash zones, such as nonlinear
wave transformations, run-up and flooding due to storm waves, see for instance [6], but it neglects the
dispersive effects which are fundamental for the study of wave transformations in the shoaling area and,
possibly, slightly deeper water areas. The corresponding equations where O(µ) terms are not neglected
were first derived by Serre [47] in the horizontal surface dimension, then by Green and Naghdi [27] for
the two-dimensional case, and have been recently mathematically justified in [3].
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Focusing on the one dimensional (horizontal) case, let x, z, and t denote, respectively, the horizontal,
vertical, and time coordinates. We denote by ζ(t, x) the free surface elevation with respect to its rest
state, by −H0 + b(x) a parametrization of the bottom’s variations, by H := H0 + ζ − b the water depth,
and by η = H + b the total free surface elevation, as shown in Figure 1. Denoting by uhor the horizontal
component of the velocity field in the fluid domain, we define the vertically averaged horizontal velocity
u ∈ R as

u(t, x) :=
1

H

∫ ζ

−H0+b

uhor(t, x, z)dz,

and we denote by q := Hu the corresponding horizontal momentum. The classical Green–Naghdi (GN)
equations read as follows:

∂tζ + ∂x(Hu) = 0,

(1 + T [H, b]) ∂tu+ u∂xu+ g∂xζ +Q[H, b](u) = 0,
(2)

where the linear operator T [H, b]· and the quadratic form Q[H, b](·) are defined for all smooth enough
scalar-valued functions w by

T [H, b]w := R1[H, b](∂xw) +R2[H, b](w∂xb),

Q[H, b](w) := R1[H, b](∂x(w∂xw)− 2(∂xw)
2) +R2[H, b]((w∂x)

2b),

where

R1[H, b]w := − 1

3H
∂x(H

3w) − H

2
w∂xb, R2[H, b]w :=

1

2H
∂x(H

2w) + w∂xb.

The numerical approximation of the GN equations has only been considered in recent years, and several
methods have been proposed in one space dimension, including: Finite Differences (FD) [1, 50], Finite
Volumes (FV) [13,34], hybrid FV-FD or WENO-FD methods [7,8,11], continuous Finite-Elements (CG)
[25, 40, 41, 51] or even pseudo-spectral methods (SM) [24]. The two-dimensional case has received less
attention and, besides the pioneering FD approaches of [4], we can cite the pseudo-spectral method
for the rotating case developed in [43], the hybrid FV-FD approaches pf [44, 48], and the WENO-FD
strategy of [33] on Cartesian meshes. It is also worth mentioning here some related works concerning
non-hydrostatic models [2, 12], or the so called high-level GN equations [55].

Recently, discontinuous Finite-Element (DG) discretizations of the Green–Naghdi equations have also
been considered. The use of DG methods for free surface flows is an interesting alternative to FV and
CG approximations for several reasons: (i) as in CG methods, accuracy can be improved by increasing
the polynomial order within an element rather than by enlarging the stencil; (ii) upwinding and stability
post-processing can be incorporated into the solution through the resolution of local Riemann problems,
which is particularly well-suited to model the highly advective free surface flows under study; (iii) adaptive
strategies can be easily implemented through nonconforming mesh refinement or by locally adapting the
polynomial degree (possibly in an independent manner for each variable and mesh element). This is
a particularly attractive feature when performing computations in complex domains, or when dealing
with flows involving highly local processes, like wave shoaling, wave breaking, or run-up and submersion;
(iv) the mass equation is satisfied in a weak sense element by element. This property is particularly
useful when coupling the GN equations to transport equations, bottom evolution models, or even floating
body evolution laws; (v) domain decomposition strategies can be efficiently implemented thanks to the
compact stencils and the minimal inter-elements exchanges, making DG methods highly parallelizable.
In the one-dimensional case, we can refer to [37] for a hybrid centred DG-CG approach, and to [22, 42]
for nonconforming approaches, while the two-dimensional case on unstructured meshes has recently
been addressed in [23], partly motivated by the need to model free surface flows in complex domains.
More precisely, in [22, 23], a decoupling strategy between the “hyperbolic” and “elliptic” parts of the
equations is implemented and the authors consider the NSW equations supplemented by an additional
algebraic source term accounting for the dispersive correction, which is obtained through the approximate
resolution of elliptic second order linear problems. The discrete formulation associated with T [H, b] is
built using a mixed formulation, relying on the Local discontinuous Galerkin (LDG) method [14].

In the present work, we further investigate the numerical resolution of fully nonlinear and weakly disper-
sive free surface flow equations with non-conforming methods. Reformulating the regularizing operator
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T [H, b] so that it only involves second order derivatives in space, we construct a symmetric discrete
bilinear form directly associated with the primal form of the auxiliary elliptic problems. We focus,
in particular, on the Weighted Symmetric Internal Penalty (SWIP) method (see [18] and references
therein), which is designed so that the stability threshold on the penalty parameter is independent of
the interface values of H and b. Concerning the discretization of the nonlinear operator Q[H, b], we
introduce a discrete gradient operator inspired by [16] and a discrete Laplace operators inspired by [30],
both accounting for the nonconformity of the discrete functions. Similar discrete formulations are also
constructed for the optimized Green-Naghdi equations introduced in [33]. A thorough numerical valida-
tion of the proposed method is carried out. The numerical tests show convergence with optimal orders
even on varying bottom. We also study p-convergence and show that for the considered test cases, the
expected exponential convergence is observed for a fixed meshsize h.

The rest of this work is organized as follows: we recall some recent equivalent shallow water asymptotic
models and associated notations in section Section 2, while Section 3 is devoted to the introduction of
the discrete settings and the DG formulations. This approach is then validated in Section 4 through
convergence analysis and comparisons with data taken from experiments on several discriminating bench-
mark problems. Several elements of comparisons between the asymptotic models under study are also
provided.

H0

ζ(x, t)

η(x, t)

b(x)

z

x

H(x, t) = ζ(x, t) +H0 − z(x)

0

Figure 1: Main notations

2 Shallow water asymptotics

2.1 Model 1: Green–Naghdi

Following [8, 22], the Green–Naghdi equations can be written using (η, q) as flow variables as follows:

∂tη + ∂xq = 0 ,

(1 +T[H, b]) (∂tq + ∂x(uq)) + gH∂xζ +HQ1[H, b](u) = 0 ,
(3)

where the linear operator T[H, b]· and the quadratic form Q1[H, b](·) are defined for all smooth enough
scalar-valued functions w by

T[H, b]w := HT [H, b]
w

H
, (4)

Q1[H, b](w) := −2R1[H, b]((∂xw)
2) +R2[H, b]((w∂x)

2b). (5)

Denoting by w := (η, q) the vector collecting the primal variables, using the following pre-balanced

splitting of the hydrostatic pressure term (see [35]):

gH∂xζ =
1

2
g∂x(η

2 − 2ηb) + gη∂xb, (6)

and introducing an auxiliary variable d, we obtain our first model:
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Model 1 (Green–Naghdi).

∂tw + ∂xf(w, b) + d(w, b) = b(w, b), (7a)

(1+T[H, b])(d+ gH∂xη) = gH∂xη +HQ1[H, b](u), (7b)

where

f(w, b) :=

(
q

f(w, b)

)
, b(w, b) :=

(
0

−gη∂xb

)
, d(w, b) :=

(
0
d

)
, (8)

and the nonlinear pre-balanced flux is defined as

f(w, b) :=
q2

H
+

1

2
g∂x(η

2 − 2ηb).

