
Timed temporal logics

Patricia Bouyer1, François Laroussinie2, Nicolas Markey3,
Joël Ouaknine4,5, and James Worrell5

1 LSV, CNRS & ENS Paris-Saclay, France
2 IRIF, CNRS & Université Paris Diderot, France

3 IRISA, CNRS & INRIA & Université Rennes 1, France
4 Max Planck Institute for Software Systems, Germany

5 Department of Computer Science, Oxford University, UK

Abstract. Since the early 1990’s, classical temporal logics have been
extended with timing constraints. While temporal logics only express
contraints on the order of events, their timed extensions can add quanti-
tative constraints on delays between those events. We survey expressive-
ness and algorithmic results on those logics, and discuss semantic choices
that may look unimportant but do have an impact on the questions we
consider.

1 Introduction

Timed automata [6] are a well-established model for real-time systems. One of
their most fundamental properties is that reachability properties can be decided.
This has given rise to multiple works, both on theoretical aspects and on more
algorithmic and practical aspects. Several tools have even been developed for
automatically verifying timed automata, for instance HyTech [28], Kronos [21]
or Uppaal [41,12]. Among the success stories of that model, one can cite the
verification and the correction of the Bang & Olufsen audio/video protocol [27]
made using the tool Uppaal.

Timed automata are adequate to represent systems, but not that much for
representing properties of systems. If A is a timed automaton representing the
system, and P a timed automaton representing the property, verifying that A
satisfies the property P corresponds to checking that all behaviours of A are
also behaviours of P. This is a language-inclusion question, which turns out to
be undecidable for timed automata [6].

In order to circumvent this difficulty, following the development of tempo-
ral logics in model-checking [20,50], timed temporal logics have been proposed,
which extend classical untimed temporal logics with timing constraints. There
are several ways of expressing such constraints, a standard one consists in con-
straining temporal modalities. For instance, one can write a formula such as

G (problem→ F≤5min repair)

to express the quantitative property that any problem must be followed by a
repair action within 5 minutes. This kind of properties cannot be expressed using

standard temporal logics, as those logics can only refer to the relative order of
events, not to their relative distance (in time).

Several timed extensions of CTL [20] and LTL [50] have been proposed. In
this paper, we focus on some of those extensions that have been studied for
the purpose of model-checking real-time systems. We start with the definition
of timed automata, and we discuss several possible semantics for this model
(Section 2). While the choice of semantics is harmless for many issues, it is crucial
here in the context of timed temporal logics. We then turn to branching-time
logics, and present TCTL as well as timed extensions of modal logics (Section 3).
We end with linear-time logics, which are strongly related to first-order logics
over the reals (Section 4). We end up with some conclusions and with further
research directions (Section 5).

2 Continuous vs. pointwise semantics

Timed automata [6] are extensions of standard finite automata with finitely
many clock variables. These variables, which take their values in a time domain,
aim at constraining delays between events. The choice of the time domain has
been discussed from the early definition of the model (see e.g. [4]); there has
been a clear partition between papers considering dense-time domains such as the
set Q≥0 of nonnegative rationals, or the set R≥0 of nonnegative reals, and papers
considering a discrete-time domain like the set Z≥0 of nonnegative integers.
In this paper, we assume that the time domain is R≥0.

In the setting of dense time, there is another distinction, which has been
less clearly identified in the framework of timed automata: it is related to the
nature of runs in a timed automaton. Indeed, the observation of the system can
be considered continuous (executions are then viewed as signals), or it can be
discrete (executions are then viewed as timed words) [4,52]. This distinction will
be important in the context of logics, as we will see in this article. We begin
with discussing this issue.

2.1 Timed automata

Timed automata extend finite-state automata with a finite set C of clocks, which
measure delays between events that occur in the automaton. A configuration of a
timed automaton is thus given by a pair (s, v) where s is a state of the automaton
and v : C→ R≥0 is a clock valuation. For d ∈ R≥0, we let v′ = v+d be the clock
valuation such that v′(c) = v(c) + d for each clock, corresponding to letting d
time units elapse. For a subset R ⊆ C, we let v′ = v[R] be the valuation such
that v′(c) = 0 when c ∈ R, and v′(c) = v(c) when c ∈ C \ R. This corresponds
to resetting clocks in R.

A clock constraint is a conjunction of atomic constraints of the form c ∈ J ,
where c ∈ C and J is an interval of R≥0 with bounds in Z≥0∪{+∞}. Whether a
clock valuation satisfies a clock constraint is defined in the natural way. We write
G(C) for the set of clock constraints on C, and GM (C) for the set of all clock
constraints on C using integer constants less than or equal to integer M .

Definition 1. Let AP be a finite set of atomic propositions. A timed automa-
ton A = 〈S,C,E, `〉 over AP is made of a finite set S of states, a finite set C
of clocks, a finite set of edges E ⊆ S × G(C) × 2C × S, and a labelling function
` : S→ 2AP.

The operational semantics of a timed automaton is defined through an infinite-
state transition system, whose states are all the configurations (s, v) ∈ S×RC

≥0,
with transitions from configuration (s, v) to configuration (s′, v′) when one of
the following two conditions is fulfilled:

– s = s′ and there exists a delay d ∈ R>0 such that v′ = v + d;1

– there exists an edge e = (s, g, R, s′) ∈ E such that v |= g and v′ = v[R].

This transition system mixes discrete changes (given by the second rule) with
continuous changes due to time elapsing (given by the first rule). In particular,
since delays are taken in R>0, the underlying graph has infinite branching.

2.2 Semantics for temporal logics over timed automata

We assume the reader is reasonably familiar with standard untimed temporal
logics like LTL [50] and CTL [19,51]. While these untimed logics can well be
interpreted over timed automata, extensions with quantitative constraints over
delays are very much relevant in this setting. To define such constraints, one
can either decorate the modalities with intervals specifying time delays that
are allowed to satisfy the properties, or explicitely use clock variables in the
formulas, in pretty much the same way as they are used in automata. These
considerations will be discussed specifically in the sections over branching-time
logics and linear-time logics.

There is a second important issue with interpreting temporal logics over
timed automata, which is semantical. We need indeed to make precise which
part of the behaviour of the timed automaton A = 〈S,C,E, `〉 is observed. We il-
lustrate the possible choices using the constrained until formula. Intuitively,
φ1 UJ φ2 (where J is an interval of R≥0 with bounds in Q≥0 ∪ {+∞}) holds
along an execution of A if it is the case that φ2 eventually holds, within a delay
that belongs to interval J , and that φ1 holds at all intermediary points in time.
We will see that the choice of the semantics (more precisely, which intermediary
points in time we consider) is crucial.

Discrete-observation semantics. A natural way to observe the system is
to see paths in the transition system of the timed automaton as sequences of
configurations reached when the automaton performs discrete transitions.

