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Quasi-stationarity and quasi-ergodicity for

discrete-time Markov chains with absorbing

boundaries moving periodically

William Oçafrain1

November 12, 2018

Abstract

We are interested in quasi-stationarity and quasi-ergodicity when
the absorbing boundary is moving. First we show that, in the moving
boundary case, the quasi-stationary distribution and the quasi-limiting
distribution are not well-defined when the boundary is oscillating pe-
riodically. Then we show the existence of a quasi-ergodic distribution
for any discrete-time irreducible Markov chain defined on a finite state
space in the fixed boundary case. Finally we use this last result to
show the quasi-ergodicity in the moving boundary case.

Key words : Quasi-stationary distribution, quasi-limiting distribution,
quasi-ergodic distribution, Q-process, periodic moving boundaries, random
walk
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1 Introduction

Let (Ω,A,P) be a probability space and let X = (Xn)n∈N be a Markov
chain with a finite state space (E, E), E being the σ-algebra containing all
the subset of E. Let Px be the probability measure such that Px(X0 = x) = 1
and, for any measure µ on E, define Pµ =

∫
Pxdµ(x). Denote by P(E) the
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set of probability measures defined on E.
We define, for each time n ≥ 0, a subset An ⊂ E called killing subset at
time n and we denote by En the complement of An called survival subset at
time n. We will call (An)n∈N the moving killing subset or the moving killing
boundary. We denote by τ the random variable defined as follows

τ := inf{n ≥ 0 : Xn ∈ An} (1)

For any subset B ⊂ E, we define τB as follows

τB := inf{n ≥ 0 : Xn ∈ B}

and, to make the notation easier, for any m ∈ N, we denote by τm the
random variable defined by

τm := τAm = inf{n ≥ 0 : Xn ∈ Am} (2)

This article will deal with quasi-stationary, quasi-limiting and quasi-ergodic
distributions that we define as follows.

Definition 1. ν is a quasi-stationary distribution if for any n ≥ 0

Pν(Xn ∈ ·|τ > n) = ν(·)

Definition 2. ν is a quasi-limiting distribution if there exist some µ ∈ P(E)
such that

Pµ(Xn ∈ ·|τ > n) −→
n→∞

ν(·)

Definition 3. ν is a quasi-ergodic distribution or a mean-ratio quasi-stationary
distribution if for any µ ∈ P(E) and any bounded measurable function f

Eµ

(
1

n

n−1∑
k=0

f(Xk)|τ > n

)
−→
n→∞

∫
fdν

We will also be interested in the existence of a Q-process, which can be
interpreted as the process X conditioned never to be absorbed by (An)n∈N.

In the case where the sequence (An)n∈N does not depend on the time, the
existence of these probability measures was established under several as-
sumptions. See for example [2, 4] for a general review on the theory of
quasi-stationary distributions. For modelling purpose, some recent works
(see [1]) introduce some Markov processes absorbed by moving boundaries
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and the classical theory on quasi-stationary distributions does not allow
anymore to describe the asymptotic behavior of the process conditioned not
to be absorbed. Our purpose is therefore to check whether these probabil-
ity measures are still well-defined when (An)n≥0 depends on the time or not.

In all what follows, we will assume that for any x ∈ E0,

Px(τ <∞) = 1

and will also assume that the following hypothesis of irreducibility holds

∀n ∈ N, ∀x, y ∈ En, ∃m ∈ N,Px(Xm∧τn = y) > 0 (3)

Quasi-stationary distribution will be studied for general moving killing
boundaries. However, in a significant part of this article we will deal with
moving killing boundaries (An)n∈N which are γ-periodic with γ ≥ 2.
In this article, we will actually show that there are no quasi-stationary dis-
tributions and quasi-limiting distributions in the sense of Definitions 1 and
2 when the boundaries are moving periodically. However, we will show
that the notion of quasi-ergodic distribution and Q-process still makes sense
even when the boundary is moving. In particular, we will show the following
statement.

Theorem 1. Assume that (An)n∈N is γ-periodic. Then, under assumptions
which will be spelled out later, there exists a probability measure η such that
for any µ ∈ P(E), for any bounded measurable function f ,

Eµ

(
1

n

n−1∑
k=0

f(Xk)|τ > n

)
−→
n→∞

∫
fdη

The proof is divided to several steps. First we reduce the problem to
the study of quasi-stationary distribution in a non moving domain, but for
a periodic Markov chain. Then we extend the result proved by Darroch and
Senata (see [3]) in the aperiodic case to the periodic situation (γ ∈ N∗).
This article ends with an application of this theorem to random walks ab-
sorbed by 2-periodic moving boundaries.

2 Quasi-stationary distribution with moving killing
subset

The following proposition shows that the notion of quasi-stationary distri-
bution as defined in Definition 1 is not relevant when the killing boundary
is moving.
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Proposition 1. Assume there exist l,m ∈ N such that Al 6= Am. Then
there is no measure ν ∈ P(E) satisfying the following property:

∀n ∈ N, Pν(Xn ∈ ·|τ > n) = ν(·) (4)

Proof. For any n ∈ N, denote by fn : P(E)→ P(E) the function defined by

fn : µ −→ Pµ(X1 ∈ ·|τn > 1) (5)

where τn is defined in (2) and denote by µn the probability measure defined
by

µn = Pµ(Xn ∈ ·|τ > n) (6)

By the Markov property, we have for any n ∈ N∗

µn = Pµn−1(X1 ∈ ·|τn > 1) = fn(µn−1)

Thus, by induction, we obtain for any n ∈ N

Pµ(Xn ∈ ·|τ > n) = fn ◦ . . . ◦ f1(µ)

We deduce from this equality that

∀n ∈ N, Pν(Xn ∈ ·|τ > n) = ν(·)⇐⇒ ∀n ∈ N, fn(ν) = ν

⇐⇒ ∀n ∈ N, Pν(X1 ∈ ·|τn > 1) = ν(·)

In other words, ν is a quasi-stationary distribution in the moving sense if
and only if it is a quasi-stationary distribution in the non-moving sense for
all the subsets An. In particular, if ν satisfies (4),

ν(·) = Pν(X1 ∈ ·|τl > 1) and ν(·) = Pν(X1 ∈ ·|τm > 1)

where l and m have been mentioned in the statement of the proposition.
However, since the assumption of irreducibility (3) holds, the previous state-
ment is impossible since the support of the quasi-stationary distributions are
different.