Model 1 is equivalent to (2), and highlights the fact that the Green–Naghdi equations can be regarded
as a dispersive correction of order O(µ) of the nonlinear hyperbolic shallow water equations. This
dispersive correction corresponds to the source term d(w, b) in (7a), and is obtained as the solution of an
auxiliary scalar and linear second-order elliptic sub-problem (7b). This formulation does not require the
computation of third order derivatives and, as shown in the theoretical analysis of [3] and in our previous
works [8, 11, 22], the presence of the operator (1 + T[H, b])−1 makes the model robust with respect to
high frequency perturbations. When b = 0, Model 1 admits solitary wave solutions of amplitude εH0,
which have known formulae in a closed form:

η(x, t) = H0 + εH0 sech2 (κ(x− ct)) , q(x, t) = c (η(t, x) −H0) , (9)

with κ :=
√

3ε
4H2

0
(1+ε)

and c :=
√
gH0(1 + ε). It also has a Hamiltonian structure, ensuring the exact

conservation of the total energy:

d

dt
E(t) = 0, E(t) :=

∫

R

gζ2 +H |u|2 +H(T [H, b]u(t, x))u(t, x) dx. (10)

Remark 1 (Well-posedeness for the Green–Naghdi model). Model 1 is rigorously justified in [3], where
a well-posedness result is proved for the general two-dimensional case with varying bottom using a Nash–
Moser scheme. This result has also been obtained using a Picard iterative scheme in the one-dimensional
case in [29]. More precisely, assuming that (η0, u0) ∈ Hs(R)×Hs+1(R) with s > 3

2 (where Hs(R) is the
Sobolev space of functions v ∈ L2(R) such that their weak derivatives up to order s have a finite L2-norm)
and that b ∈ C∞

b (R) (where C∞
b (R) is the space of infinitely differentiable functions that are bounded

together with all their derivatives), then there exists a maximal time tmax > 0, uniformly bounded with
respect to µ, such that Model 1 admits a unique solution (η, u) ∈ C([0, tmax], H

s(R) × Hs+1(R)). This
result can be extended to finite domains and periodic boundary conditions.

2.2 Model 2: Modified Green–Naghdi

In Model 1, the quantity (1+T[H, b]) appearing in (7b) is a time dependent operator. From the numerical
point of view, this means that the computation of the dispersive correction requires the assembly and
inversion of the corresponding matrix at each time step or sub-step. To avoid this computationally
intensive operation, a new asymptotically equivalent model has been introduced in [33]. Define the
(time-independent) water depth at rest as follows:

Hb := H0 − b.

The modified Green–Naghdi equations read

∂tη + ∂xq = 0,
(
1 +T[Hb]

)
(∂tq + ∂x(uq)) + gH∂xζ +Q[H, b](ζ, u) = 0,
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where, for any smooth enough R-valued function w,

T[Hb]w := −D[Hb]
w

Hb
, (11)

with

D[H ]w :=
1

3
∂x

(
H3∂xw

)
, (12)

and
Q[H, b](ζ, w) := H(Q1[H, b](w) + gQ2[H, b](ζ)) +Q3[H,H

b]
([

1 +T[Hb]
]−1

(gH∂xζ)
)
,

is a second order nonlinear operator with

Q2[H, b](ζ) := − 1

2H
∂x(H

2∂xb∂xζ) +

(
H

2
∂2xζ − (∂xb∂xζ)

)
∂xb,

and, for all smooth enough R-valued functions w,

Q3[H,H
b]w :=

1

6
∂x(H

2 − (Hb)2)∂xw +
H2 − (Hb)2

3
∂2xw − 1

6
∂2x(H

2 − (Hb)2)w.

Recalling that w := (η, q) collects the primal variables, using again (6), and introducing two novel
auxiliary variables d and q, we obtain the following model:

Model 2 (Modified Green–Naghdi).

∂tw + ∂xf(w, b) + d(w, b) = b(w, b),
(
1+T[Hb]

)
(d+ gH∂xη) = H(g∂xη +Q1[H, b](u) + gQ2[H, b](η)) +Q3[H,H

b]q,
(
1+T[Hb]

)
q = gH∂xη,

(13)

where f(w, b), d(w, b), and b(w, b) are defined by (8).

Model 2 preserves the O(µ2) asymptotic consistency with the free surface Euler equations. In contrast,
it is only asymptotically equivalent to Model 1 up to O(µ2) terms appearing in the momentum equation.
As a consequence, it does not admit the solitary wave solutions given in closed form by (9), and the
energy (10) is only preserved up to O(µ2) terms. Using Model 2 as a starting point for the discretization
has two key advantages: (i) the discrete version of the operator (1 + T[Hb]) appearing in the equations
defining the dispersive terms can be assembled and factorized once and for all, in a preprocessing step;
(ii) the quadratic term Q[H, b] does not require the computation of third order derivatives. The presence
of third order derivatives can lead to high frequency instabilities, and it has been shown in [25] that,
when third order derivatives on the free surface occur, it is important to introduce some sophisticated
approximation strategies for the free surface gradient to reduce the dispersion error. As shown in [33],
these favorable features come at the price of an extra linear system to invert. In practice, this cost is
largely off-set by the gain obtained by using the time independent operator T[Hb].

2.3 Model 3: Optimized Green–Naghdi

Following [33], it is possible to improve the dispersive properties of Model 2 without modifying its
asymptotic accuracy. This can be achieved by introducing three parameters α, θ, γ and considering the
following change of variables for the velocity:

∀θ ≥ 0, u :=

(
1− θ

H
D[H ]

)
uθ.

The three-parameters optimized Green–Naghdi equations of [33] read

(
1 + γT[Hb]

) (
∂tζ + ∂x(Hu

θ)
)
− θ∂x

(
D[H ]uθ

)
= 0,

(
1 + α(1 + θ)T[Hb]

)(
∂t(Hu

θ) + ∂x(Hu
θ2) +

α− 1

α
gH∂xζ

)
+

1

α
gH∂xζ + Q̃[H, b](ζ, uθ) = 0,
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where, for any smooth enough scalar valued functions w,

Q̃[H, b](ζ, w) := H(Q1[H, b](w) + gQ2[H, b](ζ))

+ (1 + θ)Q3[H,H
b]
((

1 + α(1 + θ)T[Hb]
)−1

(gH∂xζ)
)
+ θQ4[H ]w,

and

Q4[H ]w := −∂x (D[H ]w)w +
2

3
H2∂x(Hw)∂

2
xw +H∂x(H∂x(Hw))∂xu

+
2

3
H3∂xw∂

2
xw +Hw∂x (H∂xH) ∂xw.

Using again (6), lettingwθ = (η, qθ) with qθ = Huθ denote the vector of primal variables, and introducing
three auxiliary variables d, q and r, we arrive at

Model 3 (Optimized Green–Naghdi).

∂tw
θ + ∂xf(wθ , b) + d

α,γ,θ(wθ, b) = b(wθ, b),

(
1+α(1 + θ)T[Hb]

)
(d+

1

α
gH∂xη) = H(

1

α
g∂xη +Q1[H, b](u

θ) + gQ2[H, b](η))

+ (1 + θ)Q3[H,H
b]q+ θQ4[H ]uθ,

(
1+α(1 + θ)T[Hb]

)
q = gH∂xη,

(
1+γT[Hb]

)
r+ θ∂x

(
D[H ]uθ

)
= 0,

with dispersive correction dα,γ,θ(wθ, b) :=

(
r

d

)
, f(wθ , b) and b(wθ, b) defined in (8), and D[H ] defined

by (12).

