
HAL Id: hal-01566393
https://hal.science/hal-01566393v8

Submitted on 23 Oct 2017 (v8), last revised 17 Oct 2018 (v14)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Strong Types for Direct Logic
Carl Hewitt

To cite this version:
Carl Hewitt. Strong Types for Direct Logic. Symposium on Logic and Collaboration for Intelligent
Applications, Mar 2017, Stanford, United States. �hal-01566393v8�

https://hal.science/hal-01566393v8
https://hal.archives-ouvertes.fr

1

Strong Types for Direct Logic

Carl Hewitt

http://plus.google.com/+CarlHewitt-StandardIoT

This article is dedicated to Alonzo Church, Richard Dedekind,

Bertrand Russell, Ludwig Wittgenstein. and Ernst Zermelo.

Abstract

This article follows on the introductory article “Direct Logic for Intelligent

Applications” [Hewitt 2017a]. Strong Types enable new mathematical theorems

to be proved including the Formal Consistency of Mathematics. Also, Strong

Types are extremely important in Direct Logic because they block all known

paradoxes[Cantini and Bruni 2017]. Blocking known paradoxes makes Direct

Logic safer for use in Intelligent Applications by preventing security holes.

Inconsistency Robustness is performance of information systems with pervasively

inconsistent information. Inconsistency Robustness of the community of

professional mathematicians is their performance repeatedly repairing

contradictions over the centuries. In the Inconsistency Robustness paradigm,

deriving contradictions has been a progressive development and not “game

stoppers.” Contradictions can be helpful instead of being something to be “swept

under the rug” by denying their existence, which has been repeatedly attempted

by authoritarian theoreticians (beginning with some Pythagoreans). Such denial

has delayed mathematical development. This article reports how considerations

of Inconsistency Robustness have recently influenced the foundations of

mathematics for Computer Science continuing a tradition developing the

sociological basis for foundations.1

Mathematics here means the common foundation of all classical mathematical

theories from Euclid to the mathematics used to prove Fermat's Last [McLarty

2010]. Direct Logic provides categorical axiomatizations of the Natural Numbers,

Real Numbers, Ordinal Numbers, Set Theory, and the Lambda Calculus meaning

that up a unique isomorphism there is only one model that satisfies the respective

axioms. Good evidence for the consistency Classical Direct Logic derives from

how it blocks the known paradoxes of classical mathematics. Humans have spent

millennia devising paradoxes for classical mathematics.

https://plus.google.com/+CarlHewitt-StandardIoT

2

Having a powerful system like Direct Logic is important in computer science

because computers must be able to formalize all logical inferences (including

inferences about their own inference processes) without requiring recourse to

human intervention. Any inconsistency in Classical Direct Logic would be a

potential security hole because it could be used to cause computer systems to

adopt invalid conclusions.

After [Church 1934], logicians faced the following dilemma:

 1st order theories cannot be powerful lest they fall into inconsistency

because of Church’s Paradox.

 2nd order theories contravene the philosophical doctrine that theorems

must be computationally enumerable.

The above issues can be addressed by requiring Mathematics to be strongly typed

using so that:

 Mathematics self proves that it is “open” in the sense that theorems are

not computationally enumerable.2

 Mathematics self proves that it is formally consistent.3

 Strong mathematical theories for Natural Numbers, Ordinals, Set

Theory, the Lambda Calculus, Actors, etc. are inferentially decidable,

meaning that every true proposition is provable and every proposition

is either provable or disprovable. Furthermore, theorems of these

theories are not enumerable by a provably total procedure.

Mathematical Foundation for Computer Science

Computer Science brought different concerns and a new perspective to

mathematical foundations including the following requirements:4 [Arabic numeral

superscripts refer to endnotes at the end of this article]

 provide powerful inference machinery so that arguments (proofs) can be

short and understandable and all logical inferences can be formalized

 establish standard foundations so people can join forces and develop

common techniques and technology

 incorporate axioms thought to be consistent by the overwhelming

consensus of working professional mathematicians, e.g., natural numbers

[Dedekind 1888], real numbers [Dedekind 1888], ordinals, sets of integers,

lambda calculus, reals, etc.

3

 facilitate inferences about the mathematical foundations used by computer

systems.

Sociology of Foundations

“Faced with the choice between changing one’s mind and proving that

there is no need to do so, almost everyone gets busy on the proof.”

John Kenneth Galbraith [1971 pg. 50]

“Max Planck, surveying his own career in his Scientific Autobiography

[Planck 1949], sadly remarked that ‘a new scientific truth does not

triumph by convincing its opponents and making them see the light, but

rather because its opponents eventually die, and a new generation grows

up that is familiar with it.’ ” [Kuhn 1962]

The inherently social nature of the processes by which principles and propositions

in logic are produced, disseminated, and established is illustrated by the following

issues with examples:5

 The formal presentation of a demonstration (proof) has not led

automatically to consensus. Formal presentation in print and at several

different professional meetings of the extraordinarily simple proof in this

paper have not lead automatically to consensus about the theorem that

“Mathematics proves that it is formally consistent”. New results can sound

crazy to those steeped in conventional thinking. Paradigm shifts often

happen because conventional thought is making assumptions taken as

dogma. As computer science continues to advance, such assumptions can

get in the way and have to be discarded.

 There has been an absence of universally recognized central logical

principles. Disputes over the validity of the Principle of Excluded Middle

led to the development of Intuitionistic Logic.

 There are many ways of doing logic. One view of logic is that it is about

truth; another view is that it is about argumentation (i.e. proofs).6

 Argumentation and propositions have be variously (re-)connected and

both have been re-used. Church's paradox [Church 1934] is that assuming

theorems of mathematics are computationally enumerable leads to

contradiction. In this article, Church’s Paradox is transformed into the

fundamental principle that “Mathematics is Open” (i.e. it is a theorem of

4

mathematics that the proofs of mathematics are not computationally

enumerable).i

 New technological developments have cast doubts on traditional logical

principles. The pervasive inconsistency of modern large-scale information

systems has cast doubt on some logical principles, e.g., Excluded Middle.7

 Political actions have been taken against views differing from the

establishment theoreticians. According to [Kline 1990, p. 32], Hippasus

was literally thrown overboard by his fellow Pythagoreans “…for having

produced an element in the universe which denied the…doctrine that all

phenomena in the universe can be reduced to whole numbers and their

ratios.” Fearing that he was dying and the influence that Brouwer might have

after his death, Hilbert fired8 Brouwer as an associate editor of

Mathematische Annalen because of “incompatibility of our views on

fundamental matters”9 e.g., Hilbert ridiculed Brouwer for challenging the

validity of the Principle of Excluded Middle. [Gödel 1931] results were for

Principia Mathematica as the foundation for the mathematics of its time

including the categorical axiomatization of the natural numbers. In face of

Wittgenstein's devastating criticism, Gödel insinuated10 that he was crazy

and retreated to relational 1st order theory in an attempt to salvage his results.

Since theoreticians found it difficult to prove anything significant about

practical mathematical theories, they cut them down to unrealistic relational

1st order theories where results could be proved (e.g. compactness) that did

not hold for practical mathematical theories. In the famous words of Upton

Sinclair:

“It is difficult to get a man to understand something,

when his salary depends on his not understanding it.”

Some theoreticians have ridiculed dissenting views and attempted to limit

their distribution by political means.11

i See discussion in this article.

5

Foundations with strong parameterized types

“Everyone is free to elaborate [their] own foundations. All that is required of

[a] Foundation of Mathematics is that its discussion embody absolute rigor,

transparency, philosophical coherence, and addresses fundamental

methodological issues.”12

“The aims of logic should be the creation of “a unified conceptual apparatus

which would supply a common basis for the whole of human knowledge.”

[Tarski 1940]

Note: types in Direct Logic are much stronger than constructive types with

constructive logic because Classical Direct Logic has all of the power of

Classical Mathematics.

In Direct Logic, unrestricted recursion is allowed in programs. For example,
 There are uncountably many Actors.13 For example, Real∎[] can output

any real numberi between 0 and 1 where
 Real∎[]:ℝ ≡ [(0 either 1), ⩛Postpone Real∎[]]
 where

o (0 either 1) is the nondeterministic choice of 0 or 1,
o [first, ⩛rest] is the list that begins with first and whose

remainder is rest, and
o Postpone expression delays execution of expression until

the value is needed.

 There are uncountably many propositions (because there is a different

proposition for every real number). For example,

 p[x:ℝ]:Proposition1ℝ ≡ λ[y:ℝ] (y=x)

defines a different predicate p[x] for each real number x, which holds for

only one real number, namely x.ii

Strings can be abstracted into sentences and sentences can be abstracted into

propositions that can be asserted.

i using binary representation.
ii For example (p[3])[y] holds if and only if y=3.

6

For example:

Classical Direct Logic is a foundation of mathematics for Computer Science,

which has a foundational theory (for convenience called “Mathematics”) that can

be used in any other theory. A bare turnstile is used for Mathematics so that ⊢Ψ

means that Ψ is a mathematical proposition that is a theorem of Mathematics and

Φ⊢Ψ means that Ψ can be inferred from Φ.

Direct Logic develops foundations for Mathematics by deriving sets from types

and categorical axioms for the natural numbers and ordinals.

Propositions
 e.g. ∀[n:ℕ] ∃[m:ℕ] m>n
 i.e., proposition that for every ℕ there is a larger ℕ

intuitively : For every number, there is a larger number. Sentences
 e.g. ⦅∀[n:ℕ] ⦅∃[m:ℕ] ⦅m>n⦆⦆⦆
 i.e., sentence for proposition that

 for every ℕ there is a larger ℕ

Strings
 e.g. “⦅∀[n:ℕ] ⦅∃[m:ℕ] ⦅m>n⦆⦆⦆”
 i.e., string for sentence for proposition that

 for every ℕ there is a larger ℕ

7

Mathematics self proves its own formal consistency (contra [Gödel 1931])

The following are fundamental to Mathematics14:

 Derivation by Contradiction, i.e. ├ (¬Φ⇒(Θ¬Θ)) ⇒ Φ, which says that

a proposition can be proved showing that its negation implies a

contradiction.

 A theorem can be used in a proof
i, i.e. ├ ((├ Φ)⇒Φ)

Theorem: Mathematics self proves its own formal consistencyii, i.e.,

├Consistent
Formal Derivation. Suppose to obtain a contradiction, that mathematics is

formally inconsistent, i.e., ¬Consistent. By definition of formal consistency,

there is some proposition Ψ0 such that├ (Ψ0 ¬Ψ0) which by the Theorem

Use means Ψ0¬Ψ0 , which is a contradiction. Thus, ├Consistent by

Derivation by Contradiction.

i Note that the results in [Löb 1955] do not apply because propositions in Mathematics

are strongly typed and consequently the fixed point used to establish his result does not

exist. See discussion of Löb’s Paradox in this article.
ii Note that the results in [Gödel 1931] do not apply because propositions in Mathematics

are strongly typed and consequently the fixed point used construct Gödel’s proposition

I’mUnprovable does not exist in Mathematics. See the critique of Gödel’s results in

this article.