Formally, a path is a (finite or infinite) sequence π = (si, vi)i<L of configura-
tions, such that there is a delay transition between (si, vi) and (si, vi + di), and

1 Zero-delay transitions are not allowed here, but could be included without affecting
the presented results.

a discrete transition between (si, vi +di) and (si+1, vi+1). Notice that we do not
require time divergence here, even for paths of infinite length.

For convenience, we assume that our timed automata include a special clock,
named t hereafter, that is never reset and never used in any timing constraint.

The discrete-observation semantics (also called the pointwise semantics in
the literature) of the constrained-until modality along a path π = (si, vi)i<L
in A can be defined as follows:

A, π |=disc φ1 UJ φ2 ⇔ ∃n > 0. A, π≥n |=disc φ2 and vn(t)− v0(t) ∈ J
and ∀0 < m < n. A, π≥m |=disc φ1 (1)

where π≥k is the path (si, vi)k≤i<L. We see here that satisfaction of subformulas
is checked only at discrete time points, precisely when there is a transition taken
in the timed automaton, and not while delaying in the timed automaton. Notice
that we consider the strict version of the until modality, imposing no constraint
in the present time point. This is an arbitrary choice, which makes the logic
slightly more expressive.

Continuous-observation semantics. It is also natural to consider continuous
observations of the evolution of the automaton: let π = (si, vi)<L be a path
as formerly defined, with an additional global clock t. We associate with π a
signal $ which maps every nonnegative real number to the configuration of the
system at that time: for every r ∈ R≥0, $(r) = (si, v) where i is the largest index
such that vi(t) ≤ r, and v = vi + r− vi(t). This can be interpreted intuitively as
follows: the system is observed continuously, hence when time elapses, increasing
values of clocks are observed. So, at time vi(t), state si is entered, and then, while
delaying, all clocks increase. We made the arbitrary choice to assume that at
time vi(t), the system is already in state si. In order to avoid arbitrary switches
between states, it is often required that $ has finite variability, that is, its set
of discontinuities has no limit points.

The continuous-observation semantics of the constrained-until modality along
a path π (or equivalently, along its associated signal $) in A can then be defined
as follows:

A, $ |=cont φ1 UJ φ2 ⇔ ∃r > 0. A, $≥r |=cont φ2 and r ∈ J
and ∀0 < r′ < r. A, $≥r′ |=cont φ1 (2)

where $≥r is the signal which associates to r′ ∈ R≥0 the value $(r′+r). We also
write A, π |=cont φ when A, $ |=cont φ.

Example 1. Consider the timed automaton depicted on Fig. 1. A path in that
timed automaton is π = (a, 0)(c, 3.2). The corresponding signal is $ which
associates to every r < 3.2 the configuration (a, r) and to every r ≥ 3.2 the
configuration (c, r).

Interestingly, we get different satisfaction relations, depending on the partic-
ular choice of the semantics. Classically, the modality FJ φ stands for trueUJ φ.

ab c
1≤x≤2 3≤x

π

(a, 0) (c, 3.2)

Discrete Continuous
observation observation

ϕ1 = aU c π |= ϕ1 $ |= ϕ1

ϕ2 = F≤2 F c π 6|= ϕ2 $ |= ϕ2

ϕ3 = ¬aU c π |= ϕ3 $ 6|= ϕ3

Fig. 1. A run π of a timed automaton, and its value against some formulas

Formula ϕ2 in Fig. 1 requires the existence of an intermediary point along the
execution where the subformula F c holds. This is the case in the continuous-
observation setting, but not in the discrete-observation setting. On the other
hand, ϕ3 holds on π since there is no point in time where ¬a has to be tested,
whereas ϕ3 does not hold on $.

3 Branching-time temporal logics with timing constraints

In this section, we present some of the main results about the branching-time
framework.

3.1 Timed CTL

Let us begin with the simpler case of plain CTL, with no constraints on until
modalities. The main ingredient for model checking CTL, which already gives its
lower-bound, is the original algorithm for reachability in timed automata:

Theorem 1 ([6]). Reachability in timed automata is PSPACE-complete.

Let A = 〈S,C,E, `〉 be a timed automaton, and let M be the maximal con-
stant appearing in a clock constraint of A. The above result is proved by quo-
tienting the infinite state space of timed automata into finitely many regions:
a region for a timed automaton A is made of a state of A and of sets of valua-
tions defined by equivalence classes of the region equivalence ≡M . This relation
is defined by v ≡M v′ whenever: for every x ∈ C, (i) v(x) > M iff v′(x) > M ,
(ii) if v(x) ≤M , then the integral parts of v(x) and v′(x) coincide; and for every
x, y ∈ C such that v(x), v(y) ≤ M , {v(x)} ≤ {v(y)} iff {v′(x)} ≤ {v′(y)} ({·}
denotes the fractional part). The main property of region equivalence is that it
defines a time-abstract bisimulation, and a finite automaton called the region
automaton can be constructed based on this equivalence, which represents in an
abstract manner the behaviour of A.

A second ingredient for CTL model checking is that any two configurations
whose clock valuations belong to the same region satisfy the same CTL formulas.
As a consequence, standard CTL model checking can be performed on the region
automaton by labelling all regions with the subformulas they satisfy. Such an
algorithm would take exponential time in the worst case, since the number of
regions is exponential. Several techniques can be used to circumvent this blowup,

e.g. by using tree automata, or space-efficient techniques recomputing the infor-
mation on-demand while evaluating the truth value of a formula. In the end:

Theorem 2. CTL model checking is PSPACE-complete over timed automata.

Remark 1. It must be noted that there are CTL formulas that take different truth
values in a given region, depending on the (discrete-observation or continuous-
observation) semantics. Consider formula E(¬EF c) U b. This formula expresses
the existence of a path eventually reaching a b-state, without visiting intermedi-
ary states from which c would be reachable. In the automaton depicted at Fig. 1,
this formula holds true in the discrete-observation semantics, as witnessed by the
path (a, 0)(b, 3): along this path, the latter condition holds vacuously. Obviously,
in the continuous-observation semantics, the formula fails to hold.

This can be reflected in the algorithm by considering different constructions
for the region automaton: for the discrete-observation semantics, we would merge
a delay and an action transition into a single transition of the region automaton
(as performed e.g. in [6]). For the continuous-observation semantics we would
have delay transitions to the immediate time-successor region only, and action
transitions directly translated in the region automaton (as e.g. in [5]).

We now focus on TCTL. Two versions of this logic have been considered in
the literature, either using decorated modalities or with formula clocks. We only
consider the latter logic here, as it has more expressive power while having very
similar algorithmic properties. Syntactically, the logic is defined as

TCTL 3 φ ::= > | p | x ∈ J | ¬φ | φ ∧ φ | EφUφ | AφUφ | x · φ

where p ranges over the set of atomic propositions AP, x ranges over a finite
set of formula clocks CF (these are not the clocks appearing in the automaton),
J ranges over the set of intervals of R≥0 with integral bounds2.

