
HAL Id: hal-01566436
https://hal.science/hal-01566436

Submitted on 21 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the determinization of timed systems
Patricia Bouyer, Samy Jaziri, Nicolas Markey

To cite this version:
Patricia Bouyer, Samy Jaziri, Nicolas Markey. On the determinization of timed systems. FOR-
MATS’17, Sep 2017, Berlin, Germany. pp.25-41, �10.1007/978-3-319-65765-32�. �hal-01566436�

https://hal.science/hal-01566436
https://hal.archives-ouvertes.fr

On the determinization of timed systems?

Patricia Bouyer1, Samy Jaziri1, Nicolas Markey2

1 LSV – CNRS & ENS Paris-Saclay – France
2 IRISA – CNRS & INRIA & Univ. Rennes 1 – France

Abstract. We introduce a new formalism called automata over a timed
domain which provides an adequate framework for the determinization of
timed systems. In this formalism, determinization w.r.t. timed language
is always possible at the cost of changing the timed domain. We give a
condition for determinizability of automata over a timed domain without
changing the timed domain, which allows us to recover several known
determinizable classes of timed systems, such as strongly-non-zeno timed
automata, integer-reset timed automata, perturbed timed automata, etc.
Moreover in the case of timed automata this condition encompasses most
determinizability conditions from the literature.

1 Introduction

Timed automata. Timed automata [AD94] extend finite-state automata with
real-valued variables, called clocks, that can be used to constrain delays between
transitions along executions of an automaton. This is performed by decorating
transitions with timing constraints and clock resets: timing constraints compare
some of the clocks to integer values; a transition is then available only at times
when the timing constraint is satisfied; clock resets set some of the clocks back
to value zero.

Fig. 1 is a simple example representing the (simplified) behaviour of a com-
puter mouse. Timed automata are very convenient to model real-time reactive
systems: they enjoy polynomial-space analysis algorithms (with efficient imple-
mentations) for reachability (and many related verification problems), which is
quite low in view of their expressiveness and handiness.

Determinization of timed automata. However, the situation is a bit less ap-
pealing in terms of the language-theoretic questions, where timed automata do
not enjoy most of the nice properties of finite-state automata: they cannot be
complemented nor determinized, and language inclusion and universality are un-
decidable [AD94]. As an example, the timed automaton of Fig. 2 does not admit
a deterministic equivalent timed automaton: indeed, any deterministic3 timed
automaton accepting the same language would have to guess which occurrence
of the letter a will have a matching a one time unit later. It can be proved
that no finite timed automaton can achieve this. It has even been shown that
? This work was supported by ERC project EQualIS (308087).
3 Deterministic for a timed automaton means that any two transitions out of the same

state and carrying the same letter should have disjoint timing constraints.

press? press?

click!

double click!
x=300

x:=0 x<300

x=300

Fig. 1. Modelling a computer mouse

a a; x < 1

a

x := 0

a

x = 1

Fig. 2. A non-determinizable timed
automaton

determinizability of a timed automaton is undecidable [Tri06,Fin06].
Two research directions have emerged from this situation. First, several sub-

classes of timed automata have been shown to allow determinization:

– Event-clock automata [AFH94] are automata in which each letter σ of the
alphabet is associated with two clocks xσ and yσ: the former clock keeps
track of the time elapsed since the last occurrence of σ in the execution,
while the latter stores the time until the next occurrence of σ (if any). The
class of event-clock automata has been proven to be closed under deter-
minization [AFH94]. This result heavily relies on the fact that event-clock
automata are input-determined [DT04], i.e., the values of the clocks (hence
also the satisfaction of the guards) all along any execution of the automaton
only depend on the input word; they do not depend on the execution itself.

– The class of timed automata with 0 as the only constant has been proven
determinizable in [OW04], by determinizing its region automaton (and aug-
menting the resulting DFA with one clock to detect time elapses);

– Integer-reset timed automata [VPKM08] are timed automata in which clock
resets may only occur at integer times (by constraining resetting transitions
with x = c for some clock x and integer c). The class of integer-reset timed
automata is closed under determinization [VPKM08], by determinizing an
enriched version of the region automaton and augmenting it with one clock.

– A common phenomenon in timed automata is that of time convergence:
for instance, Zeno runs are infinite executions of timed automata along
which the sum of the delays remains bounded. Strongly-non-Zeno timed au-
tomata [AMPS98] are timed automata in which any two entries in the same
location are at least one time unit apart. It is proved in [BBBB09] that the
class of strongly-non-Zeno timed automata is determinizable.

– Perturbed timed automata [ALM05] are timed automata whose semantics is
perturbed by clock drifts, making clocks have different rates in [1− ε, 1 + ε]
for some 0 < ε < 1. It is proved in [ALM05] that the ε-perturbed language
of a timed automaton can be captured as the (non-perturbed) language of
a deterministic timed automaton. This result is different in nature from the
previous one, as it is not a closure property.

A second direction has focused on developing incomplete or approximation
techniques for determinization. Several approaches have been proposed:

– In [BBBB09], the input timed automaton is unfolded into a tree with un-
boundedly many clocks; under some conditions, this tree may be refolded
into a finite deterministic timed automaton. This technique can be used to

2

(re)prove several of the results listed above (event-clock automata, integer-
reset timed automata, strongly-non-Zeno timed automata).

– Approximating techniques have also been developed: in [KT09], an algorithm
is developed to compute a deterministic timed automaton, using a limited
number of clocks, that over-approximates the language of the original timed
automaton, by trying to keep track (as much as possible) of the states the
input automaton can be in at each step.

– Finally, a game-based approach has been developed in [BSJK15]: it turns an
automaton A into a two-player turn-based game, where winning strategies of
the first player (with safety objective) can be turned into deterministic timed
automata accepting the same language as A. If the strategy is not winning,
the resulting automaton would only over-approximate the language of A.