1) Consistent // hypothesis to derive a contradiction just in this subargument

├ Consistent // axiom of Proof by Contradiction using 1) and 3)

2) ├(Ψ0Ψ0) // definition of inconsistency using 1)

3) Ψ0Ψ0 // axiom of Soundness using 2)

 Natural Deduction
i Proof of Formal Consistency of Mathematics

8

Please note the following points:

 The above argument formally mathematically proves that Mathematics is

formally consistent and that it is not a premise of the theorem that

Mathematics is formally consistent.
 Mathematics was designed for consistent theories and consequently

Mathematics can be used to prove its own formal consistency regardless

of other axioms.15

The above derivation means that “Mathematics is formally consistent” is a

theorem in Classical Direct Logic. The usefulness of Classical Direct Logic

depends crucially on the much stronger proposition that Mathematics is

inferentially consistent, i.e., that there is no proof of contradiction from the

sentences for the axioms using the inference rules of Direct Logic. Good evidence

for the inferential consistency of Mathematics comes from the way that Classical

Direct Logic avoids the known paradoxes. Humans have spent millennia devising

paradoxes.

The above self-proof of formal consistency shows that the current common

understanding that [Gödel 1931] proved “Mathematics cannot prove its own

formal consistency, if it is formally consistent” is inaccurate.16

Mathematics Self Proves that it is Open

Mathematics here means the common foundation of all classical mathematical

theories from Euclid to the mathematics used to prove Fermat's Last [McLarty

2010].i

i Consequently, Mathematics evolves and is not fixed.

9

Mathematics proves that it is open in the sense that it can prove that its theorems

cannot be computationally enumerated by a provably total procedure:

 Theorem ⊢Mathematics is Open, i.e.,

 ⊢TheoremsEnumerableByProvedTotalProcedure

Proof.i
Suppose to obtain a contradiction that

 TheoremsEnumerableByProvedTotalProcedure
Then by the definition of

TheoremsEnumerableByProvedTotalProcedure there is a deterministic

total procedure TheoremsEnumerator:[ℕ]→Proposition such that the

following hold where Total:Proposition[ℕ]→ℕ:17

 ⊢Total[TheoremsEnumerator]

 ∀[i:ℕ] ⊢TheoremsEnumerator∎[i]

 ∀[p:Proposition] (⊢p) ⇒ ∃[i:ℕ] TheoremsEnumerator∎[i]=p

A subset of the theorems enumerated by TheoremsEnumerator are those

stating that certain deterministic procedures [ℕ]→ℕ are total.

Consequently, there is a deterministic total procedure

ProvedTotalsEnumerator:([ℕ]→([ℕ]→ℕ))18, which enumerates proved

total deterministic procedures:

 ⊢Total[ProvedTotalsEnumerator]

 ∀[i:ℕ] ⊢Total[ProvedTotalsEnumerator∎[i]]

 ∀[f:([ℕ]→ℕ)] (⊢Total[f])⇒∃[i:ℕ] ProvedTotalsEnumerator∎[i]=f

ProvedTotalsEnumerator can be used to implement the deterministic total

procedure Diagonal:([ℕ]→ℕ) as follows:
 Diagonal∎[i:ℕ]:ℕ ≡ 1+ (ProvedTotalsEnumerator∎[i])∎[i]
Consequently:

 ⊢Total[Diagonal] because it is the deterministic composition of

proved total deterministic procedures.

 ⊢Total[Diagonal] because Diagonal differs from every procedure

enumerated by ProvedTotalsEnumerator.
The above contradiction completes the proof.

i This argument appeared in [Church 1934] expressing concern that the argument meant

that there is “no sound basis for supposing that there is such a thing as logic.”

10

[Franzén 2004] argued that Mathematics is inexhaustible because of inferential

undecidabilityi of mathematical theories. The above theorem that Mathematics is

open provides another independent argument for the inexhaustibility of

Mathematics.

Categoricity

“If the mathematical community at some stage in the development of

mathematics has succeeded in becoming (informally) clear about a

particular mathematical structure, this clarity can be made

mathematically exact ... Why must there be such a characterization?

Answer: if the clarity is genuine, there must be a way to articulate it

precisely. If there is no such way, the seeming clarity must be illusory ...

for every particular structure developed in the practice of mathematics,

there is [a] categorical characterization of it.”19

Classical Direct Logic is much stronger than 1st order axiomatizations of set

theory in that it provides categoricity for natural numbers ℕ, reals ℝ, ordinals O.

set theory, the lambda calculus and Actors. Categoricity is very important in

Computer Science so that there are no nonstandard elements in models of

computational systems, e.g., infinite integers and infinitesimal reals. For example,

nonstandard models cause problems in model checking if a model has specified

properties.

Natural Number Induction

The mathematical theory20 Nat categorically axiomatises the Natural Numbers

using the following induction axiom:21

 ∀[P:Proposition1ℕ] (P[0] ∀[i:ℕ] P[i]⇨P[i+1]) ⇨ ∀[i:ℕ] P[i]

i See section immediately below.

11

The other axioms of Nat are as follows:

• 0:ℕ
• ∀[i:ℕ] +1[i]:ℕ
• ∄[i:ℕ] +1[i]=0
• ∀[i,j:ℕ] +1[i]=+1[j] ⇨ i=j

Theorem: Least Element.22 For

 ∀[X:Booleanℕ] X≠{} ⇒ ∃[iX] ∀[jX] i≤j

Theorem: Finite Cardinality23

 ⊢
Nat

 ∀[X:Booleanℕ] Finite[X] ⇔ ∀[f:ℕℕ] (1to1[f, X] ⇨ Onto[f, X, X])

 where

 Finite[X:Booleanℕ]:PropositionNat ≡ ∃[i:ℕ] ∀[z∈X] z<i
where:

o 1to1[f:Xℕ, X:Booleanℕ]:PropositionNat ≡

 ∀[i1, i2X] f[i1]= f[i2] ⇨ i1=i2

o Onto[f:Xℕ, X:Booleanℕ, Y:Booleanℕ]:PropositionNat ≡

 ∀[jY] ∃[iX] f[i]=j

Definition Total[f:([ℕ]⇾ℕ)]:PropositionNat ≡ ∀[i:ℕ] ∃[j:ℕ] f∎[i]=j

Theorem ⊢
Nat

 Total[Ackermann]

 where Ackermann is defined as follows:
 Ackermann∎[i:ℕ, j:ℕ]:ℕ ≡
 i=0 �
 True ⦂ j+1,
 False ⦂ j=0 �

 True ⦂ Ackermann∎[i-1, 1]
 False ⦂ Ackermann∎[i-1, Ackermann∎[i, j-1]]

Lemma ⊢
Nat

 ∀[f:([ℕ]⇾ℕ)] PrimitiveRecursive[f]

 ⇒ ∀[x:ℕ] ∃[m:ℕ] f∎[x]<Ackermann∎[m, x]

Theorem ⊢
Nat

 PrimitiveRecursive[Ackermann]

12

Theorem Nat proves that its theorems are not enumerable by a provably total

procedure, i.e.

 ⊢
Nat

 TheoremsEnumerableByProvedTotalProcedure[Nat]

Proof:24
1. Suppose to obtain a contradiction that

 TheoremsEnumerableByProvedTotalProcedure[Nat]
Then there is a deterministic procedure

TheoremsEnumerator:[ℕ]→PropositionNat such that the following

hold where Total:PropositionNat
[ℕ]→ℕ: 25

 ⊢
Nat

 Total[TheoremsEnumerator]

 ∀[p:PropositionNat] ∃[i:ℕ] TheoremsEnumerator∎[i]=p

 ∀[i:ℕ] ⊢
Nat

 TheoremsEnumerator∎[i]

A subset of the theorems enumerated by TheoremsEnumerator are those

stating that certain deterministic procedures [ℕ]→ℕ are total.

Consequently, there is a deterministic total procedure

ProvedTotalsEnumerator:([ℕ]→([ℕ]→ℕ))26 such that the following

hold:

 ⊢Nat Total[ProvedTotalsEnumerator]

 ∀[i:ℕ] ⊢Nat Total[ProvedTotalsEnumerator∎[i]]

 ∀[f:([ℕ]→ℕ)] (⊢Nat Total[f])⇒∃[i:ℕ] ProvedTotalsEnumerator∎[i]=f

because

∀[f:([ℕ]→ℕ)] (⊢Total[f])⇒∃[i:ℕ] TheoremsEnumerator∎[i]=Total[f]

ProvedTotalsEnumerator can be used to implement the deterministic total

procedure Diagonal:([ℕ]→ℕ) as follows:
 Diagonal∎[i:ℕ]:ℕ ≡ 1+ (ProvedTotalsEnumerator∎[i])∎[i]

Consequently:

 ⊢Nat Total[Diagonal] because Diagonal is the deterministic

composition of proved total procedures.

 ⊢
Nat

 Total[Diagonal] because Diagonal differs from every

procedure enumerated by ProvedTotalsEnumerator.
The above contradiction completes the proof.

13

Theorem Nat proves that it is formally consistent:i ⊢
Nat

 Consistent[Nat]

Proof: Suppose to derive an inconsistency that Consistent[Nat] . By the

definition of formal inconsistency for Nat, there is some proposition

Ψ0:Proposition1 such that ⊢
Nat

 (Ψ0Ψ0) which can be used to infer

in Nat

that Ψ0Ψ0. The above contradiction completes the proof.

Theorem (Model Soundness of Nat): (⊢
Nat

) ⇨ ⊨

Proof: Suppose ⊢
Nat

 . The theorem immediately follows because the axioms

for the theory Nat

hold in the type ℕ.

Theorem (Categoricity of Nat):27
If X be a type satisfying the axioms for the natural numbers Nat, then there is a
unique isomorphism with ℕ. Nat is strictly
more powerful than a 1st order theory of
Natural Numbers.28

Corollary There are no infinite numbers in

models of the theory Nat , i.e.,
 ∀[X::] NatX ⇨ ∄[i:X] ∀[j:X] j<i

i Note that the results in [Gödel 1931] do not apply because propositions in

Mathematics are strongly typed and consequently the fixed point used construct

Gödel’s proposition I’mUnprovable does not exist in Mathematics. See the critique of

Gödel’s results in this article.