Remark 1. The Proposition 1 can be extended to any general Markov pro-
cess defined on any space state. In particular, for continuous-time Markov
processes defined on a metric space (E, d), we may replace the assumption
of irreducibility (3) by the following assumption

∀t ∈ R+, ∀x, y ∈ Et,∀ε > 0,∃t0 ∈ R+,Px(Xt0∧τt ∈ B(y, ε)) > 0

where B(y, ε) := {z ∈ E : d(y, z) < ε}.
Notice moreover that we did not need any assumption about the behavior

of (An)n∈N. In all what follows, we consider that (An)n∈N is γ-periodic with
γ ≥ 2.
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3 Quasi-limiting distribution when the killing sub-
set is moving periodically

We are now interested in knowing whether the definition of quasi-limiting
distribution given in definition 2 is meaningful when the killing subset is
moving or not. In the usual case, it is well known (see [4] p. 345) that
quasi-stationary distribution and quasi-limiting distribution are equivalent
notions. This implies that the non-existence of a quasi-stationary distribu-
tion implies the non-existence of any quasi-limiting distribution. However,
this equivalence does not hold anymore in the moving case. Consider for ex-
ample (An)n≥0 such that there exists n0 such that for any n ≥ n0, An = An0

and assume that there exists a quasi-stationary distribution νn0 (in the non-
moving sense) such that for any probability measure µ,

Pµ(Xn ∈ ·|τn0 > n) −→
n→∞

νn0

Thus, by the Markov property, for any µ ∈ P(E) and any n ≥ 0,

Pµ(Xn+n0 ∈ ·|τ > n+ n0) = Pµn0 (Xn ∈ ·|τAn0 > n) −→
n→∞

νn0

where µn is defined in (6) for any n ∈ N.
From now on, we will assume that (An)n∈N is periodic and will denote by γ
its period. We will show that quasi-limiting distribution is not well defined
when the killing subset is moving periodically.

Proposition 2. Assume (An)n∈N is γ-periodic and there exist 0 ≤ l,m ≤
γ − 1 such that Al 6= Am.
Then there is no ν ∈ P(E) satisfying the following property:

∃µ ∈ P(E), Pµ(Xn ∈ ·|τ > n) −→
n→∞

ν(·)

Proof. Consider again the functions fm defined in (5):

fm : µ −→ Pµ(X1 ∈ ·|τm > 1)

Then using the periodicity of (An)n∈N and by the Markov property, for any
k ∈ {1, . . . , γ}, m ∈ N∗ and µ ∈ P(E)

Pµ(Xk+mγ ∈ ·|τ > k +mγ) = gk ◦ fm(µ) (7)

with

gk = fk ◦ . . . ◦ f1
f = fγ ◦ . . . ◦ f1
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Assume that there exists µ ∈ P(E) such that the sequence (Pµ(Xm ∈ ·|τ >
m))m∈N converges to its limit ν. Then

ν = lim
m→∞

Pµ(Xmγ ∈ ·|τ > mγ)

= lim
m→∞

fm(µ)

So for any k ∈ {1, . . . , γ}

ν = gk(ν) = Pν(Xk ∈ ·|τ > k)

In other words, for any k ∈ {1, . . . , γ},

ν = fk(ν)

We thus may conclude in the proof of proposition 1.

The previous statement implies therefore that the quasi-limiting distri-
bution as defined in Definition 2 is not well-defined when the moving killing
subset is periodic. However, according to the proof of the previous propo-
sition, it seems that the sequence of these conditioned probabilities could
have some limit points.

The following proposition allows us to pass from a moving problem to a
non-moving problem. The existence of limit points will be therefore a con-
sequence of the existence of classical quasi-stationary distributions for the
transformed Markov chain.

Proposition 3. For any 0 ≤ m ≤ γ − 1 and µ ∈ P(E), there is a Markov

chain (X
(m)
n )n∈N such that

Pµ((Xm, . . . , Xm+nγ) ∈ ·|τ > m+nγ) = Pµm((X
(m)
0 , . . . , X(m)

n ) ∈ ·|τ (m)
m > n)

(8)

where µm is defined in (6) and τ
(m)
m = inf{n ∈ N : X

(m)
n ∈ Am}.

Proof. According to the Markov property, it is enough to show that for any
γ-periodic sequence of subsets B = (Bn)n∈N and any measure µ ∈ P(E),
there exists a Markov chain (Zn)n∈N such that

Pµ((Xγ , . . . , Xnγ) ∈ ·|τ(B) > nγ) = Pµ((Z1, . . . , Zn) ∈ ·|τ̃B0 > n) (9)

where τ(B) = inf{m ≥ 0 : Xm ∈ Bm} and τ̃B0 = inf{n ∈ N : Zn ∈ B0}.
Denote F0 the complement of B0. For any x ∈ F0 define p(x, ·) by

p(x,A) = Px(Xγ ∈ A, τB > γ), ∀A ⊂ F0

p(x,B0) = 1− p(x, F0)
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and we denote by (Zn)n∈N the Markov chain for which the transition kernel
is p. We will show by induction that, for any φ1, . . . , φn bounded measurable
functions,

Eµ(φ1(Xγ) . . . φn(Xnγ)1τ(B)>nγ) = Eµ(φ1(Z1) . . . φn(Zn)1τ̃B0
>n)

By definition of (Zn)n∈N, for any probability measure µ and any bounded
measurable function φ,

Eµ(φ(Z1)1τ̃B0
>1) = Eµ(φ(Xγ)1τ(B)>γ)

which entails the base case. Now assume that the equality for n − 1 is
satisfied. Let φ1, . . . , φn be some bounded measurable functions. Then

Eµ(φ1(Xγ) . . . φn(Xnγ)1τ(B)>nγ) = Eµ(φ1(Xγ)1τ(B)>γEXγ (φ2(Xγ) . . . φn(X(n−1)γ)1τ(B)>(n−1)γ))

= Eµ(φ1(Z1)1τ̃B0
>1EZ1(f2(Z1) . . . φn(Zn−1)1τ̃B0

>(n−1)))

= Eµ(φ1(Z1) . . . φn(Zn)1τ̃B0
>n)

This concludes the proof.

4 Existence of quasi-ergodic distribution with pe-
riodic moving killing subsets

In this section, our aim is to show the existence of a quasi-ergodic distri-
bution as defined in Definition 3 when the boundary is moving periodically.
This section will be split into three parts :

1. We will first study quasi-ergodicity in the non-moving case (when An =
A0, ∀n ∈ N) for irreducible Markov chains.

2. Then we will use the results obtained in the first part to deduce quasi-
ergodicity for general Markov chains (irreducible or not), but still con-
sidering non-moving boundaries

3. Finally we will show the existence of quasi-ergodic distribution when
(An)n∈N is moving periodically.

4.1 Quasi-ergodic distribution in the classical non-moving
sense in the irreducible case

In this subsection we will study the quasi-ergodicity of one irreducible Markov
chain Y = (Yn)n∈N in the classical non-moving sense, that is when the killing
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edge does not move. Without loss of generality, assume Y is defined in the
state space E0 = {0, . . . ,K} and that the cemetery is {0}. In this subsection
and the following, τ will be defined as (1) but refering to Y , that is