Our contributions. In this paper, we consider a novel approach, based on a very
expressive formalism for representing timed automata (and much more). Our
formalism is based on timed domains, which are a versatile tool for representing
the dynamics of continuous variables. Timed domains are equipped with update
functions, corresponding to (but extending) clock resets of timed automata. Then
automata over timed domains are automata built on these formalisms.

We propose various notions of determinism, and we discuss determinization
procedures for some of them. We also discuss finite representation of those deter-
minized automata. This new approach to the determinization of automata over
timed domains allows to recover several existing results.

Related works. Besides the works already listed above, our approach was in-
spired by the approach of [BL12], even if the latter is not directly linked to
determinization. To tackle the problem of minimization, the authors introduce a
super-class of timed automata called constrained timed register automata, which
is decidable and closed under minimization.

An extended version of this work will be available under the same title as an
arXiV paper.

2 Definitions

2.1 Timed domains

Timed domains are our formalism for representing the evolution of continuous
variables: a timed domain is made of values (e.g. vectors of nonnegative reals,
which would correspond to clock valuations in timed automata) and a function
encoding the evolution of those values when time elapses.

Definition 1. A timed domain is a triple D = 〈V, ↪−→〉 where V is a set of
values, and ↪→ : V × R≥0 → V is the time transition function, satisfying the
condition ↪→(v, d+ d′) = ↪→(↪→(v, d), d′) for all v ∈ V and all d, d′ ∈ R≥0.

In the sequel, we may write v
d
↪−→ v′ for ↪→(v, d) = v′.

3

Product and subset domains. Given two timed domains D = 〈V, ↪→V〉 and
D′ = 〈V ′, ↪→V′〉, we define their product D × D′ = 〈V×, ↪→×〉 where V× = (V ∪
{⊥})×(V ′∪{⊥}) and ↪→×((v, v′), d) = (↪→V(v, d), ↪→V′(v′, d)) with ↪→V(⊥, d) =
↪→V′(⊥, d) = ⊥. For n ∈ N>0, the timed domain Dn is defined inductively
as D1 = D and Dn+1 = D × Dn. Taking the product of timed domains can
be viewed as considering multiple resources evolving synchronously. We add a
special symbol ⊥ to specify that a resource may be inactive; in that case, it does
not evolve over time.

For a timed domain D = 〈V, ↪→〉, we also define its powerset P(D) as the
timed domain 〈VP , ↪−→P〉 with VP = P(V) and ↪−→P extends ↪−→ to sets in the
natural way.

Lemma 2. Given timed domains D and D′, and for any positive integer n,
D ×D′, Dn and P(D) are timed domains.

Example 1. Fix M ∈ N. The M -bounded one-dimensional clock domain DM =
〈CM , ↪→CM 〉 is defined by CM = [0;M] ∪ {+∞} equipped with the time tran-
sition function ↪→CM satisfying the requirements of the definition above, and
such that ↪→CM (v, d) = v + d if v + d ≤ M and ↪→(v, d) = ∞ if v + d > M .
The M -bounded n-dimensional clock domain is defined as the product DnM ,
which we write DnM = 〈CnM , ↪→CnM 〉. A value in the timed domain DnM corre-
sponds to a clock valuation in timed automata [AD94]. Contrary to what is
usually done, we explicitely replace every value larger than M with +∞. As an
example, (0.3, 1.6,⊥) ∈ C32 represents a clock valuation over three clocks, and

(0.3, 1.6,⊥)
1.1
↪−−→C32 (1.4,+∞,⊥) represents a time-elapsing transition of 1.1 time

units.

Example 2. Fix a continuous function f ∈ C∞(R≥0,Rn × Rm) describing the
evolution of two continuous variables x and y over time. We can define the timed
domain Df = 〈R≥0 × Rn × Rm, ↪→Df 〉 where ↪→Df satisfies the requirements of
the definition above and such that ↪→Df ((t, x, y), d) = (t+ d, f(t+ d)). Such a
timed domain would allow to define dynamical systems.

Many more examples of timed domains could be given, which would define rather
complex systems evolving over time. For instance, we show in Section 4.3 how
timed domains can be defined to represent perturbed clocks.

2.2 Updates

In this section, we introduce operations to be performed on values when taking
transitions; it includes clock resets of timed automata, but is much more general.
For v ∈ V, we write vV : V → V for the constant function mapping all elements
of V to v.

Definition 3. Let D = 〈V, ↪−→〉 be a timed domain, and Σ be a finite alphabet.
An update set for D and Σ is a set Λ ⊆ Σ × VV .

Given an update set Λ and a letter σ ∈ Σ, we write Λσ for the set {w ∈ VV |
(σ,w) ∈ Λ}. An element of Λσ is called a σ-update, or simply update.

4

Product update sets, subset update sets. Take a timed domain D equipped
with an update set Λ over Σ. We equip Dn with its canonical update set, de-
noted Λn, and defined as follows:

Λn =
{

(σ, (wi ◦ πnki)1≤i≤n)
∣∣∣

σ ∈ Σ and ∀1 ≤ i ≤ n. wi ∈ Λσ ∪ {⊥V} and 1 ≤ ki ≤ n
}

where for 1 ≤ b ≤ a, the function πab is the projection (dj)1≤j≤a 7→ db. Notice
that we add to Λσ a function ⊥V which allows to set a “resource” inactive.