Richard Dedekind

14

Definition: ClosedTermsNat is all terms of Nat with no free variables.

Corollary: NatClosedTermsNat

Proof. ClosedTermsNat clearly satisfies the axioms of Nat.29

Categoricity provides the answer as to which closed terms are equal.

Theorem:30 Logical completeness of Nat

 ∀[P:Proposition1ℕ] (⊨ ∀[i:ℕ] P[i]) ⇒ ⊢
Nat

 ∀[i:ℕ] P[i]

Proof. Suppose in Nat , P:Proposition1ℕ and ⊨∀[i:ℕ] P[i]. Further

suppose to obtain a contradiction that ∀[i:ℕ] P[i]. Therefore
∃[i:ℕ] P[i] and by Existential Elimination P[i0] where i0:ℕ, which

contradicts ⊨P[i0] from the hypothesis of the theorem. Consequently,

 ⊢
Nat

∀[i:ℕ] P[i] using proof by contraction in Nat.

Although proposition has finite length, there are uncountably many

propositions. Consequently, even though every proof has finite length, there

are uncountably many proofs because there are uncountably many

propositions. Thus a proof may not be expressible as a character string because

there are uncountable many proofs. Although by the above theorem Nat is

inferentially complete, some proofs are not expressible as character strings. It

is an open problem to characterize theorems of Nat whose proofs cannot be

expressed as character strings.

Corollary. Equivalence of satisfiability and provability in Nat , i.e.,

∀[P:Proposition1ℕ] (⊨∀[i:ℕ] P[i]) ⇔ ⊢
Nat

 ∀[i:ℕ] P[i]

Theorem. Inferential Decidability of Nat , i.e.,

 ∀[P:Proposition1ℕ] (⊢
Nat

 ∀[i:ℕ] P[i]) ⊢
Nat

 ∃[i:ℕ] P[i]

Proof. Because ∀[P:Proposition1ℕ] (⊨ ∀[i:ℕ] P[i]) ⊨ ∃[i:ℕ] P[i],
the theorem follows from Equivalence of satisfiability and provability in Nat.

15

Actors

For each Actor x, x[t] is the behavior of x at time t of type Timex, where

Behavior31, where Com is the type for a communication and an outcome for a

communication received has a finite set of created Actors, a finite set of sent

communications, and a behavior for the next communication received. The

mathematical theory Act categorically axiomatises Actors using the following

axioms where ↷ is transitive and irreflexive:

• Primitive Actors
o ∀[i:ℕ] i:Actor // natural numbers are Actors
o ∀[x1,x2:Actor] [x1,x2]:Actor // a tuple of Actors is an Actor

• An Actor’s event ordering
o ∀[x:Actor, c1,c2:Com] c1≠c2 ⇒ Receivedx[c1]↷Receivedx[c2]

 Receivedx[c2]↷Receivedx[c1]
o ∀[x:Actor, c1:Com]

 ∄[c2:Com] Receivedx[c1]↷Receivedx[c2]↷Afterx[c1]

o ∀[x:Actor, c:Com] Initialx↷Receivedx[c]↷Afterx[c]
o ∀[x:Actor, c1,c2:Com]
 Finite[{c:Com | Receivedx[c1]↷Receivedx[c]↷Receivedx[c2]}]

• An Actor’s behavior change
o ∀[x:Actor, c1:Com] (∄[c2:Com] Receivedx[c2]↷Receivedx[c1])
 ⇒ x[Receivedx[c1]]=x[Initialx]
o ∀[x:Actor, c1,c2:Com]
 (∄[c3:Com] Afterx[c1]↷Receivedx[c3]↷Receivedx[c2])

 ⇒ x[Receivedx[c2]]=x[Afterx[c1]]
• Between Actors event ordering
o ∀[c:Com] Sent[c]↷Received[c]
o ∀[c1,c2:Com] Finite[{c:Com | Sent[c1]↷Received[c]↷Received[c2]}]

Theorem: Actor Induction

 ∀[x:Actor, P:Proposition1Behavior]

 (P[x[Initialx]] ∀[m:Message] P[x[Receivedx[m]]]⇨P[x[Afterx[m]]])

 ⇨ ∀[m:Message] P[x[Receivedx[m]]] P[x[Afterx[m]]]

16

Theorem. Categoricity of Act
If X be a type satisfying the axioms for Act , then there is a unique isomorphism
with Actor.

Theorem:32 Logical completeness of Act

 ∀[P:Proposition1Actor] (⊨∀[x:Actor] P[x]) ⇒ ⊢
Act

 ∀[x:Actor] P[x]

Proof. Suppose in Act , P:Proposition1Actor and ⊨∀[x:Actor] P[x].

Further suppose to obtain a contradiction that ∀[x:Actor] P[x].
Therefore ∃[x:ℕ] P[x] and by Existential Elimination P[x0] where

x0:Actor, which contradicts ⊨P[x0] from the hypothesis of the theorem.

Consequently, ⊢
Act

 ∀[x:Actor] P[x] using proof by contraction in Act.

Although by the above theorem Act is inferentially complete, a proof may

not be expressible as a character string because there are uncountable many

proofs. It is an open problem to characterize theorems of Act whose proofs

cannot be expressed as character strings.

Corollary. Equivalence of satisfiability and provability in Act , i.e.,

 ∀[P:Proposition1Actor] (⊨∀[x:Actor] P[x]) ⇔ ⊢
Act

 ∀[x:Actor] P[x]

Theorem. Inferential Decidability of Act , i.e.,

∀[P:Proposition1Actor] (⊢
Act

 ∀[x:Actor] P[x]) ⊢
Act

 ∃[x:Actor] P[x]

Proof.

 ∀[P:Proposition1Actor] (⊨∀[x:Actor] P[i]) ⊨ ∃[x:Actor] P[x]
Theorem follows from Equivalence of satisfiability and provability in Act.

Conclusion
Strong Types enable new mathematical theorems to be proved including the

Formal Consistency of Mathematics. Also, Strong Types enable proofs of the

Categoricity of axiomatizations of the ordinals and the cumulative hierarchy of

sets of a type.

Furthermore, Strong Types are extremely important in Direct Logic because they

block all know paradoxes[Cantini and Bruni 2017]. Blocking known paradoxes

makes Direct Logic safer for use in Intelligent Applications by preventing security

holes. For example, Strong Types block the following paradoxes: Berry [Russell

1906], Burali-Forti [Burali-Forti 1897], Church [Church 1934], Curry [Curry

17

1941], Girard[Coquand 1986], and Liar [Eubulides of Miletus], and Löb [Löb

1955].

Information Invariance is a fundamental technical goal of logic consisting of the

following:

1. Soundness of inference: information is not increased by inference

2. Completeness of inference: all information that necessarily holds can be

inferred.

Computer Science needs a rigorous foundation for all of mathematics that enables

computers to carry out all reasoning without human intervention.33 [Russell 1925]

attempted basing foundations entirely on types, but foundered on the issue of

being expressive enough to carry to some common mathematical reasoning.

[Church 1932, 1933] attempted basing foundations entirely on untyped higher-

order functions, but foundered because it was shown to be inconsistent [Kleene

and Rosser 1935]. Presently, Isabelle [Paulson 1989] and Coq [Coquand and Huet

1986] are founded on types and do not allow theories to reason about themselves.

Classical Direct Logic is a foundation for all of mathematical reasoning based on

strong types (to provide grounding for concepts) that allows general inference

about reasoning.

[Gödel 1931] claimed inferential undecidabilityi results for mathematics using the

proposition I'mUnprovable In opposition to Wittgenstein's correct argument his

proposition leads to contradictions in mathematics, Gödel claimed that the results

of [Gödel 1931] were for a cut-down relational 1st order theory of natural numbers.

However, relational 1st order theories are not a suitable foundation for Computer

Science because of the requirement that computer systems be able to carry out all

reasoning without requiring human intervention (including reasoning about their

own inference systems).

i sometimes called logical “incompleteness”

18

Following [Russell 1925, and Church 1932-1933], Direct Logic was developed

and then investigated propositions with the following results:

 Formalization of Wittgenstein's proof that Gödel's proposition I'mUnprovable

leads to contradiction in mathematics. So the consistency of mathematics had

to be rescued against Gödel's proposition constructed using what [Carnap

1934] later called the “Diagonal Lemma” which is equivalent to the Y

untyped fixed point operator on propositions. Use of the Y untyped fixed

point operator on propositions in results of [Curry 1941] and [Löb 1955] also

lead to inconsistency in mathematics. Consequently, mathematics had to be

rescued against these uses of the Y untyped fixed point operator for

propositions.

 Self-proof of the formal consistency of mathematics. Consequently,

mathematics had to be rescued against the claim [Gödel 1931] that

mathematics cannot prove its own formal consistency. Also, it became an

open problem whether mathematics proves its own formal consistency,

which was resolved by the author discovering an amazing simple proof.34 A

solution is to require strongly typed mathematics to bar use of the Y untyped

fixed point operator for propositions.35 However, some theoreticians have

very reluctant to accept the solution.

 According to [Dawson 2006]:36

 Gödel’s results altered the mathematical landscape, but they did not

“produce a debacle”.

 There is less controversy today over mathematical foundations than

there was before Gödel’s work.

However, Gödel’s writings have produced a controversy of a very different

kind from the one discussed by Dawson:

 The common understanding that mathematics cannot prove its own

formal consistencyi has been disproved.

 Consequently, Gödel's writings have led to increased controversy over

mathematical foundations.

i Gödel's writing was accepted doctrine by some theoreticians for over eight decades.

19

The development of Direct Logic has strengthened the position of working

mathematicians as follows:i

 Allowing freedom from the philosophical dogma of the 1st Order Thesis

 Providing usable strong types for all of Mathematics that provides theories

that have categorical models

 Allowing theories to freely reason about theories

 Providing Inconsistency Robust Direct Logic for safely reasoning about

theories of practice that are (of necessity) pervasively inconsistent.

Acknowledgements

Tom Costello, Eric Martin, Per Stenstrom, and Johan van Benthem made

very helpful comments and suggestions. Interactions with John Woods

were very helpful in developing a resolution to Church’s Paradox.

Conversations with Gordon Plotkin were helpful and his suggestions led to

the introduction of the fixed point operator in the categorical theory of the

lambda calculus. Michael Beeson suggested a clarification in the argument

of Church’s Paradox. Hendrik Boom provided an excellent critique, which

resulted in a fundamental reorganization.