The interest of working with Model 3 is that the parameters can be carefully tuned to optimize the
dispersive properties with respect to the properties of the free surface Euler equations; see [11, 33] for
more details and Section 4.2.2 for an example of optimization. Additionally, for given values of α, γ, θ,
the discrete versions of both the operators

(
1 + γT[Hb]

)
and

(
1+α(1 + θ)T[Hb]

)
can be assembled and

factorized once and for all, in a preprocessing step. It can be shown that Model 3 is asymptotically
equivalent to Model 2 up to O(µ2) terms appearing both in the mass and momentum equations. In
particular, Model 2 can be recovered setting α = 1 and γ = θ = 0. Model 3 does not admit solitary
wave solutions in the closed form (9), and both mass and energy are conserved only up to O(µ2) terms.
A difference with Model 2 is the presence of third order spatial derivatives of the velocity uθ, occurring
both in Q4[H ] and ∂x

(
D[H ]uθ

)
.

3 Discrete formulations

In this section, we derive Discontinuous Galerkin approximations of the three models discussed above.
Although we work here in one space dimension, we keep the notation as close as possible to the classical
one for DG methods in higher space dimensions; see, e.g., [17]. This is both to facilitate the reader
familiar with Discontinuous Galerkin methods, and to facilitate the extension to two space dimensions,
which we postpone to a future work.

3.1 Setting and notations

Let Ω ⊂ R denote an open segment with boundary ∂Ω. We consider a partition Th of Ω in open disjoint
segments T of boundary ∂T such that Ω =

⋃
T∈Th

T . The partition is characterized by the meshsize
h := maxT∈Th

hT , where hT is the length of the element T . For all T ∈ Th, we denote by nT the unit
outward normal taking values in {−1, 1} on ∂T , and by xT its barycenter.

Mesh faces, reduced here to vertices, are collected in the set Fh partitioned as Fh = F i
h ∪Fb

h , where F i
h

collects the internal vertices and Fb
h the (two) boundary vertices. The abscissa of a vertex F ∈ Fh is
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denoted by xF , and we let hF denote the minimum length of the mesh elements to which F belongs. For
all T ∈ Th, FT := {F ∈ Fh | F ⊂ ∂T } denotes the set of vertices in ∂T and, for all F ∈ FT , nTF is the
unit normal to F pointing out of T . For any internal vertex F ∈ F i

h, we choose an arbitrarily oriented
but fixed unit normal nF , and we set nF := nTF for all boundary vertices F ⊂ ∂T ∩ ∂Ω.
Given an integer polynomial degree k ≥ 1, we consider the broken polynomial space

P
k(Th) :=

{
v ∈ L2(Ω) | v|T ∈ P

k(T ) ∀T ∈ Th
}
, (14)

where Pk(T ) denotes the space of polynomials in T of total degree at most k.

For a given final computational time tmax > 0, we consider a partition (tn)0≤n≤N of the time interval
[0, tmax] with t0 = 0, tN = tmax and tn+1 − tn =: ∆tn. More details on the computation of the time
step ∆tn and on the time marching algorithms are given in Section 3.5. For any sufficiently regular
scalar-valued function of time w, we let wn := w(tn).

Finally, we introduce the following shortcut notations for smooth enough scalar-valued functions v, w:

(
v, w

)
Ω
:=

∫

Ω

v(x)w(x)dx,
(
v, w

)
T
:=

∫

T

v(x)w(x)dx ∀T ∈ Th,
(
v, w

)
F
:= (vw)(xF ) ∀F ∈ Fh.

3.2 Symmetric weighted penalty diffusion bilinear form

Let κ ∈ L∞(Ω) de note a uniformly positive coefficient and set, for the sake of brevity, κT := κ|T for all
T ∈ Th. Following [18,20], we define the jump and weighted average operators such that, for a sufficiently
smooth function ϕ and an interior vertex F ∈ F i

h such that F ⊂ ∂T1 ∩ ∂T2 for distinct mesh elements
T1 and T2,

JϕK := ϕ|T1
− ϕ|T2

, {{ϕ}}ω,F := ω2ϕ|T1
+ ω1ϕ|T2

, ωi :=
κTi

κT1
+ κT2

∀i ∈ {1, 2}. (15)

In what follows, and when no confusion can arise, we omit the subscript F from both JvKω,F and {{v}}ω,F .
When κ ≡ C in Ω for some real number C > 0, we have ω1 = ω2 = 1

2 , and also the subscript ω is omitted.
The definition of the average and jump operators at boundary vertices depends on the selected boundary
condition. When considering periodic boundary conditions, the two boundary vertices can be regarded
as an additional internal vertex Fb ∈ F i

h defined as the intersection of the boundaries of the first and last
elements of the mesh. The average and jump operators {{·}}ω,Fb

(x) and J·KFb
at this fictitious interface

are then defined accordingly. We refer the reader to [17, Section 4.5] for a discussion on the role of
weighted averages and harmonic means in the context of heterogeneous diffusion problems.

For further use, we consider the following diffusive bilinear form ah(κ; ·, ·) on Pk(Th)× Pk(Th):

ah(κ; vh, wh) :=
∑

T∈Th

(
κ∂xvh, ∂xwh

)
T
+

∑

F∈Fh

(ξκ,F
hF

JvhK, JwhK
)
F

−
∑

F∈Fh

((
{{κ∂hxvh}}ω, JwhK

)
F
+
(
JvhK, {{κ∂hxwh}}ω

)
F

)
,

with diffusion-dependent penalty coefficient

ξκ,F :=

{
ξ

2κT1
κT2

κT1
+κT2

if F ∈ F i
h is such that F = ∂T1 ∩ ∂T2,

ξκT if F ∈ Fb
h is such that F = ∂T ∩ ∂Ω,

where ξ denotes a user-defined parameter sufficiently large to ensure coercivity (see, e.g., [17, Lemmas 4.12
and 4.51]). Notice that, in (3.2), ∂hx has to be intended as the broken partial derivative along x on Th.

3.3 Discrete gradient and Laplace operators

To discretize the linear and nonlinear operators that appear in our models, we need discrete counterparts
of the gradient and of the Laplacian applied to broken polynomial functions. For any vh ∈ Pk(Th), we
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define the following global lifting of the jumps of vh (see, e.g. [17, Section 4.3]):

Rk
h(JvhK) :=

∑

F∈Fh

rkF (JvhK),

where, for all F ∈ Fh, the local lifting operator rkF (JvhK) ∈ Pk(Th) is defined as the unique solution of
the following problem:

(
rkF (JvhK), ψh

)
Ω
=

(
JvhK, {{ψh}}nF

)
F

∀ψh ∈ P
k(Th),

with {{ψh}} standard average operators given by (15) with ω1 = ω2 = 1
2 at internal nodes and extended

as described in the previous section to boundary nodes. Following [17, Section 2.3], we define the discrete
gradient operator Gk

h : Pk(Th) → Pk(Th) such that, for all vh ∈ Pk(Th),

Gk
h(vh) := ∂hxvh −Rk

h(JvhK).

This gradient has better consistency properties than the broken (element-by-element) gradient ∂hx , as it
accounts for the jumps of its argument through the second contribution; see [16, Theorem 2.2] for further
insight into this point. Taking inspiration from [30, Eq. (2.10)], we also introduce the discrete Laplace
operator Lk

h : Pk(Th) → Pk(Th) such that, for all vh ∈ Pk(Th), Lk
h(vh) solves

−
(
Lk
h(vh), ψh

)
Ω
= ah(1; vh, ψh) ∀ψh ∈ P

k(Th),

where the bilinear form ah(1; vh, ψh) is given by (3.2) with κ ≡ 1. It can be proved that, for any
v ∈ H1

0 (Ω) ∩Hk+1(Ω), it holds

inf
vh∈Pk(Th)

‖∇v − Gk
h(vh)‖ . hk, inf

vh∈Pk(Th)
‖△v − Lk

h(vh)‖ . hk−1,

where a . b means a ≤ Cb with real number C > 0 independent of the meshsize h, and the second
estimate further requires mesh quasi-uniformity.