τ = inf{n ≥ 0 : Yn = 0}

Denote by P the transition matrix of Y . Since 0 is an absorbing state for
Y , P has the following form

P =

(
1 0
v Q

)
where Q is the sub-transition matrix. We will assume that Q is irreducible
(i.e. ∀x, y ∈ E0,∃n ∈ N, Qn(x, y) > 0). As a result we can define Tx the
period of x as

Tx := gcd{n ∈ N : Px(Yn = x, τ > n) > 0}

where gcd refers to the greatest common divisor. By irreducibility of Q, all
the x have the same period and we denote by T this common period.
The existence of quasi-ergodic distributions has already been proved by Dar-
roch and Seneta in [3] when T = 1. However we will see that this result is
not enough for our purpose and we need to extend it to periodic Markov
chains.
Due to the periodicity of Q, there exist (Ci)0≤i≤T−1 a partition of E0 such
that if the support of the initial distribution µ is included in C0, then for
any n ∈ N and 0 ≤ k ≤ T − 1,

Pµ(Yk+nT ∈ Ck, τ > k + nT ) = 1

Without loss of generality, we construct (Ci)0≤i≤T−1 such that 1 ∈ C0.
Formally (Ci)0≤i≤T−1 are defined by

C0 := {y ∈ E0 : ∃n ∈ N∗,P1(YnT = y, τ > nT ) > 0} (10)

∀1 ≤ i ≤ T − 1, Ci := {y ∈ E0 : ∃x ∈ Ci−1,Px(Y1 = y) > 0} (11)

For each j ∈ {0, . . . , T − 1} and any v ∈ CK , we will denote by v(j) the
sub-vector of v restricted on Cj .
It is well known by the Perron-Frobenius theorem that the spectral radius

ρ := max{|λ| : λ ∈ Sp(Q)}

is a simple eigenvalue of Q and that one can find a left-eigenvector ν =
(ν(j))1≤j≤K and a right-eigenvector ξ = (ξ(j))1≤j≤K for ρ (i.e. νQ = ρν
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and Qξ = ρξ) such that ν(j) > 0 and ξ(j) > 0 for all j ∈ {1, . . . ,K}. We
may choose ν and ξ such that

< ν,1 >=< ν, ξ >= 1

where < ·, · > is the usual Hermitian product on CK . Moreover, since Q is
T -periodic,

{λk := ρe
2ikπ
T : 0 ≤ k ≤ T − 1} ⊂ Sp(Q)

and each λk is simple. For each λk we can obtain a left eigenvector vk and
a right-eigenvector wk from ν and ξ with the following transformation

∀j ∈ {0, . . . , T − 1}, v(j)k = e−i
2πjk
T ν(j) and w

(j)
k = ei

2πjk
T ξ(j) (12)

See Theorem 1.7 in [[5],p.23-24] for more details.
The vectors (vi)0≤i≤T−1 are linearly independent. We can complete this
family into a basis V = (vi)0≤i≤K−1 such that vi ∈ Span⊥(v0, . . . , vT−1) for
all T ≤ i ≤ K − 1 where

Span⊥(v0, . . . , vT−1) = {v ∈ CK :< v, vi >= 0, ∀i ∈ {0, . . . , T − 1}}

Let us denote by R the matrix representing the change of basis from the
canonical basis to V. Then we have the following decomposition

Q = R


λ0

. . .

λT−1

0

0 Q0

R−1

where Q0 is a (K − T )× (K − T ) matrix. We define the matrix Q′ by

Q′ = R

(
0 0
0 Q0

)
R−1

Proposition 4. Let f : {1, . . . ,K} → R be a bounded measurable function.
Then for any x ∈ {1, . . . ,K} and n ∈ N∗,

Ex

(
1

n

n−1∑
k=0

f(Yk)1τ>n

)
= ρnϕ(f)

T−1∑
l=0

e−
2inlπ
T < wl, δx >< vl,1 > +o(ρn)

where

ϕ(f) =
K∑
i=1

f(i)ν(i)ξ(i)

.
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Proof. Let f : {1, . . . ,K} → R be a bounded measurable function. In this
proof we will consider probability measures on {1, . . . ,K} and functions
defined on {1, . . . ,K} as K-vectors. Thus for any x ∈ {1, . . . ,K} we can
say

Ex (f(Yn)1τ>n) =< δxQ
n, f > (13)

where δx is the Dirac measure on x. For any x ∈ {1, . . . ,K}, define
(αk(x))0≤k≤T−1 the unique family of CK such that there is µx ∈ Span⊥(v0, . . . , vT−1)
such that

δx =
T−1∑
k=0

αk(x)vk + µx

We will use the following lemma whose proof is postponed after the proof
of the theorem.

Lemma 1. For any 0 ≤ k ≤ T − 1,

(αk(x))x∈E0 = wk

where wk is defined in (12)

Thus we can write

δx =
T−1∑
k=0

wk(x)vk + µx (14)

So, using (13) and (14), for any n ∈ N

Ex (f(Xn)1τ>n) =<
T−1∑
k=0

wk(x)vkQ
n, f > + < µxQ

n, f >

=

T−1∑
k=0

λnkwk(x) < vk, f > + < µx(Q′)n, f >

Now, using the Markov property, for any k ≤ n,

Eµ(f(Yk)1τ>n) = Eµ(1τ>kf(Yk)PYk(τ > n− k)) (15)

= Eµ(1τ>kgk,n(f)(Yk)) (16)

where, for any y ∈ E0,

gk,n(f)(y) = f(y)Py(τ0 > n− k)
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Then,

gk,n(f)(y) = f(y) < δyQ
n−k,1 >

=

T−1∑
m=0

λn−km f(y)wm(y) < vm,1 > +f(y) < µy(Q
′)n−k,1 >

Define, for any k ∈ {0, . . . , T − 1} and n ∈ N,

gk(f) : y → f(y)wl(y)

wn(f) : y → f(y) < µy(Q
′)n,1 >

Then, using (16), for any k ≤ n,

Ex(f(Yk)1τ>n) =< δxQ
k, gk,n(f) >

=

T−1∑
l=0

λkl wl(x) < vl, gk,n(f) > + < µx(Q′)k, gk,n(f) >

= Ak,n +Bk,n + Ck,n +Dk,n

where

Ak,n =
T−1∑
l=0

T−1∑
m=0

λkl λ
n−k
m wl(x) < vl, gm(f) >< vm,1 >

Bk,n =

T−1∑
l=0

λkl wl(x) < vl, wn−k(f) >

Ck,n =
T−1∑
m=0

λn−km < vm,1 >< µx(Q′)k, gm(f) >

Dk,n =< µx(Q′)k, wn−k(f) >

Hence for any n ∈ N∗

n−1∑
k=0

Ex(f(Yk)1τ>n) =
n−1∑
k=0

Ak,n +
n−1∑
k=0

Bk,n +
n−1∑
k=0

Ck,n +
n−1∑
k=0

Dk,n (17)