Bibliography
Anthony Anderson and Michael Zelëny (editors). Logic, Meaning and

Computation: Essays in Memory of Alonzo Church Springer. 2002.
Andrea Asperti, Herman Geuvers, Raja Natarajan. Social processes, program

verification and all that “Mathematical Structures in Computer Science”

Cambridge University Press. 2009.
Jeremy Avigad and John Harrison. Formally Verified Mathematics. CACM. April

2014.
Steve Awodey and Erich Reck. Completeness and Categoricity. Parts I and II:

Nineteenth-century Axiomatics to Twentieth-century Metalogic. History and
Philosophy of Logic. Vol. 23. 2002.

Steve Awodey, Álvaro Pelayo, and Michael A. Warren. Voevodsky’s Univalence
Axiom in Homotopy Type Theory Notices of AMS. October 2013.

Jon Barwise. Model-Theoretic Logics: Background and Aims in “Model Theoretic
Logics” Springer-Verlag. 1985.

Francesco Berto. The Gödel Paradox and Wittgenstein’s Reasons Philosophia
Mathematica. February, 2009.

i Of course, Direct Logic must preserve as much previous learning as possible.

20

Andrey Bovykin. Brief introduction to unprovability. Logic Colloquium 2006.
Lecture Notes in Logic 2009

Carlo Cellucci “Gödel's Incompleteness Theorem and the Philosophy of Open

Systems” Kurt Gödel: Actes du Colloque, Neuchâtel 13-14 juin 1991, Travaux

de logique N. 7, Centre de Recherches Sémiologiques, University de Neuchâtel.

http://w3.uniroma1.it/cellucci/documents/Goedel.pdf
Gregory Chaitin Interview in Dangerous Knowledge BBC4 documentary. 2007.
Alan Chalmers. “What is this thing called science?” Open University Press. 1999.

Haskell Curry. “Some Aspects of the Problem of Mathematical Rigor” Bulletin of

the American Mathematical Society Vol. 4. 1941.
Alonzo Church. The Richard Paradox. Proceedings of American Mathematical

Society. 1934.
Alonzo Church. An unsolvable problem of elementary number theory Bulletin of

the American Mathematical Society 19, May, 1935. American Journal of
Mathematics, 58. 1936,

Alonzo Church: A Formulation of the Simple Theory of Types, Journal of
Symbolic Logic. vol. 5. 1940.

Will Clinger. Foundations of Actor Semantics MIT Mathematics Doctoral

Dissertation. June 1981.
Thierry Coquand and Gérard Huet: The calculus of constructions. Technical

Report 530, INRIA, Centre de Rocquencourt, 1986.
John Corcoran. Gaps between logical theory and mathematical practice in The

methodological unity of science. 1973.
John Corcoran. Categoricity. History and Philosophy of Logic. Vol. 1. 1980
John Corcoran. Second-order Logic. Logic, Meaning and Computation. Kluwer.

2001.
John Dawson. Shaken Foundations or Groundbreaking Realignment? A

Centennial Assessment of Kurt Gödel's Impact on Logic, Mathematics, and
Computer Science FLOC’06.

Richard Dedekind (1888) “What are and what should the numbers be?”

(Translation in From Kant to Hilbert: A Source Book in the Foundations of

Mathematics. Oxford University Press. 1996) Braunschweig.

Freeman Dyson. Heretical Thoughts about Science and Society Boston

University. November 1, 2005.
Heinz-Dieter Ebbinghaus. Ernst Zermelo: An Approach to His Life and Work

Springer. 2007.
Patrik Eklund, M. Angeles Galan, Robert Helgesson, and Jari Kortelainenc. Fuzzy

Terms Fuzzy Sets and Systems. 256. 2014.

Feferman “Axioms for determinateness and truth” Review of Symbolic Logic.

2008.

http://w3.uniroma1.it/cellucci/documents/Goedel.pdf

21

Mike Genesereth and Eric Kao. The Herbrand Manifesto Thinking Inside the Box.
Rule ML. August 2-5, 2015.

Kurt Gödel (1931) “On formally undecidable propositions of Principia

Mathematica” in A Source Book in Mathematical Logic, 1879-1931.

Translated by Jean van Heijenoort. Harvard Univ. Press. 1967.

Carl Hewitt. Planner: A Language for Proving Theorems in Robots IJCAI. 1969.

Carl Hewitt. “Procedural Embedding of Knowledge In Planner” IJCAI 1971.

Carl Hewitt and John Woods assisted by Jane Spurr, editors. Inconsistency

Robustness. College Publications. 2015.

Carl Hewitt. 2015a. Actor Model of Computation for Scalable Robust Information

Systems in “Inconsistency Robustness” College Publications. 2015.

Carl Hewitt. 2015b. ActorScript™ extension of C#®, Java®, Objective C®, C++,

JavaScript®, and SystemVerilog using iAdaptive™ concurrency in

Inconsistency Robustness. College Publications. 2015.

Carl Hewitt. 2015c. Inconsistency Robustness in Logic Programs in

“Inconsistency Robustness” College Publications. 2015.

Carl Hewitt. 2015d. Formalizing common sense reasoning for scalable

inconsistency-robust information coordination using Direct LogicTM

Reasoning and the Actor Model in “Inconsistency Robustness” College

Publications. 2015.

Carl Hewitt. 2015e. Inconsistency Robustness in Logic Programs in

“Inconsistency Robustness” College Publications. 2015.

Carl Hewitt. 2015f. Actors for CyberThings. Erlang Keynote. YouTube. March

23, 2015.

Carl Hewitt. 2016b. Future Cyberdefenses Will Defeat Cyberattacks CACM.

August 2016.

Carl Hewitt 2016c. IsletsTM Protect Sensitive IoT Information: Verifiably ending

use of sensitive IoT information for mass surveillance fosters (international)

commerce SSRN WP 2836282. 2016.

Carl Hewitt 2017a. Direct Logic for Intelligent Applications Logic and

Collaboration for Intelligent Applications. Stanford. March 30-31, 2017.

Carl Hewitt 2017b. Axiomatics for Inconsistency Robust Direct Logic Logic and

Collaboration for Intelligent Applications. Stanford. March 30-31, 2017.

J. Roger Hindley and Jonathan Seldin. λ-calculus and Combinators: An

Introduction Cambridge University Press. 2008

Stanisław Jaśkowski “On the Rules of Suppositions in Formal Logic” Studia

Logica 1, 1934. (reprinted in: Polish logic 1920-1939, Oxford University

Press, 1967.

Morris Kline. Mathematical thought from ancient to modern times Oxford

University Press. 1972.

http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness
http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness
http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness
http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness
http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness
http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness
http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness

22

Thomas Kuhn. The Structure of Scientific Revolutions University of Chicago
Press. 1962.

Imre Lakatos. Proofs and Refutations Cambridge University Press. 1976

John Law. After Method: mess in social science research Routledge. 2004.

Martin Löb. “Solution of a problem of Leon Henkin.” Journal of Symbolic Logic.

Vol. 20. 1955.
David Malone. Dangerous Knowledge BBC4 documentary. 2007.

http://www.dailymotion.com/playlist/x1cbyd_xSilverPhinx_bbc-dangerous-
knowledge/1

Colin McLarty. What Does it Take to Prove Fermat's Last Theorem?

Grothendieck and the Logic of Number Theory Journal of Symbolic Logic.

September 2010.

John-Jules Meyer. Review of Inconsistency Robustness Amazon. January, 2016.
Ray Monk. Bourgeois, Boshevist or anarchist? The Reception of Wittgenstein’s

Philosophy of Mathematics in Wittgenstein and his interpreters. Blackwell.
2007.

Nick Nielsen Alternative Foundations/philosophical February 28, 2014.
http://www.cs.nyu.edu/pipermail/fom/2014-February/017861.htmlBashar

Francis Pelletier A Brief History of Natural Deduction “History and Philosophy
of Logic” Vol. 20, Issue. 1, 1999.

William Quine. Philosophy of Logic Prentice Hall. 1970.

Bertrand Russell. Principles of Mathematics Norton. 1903.

Bertrand Russell. Les paradoxes de la logique Revue de métaphysique et de

morale. 1906.

Bertrand Russell and Alfred Whitehead, Principia Mathematica (3 volumes).

Cambridge University Press. 1910-1913.
Natarajan Shankar. Meta-mathematics, Machines, and Gödel’s Proof. Cambridge

University Press. 1994.
Dana Scott. Setoids/Modest Sets/PERs: Adding and Using Types with a Type-free

λ-Calculus Domains XII. August 2015.
Stephen Simpson Nonprovability of certain combinatorial properties of finite

trees in Studies in Logic and the Foundations of Mathematics. North-Holland.
1985.

Alfred Tarski Introduction to Logic Oxford University Press. 1940 (and many

subsequent editions).

R. Gregory Taylor. Zermelo’s Cantorian Theory of Systems of Infinitely Long

Propositions Bulletin of Symbolic Logic December, 2002.

Rineke Verbrugge Provability Logic The Stanford Encyclopedia of Philosophy.

2010.

http://www.dailymotion.com/playlist/x1cbyd_xSilverPhinx_bbc-dangerous-knowledge/1
http://www.dailymotion.com/playlist/x1cbyd_xSilverPhinx_bbc-dangerous-knowledge/1

23

Ludwig Wittgenstein. 1956. Bemerkungen ¨uber die Grundlagen der

Mathematik/Remarks on the Foundations of Mathematics, Revised Edition

Basil Blackwell. 1978
Hao Wang A Logical Journey, From Gödel to Philosophy MIT Press. 1974.
Andrew Wiles. Modular elliptic curves and Fermat's Last Theorem Annals of

Mathematics. 141. 1995.
John Woods. How robust can inconsistency get? IfCoLoG Journal of Logics and

Their Applications. 2014.
John Woods. Inconsistency: Its present impacts and future prospects

Inconsistency Robustness 2015.
Noson Yanofsky. The Outer Limits of Reason MIT Press 2013.
Ernst Zermelo Uber Grenzzahlen und Mengenbereiche: Neue Untersuchungen

Äuber die Grundlagen der Mengenlehre Fundamenta mathematicae. 1930;
English translation by Michael Hallett, “On boundary numbers and domains
of sets: new investigations in the foundations of set theory" From Kant to
Hilbert: a Source Book in the Foundations of Mathematics, Oxford University
Press, 1996.

Ernst Zermelo. Uber matematische System und die Logic des Unendichen
Forschungen and Fortschritte. Vol. 8. 1932.

Ernst Zermelo. Collected Works/Gesammelte Werke: Volume I/Band I - Set
Theory, Miscellanea/Mengenlehre, Varia (Schriften der Mathematisch-
naturwissenschaftlichen Klasse) (English and German Edition) Springer.
2010.