The two semantics discussed in Section 2.2 for the Until modality can be
applied to TCTL. The semantics of > (always true) and of Boolean operators
is omitted. Given a configuration (s, v) of A, and a valuation u for the formula
clocks, the satisfaction relation is defined as:

A, (s, v, u) |= p ⇔ p ∈ `(s)
A, (s, v, u) |= x ∈ J ⇔ u(x) ∈ J
A, (s, v, u) |= x · φ ⇔ A, (s, v, u[{x}]) |= φ

A, (s, v, u) |= Eφ1 Uφ2 ⇔ there is a path π (resp. signal $) from (s, v, u) s.t.

A, π |= φ1 Uφ2 (resp. A, $ |= φ1 Uφ2)

A, (s, v, u) |= Aφ1 Uφ2 ⇔ for every path π (resp. signal $) from (s, v, u),

A, π |= φ1 Uφ2 (resp. A, $ |= φ1 Uφ2)

2 Rational bounds could be considered at the expense of scaling all constants by an
appropriate factor.

Formula clocks are integrated to the paths and signals (without being reset by
the timed automaton).

Example 2. The constrained-until formula Eφ1 UJ φ2 can be written as:

x ·Eφ1 U (φ2 ∧ x ∈ J)

It is not difficult to extend the CTL model-checking algorithm above to TCTL:
one easily shows that again two valuations in the same region satisfy the same
TCTL formulas. This can be shown by induction on the structure of the for-
mula, taking formula clocks into account in the definition of region equivalence.
Then the algorithm is similar to the algorithm for CTL, again taking care of the
considered semantics.

Theorem 3 ([5]). TCTL model checking is PSPACE-complete over timed au-
tomata (regardless of the semantics choice).

Note that the syntax of the specification language used in Uppaal is inspired
from TCTL, but basically all properties can be reduced to some kind of reacha-
bility properties. See Remark 2 later for more details.

As is the case for CTL, TCTL cannot express fairness properties. In partic-
ular, it cannot rule out Zeno runs, which are infinite runs along which time
converges. Following the untimed approach, one may consider TCTL∗, in which
Until modalities can be freely nested (without inserting path quantifications).
This logic then embeds MTL, the extension of LTL with timing constraints, for
which model checking is undecidable (see Section 4). An intermediary fragment
is defined in [17], with the following syntax:

TCTLLTL 3 φs ::= > | p | x ∈ J | ¬φs | φs ∧ φs | Eφp | x · φs
φp ::= φs | ¬φp | φp ∧ φp | φp Uφp.

Notice that in this fragment, formula clocks may only be reset at the level of state
formulas. This allows us to recover decidability of model checking (in exponential
space) [17], while being able to express fairness properties.

We conclude this section with a few words on the satisfiability problem for
TCTL. We only deal here with finite satisfiability [5], asking whether there ex-
ists a finite-state timed automaton in which a given TCTL formula holds true.
This problem is undecidable, which can be derived from the undecidability of
satisfiability for MTL (see Section 4) by pairing each temporal modality with a
universal path quantifier: such a formula is satisfiable if, and only if, the original
MTL formula is. It is proven in [37] that forbidding equality constraints in TCTL
makes finite satisfiability decidable; this is to be compared with what happens
for MITL in the setting of linear-time logics (see Theorem 9).

3.2 Timed modal logics

In this section, we consider timed modal logics. The development of these logics
is related to the attempt to extend different frameworks to the timed setting,

such as Milner’s work on process algebra CCS, the HML logic [44], and the
framework of modal specifications [40]. Here we only consider the logic part,
and we interpret formulas over timed automata (see [54] for a contribution on
timed CCS, [18] for the timed modal specifications and [26] for a presentation
of the tool Epsilon for timed modal specifications).

Let Σ be a finite alphabet of actions. We assume that every edge of a timed
automaton is labelled with an action a ∈ Σ, in addition to the guard and the
set of clocks to be reset; thus we now assume E ⊆ S × G(C) × Σ × 2C × S.
Since modal logics are appropriate for compositional analysis, we also consider
parallel compositions of timed automata (A1 | . . . | An)f , where f is an n-
ary synchronization function over Σ with renaming. We refer to [3, Section 4]
for a formal definition, but the intuition is that f specifies how the various
automata should synchronize on labels over transitions; for instance, f can force
processes A1 and A2 to synchronize on action a while producing a b, by defining
f(a, a, •, . . . , •) = b; here labels • indicate that the corresponding processes do
not take part in the synchronization. Such a parallel composition does not add
expressive power (i.e., the parallel composition of several automata is equivalent
to a single automaton) but it is a convenient way to describe complex systems.
We will see that the modal logics we consider enjoy interesting expressiveness
and compositionality properties over such parallel compositions.

HML is a modal logic interpreted over labelled transition systems: in ad-
dition to Boolean operators, there are two modalities: the existential and the
universal quantification over actions (which we denote 〈a〉 and [a], respectively).
For example, formula [a]〈b〉> specifies that after any a-transition, a b-transition
is enabled.

Timed extensions of HML use the same syntax and, moreover, allow one to
quantify over delay transitions: for delay transitions, instead of using explicit
values (representing the delays) as labels, we consider a symbolic label δ to
represent any delay; 〈δ〉 (resp. [δ]) stands for the existential (resp. universal)
quantification over delay transitions. The formula [a] [δ]〈b〉> specifies that af-
ter any a-transition and any delay, a b-transition is enabled, while the formula
[a]〈δ〉〈b〉> specifies that after any a-transition, a b-transition will be enabled af-
ter some delay. To complete these modalities, we use formula clocks (as in TCTL):
a formula clock x can be reset before evaluating ϕ (written x · ϕ), and it can
be used in constraints of the form x ∈ J , where J is an interval of R≥0 with
bounds in Q≥0∪{+∞}. We use CF to denote the set of formula clocks. Note that
this logic has been mostly studied using the discrete-observation paradigm, even
though one could extend it to a continuous-observation setting. In this section,
we focus on the former semantics.

As for HML, we can add maximal or minimal fixpoint operators to specify
properties over executions based on unbounded sequences of actions: for example
min(X,ϕ ∨

∨
a∈Σ〈a〉X ∨ 〈δ〉X) holds for a state when it is possible to reach a

state satisfying ϕ. The dual formula max(X,ϕ∧
∧
a∈Σ [a]X ∧ [δ]X) specifies that

ϕ holds for every reachable state. We use Var to denote the set of variables.