Given an update set Λ over D = 〈V, ↪−→〉 and Σ, and given p ∈ N>0, we define
an update set Pp(Λ) over P(D)p and Σ as follows. Fix σ ∈ Σ and γ = (γi)1≤i≤p
with γi ⊆ V × Λσ for all 1 ≤ i ≤ p. Each relation γi defines the possi-
ble updates of Λσ we can apply to a value v ∈ V. To each γi we can asso-
ciate a function oσ,γi : V → P(V) which aggregates all possible updated values
of v following instructions in γi: oσ,γi(v) = {w(v) | (v, w) ∈ γi}. We extend
oσ, γi on P(V) and obtain Oσ,γi : P(V) → P(V) which aggregates this time
the possible updated values of all values in V (following instructions in γi):
Oσ,γi(V) =

⋃
v∈V oσ,γi(v). Finally, Oσ,γ : P(V)p → P(V) aggregates the possible

updated values of V1, . . . , Vp, following respectively the instructions in γ1, . . . , γp:
Oσ,γ((Vi)1≤i≤p) =

⋃
1≤i≤pOσ,γi(Vi). In one line:

Oσ,γ : P(V)p → P(V)

(Vi)1≤i≤p 7→
⋃

1≤i≤p

{w(ν) | (ν, w) ∈ γi and ν ∈ Vi}

Then Pp(Λ) = is the set{
(σ, (Oσ,γj)1≤j≤p)

∣∣∣ σ ∈ Σ and ∀1 ≤ j ≤ p, γj ⊆ P(V × Λσ)p
}
.

From the remarks above, the resulting sets are indeed update sets:

Lemma 4. If Λ and Λ′ are update sets for D and D′ over Σ, and if n ∈ N>0,
then Λ× Λ′ and Λn are a update sets respectively for D ×D′ and Dn over Σ.

Example 3. Given Σ a finite alphabet, the one-dimensional clock domain DM
defined in Example 1 can be equipped with the (canonical) update set ΛM =
Σ × {Id, 0}, where Id(v) = v (that is, it keeps the clock value unchanged), and
0 = 0CM (that is, it resets the clock to 0).

Then, DnM is equipped with operations of ΛnM (the product operations). Given
an input vector v = (vi)1≤i≤n ∈ CnM , an operation ω of ΛnM is characterized by
ι : {1, . . . , n} → {1, . . . , n}∪{0,⊥} such that for every v′ = (v′i)1≤i≤n, v′ = ω(v)
if, and only, if:

v′i =

0 if ι(i) = 0
⊥ if ι(i) = ⊥
vj if ι(i) = j

5

Seeing v as a clock valuation, the i-th clock is reset in the first case, it is made
inactive in the second case, and it takes the value of the j-th clock in the last
case (note that if j = i, then the clock value is unchanged). We write ωι for the
corresponding operation.

2.3 Automata over timed domains

Definition 5. Fix a timed domain D = 〈V, ↪−→〉 and an update set Λ for D
over Σ. An automaton on D and Λ is a tuple A = 〈Q, qinit, νinit, T, F 〉 where
Q is a finite set of states, qinit ∈ Q is an initial state, νinit is an initial value,
T ⊆ Q×V×Λ×Q is the transition function, and F ⊆ Q is the set of final states.

Given an automaton A over D and Λ, we write SA for the set Q × V of
configurations ofA. An automatonA induces a (possibly infinite) state transition

system S = 〈SA,→A〉 where →A= (
d−→A)d∈R≥0

] (
σ,w−−→A)(σ,w)∈Λ, defined as

follows:

(q, ν)
d−→A (q′, ν′) ⇔ q = q′ and ν

d
↪−→ ν′

(q, ν)
σ,w−−→A (q′, ν′) ⇔ (q, ν, (σ,w), q′) ∈ T and ν′ = w(ν).

Given a timed domain D and its update set Λ, and given n ∈ N>0, we write
An(D, Λ) for the set of all automata on Dn and Λn. Notice that An(D, Λ) =
A1(Dn, Λn). We let A(D, Λ) =

⋃
n∈N>0

An(D, Λ). Similarly, for n ∈ N, we let

PAn(D, Λ) =
⋃
p∈N A(P(Dn)p,Pp(Λn)), and PA(D, Λ) =

⋃
n∈N PAn(D, Λ).

Remark 1. This definition of an automaton is half-way between standard au-
tomata and transition systems: there is no symbolic guards and symbolic guarded
transitions, but a “list” of transitions, specifying, for each state, and for each
value in the timed domain, what the next state should be, and how the value
should be updated. This general form of automaton will be useful to apply a
determinization procedure.

Example 4. An example of an automaton in A1(DM , ΛM) over Σ = {a} is
A = 〈{q1, q2, q3}, q1, 0, T, {q3}〉 where T = {(q1, ν, (a, 0CM), q2) | ν ∈ CM} ∪
{(q2, ν, (a, Id), q3) | ν ∈ CM ∩Q}. It generates (for instance) the sequences

(q1, 0)
d1−→A (q1, d1)

a,0CM−−−−→ (q2, 0)
d2−→A (q2, d2)

a,Id−−→ (q3, d2)

requiring that d2 is a rational number bounded by M .

2.4 Finite representation of automata over timed domains

With our definition, each transition (q, ν, (σ,w), q′) is only available from con-
figuration (q, ν). In general, the set of transitions is infinite. However, in order
to get a finite representation, we may group transitions together.

6

q1 q2 q3

[0, 1] ∪ {∞}, a, {Id}

[0, 1] ∪ {∞}, a, {0}

[0, 1), a, {Id}

{1}, a, {Id}

Fig. 3. A finitely-representable timed automaton B

Let G ⊆ P(V); we call it a set of guards. A G-guarded update for σ ∈ Σ is
a pair (G,O) ∈ G × P(Λσ). A set {(Gi, Oi) | i ∈ I} (I being a finite or infinite
subset of N) of G-guarded updates for σ is (i) sound from q to q′ whenever
for every i ∈ I, for every ν ∈ Gi, for every w ∈ Oi, (q, ν, (σ,w), q′) ∈ T ; and
(ii) complete from q to q′ whenever for every (q, ν, (σ,w), q′) ∈ T , there exists
i ∈ I such that ν ∈ Gi and w ∈ Oi.