3.4 The discrete problems

3.4.1 Model 1

The discretization of Model 1 considered here hinges on a reformulation of (7b) leading to a symmetric
operator in the left-hand side. Recalling the definition (4) of the linear operator T[H, b]·, and assuming
that the water depth H is bounded away from zero, it holds for any sufficiently smooth scalar-valued
function v that:

(1+T[H, b])v = (H+HT [H, b])
v

H
,

where, for any sufficiently smooth scalar-valued function w,

(H+HT [H, b])w = −1

3
∂x(H

3∂xw) −
H2

2
∂xw∂xb+

1

2
∂x(H

2∂xb w) +Hw(∂xb)
2 +Hw,

= −1

3
∂x(H

3∂xw) +
1

2
w∂x(H

2∂xb) +Hw(∂xb)
2 +Hw,

since

−H
2

2
∂xw∂xb = −1

2
∂x(H

2∂xb w) +
1

2
∂x(H

2∂xb)w.

As a consequence, we can write in a more compact form

(H +HT [H, b])w = ∂x(−ν[H ]∂xw) + β[H, b]w, (16a)

where

ν[H ] :=
1

3
H3, β[H, b] := H +H∂xH∂xb+

1

2
H2∂2xb+H(∂xb)

2. (16b)
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Remark 2 (Sign of β[H, b]). In contrast to the Modified and Optimized Green–Naghdi models detailed
below, the reaction-like coefficient β[H, b] is not necessarily positive. As a result, the discrete counterpart
of the operator in the left-hand side of (16a) is not necessarily coercive (and, hence, invertible). In the
numerical experiments presented below, however, no inversibility problem was encountered.

Accounting for the reformulation (16), and provided that the exact solution is sufficiently regular, Model
1 can be rewritten as

∂tw + ∂xf(w, b) + d(w, b)− b(w, b) = 0, (17a)

Hp = d+ gH∂xη, (17b)

∂x
(
−ν[H ]∂xp

)
+ β[H, b]p = gH∂xη +Q1[H, b](u), (17c)

where (17b) has to be interpreted as the definition of the auxiliary variable p.

In practice, the numerical solution of (17) is sought in bounded spatial domains (which reduce to line
segments since we work in 1d). To close (17), we prescribe periodic boundary conditions, obtained
assuming that all the components of w = (η, q) as well as the auxiliary variable p are periodic.

Let now bh ∈ Pk(Th) denote a piecewise polynomial approximation of the topography parameterization
b which can be obtained, e.g., by an L2-orthogonal projection or by interpolation. The semi-discrete in
space Discontinuous Galerkin approximation of (17) reads: Find (ηh, uh, ph) ∈ (Pk(Th))3 such that, for
all (ψh, φh, ϕh) ∈ (Pk(Th))3,

(
∂twh, ϕh

)
Ω
+
(
Ah(wh), ϕh

)
Ω
= 0, (18a)

(
Hhph, φh

)
Ω
=

(
dh, φh

)
Ω
+
(
gHhGk

h(ηh), φh
)
Ω
, (18b)

ah(ν[Hh]; ph, ψh) +
(
βh[Hh, bh]vh, wh

)
Ω
=

(
Q

(1)
h [Hh, bh](ηh, uh), ψh

)
Ω
, (18c)

where

(i) The discrete nonlinear operator Ah in (18a) is defined by

(
Ah(wh), ϕh

)
Ω
:=−

∑

T∈Th

(
f(wh, bh), ∂xϕh

)
T
+

∑

T∈Th

∑

F∈FT

(̂
fTF , ϕh

)
F
+
(
dh, ϕh

)
Ω
−
(
b(wh, bh), ϕh

)
Ω
,

(19)

with discrete dispersive correction dh :=
(
0 dh

)⊺ ∈ (Pk(Th))2. Here, f̂TF is a numerical approximation
of the normal face fluxes f(wh, bh) · nTF whose precise expression will be given in Section 3.4.4 below.

(ii) The discrete linear operator βh[Hh, bh] in (18c) is obtained replacing in the expression (16b) b by bh
and the gradient and Laplace operators by their discrete counterparts defined in Section 3.3:

βh[Hh, bh] := Hh +HhGk
h(Hh)Gk

h(bh) +
1

2
H2

hLk
h(bh) +HhGk

h(bh)
2. (20)

(iii) The discrete nonlinear operator Q
(1)
h [Hh, bh] in (18c) is defined by

Q
(1)
h [Hh, bh](ηh, uh) := gHhGk

h(ηh) +HhQ1,h[Hh, bh](uh).

where, for any wh ∈ Pk(Th),

Q1,h[Hh, bh](wh) := 2HhGk
h(Hh +

bh
2
)Gk

h(wh)
2 +

4

3
H2

hGk
h(wh)Lk

h(wh)

+HhLk
h(bh)whGk

h(wh) +
(
Gk
h(ηh)Lk

h(bh) +
Hh

2
Gk
h(Lk

h(bh))
)
w2

h.

3.4.2 Model 2

The discretization of Model 2 hinges on a reformulation obtained in the same spirit as in the previous
section. Recalling the definition (11) of T[Hb]w, and assuming Hb bounded away from 0, for any

9



sufficiently smooth scalar-valued function v we note the following equivalence:

(1+T[Hb])v =

(
Hb − 1

3
∂x

(
(Hb)3∂x·

)) v

Hb
= ∂x

(
−ν[Hb]∂x

( v

Hb

))
+ β[Hb, 0]

v

Hb
. (21)

Provided that the exact solution is sufficiently regular, the Modified Green–Naghdi equations (13) can
be rewritten as

∂tw + ∂xf(w, b) + d(w, b) = b(w, b), (22a)

Hbp = d+ gH∂xη, (22b)

∂x
(
−ν[Hb]∂xp

)
+ β[Hb, 0]p = H(g∂xη +Q1[H, b](u) + gQ2[H, b](η)) +Q3[H,H

b]Hqq), (22c)

∂x
(
−ν[Hb]∂xq

)
+ β[Hb, 0]q = gH∂xη, (22d)

where (22b) should be intended as the definition of the auxiliary variable p (the difference with respect
to (17b) is that H is replaced by Hb in the left-hand side). Also in this case, we complete (22) with
periodic boundary conditions, obtained assuming that all the components of w = (η, q) as well p and q

are periodic.