We can define several logics depending on which of the above operators are
allowed. Here we just introduce the logic Lν [39] whose syntax is given by the
following grammar:

Lν 3 ϕ,ψ ::= > | ⊥ | x ∼ c | x · ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈`〉ϕ | [`]ϕ | max(X,ϕ) | X

where ` ∈ Σ ∪ {δ}, x ∈ CF , ∼ ∈ {<,>}, c ∈ N, and X ∈ Var. An Lν formula ϕ
is interpreted over a configuration (s, v) of a timed automaton A (or over a
configuration (s̄, v̄) of a parallel composition

(
A1 | . . . | An

)
f
) with a valuation u

for the formula clocks. We omit the formal semantics, which can be derived from
the previous discussion.

Lν benefits from the same decidability properties as TCTL: two (extended)
states in the same region satisfy the same Lν formulas.

Theorem 4 ([3]). Lν model checking is EXPTIME-complete over (parallel com-
positions of) timed automata.

The EXPTIME membership can be obtained by applying standard model-
checking algorithms over the region automaton corresponding to the system
(note that adding minimal fixpoints would not change the complexity). The
EXPTIME-hardness proof uses the same encoding of linear-bounded Turing ma-
chines we use to show PSPACE-hardness of reachability in timed automata, ex-
tended to simulate alternating Turing machine with the existential and universal
modalities in Lν .

Remark 2. The tool Uppaal mostly analyzes reachability-like properties. It was
therefore natural, early in the process of development of the tool, to prop-
erly understand which properties can be expressed and verified using the tool.
To that aim, a fragment of Lν has been investigated [1], which fully characterizes
properties that can be expressed through a reachability query via test automata.
A test automaton for a property ϕ ∈ Lν is a timed automaton Aϕ such that for
every timed automaton A, it holds A |= ϕ if, and only if, some designated target
set of states in the composition

(
A | Aϕ

)
fs

where fs enforces the synchronization

of actions of the automata, is not reachable. The resulting fragment of Lν has a
PSPACE-complete model-checking problem.

Lν is very expressive as a specification language. For example, it is easy to
observe that timed bisimilarity can be expressed in Lν : two timed automata
over the same alphabet Σ A1 and A2 are strongly timed bisimilar (denoted
A1 ∼ A2) if, and only if, their parallel composition

(
A1 | A2

)
finter

, where finter

is an interleaving synchronization with a renaming3 of every action a ∈ Σ of Ai
by action ai, satisfies the following Lν formula:

Ψbisim = max
(
Z,
∧
a∈Σ

(
[a1]〈a2〉Z ∧ [a2]〈a1〉Z

)
∧ [δ]Z

)
.

3 That is, for every a ∈ Σ, finter(a, •) = a1 and finter(•, a) = a2.

This ability to deal with single action transitions of an automaton is very
useful and allows a compositional algorithm for model-checking (as for the clas-
sical modal µ-calculus [11]). Given a specification ϕ, an automaton A and a
synchronization function f describing its interaction with another component B,
one can build a quotient formula ϕ/fA such that

(
A | B

)
f
|= ϕ if, and only if,

B |= (ϕ/fA). Note that the clocks of the quotiented automaton A become for-
mula clocks in ϕ/fA: any behaviour of A that is relevant w.r.t. ϕ is encoded in
the formula and this includes all timing informations.

By iterating this quotienting, one can reduce a model-checking instance(
A1 | . . . | An

)
f
|= ϕ to some question nil |= ϕ′ where ϕ′ is the quotient

formula ϕ/A1/A2/ . . . /An, and nil is a process letting time elapse without per-
forming any action. Of course, in this approach, the size of the formula grows
exponentially with quotienting (the state-space explosion problem is translated
from the model to the formula), but this approach still provides an alternative
way of performing model-checking [38], and it gives also many interesting results
for such logics.

From the previous properties, it is easy to deduce the construction of charac-
teristic formulas for timed automata: the quotient formula Ψbisim/finterA1 holds
true for some automaton A2 if, and only if, A1 ∼ A2. The formula Ψbisim/finterA1

is the characteristic formula of A1, it describes the precise behaviour of A1 up to
timed bisimulation. See [2] for more results on characteristic formulas for timed
automata.

Finally, quotienting is also useful for the control synthesis problem. The prob-
lem is defined as follows: given a system S to be controlled and a global specifica-
tion Φ that has to be satisfied by the complete system, one aims at synthesizing
a controller C such that

(
S | C)f |= Φ. The quotient construction allows us to

build a specification for the controller with Φ/fS. Notice however that the satis-
fiability for Lν is undecidable (actually even for its non-recursive fragment) [33],
and only a strong bounded-resources version of the problem has been shown
decidable [39].

4 Linear-time temporal logics with timing constraints

In this section we survey some of the main results concerning expressiveness and
decidability of linear-time temporal logics in the metric setting. In general, a
linear-time specification determines a set of runs of a given system: a collection
of signals in the continuous semantics and a collection of timed words in the
pointwise semantics. In this section we will mostly focus on the continuous se-
mantics when talking about expressiveness (because the theory is cleaner), but
we consider decidability issues with respect to both semantics.

The results surveyed in this section should be read in the context of two clas-
sical theorems about linear temporal logic in the non-metric setting. The first,
a celebrated result of Kamp [34], is that the linear-time temporal logic (LTL) is

expressively complete for monadic first-order logic over both the ordered inte-
gers (Z, <) and ordered reals (R, <). The second result, due to Wolper, Vardi,
and Sistla [53], is that the model checking problem for LTL formulas on Kripke
structures is PSPACE-complete (Note that, notwithstanding the equivalent ex-
pressiveness of LTL and monadic first-order logic, the model checking problem
for monadic first-order logic is non-elementary.)

4.1 Monadic First-Order Logic

A natural approach to specifying properties of signals is to use first-order logic.
Consider a first-order language LMET over a signature with a binary relation
symbol <, an infinite collection of unary predicate symbols AP = {P1, P2, . . .},
and an infinite family of unary function symbols +q, q ∈ Q.

Formulas of LMET can naturally be interpreted over signals$: R→ 2AP. Such
a signal determines a first-order structure in which the universe is R, the relation
symbol < and function symbols +q, q ∈ Q, are interpreted by the standard order
relation and addition function on R, and where each unary predicate symbol Pi
is interpreted as {r ∈ R | Pi ∈ $(r)}. For example, the formula

ϕ(x) := ∃y ∃z ((x < y < z < x+ 1) ∧ P (y) ∧ P (z)) (3)

holds at a point r ∈ R in a signal if P is true at least twice in the open interval
(r, r + 1).

The satisfiability problem for LMET asks whether a given sentence is satisfied
by some signal. The model-checking problem asks whether a given sentence is
satisfied by all signals in the language of a given timed automaton.

Theorem 5. The satisfiability and model checking problems for LMET are un-
decidable.

Proof (Sketch). Let P be a monadic predicate symbol and consider the following
two properties of a signal:

– for all r ∈ R, P is true at r if and only if it is true at r + 1;

– the set of r ∈ R at which P holds has no accumulation point.