i) Study of
n−1∑
k=0

Ak,n
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For any n ∈ N∗,

n−1∑
k=0

Ak,n =

T−1∑
l=0

T−1∑
m=0

(
n−1∑
k=0

λkl λ
n−k
m

)
wl(x) < vl, gm(f) >< vm,1 >

=
T−1∑
l=0

nλnl wl(x) < vl, gl(f) >< vl,1 > +
∑
l 6=m

λm

(
λnl − λnm
λl − λm

)
wl(x) < vl, gm(f) >< vm,1 >

On one side,

T−1∑
l=0

nλnl wl(x) < vl, gl(f) >< vl,1 >= nρn
T−1∑
l=0

e−
2inlπ
T wl(x) < vl, gl(f) >< vl,1 >

On the other side, for any 0 ≤ l 6= m ≤ T − 1,

λm

(
λnl − λnm
λl − λm

)
= ρe−

2imπ
T

(
ρne−

2inlπ
T − ρne−

2inmπ
T

ρe−
2ilπ
T − ρe−

2imπ
T

)

= ρne−
2imπ
T

(
e−

2inlπ
T − e−

2inmπ
T

e−
2ilπ
T − e−

2imπ
T

)
(
e−

2imπ
T

(
e−

2inlπ
T −e−

2inmπ
T

e−
2ilπ
T −e−

2imπ
T

))
n∈N

is bounded, hence

1

n
× e−

2imπ
T

(
e−

2inlπ
T − e−

2inmπ
T

e−
2ilπ
T − e−

2imπ
T

)
−→
n→∞

0

We deduce that, for any 0 ≤ l 6= m ≤ T − 1,

ρne−
2imπ
T

(
e−

2inlπ
T − e−

2inmπ
T

e−
2ilπ
T − e−

2imπ
T

)
= o(nρn)

and therefore∑
l 6=m

λm

(
λnl − λnm
λl − λm

)
wl(x) < vl, gm(f) >< vm,1 >= o(nρn)

since this is a finite sum. Hence

n−1∑
k=0

Ak,n = nρn
T−1∑
l=0

e−
2inlπ
T wl(x) < vl, gl(f) >< vl,1 > +o(nρn)
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ii) Study of
n−1∑
k=0

Bk,n

For any y ∈ E, n ∈ N and 0 ≤ l ≤ T − 1

n−1∑
k=1

λkl wn−k(f)(y) = f(y) < µy

(
n−1∑
k=0

λkl (Q
′)n−k

)
,1 >

= f(y) < µyQ
′(λlIK −Q′)−1(λnl IK − (Q′)n),1 >

where IK is the K ×K-identity matrix. For any 0 ≤ l ≤ T − 1 and n ∈ N,

λnl Ik − (Q′)n = ρn(e
2iπnl
T Ik − ρ−n(Q′)n)

and (e
2iπnl
T Ik − ρ−n(Q′)n)n∈N is bounded since the spectral radius of Q′ is

smaller than ρ. Hence

1

n

(
e

2iπnl
T Ik − ρ−n(Q′)n

)
−→
n→∞

0

where 0 is understood as the zero matrix, and we deduce that

< µyQ
′(λlIK −Q′)−1(λnl IK − (Q′)n),1 >= o(nρn)

As a result, for any n ∈ N,

n−1∑
k=1

λkl wn−k(f)(y) = o(nρn)

Hence for any n ∈ N

n−1∑
k=0

Bk,n =
T−1∑
l=0

wl(x) < vl,
n−1∑
k=0

λkl wn−k(f) >= o(nρn)

iii) Study of
n−1∑
k=0

Ck,n

In the same way as
n−1∑
k=0

Bk,n,

n−1∑
k=0

Ck,n =

n−1∑
k=0

T−1∑
m=0

λn−km < vm,1 >< µx(Q′)k, gm(f) >

=

T−1∑
m=0

< vm,1 >< µx

(
n−1∑
k=0

λn−km (Q′)k

)
, gm(f) >

13



For any 0 ≤ m ≤ T − 1 and n ≥ 1,

n−1∑
k=0

λn−km (Q′)k = λm × (λmIK −Q′)−1(λnmIK − (Q′)n)

We already showed that for any 0 ≤ m ≤ T − 1 and n ≥ 1

(λmIK −Q′)−1(λnmIK − (Q′)n) = o(nρn)

Finally,
n−1∑
k=0

Ck,n = o(nρn)

iv) Study of
n−1∑
k=0

Dk,n

Finally, let us denote by (q′)
(n)
i,j , for i, j ∈ {1, . . . ,K − T} and n ∈ N, the

coefficient of (Q′)n located at the ith row and the jth column. Then for any
n ∈ N

n−1∑
k=0

Dk,n =
∑
i,j,l,m

µx(j)f(i)µi(m)

(
n−1∑
k=0

(q′)
(n−k)
m,l (q′)

(k)
i,j

)
(18)

Let i, j, l,m ∈ {1, . . . ,K}. By definition of the matrix Q′, the spectral radius
of Q′ is strictly smaller than ρ. We deduce from this

(q′)
(n)
i,j = o(ρn), (q′)

(n)
m,l = o(ρn) (19)

In particular there is a positive number C such that for any n ∈ N and
m, l ∈ {1, . . . ,K},

(q′)
(n−k)
m,l ≤ Cρn−k

Hence,

n−1∑
k=0

(q′)
(n−k)
m,l (q′)

(k)
i,j ≤ C

n−1∑
k=0

ρn−k(q′)
(k)
i,j (20)

= Cnρn

(
1

n

n−1∑
k=1

ρ−k(q′)
(k)
i,j

)
(21)

However, by (19), ρ−nq
(n)
i,j → 0 when n tends to infinity and using Cesaro’s

lemma,

1

n

n−1∑
k=0

ρ−k(q′)
(k)
i,j −→n→∞ 0

14



Thus using (18) and (21), we deduce that

n−1∑
k=0

Dk,n = o(nρn)

Hence, gathering all these results and using (17),

n−1∑
k=0

Ex(f(Yk)1τ>n) = nρn
T−1∑
l=0

e−
2inlπ
T wl(x) < vl, gl(f) >< vl,1 > +o(nρn)

(22)
However we have for any l ∈ {0, . . . , T − 1}

< vl, gl(f) > =
K∑
j=1

f(j)vl(j)wl(j)

=

T−1∑
j=0

∑
x∈Cj

f(x)vl(x)wl(x)

=
T−1∑
j=0

∑
x∈Cj

f(x)e−i
2πjl
T ν(x)ei

2πjl
T ξ(x)

=< v0, g0(f) >

As a result,

Ex

(
n−1∑
k=0

f(Yk)1τ>n

)
= nρn < v0, g0(f) >

T−1∑
l=0

e−
2inlπ
T wl(x) < vl,1 > +o(nρn)

Now we prove the lemma 1 quoted in the previous proof.