Let (bh, H
b
h) ∈ (Pk(Th))2 be broken polynomial approximations of the topography parameterization b

and the water depth at rest Hb. The discrete problem reads: Find wh = (ηh, qh) ∈ (Pk(Th))2 and
(ph, qh) ∈ (Pk(Th))2 such that, for all (πh, ψh, φh, ϕh) ∈ (Pk(Th))4,

(
∂twh, ϕh

)
Ω
+
(
Ah(wh), ϕh

)
Ω
= 0, (23)

(
dh, φh

)
Ω
+
(
gHhGk

h(ηh), φh
)
Ω
=

(
Hb

hph, φh
)
Ω
, (24)

ah(ν[H
b
h]; qh, πh) +

(
β[Hb

h, 0]qh, πh
)
Ω
=

(
gHhGk

h(ηh), πh
)
Ω
, (25)

ah(ν[H
b
h]; ph, ψh) +

(
β[Hb

h, 0]ph, ψh

)
Ω
=

(
Q

(2)
h [Hh, bh](ηh, uh), ψh

)
Ω
, (26)

where Ah is again defined by (29), while the discrete nonlinear operator Q
(2)
h [Hh, bh] is such that

Q
(2)
h [Hh, bh](ηh, uh) := Hh

(
gGk

h(ηh) +Q1,h[Hh, bh](uh) + gQ2,h[Hh, bh](ηh)
)
+Q3,h[Hh, H

b
h]H

b
hqh,

with, for any wh ∈ Pk(Th),

Q2,h[Hh, bh](wh) := −Gk
h(Hh)Gk

h(wh)Gk
h(bh)−

Hh

2
Lk
h(bh)Gk

h(wh)−
Hh

2
Gk
h(bh)

2Gk
h(wh),

and

Q3,h[Hh, H
b
h]wh :=

1

6
Gk
h(H

2
h − (Hb

h)
2)Gk

h(wh) +
1

3
(H2

h − (Hb
h)

2)Lk
h(wh)−

1

6
Lk
h(H

2
h − (Hb

h)
2)wh.

3.4.3 Model 3

The following reformulation of Model 3 is obtained using again the reformulation (21) for the operator
(1+T[Hb]) (the details are omitted for the sake of brevity):

∂tw
θ + ∂xf(w

θ , b) + d
α,γ,θ(wθ, b) = b(wθ, b), (27a)

Hbp = d+
1

α
gH∂xη, (27b)

∂x
(
−α(1 + θ)ν[Hb]∂xp

)
+ β[Hb, 0]p = H(

1

α
g∂xη +Q1[H, b](u

θ) + gQ2[H, b](η))

+ (1 + θ)Q3[H,H
b]Hbq+ θQ4[H ]uθ, (27c)

∂x
(
−α(1 + θ)ν[Hb]∂xq

)
+ β[Hb, 0]q = gH∂xη, (27d)

∂x
(
−γν[Hb]∂xm

)
+ β[Hb, 0]m+ θ∂x

(
D[H ]uθ

)
= 0, (27e)
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where (27b) should be intended as the definition of the auxiliary variable p and the dispersive correction

is now defined as dα,γ,θ(wθ, b) :=

(
Hbm

d

)
. Periodic boundary conditions are obtained assuming that all

the components of w = (η, q) as well as the auxiliary variables p, q, and m are periodic.

The corresponding Discontinuous Galerkin discretization reads: Find wθ
h = (ηh, q

θ
h) ∈ (Pk(Th))2 and

(ph, qh,mh) ∈ (Pk(Th))3 such that, for all (λh, πh, ψh, φh, ϕh) ∈ (Pk(Th))5,
(
∂tw

θ
h, ϕh

)
Ω
+
(
Aα,θ,γ

h (wθ
h), ϕh

)
Ω
= 0, (28a)

(
Hb

hph, φh
)
Ω
=

(
dh +

1

α
gHhGk

h(ηh), φh
)
Ω
, (28b)

ah(α(1 + θ)ν[Hb
h]; ph, ψh) +

(
β[Hb

h, 0]ph, ψh

)
Ω
=

(
Q

α,θ
h , ψh

)
Ω
, (28c)

ah(α(1 + θ)ν[Hb
h]; qh, πh) +

(
β[Hb

h, 0]qh, πh
)
Ω
=

(
gHhGk

h(ηh), πh
)
Ω
, (28d)

ah(γν[H
b
h];mh, λh) +

(
β[Hb

h, 0]vh, λh
)
Ω
+
(
θGh

(
Dh[Hh]u

θ
h

)
, λh

)
Ω
= 0, (28e)

where

(i) The discrete nonlinear operator Aα,θ,γ
h in (28a) is defined by

(
Aα,θ,γ

h (wθ
h), ϕh

)
Ω
:= −

∑

T∈Th

(
f(wθ

h, bh), ∂xϕh

)
T
+

∑

T∈Th

∑

F∈FT

(̂
fTF , ϕh

)
F
+
(
d
α,θ,γ
h , ϕh

)
Ω
−
(
b(wθ

h, bh), ϕh

)
Ω
,

(29)

with discrete dispersive correction d
α,θ,γ
h =

(
Hb

hmh

dh

)
. Here, f̂TF is a numerical approximation of the

normal face fluxes f(wh, bh) · nTF whose precise expression will be given in Section 3.4.4 below.

(ii) The discrete linear operator Dh[Hh] in (28e) is such that, for all wh ∈ Pk(Th),

Dh[Hh]wh := H2
hGh(Hh)Gh(wh) +

1

3
H3

hLh(wh).

(iii) The discrete quadratic operator Qα,θ
h in (28c) is defined by

Q
α,θ
h

:= Hh

( 1

α
gGk

h(ηh) +Q1,h[Hh, bh](uh)

+ gQ2,h[Hh, bh](ηh)
)
+ (1 + θ)Q3,h[Hh, H

b
h]H

b
hqh + θQ4,h[Hh]u

θ
h,

where, for any wh ∈ Pk(Th),

Q4,h[Hh]wh := −Gh (Dh[Hh]wh)wh +
2

3
H2

hGh(Hhwh)Lh(wh) +Hh(Gh(Hh)Gh(Hhwh)

+HhLh(Hhwh))Gh(wh) +
2

3
H3

hGh(wh)Lh(wh) +Hhwh(Gh(Hh)
2 +HhLh(Hh))Gh(wh).

3.4.4 Interface fluxes and well-balancing

We recall here a simple choice introduced in [21] to approximate the interface fluxes f(w, b) ·nT , allowing
to obtain a well-balanced scheme that preserves motionless steady states for Models 1, 2 and 3. Let
T ∈ Th and F ∈ FT ∩ F i

h (since we consider periodic boundary conditions, the treatment of boundary
faces regarded as fictitious interfaces is essentially analogous). Denote by w− and w+, respectively, the
interior and exterior traces of wh on F , with respect to the element T . Similarly, b− and b+ stand for
the interior and exterior traces of bh on F . We define:

b∗ := max(b−, b+), b̌ := b∗ −max(0, b∗ − η−) (30)

and
Ȟ− := max(0, η− − b∗), Ȟ+ := max(0, η+ − b∗), η̌− := Ȟ− + b̌, η̌+ := Ȟ+ + b̌,
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leading to the new interior and exterior values:

w̌− := t

(
η̌−,

Ȟ−

η− − b−
q−

)
, w̌+ := t

(
η̌+,

Ȟ+

η+ − b+
q+

)
. (31)

We define the numerical flux function through the interface F as follows:

f̂TF = fh(w̌
−, w̌+, b̌, b̌, nTF ) + f̃TF , (32)

where:

(i) The numerical flux function fh is the global Lax–Friedrichs flux:

fh(w
−,w+, b−, b+, nTF ) :=

1

2

(
f(w−, b−) · nTF + f(w+, b+) · nTF − a(w+ −w−)

)
,

with a := max
T∈Th

σT and

σT := max
∂T

(∣∣∣∣
qh|T

ηh|T − bh|T
· nT

∣∣∣∣+
√
g(ηh|T − bh|T )

)
.

(ii) f̃TF is a correction term defined as follows:

f̃TF :=

(
0

gη̌−(b̌ − b−)

)
. (33)

Note that the modified interface flux (32) only induces perturbations of order (k+1) when compared to
the traditional interface fluxes.