These two properties can easily be expressed in LMET, using only the order
relation < and +1 function. Moreover any signal satisfying these properties
embeds a grid of dimensions Z×{0, . . . , N}, for some N ∈ N, where the (i, j)-th
cell in the grid maps to the j-th P -position within the open interval (i, i+1). We
can use the relation < and function +1 to navigate horizontally and vertically
through such a grid and thereby reduce the halting problem for Turing machines
to the satisfiability problem for LMET.

Undecidability of model checking follows immediately from undecidability of
satisfiability. ut

4.2 Metric Temporal Logic

The above-mentioned result of Kamp [34] on the expressiveness of LTL moti-
vates the search for an expressively complete temporal logic for LMET. A natural
candidate is Metric Temporal Logic (MTL) [35], a popular and widely studied
temporal logic that augments LTL with time-constrained versions of the Until
and Since modalities (Since is symmetric to Until : ϕ1 Sϕ2 requires that ϕ2 holds
at some position in the past, and that ϕ1 holds in all intermediary positions).

Given a set AP of atomic propositions, the formulas of MTL are given by the
following grammar

MTL 3 ϕ ::= > | p | ϕ ∧ ϕ | ¬ϕ | ϕUI ϕ | ϕSI ϕ ,

where p ∈ AP and I ⊆ (0,∞) is an interval with endpoints in Q≥0∪{∞}. We also
use derived boolean operators such as ϕ1 → ϕ2 = ¬ϕ1 ∨ ϕ2 and ϕ1 ↔ ϕ2 =
(ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1), and derived temporal connectives like FI ϕ = >UI ϕ
and PI ϕ = >SI ϕ.

Note that we consider signals whose domain is the set R of all real numbers.
Below we will also consider the future fragment of MTL on signals over the
non-negative real numbers R≥0.

4.3 Expressive Completeness

At first glance MTL seems to have weak expressive power. For example, consider
the formula (3) expressing that there will be at least two p-states in the next
time unit. MTL cannot naturally express both the consecution of two events and
a timing constraint on the second event. This led to the conjecture that such
constraints cannot be expressed in MTL (try to express (3) before reading fur-
ther!); cf. [9,10]. However, as shown in [14], this formula can indeed be expressed
in MTL:

Example 3. We give an MTL formula ϕ† that is equivalent to the LMET formula
ϕ(x) in (3) in the sense that for every signal $ and r ∈ R, $ |= ϕ[r] if and
only if $, r |= ϕ†. The key is to use fractional constants in the definition of ϕ†.
We define the formula as a disjunction of three overlapping cases according to
position of the two times at which p holds that witness the truth of ϕ.

ϕ† := F(0, 12)
(p ∧ F(0, 12)

p) ∨ F(0, 12)
(F(0, 12)

p ∧ F{ 1
2}
p) ∨ (F(0, 12)

p ∧ F(1
2 ,1)

p) .

The “trick” in the previous example of using fractional constants to boost
the expressiveness of MTL turns out to be very powerful:

Theorem 6 ([32]). For every LMET formula ϕ(x) there is an equivalent MTL
formula ϕ†.

Let us briefly discuss two key ideas underlying the proof of Theorem 6: namely
boundedness and separation. Given N ∈ N, an LMET formula ϕ(x) is N -bounded
if all quantifiers are relativised to the interval (x−N, x+N). Exploiting a normal

form for FO(<) [25], we show how to translate bounded LMET formulas into MTL.
Extending this translation to arbitrary LMET formulas requires an appropriate
analog of Gabbay’s notion of separation [24].

Gabbay [24] shows that every LTL formula can be equivalently rewritten as
a Boolean combination of formulas, each of which depends only on the past,
present, or future. This property underlies an inductive translation from first-
order logic over (R, <) to LTL. The proof of Theorem 6 relies on an analogous
result for MTL:

Lemma 1 (Separation Lemma). Every MTL formula can be equivalently
rewritten as a Boolean combination of MTL formulas, each of which has one
of the following three forms:

– Bounded: the interval I in every temporal operator UI and SI is bounded;

– Distant Future: has the form F(1,∞)ϕ, for ϕ a formula with no past connec-
tives;

– Distant Past: has the form P(1,∞)ϕ, for ϕ a formula with no future connec-
tives.

Gabbay’s separation result for LTL is an ingredient of the proof of the Sepa-
ration Lemma for MTL. As we have said, the latter result can be used to give an
inductive translation from LMET to MTL. A key difference to the purely order-
theoretic case is that in the metric setting the different types of formulas in the
Separation Lemma may talk about overlapping parts of the signal. For this rea-
son it is crucial that we already have a separate translation of bounded LMET

formulas to MTL.

Integer Constants. Having rational constants plays a crucial role in the proof
of Theorem 6. Indeed, as illustrated in Example 3, the translation from LMET to
MTL does not preserve the granularity of timing constraints. Pursuing this issue,

define L
(1)
MET to be the fragment of LMET in which the family of unary addition

function symbols +q, q ∈ Q, is replaced by a single unary function symbol +1.
It was shown by Hirshfeld and Rabinovich [29] that MTL with integer constants

is not expressively complete for L
(1)
MET. Indeed [29] proves a much stronger im-

possibility result: no temporal logic whose modalities are definable by a set of

formulas of L
(1)
MET of bounded quantifier depth can be expressively complete for

L
(1)
MET. Later, and again based on the Separation Lemma, Hunter [31] gave an

expressively complete temporal logic for L
(1)
MET by taking the fragment of MTL

with integer constants and augmenting it with with an infinite family of unary
counting modalities Cn (first considered in [29]).

Given a positive integer n, the semantics of the counting modality Cn is
defined as follows:

– $, r |= Cn(ϕ) if there exist r < r1 < . . . < rn < r + 1 such that $, ri |= ϕ
for i = 1, . . . , n.

Notice that the L
(1)
MET-formula in (3) is equivalent to C2(p). Notice also that the

the natural way to render Cn(p) as an LMET formula requires quantifier depth
n, consistent with the above-referenced “impossibility result” of [29].

Theorem 7 ([31]). For every L
(1)
MET formula ϕ(x) there is an equivalent formula

ϕ† in MTL augmented with the unary counting modalities Cn, n ∈ N, such that
ϕ† mentions only integer constants.

Future Modalities. Another crucial feature of MTL for obtaining expressive
completeness is the presence of past connectives. Recall in this regard that for any
sentence ϕ of monadic first-order logic over the structure (R≥0, <), there is an
equivalent LTL formula ϕ† that uses only future connectives. Here equivalence is
considered with respect to the initial semantics and over finitely variable signals.
More precisely we have that for any finitely variable signal $: R≥0 → 2AP, (i.e.,
one with finitely many discontinuities in any bounded interval) one has $ |= ϕ
if, and only if, $, 0 |= ϕ†. 4 The following result, which follows immediately
from [14, Proposition 4], shows that the analogous expressive completeness fails
for MTL.