Yoni Zohar. Reasoning Inside The Box: Gentzen Calculi for Herbrand Logics
Stanford Logic Group. June 7, 2017.

24

Appendix 1. Historical Background
“The powerful (try to) insist that their statements are literal depictions of a single

reality. ‘It really is that way’, they tell us. ‘There is no alternative.’ But those on

the receiving end of such homilies learn to read them allegorically, these are

techniques used by subordinates to read through the words of the powerful to the

concealed realities that have produced them.” [Law 2004]

Gödel was certain

“ ‛Certainty’ is far from being a sign of success; it is only a symptom of lack of

imagination and conceptual poverty. It produces smug satisfaction and prevents

the growth of knowledge.” [Lakatos 1976]

Paul Cohen [2006] wrote as follows of his interaction with Gödel:37

“His [Gödel's] main interest seemed to lie in discussing

the ‛truth’ or ‛falsity’ of these [mathematical] questions,

not merely in their undecidability. He struck me as

having an almost unshakable belief in this “realist”

position, which I found difficult to share. His ideas were

grounded in a deep philosophical belief as to what the

human mind could achieve. I greatly admired this faith

in the power and beauty of Western Culture, as he put it,

and would have liked to understand more deeply what

were the sources of his strongly held beliefs. Through

our discussions, I came closer to his point of view,

although I never shared completely his ‛realist’ point of

view, that all questions of Set Theory were in the final analysis,

either true or false.”

According to John von Neumann, Gödel was “the

greatest logician since Aristotle.”38 However, [von

Neumann 1961] expressed a very different mathematical

philosophy than Gödel:

“It is not necessarily true that the mathematical

method is something absolute, which was revealed

from on high, or which somehow, after we got hold

of it, was evidently right and has stayed evidently

right ever since.”

Kurt Gödel

John von Neumann

http://knol.google.com/k/-/-/pcxtp4rx7g1t/mdzs7d/goedel.png

25

[Gödel 1931] based incompleteness results on the thesis that mathematics

necessarily has the proposition I'mUnprovable in Principia Mathematica [Russell

1902].

Wittgenstein’s Paradox

Wittgenstein correctly noted that Gödel's I'mUnprovable infers inconsistency in

mathematics:39

“Let us suppose [Gödel's writings are correct and therefore] I prove40

the improvability (in Russell’s system) of [Gödel's I'mUnprovable] P; [i.e.,

⊢⊬P where P⇔⊬P] then by this proof I have proved P [i.e., ⊢P]. Now if

this proof were one in Russell’s system [i.e., ⊢⊢P] — I should in this case

have proved at once that it belonged [i.e., ⊢P] and did not belong [i.e., ⊢P

because P⇔⊢P] to Russell’s system.

 But there is a contradiction here! [i.e., ⊢P and ⊢P]

[This] is what comes of making up such sentences.” [emphasis added]

According to [Monk 2007]:

“Wittgenstein hoped that his work on

mathematics would have a cultural

impact, that it would threaten the attitudes

that prevail in logic, mathematics and the

philosophies of them. On this measure it

has been a spectacular failure.”

Unfortunately, recognition of the worth of

Wittgenstein’s work on mathematics came

long after his death. For decades, many

theoreticians mistakenly believed that they had

been completely victorious over Wittgenstein.

Gödel's maintained:

“Wittgenstein did not understand it [Gödel's

1931 article on Principia Mathematica] (or

pretended not to understand it). He

interpreted it as a kind of logical paradox,

while in fact it is just the opposite, namely a mathematical theorem within an

absolutely uncontroversial part of mathematics (finitary number theory or

combinatorics).”41

In the above, Gödel retreated from the [Gödel 1931] results on Principia

Mathematic to claiming that the results were for the relational 1st order theory

Ludwig Wittgenstein

26

Relational1stOrderNatualNumbers in order to defend his

I'mUnprovableInRelational1stOrderNatualNumbers. However, the [Gödel 1931]

incompleteness result is not very impressive because

Relational1stOrderNatualNumbers is a very weak theory which cannot

even prove that the Ackermann procedure is total.

Trying to retain I’mUnprovable forced Gödel into a very narrow and constricted

place of reducing propositions to strings for sentences and then to Gödel numbers

axiomatized in a 1st order theory to avoid Wittgenstein's devastating criticism.

This narrow constricted place is intolerable for computer science, which needs to

reason about propositions in a more natural and flexible way using Strong Types.

Let T be a theory capable of representing all computable functions on Strings and

Natural Numbers with GödelNumber[aWellFormedString] being the Gödel

number of aWellFormedString, where a well-formed string is here considered to

be a proposition. A Diagonal Lemma is:

 If F is a well-formed string in the language with one free variable, then

 there is a well-formed string S such that the following is provable in T:

 S ⇔ F[GödelNumber[S]]

Letting GödelNumberToWellFormedString[n] be the well-formed string with

Gödel number n, define Eubulides as follows (where

“GödelNumberToWellFormedString[n]” is the string formed by prefixing the

character to the well-formed string with Gödel number n):

 Eubulides[n] ≡ “GödelNumberToWellFormedString[n]”

By the above Diagonal Lemma, there is a well-formed string I’mFalse such that

the following is provable in T (where

“GödelNumberToWellFormedString[GödelNumber[I’mFalse]]” is the result

of prefixing the well-formed string

GödelNumberToWellFormedString[GödelNumber[I’mFalse]] with):42

 I’mFalse ⇔ Eubulides[GödelNumber[I’mFalse]]

 ⇔ “GödelNumberToWellFormedString[GödelNumber[I’mFalse]]”

 ⇔ I’mFalse

27

[Chaitin 2007] complained about basing something as important as

incompleteness something so trivial as I'mUnprovable:

“[Gödel’s proof] was too superficial. It didn't get at the real heart of what was

going on. It was more tantalizing than anything else. It was not a good reason

for something so devastating and fundamental. It was too clever by half. It was

too superficial. [It was based on the clever construction] I'mUnprovable So

what? This doesn't give any insight how serious the problem is.”

Gödel [1931] results can be formalized as follows:

Suppose Ψ:PropositionanOrder:

 Gödeln[p:Propositionn]:Propositionn+1] ≡ ⊢Ψ

Gödel’s Paradox is blocked because the procedure Gödel does not have a fixed

point

However, Gödel, Church, Turing, and many other logicians continued up to the

present time to believe in the importance of Gödel’s proof based on the

proposition I'mUnprovable.43

Although Gödel’s incompleteness results for I'mUnprovable have fundamental

problems, the work was extremely significant in further the development of the

history of metamathematics. For example, the following paradoxes were

developed following along Gödel’s work:

 Curry’s Paradox [Curry 1941] Suppose Ψ:PropositionanOrder.

Curryn[p:Propositionn]:PropositionMax[n+1,anOrder+1] ≡ p⇒Ψ

Curry’s Paradox is blocked because the procedure Curry does not have a

fixed point.

 Löb’s Paradox [Löb 1955] Suppose Ψ:PropositionanOrder.

Löbn[p:Propositionn]:PropositionMax[n+1,anOrder+1] ≡ (├ p)⇒Ψ

Löb’s Paradox is blocked because the procedure Löb does not have a fixed

point.

A key difference is that Direct Logic works directly with propositions as opposed

to the work of Gödel, Curry, and Löb, which was based on relational 1st order

theories with propositions from sentence strings coded as integers.

28

Church's Paradox
[Church 1932, 1933] attempted basing foundations entirely on untyped higher-
order functions, but foundered because
contradictions emerged because
1. His system allowed the use of the Y fixed

point operator for untyped propositions to
construct “self-referential” propositions
[Kleene and Rosser 1935]

2. Theorems in his system were
computationally enumerable.

The mathematical theory Nat
1
 (general 1st order

theory of Natural Numbers) non-categorically44
formalizes the Natural Numbers using the

following schema where

P:StringExpressionProposition1ℕ
:45

 (P [0] ∀[i:ℕ] P [i]⇨ P [i+1]) ⇨ ∀[i:ℕ] P [i]

Nat
1
 has countably many instances of the above schema because there are only

countably many strings.46

In addition to the induction schema above, Nat
1
 has additional schema given below.

Alonzo Church

29

Predicate Extension Schema: Where Extension:SetℕProposition1 and

 P:StringExpressionProposition1ℕ
:

 ⊢𝑁𝑎𝑡1
∀[i:ℕ] i∈Extension[P] ⇔ P [i]

Least Element Schema. For X:StringTermBooleanℕ
:

 X ≠{} ⇒ ∃[i X] ∀[j X] i≤j

Finite Cardinality Schema: For X,Y:StringTermBooleanℕ
:

 ⊢𝑁𝑎𝑡1
Finite[X] ⇔ X ={ } ∃[i:ℕ] ∀[j∈ X] j<i

 where for f:StringTermℕℕ
:

 Finite[X]:PropositionNat ≡

 (1to1[f , X] ⇒ ∃[i:ℕ] ∀[j X] f [j]<i)

where:

o 1to1[f , X] ⇔ ∀[i1, i2 X] f [i1]= f [i2] ⇨ i1=i2
o Onto[f , X , Y] ⇔ ∀[j Y] ∃[i X] f [i]=j

The theory Nat
1

is moderately powerful. For example, the theorems below

follow:

Definition Total[f:([ℕ]⇾ℕ)]:PropositionNat
1
 ≡ ∀[i:ℕ] ∃[j:ℕ] f∎[i]=j

Theorem ⊢𝑁𝑎𝑡1
Total[Ackermann]

 where Ackermann is defined as follows:
 Ackermann∎[i:ℕ, j:ℕ]:ℕ ≡
 i=0 �
 True ⦂ j+1,
 False ⦂ j=0 �

 True ⦂ Ackermann∎[i-1, 1]
 False ⦂ Ackermann∎[i-1, Ackermann∎[i, j-1]]

Theorem ⊢𝑁𝑎𝑡1
PrimitiveRecursive[Ackermann]

30

Theorem (Church’s Paradox): The general 1st order theory Nat
1
 of the Natural

Numbers is inconsistent.47

1. ⊢𝑁𝑎𝑡1
TheoremsEnumerableByProvedTotalProcedure[Nat

1
]

2. ⊢𝑁𝑎𝑡1
TheoremsEnumerableByProvedTotalProcedure[Nat

1
]

Proof:

1. ⊢𝑁𝑎𝑡1
 TheoremsEnumerableByProvedTotalProcedure [Nat

1
]48

2. Suppose to obtain a contradiction that

 TheoremsEnumerableByProvedTotalProcedure[Nat
1
]

Then there is a deterministic total procedure

TheoremsEnumerator:[ℕ]→PropositionNat
1
 such that the following

hold where Total:PropositionNat
1

[ℕ]→ℕ:

 ⊢𝑁𝑎𝑡1
Total[TheoremsEnumerator]

 ∀[p:PropositionNat
1
] ∃[i:ℕ] TheoremsEnumerator∎[i]=p

 ∀[i:ℕ] ⊢𝑁𝑎𝑡1
TheoremsEnumerator∎[i]

A subset of the proofs enumerated by TheoremsEnumerator are those
proving that certain procedures [ℕ]→ℕ are total. Consequently, there is a
deterministic total procedure
ProvedTotalsEnumerator:([ℕ]→([ℕ]→ℕ))49 such that the following
hold:

 ⊢𝑁𝑎𝑡1
Total[ProvedTotalsEnumerator]

 ∀[i:ℕ] ⊢𝑁𝑎𝑡1
Total[ProvedTotalsEnumerator∎[i]]

 ∀[f:([ℕ]→ℕ)](⊢𝑁𝑎𝑡1
Total[f])⇒∃[i:ℕ] ProvedTotalsEnumerator∎[i]=f 50

ProvedTotalsEnumerator can be used to implement the deterministic total
procedure Diagonal:([ℕ]→ℕ) as follows:
 Diagonal∎[i:ℕ]:ℕ ≡ 1 + (ProvedTotalsEnumerator∎[i])∎[i]
Consequently:

 ⊢𝑁𝑎𝑡1
Total[Diagonal] since it is the deterministic composition of

Nat
1

proved total deterministic procedures.