Proof of the lemma 1. Let us start by proving that αl is a right-eigenvector
associated to λl. Since Q is a real matrix, it is equivalent to show that αl is
a right-eigenvector associated to λl.
First remind that αl is defined by the relations

δk =
T−1∑
l=0

αl(k)vl + δ′k

15



for any k ∈ E0 and with δ′k ∈ Span⊥(v0, . . . , vT−1). This implies for any k

< δk, vm >=

T−1∑
l=0

αl(k) < vl, vm >

or, in other words, < δk, v0 >
...

< δk, vT−1 >

 =

 < v0, v0 > . . . < vT−1, v0 >
...

. . .
...

< v0, vT−1 > . . . < vT−1, vT−1 >


 α0(k)

...

αT−1(k)


Denote by A the matrix

A =

 < v0, v0 > . . . < vT−1, v0 >
...

. . .
...

< v0, vT−1 > . . . < vT−1, vT−1 >


A is simply the Gram’s matrix of the basis (vi)0≤i≤T−1. Thus the determi-
nant det(A) is positive and for any x ∈ E0

αl(x) =
1

det(A)

∣∣∣∣∣∣∣
< v0, v0 > . . . < δx, v0 > . . . < vT−1, v0 >

...
. . .

...
. . .

...
< v0, vT−1 > . . . < δx, vT−1 > . . . < vT−1, vT−1 >

∣∣∣∣∣∣∣
where the column (< δx, v0 >, . . . , < δx, vT−1 >)T is the l-th columns of the
matrix. We want to show now that αl is a right-eigenvector associated to
λl, that is

∀v ∈ CK , < v,Qαl >= λl < v, αl > (23)

In fact it is enough to show (23) when v is one of left-eigenvectors and when
v ∈ Span⊥(v0, . . . , vT−1). In the case where v = vk for k ∈ {0, . . . , T − 1}

< vk, αl > =
K∑
j=1

vk(j)
1

det(A)

∣∣∣∣∣∣∣
< v0, v0 > . . . < δj , v0 > . . . < vT−1, v0 >

...
. . .

...
. . .

...
< v0, vT−1 > . . . < δj , vT−1 > . . . < vT−1, vT−1 >

∣∣∣∣∣∣∣
=

1

det(A)

∣∣∣∣∣∣∣
< v0, v0 > . . . < vk, v0 > . . . < vT−1, v0 >

...
. . .

...
. . .

...
< v0, vT−1 > . . . < vk, vT−1 > . . . < vT−1, vT−1 >

∣∣∣∣∣∣∣
=

{
1 if l = k
0 otherwise

16



We deduce from this

< vk, Qαl >= λl < vk, αl >, ∀ 0 ≤ k ≤ T − 1

Finally, for any v ∈ Span(v0, . . . , vT−1)
⊥,

< v, αl >=
1

det(A)

∣∣∣∣∣∣∣
< v0, v0 > . . . 0 . . . < vT−1, v0 >

...
. . .

...
. . .

...
< v0, vT−1 > . . . 0 . . . < vT−1, vT−1 >

∣∣∣∣∣∣∣ = 0

Thus we have
< v,Qαl >= 0 = λl < vk, αl >

because tQv ∈ Span(v0, . . . , vT−1)
⊥.

Hence for each k ∈ {0, . . . , T − 1}, there is βk ∈ C such that αk = βkwk
(where wk is defined at the beginning of the subsection). We will show that
βk = β0 = 1 for any k.

Remark that A can be written as
T∑
i=1
ai−1Pσi where Pσi is the permutation

matrix of σi where σi = (i i+1 . . . i−2 i−1) and a0 > 0 and a1, . . . , aT−1 ∈
C. In other words, A is of the following shape

A =


a0 a1 a2 . . . aT−1
aT−1 a0 a1 . . . aT−2

...
...

. . .
...

a1 a2 a3 . . . a0


with a0 > 0 and a1, . . . , aT−1 ∈ CT−1. Moreover, since 1 ∈ C0, < δ1, vl >=<
δ1, v0 >= ν1 for any l ∈ {0, . . . , T−1}. As a result, for any l ∈ {0, . . . , T−1},

det(A)αl(1) =

∣∣∣∣∣∣∣
a0 . . . ν1 . . . aT−1
...

. . .
...

. . .
...

a1 . . . ν1 . . . a1

∣∣∣∣∣∣∣ (24)

=

∣∣∣∣∣∣∣
ν(1) al+1 . . . . . . al−1

...
...

. . .
. . .

...
ν(1) al+2 . . . . . . al

∣∣∣∣∣∣∣ (25)

=

∣∣∣∣∣∣∣
ν(1) a1 . . . . . . aT−1

...
...

. . .
. . .

...
ν(1) a2 . . . . . . a0

∣∣∣∣∣∣∣ (26)

= det(A)α0(1) (27)
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Indeed, from (24) to (25), we applied a circular permutation for the columns
in order to put the vector t(ν(1), . . . , ν(1)) at the first column, and the
determinant stays the same after this transformation. From (25) to (26),
we did a circular permutation on the rows, which does not affect either the
determinant.
We deduce from this equality that βk = β0 for any k ∈ {0, . . . , T−1} because
wk(1) = w0(1). Concerning the fact that β0 = 1, remark that

K∑
i=1

ν(i)α0(i) =
K∑
i=1

v0(i)α0(i)

=
1

det(A)

∣∣∣∣∣∣∣
< v0, v0 > . . . < vT−1, v0 >

...
. . .

...
< v0, vT−1 > . . . < vT−1, vT−1 >

∣∣∣∣∣∣∣
= 1

And
K∑
i=1

ν(i)α0(i) = β0

K∑
i=1

ν(i)ξ(i) = 1

The statement of Theorem 1 is meaningful provided the coefficient of
the leading term ρn is not equal to 0. In the following proposition we prove
that this coefficient is actually not 0.

Proposition 5. For any n ∈ N and any x

T−1∑
l=0

e−
2inlπ
T < wl, δx >< vl,1 >6= 0

Proof. Let x ∈ E0. Then there exists k ∈ {0, . . . , T − 1} such that x ∈ Ck.