Theorem 8. Over the initial semantics the LMET sentence

ϕ = ∃x∃y∀z (x < y < x+ 1 ∧ p(y) ∧ (y < z < x+ 1→ q(z)))

cannot be expressed in MTL using only UI .

4.4 Satisfiability and Model checking

The satisfiability and model checking problems for MTL are formulated in a
similar manner to the corresponding problems for LMET.

Since the translation from LMET to MTL in Theorem 6 is effective, it follows
that satisfiability and model checking for MTL are undecidable. Alternatively,
one can give a direct proof along the same lines of Theorem 5 (see, e.g., [10]).
However a number of expressive and decidable fragments of MTL have been
identified. The best-known such fragment, called Metric Interval Temporal Logic
(MITL), arises by restricting the interval I in the modalities UI and SI to be
non-singular. In particular, the formula

G(0,∞)(p↔ F{1}p) ,

which features in the undecidability proof of MTL cannot be expressed in MITL.
Both the satisfiability and model checking problems for MITL were shown to

be decidable in [7] via an exponential translation of MITL formulas to equivalent
timed automata. Combined with the fact that language emptiness for timed
automata is in PSPACE one obtains:

4 As shown in [30] this property fails without the assumption of finite variability.

Theorem 9 ([7]). The model checking problem for MITL is EXPSPACE-complete.

Another decidable fragment of MTL, called Bounded MTL, arises by re-
stricting the interval I in the modalities UI and SI to be bounded. While
Bounded MTL can express punctual properties, it obviously can only express
time-bounded properties. A common extension of MITL and Bounded MTL with
an EXPSPACE-complete model checking problem is identified in [15].

The proof that satisfiability and model checking for MTL are undecidable
works similarly in the pointwise semantics as in the continuous semantics. How-
ever, if one restricts to the future fragment of MTL (that is, keeping UI but
omitting SI) then the situation becomes more delicate. While both problems
are again undecidable, the proof becomes substantially different.

Consider the formula G(0,∞)(p↔ F{1}p), which is instrumental in the proof
of undecidability of MTL. A timed word satisfies this formula if every p-event is
followed by a p-event exactly one time unit later. However, the formula does not
require that every p-event be preceded by a p-event one time unit earlier (indeed,
one cannot enforce that there be any event one time unit earlier). For this reason,
a direct encoding of the computations of a Turing machine or 2-counter machine
into a language of timed words (as in the undecidability proofs in [6] and [10])
fails for MTL. However one can encode computations of channel machines (finite
automata, equipped with an unbounded FIFO memory) with insertion errors,
that is, channel machines under a semantics in which extra letters may non-
deterministically be inserted anywhere in the channel during each transition.
Using this idea, [47] shows undecidability of satisfiability for the future fragment
of MTL in the pointwise semantics by reduction from the recurrence problem
for channel machines with insertion errors, that is, the problem of whether a
given channel machine has a computation that visits an accepting control state
infinitely often. Naturally, the ability of MTL to express the recurrence property
GFp plays a key role in this proof.

The undecidability result of [47] only works over infinite words. Indeed, it
was shown in [46] that both satisfiability and model checking are decidable for
the future fragment of MTL over finite timed words. The decision procedure
in [46] involves translating an MTL formula into an equivalent alternating timed
automaton. Crucially such an automaton requires only a single clock. The main
technical result of [46] was to show that the language emptiness problem for
one-clock alternating timed automata is decidable. This was done by a method
analogous to the region-automaton construction for ordinary timed automata.
However in the case of alternating automata this construction does not yield
a finite quotient, and [46] relies on the existence of a well-quasi-order (estab-
lished using Higman’s Lemma) on the set of configurations of a given one-clock
alternating timed automaton to prove termination of the algorithm for deciding
language emptiness.

Theorem 10 ([46]). The satisfiability and model checking problems for (the
future fragment of) MTL over finite timed words are non-primitive recursive.

Over infinite words, using similar methods, one can identify a safety fragment
of MTL for which model checking is decidable [48].

4.5 Timed Propositional Temporal Logic

The logic TPTL [8] is another extension of LTL to the metric setting, this time
using so-called formula clocks. The formulas of TPTL are given by the following
grammar:

ϕ ::= p | x ∼ c | ¬ϕ | ϕ ∧ ϕ | x · ϕ | ϕUϕ | ϕSϕ

where p ∈ AP, x is a formula clock, ∼ ∈ {<,>} and c ∈ Q.

Example 4. As for the case of branching-time, one easily expresses decorated
modalities using formula clocks: formula pUI q translates as x · pU (q ∧ x ∈ I),
which is in TPTL since I is required to have rational endpoints.

It is easy to see that for every MTL formula there is an equivalent TPTL
formula, and for every TPTL formula there is an equivalent LMET formula. It
immediately follows from Theorem 6 that TPTL with rational constants is ex-
pressively complete for LMET. Similarly, it follows from Theorem 7 that TPTL

with integer constants is expressively complete for L
(1)
MET. Finally, if we disallow

the past operator SI in both MTL and TPTL, then the latter is strictly more
expressive, since it can express the property of Theorem 8.

5 Conclusion

Timed temporal logics have been defined to express quantitative constraints
over delays between events. For instance, one can express the property that
any request is answered within some fixed delay. We have first discussed se-
mantic choices: formulas of (linear-time) timed temporal logics can either be
interpreted using a discrete-observation setting (only actions are observed), or
using a continuous-observation setting (time elapsing in states and changes of
states are both observed). While this may seem harmless (though one can eas-
ily exhibit examples distinguishing the two semantics), it actually impacts the
complexity of model-checking.

In a second part, we have focused on branching-time temporal logics. We
have both discussed extensions of CTL and of modal logics. We have explained
that the model-checking problem of TCTL over timed automata can be done
using a simple extension of standard technics for reachability analysis. We have
then turned to timed extensions of HML and have discussed the model-checking
problem as well as other properties like compositionality.

In the last part of the paper, we have focused on linear-time, and we have
explained the expressive completeness of MTL with respect to the natural metric
extension of first-order logic over the reals. We have then discussed the model-
checking and the satisfiability problems for (fragments of) MTL, and finished the
section with a short discussion on a timed extension of LTL with explicit clock
variables.

A short survey cannot be exhaustive on such a wide topic, and there are a
number of related results that we could not mention in this paper. We refer e.g.

to [52,22,23,45,49,13,36, to cite only a few] for more results on the very topic
developed in this paper. (Linear-time) timed temporal logics have also been
used in other domains, e.g. in the prolific domains of monitoring and run-time
verification for real-time systems [43]. We refer to [42] for a recent discussion on
this problematic.