An automaton A = 〈Q, qinit, νinit, T, F 〉 is finitely representable using G when-
ever for every q and q′ in Q, for every σ ∈ Σ, there exists a finite set of G-guarded
updates for σ, which is sound and complete from q to q′. In that case, there is
a natural way to graphically represent the automaton, by depicting a transition
for every G-guarded update involved in the representation. We illustrate those
representations in the following example.

Example 5. We consider the automaton B ∈ A(D1, Λ1) (over the one-dimensional
clock domain) represented on Fig. 3, which as we explain corresponds to the

timed automaton of Fig. 2. The guarded transition q1
[0,1]∪{∞},a,{0}−−−−−−−−−−→ q2 repre-

sents all the transitions (q1, ν, (a, 0), q2) of B, with ν ∈ [0, 1] ∪ {∞} = C1 \ {⊥}.
This automaton has a single clock variable, and the above transition resets the

variable to 0, whatever its original value. The guarded transition q2
{1},a,{Id}−−−−−−→ q3

checks that the value of the variable is 1 prior to going to q3. Later we may write
[0,∞) for [0, 1] ∪ {∞} when considering the one-dimensional clock domain D1.

Following this example, we remark that n-clocks timed automata with clock
constraints bounded by M [AD94] correspond to those automata in A(CnM , ΛnM),
which can be finitely represented using guards of the form (I1, . . . , In) ∈ InM ,
where IM is the set of intervals I whose bounds are nonnegative integral con-
stants bounded by M , or +∞. Strictly speaking, the current model allows trans-
fers of clocks (using the updates ωι ∈ ΛnM – see page 5), but we know that such
updates can be expressed in timed automata [BDFP04]. In the following, we call
timed automata those automata in the set:

⋃
M∈N

⋃
n∈N

{
A ∈ A(CnM , ΛnM)

∣∣∣∣∣ A can be finitely represented
using guards of the form (I1, . . . , In) ∈ InM

}

2.5 Commands

We now introduce the notion of commands, which we use to define different kinds
of determinism.

7

Definition 6. Let D be a timed domain and Λ be an update set. Let A ∈
A(D, Λ). Let Γ be a set (called command alphabet). Let c ∈ Γ . The c-command

of A is a subset
c
−�A⊆ SA×SA s.t., writing→+

A for the transitive closure of→A,

(q, ν)
c
−�A (q′, ν′) =⇒ (q, ν)→+

A (q′, ν′)

A command for a class C of automata over a timed domain D is a set

κ = (
c
−�)c∈Γ where

c
−� maps each automaton A of C to a command

c
−�A of A.

Notice that some transitions from the automaton may be lost, and correspond
to no command.

Fix a timed domainD and an update set Λ, a set C of automata overD and Λ,

a command κ = (
c
−�)c∈Γ over C. Let A be an automaton in C. A κ-trace from a

configuration (q, ν) is a finite sequence τ = (qi, νi)0≤i≤n where (q0, ν0) = (q, ν),

and for which there exists a word C = (ci)1≤i≤n ∈ Γn such that (qi, νi)
ci−�

(qi+1, νi+1) for all 1 ≤ i ≤ n. Trace τ is then said to be generated by C. Notice
that a single word C ∈ Γn may generate several traces (even from a single con-
figuration), and that several words may generate the same trace. For a word C ∈
Γn, we write T κA ((q, ν), C) for the set of traces from (q, ν) generated by C.

Definition 7. An automaton A ∈ C is said κ-deterministic if, for any C ∈ Γ ∗,
the cardinality of T κA ((qinit, νinit), C) is at most 1.

A word C ∈ Γ ∗ reaches a configuration (q′, ν′) from (q, ν) w.r.t. κ if there
exists a trace τ = (qi, νi)0≤i≤n ∈ T κA (C) from (q, ν) with (qn, νn) = (q′, ν′). Then
(q′, ν′) is said κ-reachable from (q, ν); we write SκA(q, ν) for the set of κ-reachable
configurations from (q, ν). For all the notations introduced above, we may omit
to mention (q, ν) when we mean (qinit, νinit).

Finally, a word C ∈ Γn is accepted by A from (q, ν) if there is a trace τ ∈
T κA ((q, ν), C) whose last configuration is in F×V. For a set of configurations S ⊆
SA, we write Lκ(A, S) for the set of words accepted by A from some (q, ν) ∈ S.
Finally, Lκ(A) corresponds to Lκ(A, {qinit, νinit}).

Proposition 8. An automaton A ∈ C is κ-deterministic if, and only if, for
any c ∈ Γ and any κ-reachable configuration (q, ν) of A, there is at most one

configuration (q′, ν′) such that (q, ν)
c
−�A (q′, ν′).

2.6 Different notions of determinism

We consider two different types of commands, leading to two notions of accepted
language and two notions of determinism that we study in the sequel.

Full command. The full command corresponds to ΓF = R≥0]Λ: in this setting,
a word contains full information about the operations that have been performed

8

on the values. More precisely, the full command of A over ΓF is the relation �F
A

defined as

(q, ν)
d
−�F
A(q, ν′) ⇔ ν

d
↪−→ ν′ ∀d ∈ R≥0

(q, ν)
a,w
−−�F

A(q′, ν′) ⇔ (q, ν, (a,w), q′) ∈ T and ν′ = w(ν) ∀(a,w) ∈ Λ.

Then κF = (
c
−�F)c∈ΓF

is the full command over A(D, Λ).
Being deterministic for the full command is not very demanding: it just

amounts to satisfying that if (q, ν, (a,w), q1) ∈ T and (q, ν, (a,w), q2) ∈ T , then
q1 = q2. Thus the operator (of the commands) has access to all the variables
of the system. This is the kind of determinism that is used e.g. for event-clock
timed automata [AFH94]—we discuss this further in Section 4.2.