18



Thus, for any n ∈ N,

T−1∑
l=0

e−
2inlπ
T wl(x) < vl,1 > =

T−1∑
l=0

e−
2i(n+k)lπ

T ξ(x)

T−1∑
j=0

∑
y∈Cj

e
2iπlj
T ν(y)


=

T−1∑
j=0

∑
y∈Cj

ξ(x)ν(y)

(
T−1∑
l=0

e−
2iπ(n+k−j)l

T

)
= T

∑
T |n+k−j

∑
y∈Cj

ξ(x)ν(y)

+
∑

T -n+k−j

∑
y∈Cj

ξ(x)ν(y)e
iπ(n+k−j)(T−1)

T
sin(π(n+ k − j))

sin(π(n+k−j)T )︸ ︷︷ ︸
=0

= T
∑

T |n+k−j

∑
y∈Cj

ξ(x)ν(y) > 0

4.2 Quasi-ergodic distribution for the classical non-moving
sense in the general case

Now assume that the sub-transition matrix Q is not necessarily irreducible.
For each x ∈ {1, . . . ,K}, we denote by Dx the subset of {1, . . . ,K} defined
by

Dx := {y ∈ {1, . . . ,K} : ∃n,m ∈ N,Px(Yn = y) > 0 and Py(Ym = x) > 0}

It is well-known that (Dx)x∈{1,...,K} are equivalence classes. Note that, for
each x, the restriction of Y on Dx is irreducible. Thus we can associate,
for each Dx, a period Tx. We can also associate to Dx a spectral radius
ρx and some left and right-eigenvectors (vx,l)0≤l≤Tx−1 and (wx,l)0≤l≤Tx−1
constructed in the same way as in the subsection 4.1. Particularly, for
every x ∈ {1, . . . ,K}, νx := vx,0 and ξx := wx,0 are vectors whose all the
components are positive and such that < νx,1 >=< νx, ξx >= 1. We define
also, for any x,

ϕx : f →
|Dx|∑
j=1

f(j)νx(j)ξx(j)

where |Dx| is the number of elements in Dx. Now fix µ ∈ P({1, . . . ,K}).
Denote by Supp(µ) the support of µ. Then we can define

B = {x ∈ {1, . . . ,K} : Supp(µ) ∩Dx 6= ∅}
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ρmax = max
x∈B

ρx

and we define Bmax as follows

Bmax = {x ∈ B : ρx = ρmax}

We set the following hypothesis

Hypothesis 1. There exists xmax ∈ {1, . . . ,K} such that

Bmax = Dxmax

Under this hypothesis, the following notation will be used

νmax = νxmax (28)

ξmax = ξxmax (29)

ϕmax = ϕxmax (30)

In all what follows, we have to keep in mind that the definition of Bmax
implicitly depends on the initial distribution µ (more precisely on the sup-
port of µ).
The following statement explains therefore that the quasi-ergodic distribu-
tion exists if the Hypothesis 1 holds.

Theorem 2. Let µ ∈ P({1, . . . ,K}). Then, if the Hypothesis 1 holds,
the following convergence holds for any measurable bounded function f :
{1, . . . ,K} → R,

Eµ

(
1

n

n−1∑
k=0

f(Yk)|τ > n

)
−→
n→∞

ϕmax(f)

Proof. According to Proposition 4, giving the fact that Y is irreducible on
each Dx, we have for any x ∈ {1, . . . ,K}

Ex

(
1

n

n−1∑
k=0

f(Yk)1τ>n

)
= ρnxϕx(f)

T−1∑
l=0

e−
2inlπ
Tx < wx,l, δx >< vx,l,1 > +o(ρnx)

(31)
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Thus, for any µ ∈ P(E)

Eµ

(
1

n

n−1∑
k=0

f(Yk)|τ > n

)
=

K∑
j=1

µ(j)Ej
(

1
n

n−1∑
k=0

f(Yk)1τ>n

)
K∑
j=1

µ(j)Pj(τ > n)

=

K∑
j=1

µ(j)ρnj ϕj(f)
Tj−1∑
l=0

e
− 2inlπ

Tj < wj,l, δx >< vj,l,1 > +o(ρnj )

K∑
j=1

µ(j)ρnj

Tj−1∑
l=0

e
− 2inlπ

Tj < wj,l, δx >< vj,l,1 > +o(ρnj )

=

∑
j∈Bmax

ϕj(f)µ(j)
Tj−1∑
l=0

e
− 2inlπ

Tj < wj,l, δx >< vj,l,1 > +o(1)

∑
j∈Bmax

µ(j)
Tj−1∑
l=0

e
− 2inlπ

Tj < wj,l, δx >< vj,l,1 > +o(1)

=

ϕmax(f)
∑

j∈Bmax
µ(j)

Tj−1∑
l=0

e
− 2inlπ

Tj < wj,l, δx >< vj,l,1 > +o(1)

∑
j∈Bmax

µ(j)
Tj−1∑
l=0

e
− 2inlπ

Tj < wj,l, δx >< vj,l,1 > +o(1)

Then using Proposition 5, we can conclude

Eµ

(
1

n

n−1∑
k=0

f(Yk)|τ > n

)
−→
n→∞

ϕmax(f)

4.3 Quasi-ergodic distribution with periodic moving killing
subset

In this subsection we are interested in the quasi-ergodicity of the chain
X defined in the Introduction considering that the boundaries are moving
γ-periodically. We denote by Y = (Yn)n∈N the Markov chain defined on
E × Z/γZ by

Yn = (Xn, n) (32)

Y is therefore a Markov chain defined on a finite space state, which is ir-
reducible if and only if gcd(T (X), γ) = 1, where T (X) is the period of
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(Xn)n∈N. If the chain Y is actually irreducible, the associated period is

T = LCM(T (X), γ)

where LCM(·, ·) refers to the least common multiple.
Moreover we have

τ = inf{n ≥ 0 : Xn ∈ An} = inf{n ≥ 0 : Yn ∈ ∂}

with
∂ := {(x, k) : x ∈ Ak}

Remark that ∂ is a non moving killing subset for the chain Y . Thus we can
apply theorem 2 to the process Y which yields the following theorem

Theorem 3. Let µ ∈ P(E0). Assume that (An)n∈N is periodic and Y
defined in (32) satisfies the Hypothesis 1. Then, for any measurable bounded
function f ,

Eµ

(
1

n

n−1∑
k=0

f(Xk)|τ > n

)
−→
n→∞

∑
(x,y)∈E×Z/γZ−∂

f(x)νmax(x, y)ξmax(x, y)

where νmax and ξmax are the probability measures defined in (28) and (29)
relatively to Y .

We can also give the following corollary which requires assumptions on
X and (An)n∈N.