While timed temporal logics are rather well-understood now, several im-
portant questions are still to be investigated. In particular, the satisfiability (or
synthesis) problem for timed logics is not fully (or satisfactorily) understood yet.
For instance, the synthesis problem for TCTL and Lν is undecidable, and only a
strong assumption on the resources leads to decidability [39]. Similar resource re-
strictions have to be made [16] to be able to solve the so-called reactive-synthesis
problem for MITL (while without restrictions it is shown to be undecidable).
Therefore, designing (efficient) algorithms for the synthesis of real-time systems
is a real challenge!

References

1. Luca Aceto, Patricia Bouyer, Augusto Burgueño, and Kim Guldstrand Larsen.
The power of reachability testing for timed automata. Theor. Computer Science,
300(1-3):411–475, 2003.

2. Luca Aceto, Anna Ingólfsdóttir, Mikkel Lykke Pedersen, and Jan Poulsen. Char-
acteristic formulae for timed automata. RAIRO – Theoretical Informatics and
Applications, 34(6):565–584, 2000.

3. Luca Aceto and François Laroussinie. Is your model checker on time? Journal of
Logic and Algebraic Programming, 52-53:3–51, 2002.

4. Rajeev Alur. Techniques for Automatic Verification of Real-Time Systems. PhD
thesis, Stanford University, Palo Alto, California, USA, 1991.

5. Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking in dense
real-time. Inf. & Comp., 104(1):2–34, 1993.

6. Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Computer
Science, 126(2):183–235, 1994.

7. Rajeev Alur, Tómas Feder, and Thomas A. Henzinger. The benefits of relaxing
punctuality. Journal of the ACM, 43(1):116–146, 1996.

8. Rajeev Alur and Thomas A. Henzinger. A really temporal logic. In FOCS’89, p.
164–169. IEEE Comp. Soc. Press, 1989.

9. Rajeev Alur and Thomas A. Henzinger. Logics and models of real time: A survey.
In REX’91, LNCS 600, p. 74–106. Springer, 1992.

10. Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and expres-
siveness. Inf. & Comp., 104(1):35–77, 1993.

11. Henrik Reif Andersen. Partial model-checking (extended abstract). In LICS’95, p.
398–407. IEEE Comp. Soc. Press, 1995.

12. Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, John H̊akansson, Paul
Pettersson, Wang Yi, and Martijn Hendriks. Uppaal 4.0. In QEST’06, p. 125–126.
IEEE Comp. Soc. Press, 2006.

13. Marcello Maria Bersani, Matteo Rossi, and Pierluigi San Pietro. Deciding the
satisfiability of MITL specifications. In GandALF’13, EPTCS 119, p. 64–78, 2013.

14. Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. On the expressiveness of
TPTL and MTL. In FSTTCS’05, LNCS 3821, p. 432–443. Springer, 2005.

http://dx.doi.org/10.1016/S0304-3975(02)00334-1
http://dx.doi.org/10.1051/ita:2000131
http://dx.doi.org/10.1051/ita:2000131
http://dx.doi.org/10.1016/S1567-8326(02)00022-X
http://dx.doi.org/10.1006/inco.1993.1024
http://dx.doi.org/10.1006/inco.1993.1024
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1145/227595.227602
http://dx.doi.org/10.1145/227595.227602
http://dx.doi.org/10.1109/SFCS.1989.63473
http://dx.doi.org/10.1007/BFb0031988
http://dx.doi.org/10.1006/inco.1993.1025
http://dx.doi.org/10.1006/inco.1993.1025
http://dx.doi.org/10.1109/LICS.1995.523274
http://dx.doi.org/10.1109/QEST.2006.59
http://dx.doi.org/10.4204/EPTCS.119.8
http://dx.doi.org/10.4204/EPTCS.119.8
http://dx.doi.org/10.1007/11590156_35
http://dx.doi.org/10.1007/11590156_35

15. Patricia Bouyer, Nicolas Markey, Joël Ouaknine, and James Worrell. The cost of
punctuality. In LICS’07, p. 109–118. IEEE Comp. Soc. Press, 2007.

16. Thomas Brihaye, Morgane Estiévenart, Gilles Geeraerts, Hsi-Ming Ho, Benjamin
Monmege, and Nathalie Sznajder. Real-time synthesis is hard! In Proceedings
of the 14th International Conference on Formal Modelling and Analysis of Timed
Systems (FORMATS’16), LNCS 9884, p. 105–120. Springer, 2016.

17. Thomas Brihaye, François Laroussinie, Nicolas Markey, and Ghassan Oreiby.
Timed concurrent game structures. In CONCUR’07, LNCS 4703, p. 445–459.
Springer, 2007.

18. Kārlis Čerāns, Jens Christian Godskesen, and Kim Guldstrand Larsen. Timed
modal specification - theory and tools. In CAV’93, LNCS 697, p. 253–267. Springer,
1993.

19. Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In LOP’81, LNCS 131, p. 52–71.
Springer, 1982.

20. Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verifica-
tion of finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems, 8(2):244–263, 1986.

21. Conrado Daws, Alfredo Olivero, Stavros Tripakis, and Sergio Yovine. The tool
kronos. In HSCC’95, LNCS 1066, p. 208–219. Springer, 1996.

22. Deepak D’Souza and Pavithra Prabhakar. On the expressiveness of MTL in the
pointwise and continuous semantics. International Journal on Software Tools for
Technology Transfer, 9(1):1–4, 2007.

23. Carlo A. Furia and Matteo Rossi. On the expressiveness of MTL variants over
dense time. In FORMATS’07, LNCS 4763, p. 163–178. Springer, 2007.

24. Dov M. Gabbay. Expressive functional completeness in tense logic. In Aspects of
Philosophical Logic, Synthese Library 147, p. 91–117. Springer, 1981.

25. Dov M. Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the tem-
poral analysis of fairness. In POPL’80, p. 163–173. ACM Press, 1980.

26. Jens Christian Godskesen, Kim Guldstrand Larsen, and Arne Skou. Automatic
verification of real-time systems using epsilon. In PSTV’94, IFIP Conference Pro-
ceedings 1, p. 323–330. Chapman & Hall, 1995.

27. Klaus Havelund, Arne Skou, Kim Guldstrand Larsen, and Kristian Lund. Formal
modelling and analysis of an audio/video protocol: An industrial case study using
Uppaal. In RTSS’97, p. 2–13. IEEE Comp. Soc. Press, 1997.

28. Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech: A model-
checker for hybrid systems. International Journal on Software Tools for Technology
Transfer, 1(1-2):110–122, 1997.

29. Yoram Hirshfeld and Alexander Rabinovich. Expressiveness of metric modalities
for continuous time. Logical Methods in Computer Science, 3(1), 2007.

30. Yoram Hirshfeld and Alexander Moshe Rabinovich. Future temporal logic needs
infinitely many modalities. Inf. Comput., 187(2):196–208, 2003.

31. Paul Hunter. When is metric temporal logic expressively complete? In CSL’13,
LIPIcs 23, p. 380–394. Leibniz-Zentrum für Informatik, 2013.