3.5 Time discretization

Supplementing Models 1, 2 and 3 with an initial datum w(0, ·) = w0, the time stepping is carried out
using the explicit SSP-RK schemes of [26]. For k < 3, we consider RK-SSP schemes of order (k + 1).
For instance, writing the semi-discrete equation (18a) in the operator form

∂twh +Ah(wh) = 0,

we advance from time level n to (n+ 1) as follows with the third-order scheme as follows:

w
n,1
h = wn

h −∆tnAh(w
n
h),

w
n,2
h =

1

4
(3wn

h +w
n,1
h )− 1

4
∆tnAh(w

n,1
h ) ,

wn+1
h =

1

3
(wn

h + 2wn,2
h )− 2

3
∆tnAh(w

n,2
h ) ,

where w
n,i
h , 1 ≤ i ≤ 2, are the intermediate stages, ∆tn is obtained from the CFL condition (34), and

the discrete initial data w0
h is defined either as the L2-projection or interpolation on (Pk(Th))2 of w0.

For k ≥ 3, the five stages fourth order SSP-RK scheme of [49] is used (the details are omitted for the
sake of simplicity) The corresponding time step ∆tn is computed adaptively using the following CFL
condition (see [15]):

∆tn =
3

4

1

2k + 1
min
T∈Th

(hT
σT

)
. (34)

Remark 3. It is well known that for highly nonlinear problems, possibly with non-conservative products,
and discrete formulations with very low numerical diffusion, aliasing errors may be generated, especially
when high-order approximations are used and/or long time integration is considered. Numerical stability
may therefore be achieved, when needed, by applying a general filtering or de-aliasing method and we
use a simple (mild) exponential filter, as detailed in [28], Chapter 5.
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3.6 Arbitrary order well-balancing property

We have the following result:

Proposition 4. The discrete formulation (18) together with the numerical fluxes (32) and a first order
Euler time-marching algorithm preserves the motionless steady states, providing that the integrals of
(18a) are exactly computed for the motionless steady states: For all n ∈ N and all ηe ∈ R,

(ηnh ≡ ηe and qnh ≡ 0) =⇒
(
ηn+1
h ≡ ηe and qn+1

h ≡ 0
)
.

Proof. Assuming wh ≡ we
h := (ηe, 0), we have to show that, for all T ∈ Th and all φh ∈ P

k(Th),
∫

T

f(we
h, bh)∂xφh −

∑

F∈FT

∫

F

f
e
TF φh −

∫

T

dhφh +

∫

T

b(we
h, bh)φh = 0,

where feTF is the interface numerical flux obtained at equilibrium. Recalling (32), and noticing that for
each interface F we have η̌− = η̌+ = ηe and, therefore, w̌− = w̌+, the consistency of the numerical flux
function fh implies feTF = f(w−, b−) · nTF . A similar result is obtained for boundary faces considering
the periodic boundary conditions. Consequently, we have

∫

T

f(we
h, bh)∂xφh −

∑

F∈FT

∫

F

f
e
TF φh = −

∫

T

∂xf(we
h, bh)φh = −

∫

T

b(we
h, bh)φh,

assuming that the integrals are computed exactly, and observing that we locally have ∂xf(we
h, bh) =

b(we
h, bh). For the dispersive source term, it is straightforward to check from (21) that Q1,h(wh) = 0

whenever wh = 0. Moreover, using the fact that Gh(η
e) = 0 and that JphK = 0 at boundary faces (using

periodic boundary conditions), we get ph = 0 as solution of (18c), and therefore dh = 0 as solution of
(18b).

Following a similar reasoning, an analogous result can be obtained for Models 2 and 3. This analysis can
also be extended to the high order SSP schemes of Section 3.5 exploiting the fact that the intermediate
stages wn,i

h are obtained as convex combinations of forward Euler substeps; see, e.g., [53].

4 Numerical validation and applications

In this section, we validate the discrete formulations of Section 3 through several benchmark problems.
In all the test cases, the time step restriction is computed according to (34). Exploiting the symmetry of
the discrete bilinear forms, the sparse linear systems are solved using a Cholesky methods. For Models
2 and 3, the matrices are built and factorized once and for all in a pre-processing step.

4.1 Accuracy validation and convergence studies

The first set of benchmark problems aim at assessing the approximation properties of the proposed
discretizations, and includes comparisons among the different asymptotic models.

4.1.1 Test 1: Nonlinear shallow water equations

In this first test, we study the order of convergence for a smooth solution of the nonlinear shallow water
equations (we therefore neglect the dispersive correction). We use the following bottom function and
initial conditions taken from [52]:

h(0, x) = 5 + ecos(2πx), q(0, x) = sin(cos(2πx)), b(x) = sin2(πx),

defined on Ω = (0, 1). Since the exact solution is not explicitly known, we use as a reference solution
the one obtained for k = 10 on a uniform mesh containing 2048 elements. The L2-error on the total free
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surface elevation η at t = 0.1 s (when no shock wave has developed yet) is depicted in Figures 2 (for
k = 2, 3, 4, 5, 6) and 3 (for k = 7, 8, 9, 10). In all the cases, the error scales as hk+1.
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Figure 2: Test 1 - L2-error for the total free surface elevation η at tmax = 0.1 s vs. h (k = 2, 3, 4, 5, 6).
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Figure 3: Test 1 - L2-error for the total free surface elevation η at tmax = 0.1 s vs. h (k = 7, 8, 9, 10).

4.1.2 Test 2 : Solitary waves propagation

We consider now the time evolution of the solitary wave profiles defined by (9). We recall that, while
such solitary waves are exact solutions for Model 1, they only approximate solutions up to O(µ2) terms
for Models 2 and 3. However, for ε and µ small enough, the profiles are expected to propagate over flat
bottoms without noticeable deformations. We investigate various computational aspects: h-convergence,
p-convergence, stability through long time propagation, and propagation of highly nonlinear waves. We
also give an example of usage of a very high order scheme and compare the computational cost needed to
achieve a required level of accuracy. We use a computational domain of 200m in length, take h0 = 1m as
reference water depth, and ǫ = 0.2 for the relative amplitude of the wave; see Figure 4 for an illustration.
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Figure 4: Test 2 - Initial free surface

h-convergence. For the discretization (18) of Model 1, we compute the L2-error for η and q at t = 0.1 s
on a sequence of refined meshes with uniform meshsize and time step refined accordingly. For k = 2, 3, 4, 5,
we start from a uniform spatial mesh containing 2048 elements, and the computation is performed in
double precision arithmetic. For k = 6, 7, 8, 9, we start from a uniform spatial mesh containing 512
elements, and the computations are performed in quadruple precision arithmetic, as the errors are small
already on coarse meshes. The obtained results are gathered in Figures 5 (k = 2, 3, 4, 5) and Figure 6

(k = 6, 7, 8, 9). The scaling of the numerical error lies between the expected theoretical O(hk+
1

2 ) estimate
for a Lax–Friedrichs DG solution to a problem mainly controlled by nonlinear fluxes (see, e.g., [54]) and
O(hk+1).
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Figure 5: Test 2 - h-convergence - L2-error for the total free surface elevation η at tmax = 0.1 s vs. h
(k = 2, 3, 4, 5).
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Figure 6: Test 2 - h convergence L2-error for the total free surface elevation η at tmax = 0.1 s vs. h
(k = 7, 8, 9).

p-convergence. We next investigate the p-convergence properties of the method. In Figure 7, we
display the L2-error on the total free surface elevation η at time tmax = 0.1 (logarithmic scale) vs. the
polynomial degree (linear scale) using two uniform spatial meshes containing 512 and 1024 elements,
respectively. We observe the expected exponential convergence rate with respect to k. A similar be-
havior is observed for the discharge, although the numerical errors are always slightly larger than those
obtained for the free surface. In numerical experiments not reported here for the sake of brevity, similar
convergence orders are observed for Model 2 and Model 3.
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Figure 7: Test 2 - p-convergence - L2-error for the free surface elevation at tmax = 0.1 s.