Corollary 1. Assume that (An)n∈N is γ-periodic and that gcd(T, γ) = 1
(where T is the period of X). Then there exists η ∈ P(E) such that, for any
µ ∈ P(E0) and any f bounded measurable,

Eµ

(
1

n

n−1∑
k=0

f(Xk)|τ > n

)
−→
n→∞

∫
fdη

Proof of the theorem 3. It is enough to apply Theorem 2 to the chain Y
defined on (32) and to deduce the results on X thanks to the following
equality

Eµ

(
1

n

n−1∑
k=0

f(Xk)|τ > n

)
= Eµ⊗δ0

(
1

n

n−1∑
k=0

f̃(Yk)|τ > n

)
, ∀n ≥ 1

where f̃ is the projection on the first component.
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5 Existence of Q-process with boundaries moving
periodically

In this section, we are interested in the Q-process, which can be interpreted
as the law of the process X conditioned never to be killed by the moving
boundary. As before, we still consider that the boundary moves periodically
period γ.
To show the existence of the Q-process, we will consider again the Markov
chain Y defined in (32), that is defined by

Yn = (Xn, n), ∀n ∈ N

and we take back the notation introduced in subsection 4.2 associated to Y .
The following statement ensures the existence of a Q-process even when
the boundary moves. However, it is interesting to observe that we lose
the homogeneity of the Q-process because of the movement of the killing
boundary.

Theorem 4. For any n ∈ N and any x ∈ E0, the probability measure Qx

defined by

Qx(X1 ∈ ·, . . . , Xn ∈ ·) = lim
m→∞

Px(X1 ∈ ·, . . . , Xn ∈ ·|τ > m)

is well-defined and, under the probability Qx, (Xn)n∈N is a time-inhomogeneous
Markov chain such that for any n ∈ N, for any (y, z) ∈ En−1 × En

Qx(Xn = z|Xn−1 = y) =
ξx(z, n)

ρxξx(y, n− 1)
Py(X1 = z)

Proof. For any m,n ∈ N, for any f1, . . . , fn measurable bounded functions
and for any x ∈ E0,

Ex(f1(Y1) . . . fn(Yn)|τ > n+m) =
Ex(f1(Y1) . . . fn(Yn)1τ>n+m)

Px(τ > n+m)
(33)

= Ex
(
f1(Y1) . . . fn(Yn)

1τ>nPYn(τ > m)

Px(τ > n+m)

)
(34)

According to the equality (31) applied to the function equal to 1, for any
y ∈ E × Z/γZ− ∂ and n ∈ N,

Py(τ > n) = ρny

Ty−1∑
l=0

e
− 2inlπ

Ty < wy,l, δy >< vy,l,1 > +o(ρny )
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Thus, using this in (34),

Ex(f1(Y1) . . . fn(Yn)|τ > m+ n) (35)

= Ex

f1(Y1) . . . fn(Yn)

1τ>nρ
m
Yn

TYn−1∑
l=0

e
− 2imlπ

TYn < wYn,l, δYn >< vYn,l,1 > +o(ρmYn)

ρn+mx

Tx−1∑
l=0

e−
2i(n+m)lπ

Tx < wx,l, δx >< vx,l,1 > +o(ρn+mx )


(36)

= Ex

f1(Y1) . . . fn(Yn)

1τ>nρ
m
x

Tx−1∑
l=0

e−
2imlπ
Tx < wx,l, δYn >< vx,l,1 > +o(ρmx )

ρn+mx

Tx−1∑
l=0

e−
2i(n+m)lπ

Tx < wx,l, δx >< vx,l,1 > +o(ρn+mx )


(37)

= Ex

f1(Y1) . . . fn(Yn)

1τ>n

Tx−1∑
l=0

e−
2imlπ
Tx < wx,l, δYn >< vx,l,1 > +o(1)

ρmx
Tx−1∑
l=0

e−
2i(n+m)lπ

Tx < wx,l, δx >< vx,l,1 > +o(ρmx )


(38)

The passage from (36) to (37) is due to the fact that, for any n ∈ N, Yn ∈ Dx

almost surely and the quantities Tx, ρx, wx,l and vx,l depends only on Dx.
Since the restriction of the chain Y on Dx is irreducible, we can construct
as in the subsection 4.1 some clusters (Cj)0≤j≤Tx−1 such that x ∈ C0 and

Px(Yk+nTx ∈ Ck, τ > k + nTx) = 1, ∀k ∈ {0, . . . , Tx − 1},∀n ∈ N

For any y ∈ Dx, denote by j(y) the integer such that y ∈ Cj(y). Then
we deduce from the equality (12) in the subsection 4.1 that for any y ∈
E × Z/γZ− ∂ and n ∈ N,

e−
2inlπ
Tx < wx,l, δy >= e−

2iπ(n+j(y))l
Tx ξx(y)

Thus, according to (38) and the previous equality,

Ex(f1(Y1) . . . fn(Yn)|τ > m+ n)

= Ex

f1(Y1) . . . fn(Yn)

1τ>nξx(Yn)

(
Tx−1∑
l=0

e−
2iπ(m+j(Yn))l

Tx < vx,l,1 > +o(1)

)
ρnxξx(x)

(
Tx−1∑
l=0

e−
2iπ(m+n+j(x))l

Tx < vx,l,1 > +o(1)

)
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However, for any n ∈ N,

j(Yn) = j(x) + n mod Tx, a.s.

and for any m,n ∈ N,

Tx−1∑
l=0

e−
2iπ(m+n+j(x))l

Tx < vx,l,1 >6= 0

Since the state space E × Z/γZ is finite, we may first consider function
fi(y) = 1y=xi , so that quantities in the ratio except 1τ>n are fixed. This
justifies thta we can exchange the expectation and the limit as n → ∞ in
the previous expression. We deduce that,

Ex(f1(Y1) . . . fn(Yn)|τ > m+ n) −→
m→∞

Ex
(
f1(Y1) . . . fn(Yn)

1τ>nξx(Yn)

ρnxξx(x, 0)

)
The statement on X is obtained using projection functions and we can
deduce from it the transition kernel of the Q-process.

6 Example : discrete-time random walk

We shall illustrate the previous results by looking at a discrete-time random
walk. Let p ∈]0, 1[. We denote by (Mp

n)n∈N the Markov chain defined on Z
such that

P(Mp
n+1 = Mp

n + 1|Mp
n) = 1− p

P(Mp
n+1 = Mp

n − 1|Mp
n) = p

Before dealing with the quasi-ergodicity with moving boundaries, let us
recall some properties about quasi-stationarity concerning random walks.
For any K ≥ 1 we define

TK = inf{n ≥ 0 : Mp
n ∈ (−∞, 0] ∪ [K + 1,∞)}

The sub-Markovian transition matrix associate to (Mp
n∧TK )n∈N is the matrix

QK ∈MK(R) defined by :

QK =



0 1− p 0 . . . 0 0
p 0 1− p . . . 0 0
0 p 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1− p
0 0 0 . . . p 0


25



For any K ≥ 1, denote by PK(X) the characteristic polynomial of QK .
Using standard algebraic manipulations, one can show that for any K ≥ 1,
the following recurrence relation is satisfied

PK+2(X) = −XPK+1(X)− p(1− p)PK(X)

with P1(X) = −X and P2(X) = X2 − p(1− p). We set P0(X) = 1.
For any K ≥ 0, define

UK(X) =

(
− 1√

p(1− p)

)K
PK

(
2
√
p(1− p)X

)
Then the following equation is satisfied

UK+2(X) = 2XUK+1(X)− UK(X)

for which U0(X) = 1 and U1(X) = 2X. In other words, the sequence
(UK)K≥0 are the Chebyshev’s polynomials of the second kind and we have
for any θ ∈ R

UK(cos(θ)) =
sin((K + 1)θ)

sin(θ)

The set of roots of UK , hence of PK , is thus well-known. It follows

Sp(QK) =

{
λj := 2

√
p(1− p) cos

(
jπ

K + 1

)
: j ∈ {1, . . . ,K}

}
We are interested now in the eigenvectors of QK .