Timed command. The timed command corresponds to ΓT = R≥0]Σ: this gives
rise to the classical setting of timed words, with �T

A defined as

(q, ν)
d
−�T
A(q, ν′) ⇔ ν

d
↪−→ ν′ ∀d ∈ R≥0

(q, ν)
a
−�T
A(q′, ν′) ⇔ (q, ν, (a,w), q′) ∈ T and ν′ = w(ν) ∀(a,w) ∈ Λ.

Then κT = (
c
−�T)c∈ΓT

is the timed command over A(D, Λ).
This corresponds to the usual notion of determinism used for timed au-

tomata [AD94]. In a sense, the operator (of the commands) has access to the
absolute time value (starting from value ν0 at time 0) and to the action to be
played.

Remark 2. We could define many other command sets, with the idea to finely
describe which resources of the system the operator can access. Interesting com-
mand alphabets include partial observation (either of the variables or of the ac-
tion alphabet of the system). For instance, following [DM02], consider a plant P
given by a timed automaton with controllable (Σc) and uncontrollable (Σu) ac-
tions; an interesting command set would then be R≥0 ∪Σc: the operator would
then control delays and controllable actions, but could not control nor observe
uncontrollable actions. Exploring such commands is part of our future work.

3 Determinization of ATD

3.1 Full-command determinization

In this section, we consider the full command κF, over the alphabet ΓF = R≥0∪Λ.

Theorem 9. Let D be a timed domain and Λ be an update set. For any A ∈
A1(D, Λ), there exists a κF-deterministic automaton Adet ∈ A1(D, Λ) such that
LκF

(A) = LκF
(Adet).

9

Proof (Sketch). The proof follows the classical determinization procedure by
powerset construction. We fix A = 〈Q, qinit, νinit, T, F 〉 ∈ A1(D, Λ), and construct
Adet = 〈P(Q), {qinit}, νinit, Tdet, Fdet〉 with Fdet = {P ∈ P(Q) | F ∩ P 6= ∅} and

(P, ν, (a,w), P ′) ∈ Tdet iff P ′ = {q′ ∈ Q′ | ∃q ∈ P, (q, ν, (a,w), q′) ∈ T}.

This automaton is in A1(D, Λ). κF-determinism is straightforward from the defi-
nition of Tdet and κF. Finally, it is easily proven that LκF

(A) = LκF
(Adet). �

Finite representation. IfA can be finitely represented using guards in some set G,
then the automaton Adet constructed in the previous can be (straightforwardly)
finitely represented using boolean combinations of guards in G.

3.2 Timed-command determinization

We recall that ΓT = R≥0]Σ is the timed-command alphabet. Determinizing with
regards to that alphabet is the standard point-of-view used for timed systems.

3.2.1 General determinization. We first formalize a kind of powerset con-
struction for our general automata. Note the change in the timed domain of the
determinized automaton.

Theorem 10. Let D be a timed domain and Λ be an update set. For any A ∈
A1(D, Λ), there exists a κT-deterministic automaton Adet ∈ PA1(D, Λ) such that
LκT

(A) = LκT
(Adet).

Proof. Write D = 〈V, ↪−→〉 and A = 〈Q, qinit, νinit, T, F 〉, and let Σ be the alphabet
used by Λ. Write Q = {q1, . . . , qp}, and assume w.l.o.g. that qinit = q1. For every
q ∈ Q, define ind(q) the index of q, that is, i such that q = qi.

We now construct a κT-deterministic automaton in A1(P(D)p,Pp(Λ)) ⊆
PA1(D, Λ) accepting the same κT-language as A. For every V = (Vi)1≤i≤p ∈
P(V)p, we define the set QV = {q ∈ Q | Vind(q) 6= ∅}. Intuitively, each set Vi
represents the set of possible values at state qi, hence QV represents the set of
states the system can be in, when the possible values in each state is given by V.

Fix σ ∈ Σ. For every 1 ≤ i, j ≤ p, let γi→jσ be the set {(ν, w) ∈ V ×
Λσ | (qi, ν, (σ,w), qj) ∈ T} and γ→jσ = (γi→jσ)1≤i≤p. We define the following
operation, which belongs to Pp(Λ) (see page 5):

Oσ,A = (Oσ,γ→1
σ
, . . . , Oσ,γ→pσ)

Somehow, γi→jσ records how one can reach state qj from state qi with letter σ,
i.e. the set of possible values, together with the set of updated values; and the
operation Oσ,γ→jσ (V) aggregates all the possible ways to reach qj , if we start

from some (qi, ν) with ν ∈ Vi (with 1 ≤ i ≤ p).

Lemma 11. Let V = (Vi)1≤i≤p ∈ P(V)p, and V′ = (V ′i)1≤i≤p = Oσ,A(V).
Then, for every q′ ∈ Q, for every ν′ ∈ V:

ν′ ∈ V ′ind(q′) ⇐⇒ ∃(q, ν, (σ,w), q′) ∈ T s.t. ν ∈ Vind(q) and ν′ = w(ν)

10

We then let Adet = 〈P(Q), {qinit}, ({νinit}, ∅, . . . , ∅), Tdet, Fdet〉 where:

– Tdet is made of the transitions (QV,V, (σ,Oσ,A), Q′) where:
• V ∈ P(V)p

• Q′ = QV′ where V′ = Oσ,A(V)
– Fdet = {Q′ ⊆ Q | Q′ ∩ F 6= ∅}.

Proposition 12. Adet is κT-deterministic and LκT
(A) = LκT

(Adet).