Energy conservation. We next study the discrete conservation of the energy invariant (10) by mon-
itoring the following normalized error on the energy:

N(t) =
|E(t)− E(0)|

E(0)
. (35)

We report in Table 1 the relative error on the computed discrete energy (35) at several times up to
t = 150 s and for increasing polynomial degrees for the discretization (18) of Model 1. We observe very
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good conservation properties, especially for polynomial orders greater than k = 3. Notice that this
relative error improves by increasing the polynomial degree up to k = 5.

For comparison purposes, a similar study is also performed using the modified Green-Naghdi equations
(Model 2). We recall that solitary waves (9) are not exact solutions of Model 2. However, for small to
moderate wave amplitudes, the solitary wave profiles can be expected to propagate without too much
deformation. Also, even if this modified model is not expected to exactly preserve the energy (10), we
still observe good conservation of the energy in time, up to the asymptotic accuracy of the model. Note
however that it does not seem possible to improve the relative error by increasing k beyond 3. To obtain
a wider picture and give an assessment of the computational time savings obtained using the modified
Green-Naghdi equations (Model 2), we also report in Table 1 the ratio of the CPU-time needed to
compute the 150 s of propagation for Model 1 (tcpu 1) over the CPU-time for Model 2 (tcpu 2), showing a
dramatic improvement, especially for higher order approximations. This emphasizes here that the choice
of using Model 1 or Model 2 is a matter of a trade-off, as using Model 2 allows to substantially reduce
the computational time, while maintaining good conservation properties on the energy.

k

t 2 3 4 5 6

Model 1 50 s 6.04 10−7 2.63 10−8 1.83 10−11 3.61 10−12 2.58 10−12

100 s 8.71 10−7 2.77 10−8 1.72 10−11 7.49 10−12 5.41 10−12

150 s 1.12 10−6 2.90 10−8 2.47 10−11 9.75 10−12 8.76 10−12

Model 2 50 s 6.97 10−7 1.17 10−8 1.59 10−8 1.60 10−8 1.62 10−8

100 s 1.07 10−6 1.08 10−8 1.78 10−8 1.79 10−8 1.83 10−8

150 s 1.43 10−6 1.17 10−8 1.82 10−8 1.84 10−8 3.05 10−8

tcpu 1/tcpu 2 2.6 3.1 3.5 3.9 4.4

Table 1: Test 2 - Energy conservation - Relative error on the energy for Models 1 and 2, at several times
and various polynomial degrees and ratio of the corresponding CPU times.

Nonlinear waves and long time propagation. To conclude this first test case, we study the propa-
gation of multiple nonlinear solitary waves and/or for larger time, applying a mild exponential stabilizing
filter, as described in Remark 3. When carefully applied, such an anti-aliasing processes can preserve
the good non-dissipating properties of the discrete formulation. As an example, we compute the propa-
gation of a solitary wave of amplitude ǫ = 0.5 up to t = 1000 s, setting k = 6 and h = 1m. The filter
parameters are set to s = 32, α = 16 and Nc = 0. Even using such a coarse mesh, the shape of the
solitary wave remains almost unchanged at t = 1000 s, as shown in Figure (8) (top), corresponding to
almost 20 periods around the domain. The corresponding relative error during the evolution is reported
on Figure (8) (bottom), showing that the energy is conserved with at least 6 digits during the evolution.
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Figure 8: Test 2 - Nonlinear waves and long time propagation - Free surface at t = 1000 s (top) and time
series of the energy relative error (bottom) for ǫ = 0.5, k = 6 and h = 1m.

4.1.3 Test 3 - Cnoidal waves propagation

We recall that, whenever b = 0, Model 1 admits a three-parameter family of cnoidal wave solutions,
see [9]. Such solutions can be formulated as follows:

h(x, t) = a0 + a1dn
2
(
κ(x− ct), k

)
, (36a)

u(x, t) = c
(
1− h0

h(x, t)

)
, (36b)

κ =

√
3a1

2
√
a0(a0 + a1)(a0 + (1− k2)a1)

, c =

√
ga0(a0 + a1)(a0 + (1− k2)a1)

h0
, (36c)

where k ∈ [0, 1], a0 > 0, a1 > 0 are real parameters, and dn(·, k) is a Jacobi elliptic function with elliptic
modulus k. The parameters of this solution can be related to physical variables in order to define (36)
in terms of wave height H , wave period T , and mean water depth h0. This can be achieved by solving
the equations:

a1 =
H

k2
, a0 = h0 − a1

E(k)

K(k)
, ω̂2 =

3π2ga1

4 [a0K(k) + a1E(k)]2
,

where ω̂ = 2π/T is the angular frequency, while K(k) and E(k) are the complete elliptic integrals of the
first and second kind respectively.

In this test case, we study the propagation of non-linear cnoidal waves defined with H = 0.2m, h0 = 1m
and T = 5s. The computational domain length is set to 3 wave-lengths (which gives approximately
41.68m) and we use periodic boundary conditions. In Figure 9 we show the corresponding free surface
at t = 0 s. A convergence study leads to sensibly similar rates as those observed for the solitary wave,
although generally closer to O(hk). As far as the preservation of the energy invariant is concerned, we
compute the propagation up to t = 500 s, using a uniform spatial mesh contanining 150 elements and for
increasing polynomial orders, and report the relative error in Table 2. Again, despite the fact that (36)
is not a solution for Model 2, we also compute the propagation starting from the same initial condition,
and we observe very small perturbations for such moderate amplitude cnoidal waves. Again, we observe
that using polynomial approximations k ≥ 3 does not help reduce this error.
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Figure 9: Test 3 - Initial free surface

k

t 2 3 4 5

Model 1 100 s 1.90 10−4 4.15 10−6 6.27 10−9 4.73 10−9

200 s 3.31 10−4 5.90 10−6 7.57 10−9 5.11 10−9

300 s 4.63 10−4 7.68 10−6 8.13 10−9 5.42 10−9

400 s 5.84 10−4 9.46 10−6 8.67 10−9 5.69 10−9

500 s 6.97 10−4 1.12 10−5 9.45 10−9 5.94 10−9

Model 2 100 s 2.70 10−4 1.82 10−6 2.66 10−6 2.75 10−6

200 s 4.82 10−4 3.89 10−6 2.99 10−6 3.04 10−6

300 s 6.75 10−4 8.51 10−6 2.21 10−6 2.26 10−6

400 s 8.86 10−4 1.08 10−5 2.45 10−6 2.50 10−6

500 s 1.01 10−3 1.33 10−5 3.01 10−6 3.03 10−6

tcpu 1/tcpu 2 2.1 2.6 2.9 3.3

Table 2: Test 3 - Relative error on the energy for Models 1 and 2, at several times and various polynomial
degrees and ratio of the corresponding CPU times.

4.1.4 Test 4 - Head-on collision of solitary waves

Another usual validation test concerns the head-on collision of two identical solitary waves propagating
in opposite directions. The collision of the two waves implies a change of the nonlinear dispersion
characteristics and the discrete formulation must be designed so as to ensure the equilibrium between
amplitude and frequency dispersion to propagate the wave profile at constant shape and speed.