 ⊢𝑁𝑎𝑡1
Total[Diagonal] because Diagonal differs from every

procedure enumerated by ProvedTotalsEnumerator.

The above contradiction completes the proof.

31

[Church 1934] pointed out that there is no obvious way to remove the
inconsistency meaning that if Nat

1
is taken to be an exact description of logic51

then,
“Indeed, if there is no formalization of logic as a whole, then there is no exact
description of what logic is, for it in the very nature of an exact description
that it implies a formalization. And if there no exact description of logic, then
there is no sound basis for supposing that there is such a thing as logic.”

After [Church 1934], logicians faced the following dilemma:

 1st order theories cannot be powerful lest they fall into inconsistency

because of Church’s Paradox.

 2nd order theories contravene the philosophical doctrine that theorems

must be computationally enumerable.

P
o

w
e
r

Great

Small

Narrow Wide

Inconsistent

1
st
 Order Theories

32

The above issues can be addressed as follows:

1. Requiring Mathematics to be strongly typed using so that

 Mathematics self proves that it is “open” in the sense that theorems are

not computationally enumerable.52

 Mathematics self proves that it is formally consistent.53

 Strong mathematical theories for Natural Numbers, Ordinals, Set

Theory, the Lambda Calculus, Actors, etc. are inferentially decidable,

meaning that every true proposition is provable and every proposition

is either provable or disprovable. Furthermore, theorems of these

theories are not enumerable by a provably total procedure.
2. It was initially thought that mathematics could be based just on character

strings. Then diagonalization was discovered and things haven’t been the
same since. The string for the general 1st order Nat

1
 non-categorical

induction schema is as follows:i

 "∀[P:StringExpressionProposition1ℕ
]

 (P [0] ∀[i:ℕ] P [i]⇨ P [i+1]) ⇨ ∀[i:ℕ] P [i]"
which has countably many 1st order propositions as instances that are

abstracted from the countably many character strings of type

StringExpressionProposition1ℕ
 and which differs fundamentally

from the character string for the more general 2nd order categorical induction

axiom, which is as follows:54

 "∀[P:Proposition1ℕ] (P[0]] ∀[i:ℕ] P[i]⇨P[i+1]) ⇨ ∀[i:ℕ] P[i]"
Although the theory Nat has only finitely many axioms, the above string

abstracted as a proposition has uncountably many 1st order propositions as

instances.ii In this way, Nat differs fundamentally from the 1st order theory

Nat
1
 because, being uncountable, not all instances of the Nat induction axiom

can be obtained by abstraction from character strings. Proofs abstracted from

character strings for the axioms of Nat
1

can be computationally enumerated and

are valid proofs in Nat, but this does not enumerate all of the proofs of Nat!

What is to be made of the uncountable number of theorems of Nat whose

proofs cannot be written down in text?

i with the unfortunate consequence that the argument in Church’s Paradox shows that

Nat
1
 is inconsistent

ii with the consequence that the argument in Church’s Paradox is blocked in the theory

Nat

because theorems are not enumerable by a provably total procedure

33

Additional limitations of Relational 1st order theories

“By this it appears how necessary it is for nay man that aspires to true

knowledge to examine the definitions of former authors; and either to

correct them, where they are negligently set down, or to make them himself.

For the errors of definitions multiply themselves, according as the

reckoning proceeds, and lead men into absurdities, which at last they see,

but cannot avoid, without reckoning anew from the beginning; in which lies

the foundation of their errors...”

[Hobbes Leviathan, Chapter 4]55

A relational 1st order theory is very weak. For example, a relational 1st order theory

is incapable of characterizing even the natural numbers, i.e., there are infinite

integers in models of every relational 1st order axiomatization of the natural

numbers. Furthermore, there are infinitesimal real numbers in models of every

relational 1st order axiomatization of the real numbers.i Of course, infinite integers

and infinitesimal reals are monsters that must be banned from the mathematical

foundations of Computer Science.

However, some theoreticians have found relational 1st order theory to be useful

for their careers because it is weak enough that

they can prove theorems about relational 1st

order axiomatizations whereas they cannot

prove such theorems about stronger practical

systems, e.g., Classical Direct Logic.56

Zermelo considered the 1st Order Thesis to be a

mathematical “hoax” because it necessarily

allowed unintended models of axioms.57

i Likewise, relational 1st order set theory (e.g. ZFC) is very weak. See discussion in this

article.

Ernst Zermelo

34

[Barwise 1985] critiqued the 1st Order Thesis that mathematical foundations

should be restricted to 1st order theories as follows:

The reasons for the widespread, often uncritical

acceptance of the first-order thesis are numerous. The

first-order thesis ... confuses the subject matter of logic

with one of its tools. First-order language is just an

artificial language structured to help investigate logic,

much as a telescope is a tool constructed to help study

heavenly bodies. From the perspective of the

mathematics in the street, the first-order thesis is like

the claim that astronomy is the study of the telescope.58

Computer Science is making increasing use of Model

Analysis59 in the sense of analyzing relationships among the following:

 concurrent programs and their Actor Model denotations

 domain axiom systems and computations on these domains

In Computer Science, it is important that the natural numbers be axiomatized in a

way that does not allow non-numbers (e.g. infinite ones) in models of the axioms.

Theorem: If ℕ is a model of a 1st order axiomatization T, then T has a model

M with an infinite integer.

Proof: The model M is constructed as an extension of ℕ by adding a new

element ∞ with the following atomic relationships:

 {∞<∞} { m<∞ | m:ℕ}

 It can be shown that M is a model of T with an infinite integer ∞.

The infinite integer ∞ is a monster that must be banned from the

mathematical foundations of Computer Science.

Theorem: If ℝ is a model of a 1st order axiomatization T, then T has a model

M with an infinitesimal.

Proof: The model M is constructed as an extension of ℝ by adding a new

element ∞ with the following atomic relationships:

 {∞<∞} {m<∞ | m:ℕ}

Defining ε to be
1

∞
 , it follows that ∀[r:ℝ] 0<ε<

1

𝑟
. It can be shown that M

is a model of T with an infinitesimal ε, which is a monster that must be

banned from the mathematical foundations of Computer Science.

Jon Barwise

35

On the other hand, since it is not limited to 1st order propositions, Classical Direct

Logic characterizes structures such as natural numbers and real numbers up to

isomorphism.i

There are many theorems that cannot be proved from 1st order axioms [Goodstein

1944, Simpson 1985, Wiles 1995, Bovykin 2009, McLarty 2010].

Unbounded Nondeterminism

Of greater practical import, 1st order theory is not a suitable foundation for the

Internet of Things in which specifications require a device respond to a request.ii

The specification that a computer responds can be formalized as follows:

∃[i:ℕ] ResponseBefore[i]. However, the specification cannot be proved in a 1st

order theory.

Proof: In order to obtain a contradiction, suppose that it is possible to prove

in a 1st order theory ∃[i:ℕ] ResponseBefore[i]. Therefore the infinite set

of propositions {ResponseBefore[i] | i:ℕ} is inconsistent. By the

compactness theorem of 1st order theory, it follows that there is finite

subset of the set of propositions that is inconsistent. But this is a

contradiction, because all the finite subsets are consistent since the

amount of time before a server responds is unbounded, that is,

∄[i:ℕ] ⊢ResponseBefore[i].

By contrast with the nondeterministic lambda calculus and pure Logic Programs,

there is an always-halting Actor Unbounded that when sent a [] message can

compute an integer of unbounded size. This is accomplished by creating a

Counter with the following variables:

 count initially 0

 continue initially True

and concurrently sending it both a stop[] message and a go[] message such that:

 When a go[] message is received:

1. if continue is True, increment count by 1 and return the result of

sending this counter a go[] message.

2. if continue is False, return Void

 When a stop[] message is received, return count and set continue to False

for the next message received.

i proving that software developers and computer systems are using the same structures
ii An implementation of such a system is given below in this article.

36

By the axioms for the Actor Model, the above Actor will eventually receive the

stop[] message and return an unbounded number.

The procedure Unbounded above can be axiomatized as follows:

∀[n :Integer]
 ∃[aRequest :Request, anInteger :Integer]
 Unbounded sentaRequest [] ⇒
 𝐒𝐞𝐧𝐭𝐑𝐞𝐬𝐩𝐨𝐧𝐬𝐞𝑎𝑅𝑒𝑞𝑢𝑒𝑠𝑡

Returned[anInteger] anInteger >n

However, the above specification axiom does not compute any actual output!

Instead the above axiom simply asserts the existence of unbounded outputs for

Unbounded∎[].

∎∎go[]

continue=True
 also

 count := count + 1

continue := False

Integer

continue=False

initially: continue=True, count=0

count

go[]

stop[]

37

Theorem. The nondeterministic function defined by Unbounded (above) cannot

be implemented by a nondeterministic Logic Programi or a nondeterministic

Turing Machine:

Proof.60

The task of a nondeterministic Logic Program P is to start with

an initial set of axioms and prove Output=n for some numeral n.