Proof (Sketch). The κT-determinism of Adet is obvious (by Prop. 8) since, for
every σ ∈ Σ, there is a unique operation associated with σ, namely Oσ,A. It re-
mains to show the equality of the two languages. We first define a correspondence
between vectors V and sets of configurations of A as follows:

φ : P(V)p → P(SA)
V 7→ {(q, ν) | q ∈ QV and ν ∈ Vind(q)}

It is easy to see that this is a bijection. By induction, we can prove that for every
V ∈ P(V)p, LκT

(Adet, (QV,V)) = LκT
(A, φ(V)). �

Finite representation. We discuss now the finite representability of automaton
Adet constructed in the previous proof. We only consider the case of timed au-
tomata here, and have a more general discussion in the corresponding research
report. The operations allowed in timed automata are ωι, where ι : {1, . . . , n} →
{1, . . . , n} ∪ {0,⊥} (see page 5). We assume that in A, there is a guard Gq,q′,σ,ι
defined with disjunctions and conjunctions (involving several clocks) of intervals
constraints such that (Gq,q′,σ,ι, ωι) is a guarded update from q to q′ for σ.

The transitions between two states Q1 and Q2 of Adet labelled by σ can then
be written as:

– a constraint requiring that ∀qj ∈ Q2, ∃qi ∈ Q1, Vi ∩
(⋃

ι(j)6=⊥Gqi,qj ,σ,ι
)
6= ∅;

– a constraint requiring that ∀qj /∈ Q2, ∀qi ∈ Q1, Vi ∩
(⋃

ι(j)6=⊥Gqi,qj ,σ,ι
)

= ∅;

– for each qi ∈ Q1, for each qj ∈ Q2, for every ι, there are rules Vi
Gqi,qj ,σ,ι,ωι7−−−−−−−−→

V ′j , representing a transfer of valuations from Vi (for those valuations of Vi
which belong to Gqi,qj ,σ,ι) to V ′j , after update ωι.

Example 6. Consider again the automaton B depicted on Fig. 3. The κT-deter-
ministic automaton Bdet is depicted on Fig. 4, with the convention we have just
discussed. Given that there are three states in B and one clock, the timed domain
of Bdet is P(D1)3; hence there are three sets of clocks, one for each state of B.
We write V1 (resp. V2, V3) for the set of clocks corresponding to q1 (resp. q2, q3).
As explained before, the guarded updates are represented explicitly as follows:

we write Vi
G,O7−−−→ Vj for “for each element ν ∈ Vi ∩ G, for each w ∈ O, add

w(ν) to Vj”. So, for instance, the transition between {q1, q2} and {q1, q2, q3} is
guarded by the existence of some ν ∈ V2 such that ν = 1, and if this holds,
then we perform action a and take the transition while keeping all values in V1,
adding a 0 to V2, keeping all values but value 1 in V2, and initializing V3 with 1.

We realize that, while this is not really a timed automaton (since it involves
unboundedly many clocks), all these clocks can be partitioned, and can be ma-
nipulated using first-order quantifications.

11

{q1} {q1, q2}

{q1, q2, q3}

a,

[
V1

[0,∞),{Id}7−−−−−−−−→ V1

V1
[0,∞),{0}7−−−−−−−−→ V2

]
∀ν ∈ V2, ν 6= 1, a,

V1
[0,∞),{Id}7−−−−−−−−→ V1

V1
[0,∞),{0}7−−−−−−−−→ V2

V2
[0,∞)\{1},{Id}7−−−−−−−−→ V2



∃ν ∈ V2, ν = 1, a,


V1

[0,∞),{Id}7−−−−−−−−→ V1

V1
[0,∞),{0}7−−−−−−−−→ V2

V2
[0,∞)\{1},{Id}7−−−−−−−−→ V2

V2
{1},{Id}7−−−−−−−−→ V3



∃ν ∈ V2, ν = 1, a,


V1

[0,∞),{Id}7−−−−−−−−→ V1

V1
[0,∞),{0}7−−−−−−−−→ V2

V2
[0,∞)\{1},{Id}7−−−−−−−−→ V2

V2
{1},{Id}7−−−−−−−−→ V3



∀ν ∈ V2, ν 6= 1, a,

V1
[0,∞),{Id}7−−−−−−−−→ V1

V1
[0,∞),{0}7−−−−−−−−→ V2

V2
[0,∞)\{1},{Id}7−−−−−−−−→ V2



Fig. 4. Determinization of B of Figure 3

3.2.2 Strong determinization. We now focus on the case where the previ-
ously constructed deterministic automaton satisfies some nice boundedness prop-
erty, which allows to flatten it (that is, if the original automaton is in A(Dn, Λn),
then so will be the determinized automaton).

We fix A = 〈Q, qinit, νinit, T, F 〉 ∈ A1(Dn, Λn), and write p = |Q|. Borrowing
notations from the proof of Theorem 10, every reachable state in Adet is charac-
terized by some V ∈ P(Vn)p. Furthermore, for such a vector V, we write Vi for
its i-th component (for every 1 ≤ i ≤ p), and we use this implicit convention for
all the vectors we manipulate; we also extend operations componentwise.

We say that Adet is m-weakly monotonic whenever there exists M ∈ Np, with
m =

∑p
i=1Mi, such that for every V ∈ P(Vn)p in Adet, there exists V′ ∈ P(Vn)p

such that (i) QV = QV′ , (ii) V′ ⊆ V, (iii) |V′| ≤ M (that is,|V ′i | ≤ Mi for
every 1 ≤ i ≤ p) and (iv) LκT

(Adet,V
′) = LκT

(Adet,V). The intuition behind
this condition is that V′ selects a bounded number of values out of V, which are
enough to pursue the computation correctly (reading and accepting only relevant
words). Condition (i) is for ensuring one should stay in the same discrete state
of the automaton for pursuing the computation; Condition (ii) ensures that one
can keep the same kinds of updates (we preserve the set of values on which we
can apply the updates); Condition (iii) bounds the size of the sets of selected
values; Finally, condition (iv) ensures the correctness of V′ w.r.t. V.