Proposition 6. Let K ≥ 1. Then, for any j ∈ {1, . . . ,K}, Ker(QK −
λjIk) = Span(xj) where

xj(i) =

(
− 1

1− p

)i−1
Pi−1(λj) =

(√
p

1− p

)i−1 sin
(
ijπ
K+1

)
sin
(

jπ
K+1

) , ∀i ∈ {1, . . . ,K}
Proof. Let λ ∈ Sp(QK). We want to find all the eigenvectors x = (x(i))1≤i≤K
associated to λ such that x(1) = 1. We will prove the proposition by double
induction.

Base case: According to the relation QKx = λx, we have

λx(1) = (1− p)x(2) (39)
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Having x(1) = 1, we will have therefore x(2) = 2λ = − 1
1−pP1(λ), which

conclude the base case

Inductive step: Let i ∈ {3, . . . ,K − 1}. We assume that the equality
is satisfied for i− 1 and i− 2, so we have

x(i− 2) =

(
− 1

1− p

)i−3
Pi−3(λ)

x(i− 1) =

(
− 1

1− p

)i−2
Pi−2(λ)

Using λx = QKx,

λx(i− 1) = px(i− 2) + (1− p)x(i)

So

x(i) =
1

1− p
(λx(i− 1)− px(i− 2))

=
1

1− p

(
λ

(
− 1

1− p

)i−2
Pi−2(λ)− px(i− 1)

)

=

(
− 1

1− p

)i−1
(−λPi−2(λ)− p(1− p)Pi−3(λ))

=

(
− 1

1− p

)i−1
Pi−1(λ)

which concludes the proof.

The previous proposition gives us left and right eigenvectors of QK : if
we denote by (vi)1≤i≤K (respectively (wi)1≤i≤K) the left (respectively right)
eigenvectors satisfying viQK = λivi (respectively QKwi = λiwi), then

vi(j) =

(
1− p
p

)j−1 sin
(
ijπ
K+1

)
sin
(

iπ
K+1

)
wi(j) =

(
p

1− p

)j−1 sin
(
ijπ
K+1

)
sin
(

iπ
K+1

)
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In particular, considering the spectral radius λ1, the quasi-stationary distri-
bution ν and the right-eigenvector ξ associated to λ1 satisfying < ν, ξ >= 1
are as follows:

ν(j) =

(
1−p
p

)j−1
sin
(

jπ
K+1

)
K∑
k=1

(
1−p
p

)k−1
sin
(

kπ
K+1

)

ξ(j) =

K∑
k=1

(
1−p
p

)k−1
sin
(

kπ
K+1

)
K∑
k=1

sin2
(

kπ
K+1

) (
p

1− p

)j−1
sin

(
jπ

K + 1

)

We are interested now in moving boundaries. Let N ≥ 1 and consider the
simplest case where (An)n∈N is defined by

An =

{
(−∞, 0] ∪ [2N,∞) if n is even
(−∞, 1] ∪ [2N − 1,∞) if n is odd

(40)

Recall the previous notation

Y p
n = (Mp

n∧τ0 , n) (41)

with n ∈ Z/2Z. The chain is not irreducible (if Mp
0 is even, then for any n,

Mp
n have the same parity as n). It admits exactly two irreducible subsets:

1. P = {(x, y) ∈ E : x+ y is even}

2. I = {(x, y) ∈ E : x+ y is odd}

But, as we can see in Figure 1, the chain Y p behaves as a random walk on
each irreducible subsets:

1. On P, Y p has the same behavior as a random walk on Z starting from
[2, 2N − 2] absorbed by {1, 2N − 1}.

2. On I, Y p has the same behavior as a random walk on Z starting from
[1, 2N − 1] absorbed by {0, 2N}.

Denote by Y p
P (respectively Y p

I ) the Markov chain such that for any µ ∈ P(P)
(respectively P(I))

Pµ(Y p
1 ∈ ·) = Pµ((Y p

P)1 ∈ ·) (respectively Pµ(Y p
1 ∈ ·) = Pµ((Y p

I )1 ∈ ·))
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0

1

0 1 2 3 4 5 6

Figure 1: The black dots represent the states in ∂. The irreducible subsets
P and I are represented respectively by the dashed path and the filled path.
On each path, we see that Y p behaves as a random walk.

Let µ ∈ P(E × Z/2Z). Then there are λ ∈ [0, 1] and µP , µI ∈ P(P)×P(I)
such that

µ = λµP + (1− λ)µI

Hence we see that two cases are possible

Proposition 7. 1. if λ = 1, Bmax = P. Then ρmax = 2
√
p(1− p) cos

(
π

2(N−1)

)
,

and

Eµ

(
1

n

n−1∑
k=0

f(Mp
k )|τ > n

)
−→
n→∞

2N−3∑
j=1

f(j)
sin2

(
jπ

2(N−1)

)
2N−3∑
k=1

sin2
(

kπ
2(N−1)

)

2. if λ 6= 1, Bmax = I. Then ρmax = 2
√
p(1− p) cos

(
π
2N

)
, and

Eµ

(
1

n

n−1∑
k=0

f(Mp
k )|τ > n

)
−→
n→∞

2N−1∑
j=1

f(j)
sin2

(
jπ
2N

)
2N−1∑
k=1

sin2
(
kπ
2N

)
When (An)n∈N is moving as (40), the quasi-ergodic distribution is the

same as the non-moving quasi-ergodic distribution for one random walk
absorbed at {0, 2K} except when the support of the initial distribution is
included in the set of even numbers. As a matter of fact, if the chain starts
from the set of even numbers, it can be absorbed only by {1, 2N − 1}. Re-
mark also that the quasi-ergodic distribution of one random walk does not
depend on p anymore.
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We have also the existence of a Q-process according to theorem 4 which
is the time-inhomogeneous Markov chain (Zpn)n∈N defined by

Px(Zpn = y ± 1|Zpn−1 = y) =
1

2

√
p

1− p

sin
(
(y±1)π
K(y,n)

)
sin
(

yπ
K(y,n)

)
cos
(

π
K(y,n)

)
with K(y, n) = 2N − 1 + (−1)n+y.
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