Now the set of proofs of P starting from initial axioms will form

a tree. The branching points will correspond to the

nondeterministic choice points in the program and the choices

as to which rules of inference to apply. Since there are always

only finitely many alternatives at each choice point, the

branching factor of the tree is always finite. Now König's lemma

says that if every branch of a finitary tree is finite, then so is the

tree itself. In the present case this means that if every proof of P

proves Output=n for some numeral n, then there are only finitely

many proofs. So if P nondeterministically proves Output=n for

every numeral n, it must contain a nonterminating computation

in which it does not prove Output=n for some numeral n.

The following arguments support unbounded nondeterminism in the Actor model

[Hewitt 1985, 2006]:

 There is no bound that can be placed on how long it takes a computational

circuit called an arbiter to settle. Arbiters are used in computers to deal

with the circumstance that computer clocks operate asynchronously with

input from outside, e.g., keyboard input, disk access, network input, etc.

So it could take an unbounded time for a

message sent to a computer to be

received and in the meantime the

computer could traverse an unbounded

number of states.

 Electronic mail enables unbounded

nondeterminism since mail can be stored

on servers indefinitely before being delivered.

 Communication links to servers on the Internet can be out of service

indefinitely

As a foundation of mathematics for Computer Science, Classical Direct Logic

provides categorical61 numbers (integer and real), sets, lists, trees, graphs, etc.

i the lambda calculus is a special case of Logic Programs

1st order theory is not a

suitable mathematical

foundation the Internet

of Things.

38

which can be used in arbitrary mathematical theories including theories for

categories, large cardinals, etc. These various theories might have “monsters” of

various kinds. However, these monsters should not imported into models of

computation used in Computer Science.

Computer Science needs stronger systems than provided by 1st order theory in

order to weed out unwanted models. In this regard, Computer Science doesn’t

have a problem computing with “infinite” objects (i.e. Actors) such as π and

uncountable sets such as the set of real numbers Setℝ. However, the

mathematical foundation of Computer Science is very different from the general

philosophy of mathematics in which the infinite integers and infinitesimal reals

allowed by models of 1st order theories may be of some interest. Of course, it is

always possible to have special theories that are not part of the foundations with

infinite integers, infinitesimal reals, unicorns, etc.62

Of course some problems are theoretically not computable. However, even in

these cases, it is often possible to compute approximations and cases of practical

interest.i

The mathematical foundation of Computer Science is very different from the

general philosophy of mathematics in which infinite integers and infinitesimal

reals may be of some interest. Of course, it is always possible to have special

theories with infinite integers, infinitesimal reals, unicorns, etc.

i e.g. see Terminator [Knies 2006], which practically solves the halting problem for

device drivers

39

Berry Paradox
The Berry Paradox [Russell 1906] can be formalized using the proposition

Characterize[s, k] meaning that the string s characterizes the integer k as follows:

Characterize[s:StringTermPropositionanOrderℕ
,

 k:ℕ]:PropositionanOrder+1 ≡ ∀[x:ℕ] s [x] ⇔ x=k
The Berry Paradox is to construct a string BString for the string for the proposition

that holds for integer n if and only if every string with length less than 100 does

not characterize n using the following definition:63

 BString:StringTermPropositionanOrder+1ℕ
 ≡

 “⦅λ[n:ℕ] ∀[s:StringTermPropositionanOrderℕ
]

 Length[s]<100 ⇨ Characterize[s, n]⦆”

 Note that
o Length[BString]<100.

o {s:StringTermPropositionanOrderℕ
 | Length[s]<100} is

finite.

o Therefore, the following set is finite:

 {n:ℕ+ | ∃[s:StringTermPropositionanOrderℕ
]

 Length[s]<100 Characterize[s, n]}

BTerm:TermPropositionanOrder+1ℕ
 ≡ BString

BSet:Setℕ ≡ {n:ℕ+ | BTerm [n]}

BSet≠{ } because is {n:ℕ | n≧1} is infinite.

1. BNumber:ℕ ≡ Least[BSet]
2. BTerm [BNumber]64

3. ⦅λ[n:ℕ] ⦅∀[s:StringTermPropositionanOrderℕ
]

 Length[s]<100 ⇨ Characterize[s, n]⦆ [BNumber]65

4. ∀[s:StringTermPropositionanOrderℕ
]

 Length[s]<100 ⇨ Characterize[s, BNumber]66
5. Length[BString]<100 ⇨ Characterize[BString, BNumber]
 // above is invalid because of attempted substitution of

 // BString:StringTermPropositionanOrder+1ℕ
 for

 // s:StringTermPropositionanOrderℕ

40

Appendix 2. Appendix 1. More Categorical Mathematical Theories

Theory of Nondeterministic Lambda Calculus (Lam τ)

Definition: Functionalτ1,τ2 ≡ [([τ1]→τ2)]→([τ1]→τ2)

Theory Lam τ
In addition to Lambda Induction (above), the theory Lam τ has the following

axioms:i
• Identityτ1:([τ1]→ τ1)

Identityτ1∎[f1] = f1

• Constτ1,τ2:([τ1]→([τ2]→τ1))
Constτ1, τ2∎[f1]∎[f2] = f1

• Substτ1, τ2, τ3:([[τ3]→([τ2]→τ4), [τ3]→τ2], τ3] → τ4)67
Substτ1, τ2, τ3∎[f1]∎[f2]∎[f3] = (f1∎[f3])∎[f2∎[f3]]

• Fixτ1,τ2:([Functionalτ1,τ2]→Functionalτ1,τ2)68

Fixτ1,τ2∎[F] = F∎[Fixτ1,τ2∎[F]]
• Eitherτ1:([τ1] → ([τ1]→τ1))

Eitherτ1∎[f1]∎[f2]=f1 Eitherτ1∎[f1]∎[f2]=f2
• Equality Axiom

∀[f1,f2:([τ1]→τ2)] f1=f2 ⇔ ∀[f3:τ1] f1∎[f3]=f2∎[f3]
• Lambda Equalityii

∀[f1:([τ]→τ)] f1=λ[f2:τ] f1∎[f2]

• Basis: For all f:TypeΛτ. f is equal to a composition of Identity,
Const, Subst, Fix, and Either.

i τ1,τ2,τ3:TypeΛτ
ii Because of Lambda Equality, the domain of [Scott 2015] is not a valid model of

Lam τ.

41

Lambda Induction

The theorem of Lambda Induction is as follows:i

∀[P:Proposition1Λτ]

 (P[Identityτ1] P[Constτ1, τ2] P[Substτ1,τ2,τ3] P[Fixτ1]
 P[Eitherτ1] ∀[f1:τ1, f2:τ2] P[f1]P[f2] ⇨ P[Constτ1, τ2∎[f1, f2]]

 ∀[f1:τ1, f2:τ2, f3:τ3] P[f1]P[f2]P[f3]⇨P[Substτ1,τ2,τ3∎[f1]∎[f2]∎[f3]]

 ∀[f:([τ1]→τ2)] P[f] ⇨ P[Fixτ1, τ2∎[f]]

 ∀[f1:τ1, f2:([τ1]→τ2)] P[f1]P[f2] ⇨ P[f2∎[f1]]) ⇨ ∀[f:Λτ] P[f]

Convergence: ∀[f1:([τ1]⇾τ2),f2:τ1] f1∎[f2]↓ ⇔ ∃[f3:τ2] f1∎[f2]=f3

Approximation: ∀[f1, f2:([τ1]⇾τ2)] f1≦f2 ⇔ ∀[f3:τ1] f1∎[f3]↓ ⇒ f1∎[f3]=f2∎[f3]

Bottom: ⊥τ1∎[f:τ1] ≡ f

 Note that ∀[f2:τ1] ⊥τ1∎[f2]:↓ and ∀[f:([τ1]⇾τ1)] ⊥τ1≦f

Monotone:

 F:Monotoneτ1,τ2 ⇔ F:Functionalτ1,τ2 ∀[g:([τ1]⇾τ2)] g≦F∎[g]

Limit Theorem: ∀[F:Monotoneτ1,τ1] F=limit𝑖:𝐍+
Fi

∎[⊥τ1]69

Theorem: Deterministic procedures have bounded nondeterminism

 ∀[f:([τ1]⇾τ1))] f:TypeΛτ

Theorem: Some nondeterministic procedures have unbounded nondeterminismii

 ∃[f:([τ1]→τ1))] f:TypeΛτ

i τ1,τ2,τ3:TypeΛτ
ii e.g., ones using concurrent Actors. See discussion in this article.

42

Theorem.i Lam
 τ is categorical with a unique isomorphism.

Proof: Suppose that X satisfies the axioms for Lam τ.

 By lambda induction, the isomorphism I:XΛτ is defined as follows:ii

 I[Identityτ1] ≡ IdentityXτ1

 I[Constτ1, τ2] ≡ ConstXτ1, τ2

 I[Substτ1, τ2, τ3] ≡ SubstXτ1, τ2, τ3

 I[Fixτ1, τ2] ≡ FixXτ1, τ2

 I[Eitherτ1] ≡ EitherXτ1

 ∀[f1:τ1, f2:([τ1]→τ2)] I[f2∎[f1]] ≡ I[f2]∎X[I[f1]]

I is the unique isomorphism:

 I is one to one

 The range of I is X

 I is a homomorphism

 I-1:ΛτX is a homomorphism

 I is the unique isomorphism: If g:XΛτ is an isomorphism, then g= I

Theorem (Model Soundness of Lam τ): (⊢𝐿𝑎𝑚τ
) ⇨ ⊨

Proof: Suppose ⊢𝐿𝑎𝑚τ
. The theorem immediately follows because the axioms

for the theory Lam τ hold in the type Λτ.

Theorem: Logical completeness of Lam τ

 ∀[P:Proposition1Λτ]

 (⊨∀[f:Λτ] P[f]) ⇒ ⊢𝐿𝑎𝑚τ
 ∀[f:Λτ] P[f]

Corollary. Equivalence of satisfiability and provability in Lam τ, i.e.,

 ∀[P:Proposition1Λτ] (⊨∀[f:Λτ] P[f]) ⇔ ⊢𝐿𝑎𝑚τ
∀[f:Λτ] P[f]

i cf. [Hindley, and Seldin 2008]
ii τ1,τ2,τ3:TypeΛτ

43

Theorem. Inferential Decidability of Lam τ, i.e.,

 ∀[P:Proposition1Λτ]

 (⊢𝐿𝑎𝑚τ
∀[f:Λτ] P[f]) ⊢𝐿𝑎𝑚τ

∃[f:Λτ] P[f]

Proof. ∀[P:Proposition1Λτ]

 (⊨∀[f:Λτ] P[f]) ⊨∃[f:Λτ] P[f]

Theorem follows from Equivalence of satisfiability and provability in Lam τ.