Theorem 13. Let D be a timed domain and Λ be an action domain. Let A ∈
An(D, Λ) = A1(Dn, Λn), and write Adet for the automaton constructed in the
proof of Theorem 10. Assume furthermore that there exists m ∈ N such that
Adet is m-weakly monotonic. Then, there exists a κT-deterministic automaton
Asdet ∈ A1(Dnm, Λnm) such that LκT

(A) = LκT
(Asdet).

The idea is to represent each vector V such that |V| ≤M by a single huge
vector ν ∈ (Vn)m such that the first M1 components of ν stores the elements
of V1, the next M2 components stores the elements of V2, etc. The element ⊥n is

12

used to fill the components of ν which are not used by some element of Vi (this
can happen when the cardinal of Vi is (strictly) smaller than Mi). Through this
correspondence, we transform the transitions of Adet into transitions over (Vn)m.
In particular, to compute an update for some σ ∈ Σ on ν, which corresponds
to some V, we apply Oσ,A on V, reduce it using the condition given m-weak
monotonicity, and reorder the resulting “small” vector of P(Vn)p into a vector
ν′ ∈ (Vn)m.

Finite representation. It is not possible to obtain a finite representation for Asdet

in general, even if Adet can be finitely represented; indeed, the construction relies
on a choice of V′ ⊆ V, which is a priori arbitrary. This can however be used
when all reachable V are such that |V| ≤M.

Actually, we can modify the m-weak monotonicity assumption of Theorem 13
into a more complex and abstract condition, so that the obtained deterministic
automaton has a finite representation as soon as Adet has a finite representation.

4 Applications

4.1 Applications to plain timed automata

We have already explained how Theorem 10 applies to timed automata, yielding
deterministic automata Adet in PA(DM , ΛM). Theorem 13 can be used to get a
deterministic automaton in A(DM , ΛM): our notion of m-weak monotonicity in
a sense corresponds to the clock-boundedness condition of [BBBB09].

Our approach is actually a bit stronger, as it can capture other classes of
determinizable timed automata, such as the class of finally-imprecise timed au-
tomata: a location q is imprecise if any word accepted from some configura-
tion (q, ν) is also accepted from any other configuration (q, ν′) in the same region;
a timed automaton is then said finally-imprecise if after a fixed number m of
discrete steps, it only visits imprecise states. We can prove that finally-imprecise
timed automata do have an equivalent deterministic timed automata. This class
actually encompasses all timed automata with 0 as the only constant [OW04].

4.2 Applications to event-clock automata

In order to capture event-clock automata [AFH94] in our formalism, we first
define the event-clock domain. We fix a maximal constant M , and let EM =
([0,M] ∪ {+∞,⊥})2: the first component corresponds to an event-recording
clock, while the second is for event-predicting clocks. For d ∈ R≥0, we then

set (x, y)
d
↪−→EM (x′, y′) whenever x

d
↪−→CM x′, and y′ = y − d if y − d ≥ 0, and

y′ = +∞ otherwise (and y′ = ⊥ if, and only if, y = ⊥). Thus the first component
corresponds to the M -bounded one-dimensional clock domain defined at Exam-
ple 1 (with an additional symbol ⊥ when the clock is inactive). This defines the
M -bounded one-letter event-clock domain FM = 〈EM , ↪→EM 〉. Given an alpha-
bet Σ = {σi | 1 ≤ i ≤ n}] {init} (see below), the M -bounded Σ-event-clock
domain, denoted FΣM , is the timed domain FnM .

13

We now associate updates with this timed domain; for this we reuse the
projections πab we defined in Section 2.2: we define the action domain ΘM on EM
as {(σ, (w ◦π2

1 , w
′ ◦π2

2)) | σ ∈ Σ, w ∈ {Id, 0,⊥}, w′ ∈ {Id,⊥}∪{d | d ∈ R≥0}}.
Again, we extend this action domain to FΣM , denoting the resulting action domain
with ΘΣM .

We now define M -bounded Σ-event-clock automata. For this, we set Σ =
{σi | 1 ≤ i ≤ n} ∪ {init}, where init is a special symbol used only for initializing
the automaton. An automaton A = 〈Q, qinit, νinit, T, F 〉 is in the class ECA(Σ,M)
of M -bounded Σ-event-clock automata if

– νinit = (⊥)1≤i≤2n, and (qinit, νinit) only initializes the computation, with tran-
sitions (qinit, νinit, (init, (⊥, di)1≤i≤n), q1) for each (di)1≤i≤n ∈ (R≥0 ∪ {⊥})n;

– for any transition (q, ν, (σi, w), q′) ∈ T with σ 6= init and q 6= qinit, variable yi
must have value 0 in ν, and operation w must set variable xi to 0, variable yi
to some value in [0,M] ∪ {⊥}, and leave the other variables unchanged.

– finally, for any transition (q, ν, (σi, w), qf) with qf ∈ F , we require that yj =
⊥ in ν for any j 6= i, and that yi = 0.

An important feature of event-clock automata is that they are input-deter-
mined : in our setting, this can be expressed as an isomorphism between LκT

(A)
and LκF

(A): intuitively, the operations performed on the clocks can be derived
from observing the time of occurrence of the letters along words. Now, applying
Theorem 9 to an event-clock automaton A, we get a κF-deterministic automa-
ton Adet accepting the same κF-language as A, hence also the same language
(in the usual sense). Moreover, Adet is easily proved to lie in ECA(Σ,M).

Remark 3. The automaton Adet is not κT-deterministic, since from any configu-
ration, there are several transitions, each having a different “guess” for updating
the clock yi associated with the letter carried by the transition. This is also the
case of the determinization result of [AFH94].

IfA only involves event-recording clocks, then so doesAdet. Thus the resulting
automaton does not have to guess values for clocks yi, and it is κT-deterministic.