The computational domain is Ω = (−200m, 200m) and we initialize the computation with two solitary
waves (9) of relative amplitude ε = 0.2 initially located at x = −50m and x = 50m and with opposite
velocities, qualitatively reproducing the set up of [40]. The number of mesh elements is set to 800,
corresponding to a uniform meshsize of h = 0.5m, and the polynomial order to k = 3. We show
in Figure 10 some snapshots of the free surface at various times during the propagation with Model
1, including a zoom on the dispersive tail generated after the collision. We observe as expected that
the maximum wave amplitude during the collision is slightly larger than twice the initial amplitude, in
agreement with the results of [40,46]. The dispersive tail is very well reproduced, even with this relatively
coarse mesh. The same computation is also performed with Model 2, and the corresponding results are
shown in Figure 11. We observe very minor discrepancies on the wave profile during the propagation.
The maximum amplitude during the collision is qualitatively similar to the one obtained with Model
1 and there is no phase shift. We notice, however, some variations in the oscillations of the amplitude
decreasing in the dispersive tail after the collision, mainly explained by the fact that (9) is not an exact
solution of Model 2.
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Figure 10: Test 4 - Model 1 : free surface at several time during the propagation
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Figure 11: Test 4 - Model 2 : free surface at several time during the propagation

4.2 Applications

We consider in this section applications and comparisons with experimental data.
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4.2.1 Test 5 - Reflections of solitary waves on a vertical wall

We investigate the propagation and reflection of solitary waves of various nonlinearity against a vertical
wall for Model 1. In this case, periodic boundary conditions are replaced by reflective boundary condition
obtained enforcing that

∂xη|∂Ω = 0, q|∂Ω = p|∂Ω = 0.

Such a reflection process, which involves non-linear and dispersive interactions, has been recently used
as a validation test case, e.g., in [41, 42].

We reproduce here the numerical configuration of [45], and consider a 50m long channel and a solitary
wave free surface profile (9) initially located at x0 = 20m. We use a uniform spatial mesh of 100 mesh
elements, set k = 3, enforce reflective boundary conditions at both boundaries, and study the maximum
wave amplitude at the wall located at x = 50m, for a range of wave amplitudes from ε = 0.1 to ε = 0.5.
As highlighted in [10], we observe that the maximum run up of a solitary wave on a vertical wall is
greater than twice the initial wave amplitude. We compare in Figure 12 our numerical results with both
experimental data taken from [10,38] and the asymptotic analytical solution for the maximum elevation
proposed in [39]. We observe an excellent agreement with the asymptotic solution, and an overall good
matching with the 2 sets of experimental data, very similar to the numerical results obtained in the
references above.
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Figure 12: Test 5 - Maximum relative amplitude at the vertical wall vs. nonlinearity

Considering now a varying topography, we study the propagation and transformations of a solitary wave
over a composite beach. The original experiment was performed in a tank by the U.S. Army Corps of
Engineers at the Coastal Engineering Research Center in Vicksburg, Mississippi. The constructed beach
consists of three piece-wise linear segments, terminated with a vertical wall on the left. The slope s of
the topography is define as follows:

s(x) =





0 if x ≤ 15.04,
1/53 if 15.04 ≤ x ≤ 19.4,
1/150 if 19.4 ≤ x ≤ 22.33,
1/13 if 22.33 ≤ x ≤ 23.23.

(37)

The schematics of the beach is shown on Figure 13.
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Figure 13: Shoaling and reflection of a solitary wave on a composite beach: topography and initial free
surface

In the following, our numerical results are compared with experimental data measured from gages 5, 7
and 9, respectively located at x5 = 15.04m, x7 = 19.4m and x9 = 22.33m (exactly at the locations
corresponding to the slope variations). Three wave configurations were intially studied in the original
experiment, with targeted solitary waves of relative amplitudes 0.05 (A), 0.3 (B) and 0.7 (C). Only (B)
is computed here. Indeed, (A) involves a very small relative amplitude wave and can be quite accurately
reproduced with a classical non-dispersive shallow water model, while (C) involves wave breaking during
the propagation towards the wall and we choose not to include wave breaking mechanism in this work.
We provide the solitary wave of targeted height, centered at x = 0 as the initial condition and we observe
the propagation, reflection on the wall before traveling back to the inlet boundary. Experimental data
are provided as time series of the wave elevation at several gages located along the wave flume. We show
in Figure 14 the comparison between data and computed results for (B) at wave gages 5, 7 and 9. We
obtain similar qualitative results for the remaining gages.
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Figure 14: Shoaling and reflection of a solitary wave over a composite beach: time series of the free
surface at wave gages
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4.2.2 Test 6 - Propagation of periodic highly dispersive waves

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11

0 2 4 6 8 10 12 14 16 18 20 22 24

−0.4

−0.3

−0.2

−0.1

0

0.1

x (m)

z 
(m

)

Figure 15: Test 6 - Locations of wave gages.

We focus here on the Model 3 and highlight its ability to compute the propagation and the interaction
of highly dispersive waves. Using the set-up introduced in [5], and first used as a test in [19], we
compute the propagation of regular periodic waves over a submerged bar, see Figure 15. For this test,
we need to generate periodic waves at the left boundary, with an amplitude of 0.01m, a time period of
2.02 s and mean water depth h0 = 0.4m. We therefore need to use suitable generating and absorbing
boundary conditions, allowing the dissipation of the incoming waves energy together with an efficient
damping of possibly non-physical reflections, and generating boundary conditions that mimic a wave
generator of free surface waves. We use a relaxation method and we enforce periodic waves combined
with generation/absorption by mean of a generation/relaxation zone, following the ideas of [36], using
the relaxation functions described in [50], and the computational domain is locally extended to include
sponge layers which may also include a generating layer.

Explicitly, the relaxed solution along the domain will take the form :

wrelax = Fawh + (1 − Fa)FgR(t)wimp , (38)

where Fa , Fg describe the absorption and generation profiles and R governs the time evolution of
the generation process. Above, wimp contains the enforced time series of the generated free surface.
Concerning the relaxation functions, we follow [50], taking the exponential forms :

Fa(x) = 1− exp ((xr)
n − 1))

exp(1)− 1
, Fg(x) = 1− exp ((1 − xr)

n − 1))

exp(1)− 1
,

where xr =
x− xR
∆R

, n is a positive parameter, and xR, ∆R are respectively the beginning and the width

of the relaxation zone. In agreement with other works, the length of the sponge layers ∆R is calibrated
for each test case (generally 2 or 3 wavelengths); the parameter n is fixed to 3. The reader is referred to
the above references for more details.

When the incident wave encounters the upward part of the bar, it shoals and steepens, which generates
higher-harmonics as the nonlinearity increases. These higher-harmonics are then freely released on the
downward slope, and become deep-water waves behind the bar.

Comparisons are performed between two sets of parameters (α = 1.159, γ = 0, θ = 0) and (α = 1.024, θ =
0.188, γ = 0.112) and the data taken from the experiment, for the last four wave gauges. Time series of
the free surface elevation at the four last wave gauges of the experiment are plotted on Figure 16. These
results are obtained using 1000 elements and k = 2. We observe that using the first set of parameters,
the model is not able to provide an accurate free surface evolution at the wave gauge 11. This last gauge
is the most discriminating one as the higher-harmonics are completely released and can be regarded as
highly dispersive waves. We observe the improvements obtained using the second set of parameters at
the last two wave gauges. Note that we need to introduce a substantial amount of viscosity through
filtering to stabilize the computations associated with the discrete formulation for Model 3 with θ 6= 0.
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Figure 16: Test 6 - Time series of the free surface at the last 4 wage gauges. Comparison between
experimental data at wave gauges (o) and numerical results (−).
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