32. Paul Hunter, Joël Ouaknine, and James Worrell. Expressive completeness for
metric temporal logic. In LICS’13, p. 349–357. IEEE Comp. Soc. Press, 2013.

33. Samy Jaziri, Kim G. Larsen, Radu Mardare, and Bingtian Xue. Adequacy and com-
plete axiomatization for timed modal logic. In Proceedings of the 30th Conference
on Mathematical Foundations of Programming Semantics (MFPS’14), ENTCS 308,
p. 183–210. Elsevier Science Publishers, 2014.

http://dx.doi.org/10.1109/LICS.2007.49
http://dx.doi.org/10.1109/LICS.2007.49
http://dx.doi.org/10.1007/978-3-540-74407-8_30
http://dx.doi.org/10.1007/3-540-56922-7_21
http://dx.doi.org/10.1007/3-540-56922-7_21
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1145/5397.5399
http://dx.doi.org/10.1145/5397.5399
http://dx.doi.org/10.1007/BFb0020947
http://dx.doi.org/10.1007/BFb0020947
http://dx.doi.org/10.1007/s10009-005-0214-9
http://dx.doi.org/10.1007/s10009-005-0214-9
http://dx.doi.org/10.1007/978-3-540-75454-1_13
http://dx.doi.org/10.1007/978-3-540-75454-1_13
http://dx.doi.org/10.1145/567446.567462
http://dx.doi.org/10.1145/567446.567462
http://dx.doi.org/10.1109/REAL.1997.641264
http://dx.doi.org/10.1109/REAL.1997.641264
http://dx.doi.org/10.1109/REAL.1997.641264
http://dx.doi.org/10.1007/s100090050008
http://dx.doi.org/10.1007/s100090050008
http://dx.doi.org/10.2168/LMCS-3(1:3)2007
http://dx.doi.org/10.2168/LMCS-3(1:3)2007
http://dx.doi.org/10.1016/S0890-5401(03)00163-9
http://dx.doi.org/10.1016/S0890-5401(03)00163-9
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.380
http://dx.doi.org/10.1109/LICS.2013.41
http://dx.doi.org/10.1109/LICS.2013.41

34. Johan Anthony Willem Kamp. Tense Logic and the Theory of Linear Order. PhD
thesis, Computer Science Department, University of California at Los Angeles,
USA, 1968.

35. Ron Koymans. Specifying real-time properties with metric temporal logic. Real-
Time Systems, 2(4):255–299, 1990.

36. Shankara Narayanan Krishna, Khushraj Madnani, and Paritosh K. Pandya. Metric
temporal logic with counting. In FoSSaCS’16, LNCS 9634, p. 335–352. Springer,
2016.

37. Salvatore La Torre and Margherita Napoli. A decidable dense branching-time
temporal logic. In FSTTCS’00, LNCS 1974, p. 139–150. Springer, 2000.

38. François Laroussinie and Kim Guldstrand Larsen. CMC: A tool for compositional
model-checking of real-time systems. In FORTE/PSTV’98, IFIP Conference Pro-
ceedings 135, p. 439–456. Kluwer Academic, 1998.

39. François Laroussinie, Kim Guldstrand Larsen, and Carsten Weise. From timed
automata to logic – and back. In MFCS’95, LNCS 969, p. 529–539. Springer, 1995.

40. Kim Guldstrand Larsen. Modal specifications. In AVMFSS’89, LNCS 407, p.
232–246. Springer, 1990.

41. Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell.
International Journal on Software Tools for Technology Transfer, 1(1-2):134–152,
1997.

42. Oded Maler. Some thoughts on runtime verification. In Proceedings of the 16th
International Conference on Runtime verification (RV’16), LNCS 10012, p. 3–14.
Springer, 2016.

43. Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous
signals. In Proceedings of the Joint Conference on Formal Modelling and Analysis
of Timed Systems and Formal Techniques in Real-Time and Fault Tolerant System
(FORMATS+FTRTFT’04), Lectute Notes in Computer Science 3253, p. 152–166.
Springer, 2004.

44. Robin Milner. Communication and concurrency, Prentice Hall International Series
in Computer Science. Prentice Hall Int., 1989.

45. Joël Ouaknine, Alexander Rabinovich, and James Worrell. Time-bounded verifi-
cation. In CONCUR’09, LNCS 5710, p. 496–510. Springer, 2009.

46. Joël Ouaknine and James Worrell. On the decidability of metric temporal logic.
In LICS’05, p. 188–197. IEEE Comp. Soc. Press, 2005.

47. Joël Ouaknine and James Worrell. On metric temporal logic and faulty Turing
machines. In FoSSaCS’06, LNCS 3921, p. 217–230. Springer, 2006.

48. Joël Ouaknine and James Worrell. Safety metric temporal logic is fully decidable.
In TACAS’06, LNCS 3920, p. 411–425. Springer, 2006.

49. Paritosh K. Pandya and Simoni S. Shah. On expressive powers of timed logics:
Comparing boundedness, non-punctuality, and deterministic freezing. In CON-
CUR’11, LNCS 6901, p. 60–75. Springer, 2011.

50. Amir Pnueli. The temporal logic of programs. In FOCS’77, p. 46–57. IEEE Comp.
Soc. Press, 1977.

51. Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent
systems in CESAR. In SOP’82, LNCS 137, p. 337–351. Springer, 1982.

52. Jean-François Raskin. Logics, Automata and Classical theories for Deciding Real
Time. Thèse de doctorat, FUNDP, Namur, Belgium, 1999.

53. Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning about infinite
computation paths. In FOCS’83, p. 185–194. IEEE Comp. Soc. Press, 1983.

54. Wang Yi. CCS + time = an interleaving model for real time systems. In ICALP’91,
LNCS 510, p. 217–228. Springer, 1991.

http://dx.doi.org/10.1007/BF01995674
http://dx.doi.org/10.1007/978-3-662-49630-5_20
http://dx.doi.org/10.1007/978-3-662-49630-5_20
http://dx.doi.org/10.1007/3-540-44450-5_11
http://dx.doi.org/10.1007/3-540-44450-5_11
http://dx.doi.org/10.1007/3-540-60246-1_158
http://dx.doi.org/10.1007/3-540-60246-1_158
http://dx.doi.org/10.1007/3-540-52148-8_19
http://dx.doi.org/10.1007/s100090050010
http://dx.doi.org/10.1109/LICS.2005.33
http://dx.doi.org/10.1007/11690634_15
http://dx.doi.org/10.1007/11690634_15
http://dx.doi.org/10.1007/11691372_27
http://dx.doi.org/10.1007/978-3-642-23217-6_5
http://dx.doi.org/10.1007/978-3-642-23217-6_5
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1109/SFCS.1983.51
http://dx.doi.org/10.1109/SFCS.1983.51
http://dx.doi.org/10.1007/3-540-54233-7_136

	Timed temporal logics