4.3 Application to perturbed timed automata

The model of perturbed timed automata has been proposed in [ALM05], with the
idea that adding perturbations to the system can indeed help having interesting
properties like determinizability. The syntax of this model is a standard timed
automaton, but its semantics is parametrized by some ε ∈ (0, 1): in this model,
we consider that the slope of a clock can be perturbed by at most ε. It is shown
in [ALM05] that single-clock perturbed timed automata can be determinized
into standard timed automata. We can fit this model into our framework.

To track the possible slopes of a clock, we use two “variables”, one which
runs at speed 1 − ε, and the other at speed 1 + ε. If M ∈ N, the M -bounded
one-dimensional ε-perturbed clock domain is DM,ε = 〈CM,ε, ↪→CM,ε〉 with:

– CM,ε = ([0,M(1 + ε)] ∪ {∞})2;

14

– (x−, x+)
d
↪−→CM,ε (x− + d(1 − ε), x+ + d(1 + ε)) with conventions similar to

the clock domain for manipulating ∞.

The two values x− and x+ represent respectively the lowest and greatest value
that the perturbed clock x can take.

We equip this one-dimensional perturbed clock domain with a subset of the
canonical action domain on two clocks, where updates on x− and x+ are forced to
be the same. It is then easy to define a set of guards IM,ε such that any one-clock
perturbed timed automata of [ALM05] can be represented by an automaton in
A1(DM,ε, ΛM,ε), which is finitely representable using guards in IM,ε.

We can show that a proof very similar to that of Theorem 13 (or to its
modified version) can be used to determinize the automaton. The result is not a
timed automaton, but can be modified into a real timed automaton. This allows
to recover the determinizability result of [ALM05].

5 Conclusions and future work

In this work, we have proposed a general model of automata based on a timed
domain, and general notions of updates over that domain. We have discussed the
notion of determinism for this model, by defining the notion of commands and
discussing some possible sets of such commands. For two of these sets of com-
mands (the full command, and the timed command), we have designed a generic
procedure for determinizing the automata. While the full-command determiniza-
tion stays within the class of automata we start with, the timed-command de-
terminization involves a powerset construction, which increases the number of
“variables” the automaton can manipulate. We have exhibited conditions under
which this construction can be flattened into the original class of automata. We
have applied our approach mostly to timed-automata-like classes of systems, and
recovered many existing determinizability results. In particular, our approach
gives a good understanding of event-clock timed automata [AFH94], gives a
fresh view over the generic unfolding procedure for standard timed automaton
of [BBBB09], and allows to recover the determinizability result for single-clock
perturbed timed automata [ALM05].

As illustrated all along the paper, our framework encompasses timed au-
tomata and can represent various kinds of dynamical systems, but also timed sys-
tems with richer discrete structures. We can e.g. fit into our framework some fam-
ilies of pushdown timed automata, by encoding in the timed domain the “clock
values” possibly stored in a stack. While it is not clear yet whether our approach
can yield new results for those systems, we believe it is worth investigating.

Further, we believe that the notion of commands and the different kinds of
determinism it generates are interesting. As illustrated in Example 2, we believe
this approach could be worth investigating for monitoring or controller synthesis.

Finally, it is not completely clear to us how our approach for timed automata
compares to the game approach of [BSJK15], so this would be worth investigating
as well. Also, the fact that perturbations can be encoded in the timed domain
(recall Section 4.3) might also have some interest for robustness issues.

15

References

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[AFH94] R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata: A determiniz-
able class of timed automata. In CAV’94, LNCS 818, p. 1–13. Springer,
1994.

[ALM05] R. Alur, S. La Torre, and P. Madhusudan. Perturbed timed automata. In
HSCC’05, LNCS 3414, p. 70–85. Springer, 2005.

[AMPS98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for
timed automata. In SSC’98, p. 469–474. Elsevier, 1998.

[BBBB09] Ch. Baier, N. Bertrand, P. Bouyer, and Th. Brihaye. When are timed
automata determinizable? In ICALP’09, LNCS 5556, p. 43–54. Springer,
2009.

[BDFP04] P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Updatable timed automata.
Theoretical Computer Science, 321(2-3):291–345, 2004.

[BL12] M. Bojańczyk and S. Lasota. A machine-independent characterization of
timed languages. In ICALP’12, LNCS 7392, p. 92–103. Springer, 2012.

[BSJK15] N. Bertrand, A. Stainer, T. Jéron, and M. Krichen. A game approach to
determinize timed automata. Formal Methods in System Design, 46(1):42–
80, 2015.

[DM02] D. D’Souza and P. Madhusudan. Timed control synthesis for external
specifications. In STACS’02, LNCS 2285, p. 571–582. Springer, 2002.

[DT04] D. D’Souza and N. Tabareau. On timed automata with input-determined
guards. In FORMATS-FTRTFT’04, LNCS 3253, p. 68–83. Springer, 2004.

[Fin06] O. Finkel. Undecidable problems about timed automata. In FORMATS’06,
LNCS 4202, p. 187–199. Springer, 2006.

[KT09] M. Krichen and S. Tripakis. Conformance testing for real-time systems.
Formal Methods in System Design, 34(3):238–304, 2009.

[OW04] J. Ouaknine and J. Worrell. On the language inclusion problem for timed
automata: Closing a decidability gap. In LICS’04, p. 54–63. IEEE Comp.
Soc. Press, 2004.

[Tri06] S. Tripakis. Folk theorems on the determinization and minimization of
timed automata. Information Processing Letters, 99(6):222–226, 2006.

[VPKM08] P. Vijay Suman, P. K. Pandya, S. N. Krishna, and L. Manasa. Timed
automata with integer resets: Language inclusion and expressiveness. In
FORMATS’08, LNCS 5215, p. 78–92. Springer, 2008.

16

	On the determinization of timed systems