Theory of Reals (Reals)

Reals is strictly more powerful than the relational 1st order theory of

RealClosedFields.70

Theorem (Categoricity of Reals):71

If X is a type satisfying the axioms72 for the real numbers Reals, then there is a unique
isomorphism with ℝ.

Theory of Ordinals (Ord)

A theory of the ordinals can be axiomatized73 using a 2nd order ordinal induction

axiom as follows: For each order:ℕ+ and P:PropositionorderO
:

 (∀[α:O] ∀[β<α:O] P[β]⇨P[α]) ⇨ ∀[α:O] P[α]

In order to fill out the ordinals, the following limit axioms are included in Ord :

• ∀[α:O, f:OO] ⊍α f:O

• ∀[α,β:O; f:OO] β<⊍αf ⇔ ∃[δ<α] β≦f[δ]

• ∀[α,β:O; f:OO] (∀[δ<α] f[δ]≦β) ⇨ ⊍αf≦β

In order to guarantee that there are uncountable ordinals, the following axioms are

also included in Ord :

• ω0 = ℕ

• ∀[α:O] α>0O ⇨ |ω α| = |𝐁𝐨𝐨𝐥𝐞𝐚𝐧
⊍β<αωβ|

• ∀[α,β:O] |β|=|ωα| ⇨ ωα≦β

where |τ1| = |τ2| ⇔ ∃[f:τ2
τ1] 1to1Ontoτ1,τ2[f]

o 1to1τ1 ,τ2[f:τ2
τ1] ⇔ ∀[x1,x2:τ1] f[x1]=f[x2] ⇨ x1=x2

o 1to1Ontoτ1 ,τ2[f:τ2
τ1]

 ⇔ 1to1τ1 ,τ2[f:τ2
τ1] ∀[y:τ2] ∃[x:τ1] f[x]=y

44

Theorem Ordinals have the following properties:

 Ordinals are well-ordered:

Least:𝐎𝐁𝐨𝐨𝐥𝐞𝐚𝐧𝐎

Least[{ }] = 0O

∀[S:BooleanO] S≠{ } ⇨ Least[S]∈S

∀[S:BooleanO] S≠{ } ⇨ ∀[α∈S] Least[S]≦α

 Reals can be well-ordered because |ω1|= |ℝ|

 ∀[α:O] ∃[β:O] α<ωβ

 The set of all ordinals Ω is BooleanO so that:

 ∀[α:O] α∈Ω ⇔ α:O

Note that it is not the case that Ω is of type O, thereby thwarting the Burali-

Forti paradox

Theorem (Categoricity of Ord):
If X be a type satisfying the axioms the theory of the ordinals Ord

, then

there is a unique isomorphism with O.74

Theorem (Model Soundness of Ord): (⊢
Ord

) ⇨ ⊨

Proof: Suppose ⊢
Nat

 . The theorem immediately follows because the axioms

for the theory Ord

hold in the type O .

Theorem: Logical completeness of Ord

 ∀[P:Proposition1O] (⊨∀[α:O] P[α])⇒ ⊢
Ord

 ∀[α:O] P[α]

Proof. Suppose in Nat , P:Proposition1O
 and ⊨∀[α:O] P[α]. Further

suppose to obtain a contradiction that ∀[α:O] P[α]. Therefore

∃[α:ℕ] P[α] and by Existential Elimination P[α0] where α0:O, which

contradicts ⊨P[α0], from the hypothesis of the theorem. Therefore

⊢
Ord

∀[α:O] P[α] using proof by contraction in Ord.

Corollary. Equivalence of satisfiability and provability in Ord , i.e.,

∀[P:Proposition1O] (⊨∀[α:O] P[α]) ⇔ ⊢
Ord

 ∀[α:O] P[α]

45

Theorem. Inferential Decidability of Ord , i.e.,

 ∀[P:Proposition1O] (⊢
Nat

 ∀[α:O] P[α]) ⊢
Nat

 ∃[α:O] P[α]

Proof. ∀[P:Proposition1O] (⊨∀[α:O] P[α]) ⊨∃[α:O] P[α]

Theorem follows from Equivalence of satisfiability and provability in Ord.

Type Choice

 ∀[f:(𝐁𝐨𝐨𝐥𝐞𝐚𝐧𝛔)𝛕] ∃[choice:στ] ∀[x:τ] f[x]≠{} ⇨ choice[x]∈f[x]

Sets τ defined using strong parameterized types

Set Theory

A theory of the ordinals can be axiomatized using a 2nd order set induction axiom

as follows: For each order:ℕ+ and P:PropositionorderO
:

 (∀[S:Setτ, α:O] (|S|=|α| ⇨ ∀[X:Setτ, β<α:O] P[X]|X|=|β| ⇨ P[X])

 ⇨ ∀[S:Setτ] P[S]

The type Setτ can be characterized as follows:

Setτ ≡ Booleanτ

Of course set membership is defined as follows:

∀[x:τ:, S:Setτ] xS ⇔ S[x]=True

Inductive definition:

1. Set0
τ ≡ Booleanτ

2. Setα+1
τ ≡ SetSetατ

3. α:LimitO ⇒ (S:Setατ ⇔ ∀[X∈S] ∃[β<α:O, Y:Setβτ] X∈Y)

S:Setsτ ⇔ ∃[α:O] S: Setατ

46

The properties below mean that Setsτ is a "universe" of mathematical

discourse.75

 Foundation: There are no downward infinite membership chains.76

 Transitivity of ∈77: ∀[S:Setsτ] ∀[X∈S] X:Setsτ

 Powerset:78 ∀[S:Setsτ] Booleans:Setsτ

 Union:79

 ∀[S:Setsτ] ⋃S:Setsτ

 ∀[S:Setsτ] ∀[X:Setsτ] X∈⋃S ⇔ ∃[Y∈S] X∈Y
 Replacement:80 The function image of any set is also a set, i.e.:

 Imageτ:𝐒𝐞𝐭𝐬τ[𝐒𝐞𝐭𝐬τ𝐒𝐞𝐭𝐬τ,𝐒𝐞𝐭𝐬τ]

 ∀[f:𝐒𝐞𝐭𝐬τ𝐒𝐞𝐭𝐬τ, S:Setsτ]

 ∀[y:Setsτ] yImageτ[f, S] ⇔ ∃[x∈S] f[x]=y

Setsτ is much stronger than relational 1st order ZFC.81

Theorem. Sets τ is categorical with a unique isomorphism.

Proof:82 Suppose that X satisfies the axioms for Sets τ.

 By ordinal induction, the isomorphism I:XSetsτ as follows:

1. S:Set0
τ

I[S] ≡ S

2. S:Setα+1
τ

Z∈XI[S] ⇔ ∃[Y:Setατ] I[Y]∈XZ

3. S:Setα
τ and α:LimitO

Z∈XI[S] ⇔ ∃[β<α:O, Y:Setβ
τ] I[Y]∈XZ

47

I is a unique isomorphism:

 I is one to one

 The range of I is X

 I is a homomorphism:

o I[{ }Setsτ] = { }X

o ∀[S1,S2:Setsτ] I [S1 ∪ S2] = I[S1] ∪X I [S2]

o ∀[S1 S2:Setsτ] I[S1 ∩ S2] = I[S1] ∩X I[S2]

o ∀[S1,S2:Setsτ] I[S1 - S2] = I[S1] -X I[S2]

o ∀[S:Setsτ] I[⋃S] = ⋃X {I[x] | x∈S}

 I-1:SetsτX is a homomorphism

 I is the unique isomorphism: If g:XSetsτ is an isomorphism, then g= I

Theorem (Model Soundness of Sets τ): (⊢𝑆𝑒𝑡𝑠τ
) ⇨ ⊨

Proof: Suppose ⊢𝑆𝑒𝑡𝑠τ
. The theorem immediately follows because the axioms

for the theory Sets τ hold in the type Setsτ.

Theorem: Logical completeness of Sets τ

 ∀[P:Proposition1Setsτ]

 (⊨∀[s:Setsτ] P[s]) ⇒ ⊢𝑆𝑒𝑡𝑠τ
 ∀[s:Setsτ] P[s]

Corollary. Equivalence of satisfiability and provability in Sets τ, i.e.,

 ∀[P:Proposition1Setsτ]

 (⊨∀[s:Setsτ] P[s])⇔⊢𝑆𝑒𝑡𝑠τ
∀[s:Setsτ] P[s]

Theorem. Inferential Decidability of Sets τ, i.e.,

 ∀[P:Proposition1Setsτ]

 (⊢𝑆𝑒𝑡𝑠τ
∀[s:Setsτ] P[s]) ⊢𝑆𝑒𝑡𝑠τ

∃[s:Setsτ] P[s]

Proof. ∀[P:Proposition1Setsτ]

 (⊨∀[s:Setsτ] P[s]) ⊨∃[s:Setsτ] P[s]

Theorem follows from Equivalence of satisfiability and provability in Sets τ.

48

Appendix 3: Notation of Direct Logic

 Type i.e., a type is a discrimination 83 of the following:84

o Boolean::85, ℕ::, O::86, Λτ::87, and Typeτ:: where τ::88

o PropositionanOrder:: and SentenceanOrder:: where anOrder:ℕ+

o (τ1⦶τ2)::89, [τ1,τ2]::90, ([τ1]→τ2)::91 and 𝛕𝟐
𝛕𝟏::92 where τ1:: and τ2::

o (τ∋| P):: where τ:: and P:Proposition1τ 93

o Termτ::94, Expressionτ::95, Stringτ::96, and Setτ::97 where τ::

 Propositions, i.e., a Proposition is a discrimination of the following:

o ():PropositionanOrder where :PropositionanOrderi and

anOrder:ℕ+
o ,,⇨,(⇔):PropositionanOrder where

,:PropositionanOrder and anOrder:ℕ+
o (p � True⦂ 1, False⦂ 2):PropositionanOrder where p:Boolean,

,:PropositionanOrder98 and anOrder:ℕ+
o (x1=x2):Proposition1 where x1,x2:τ and τ::
o (s1s2):Proposition1 where s1,s2:Setτ and τ::
o (xs):Proposition1 where x:τ, s:Setτ and τ::

o (τ1⊑τ2):Proposition199
 where τ1:: and τ2::

o (x::):Proposition1100
o (x:τ):Proposition1 where τ::

o p[x]:PropositionanOrder+1101 where x:τ, p:PropositionanOrderτ and

anOrder:ℕ+ Also, as a special case, p[x]:PropositionanOrder where

x:τ, p:ConstantPropositionanOrderτ
 and anOrder:ℕ+

o (1, …, n-1├
𝐩

𝐓
 n):PropositionanOrder102 where p:Proof, T:Theory,

1 to n:PropositionanOrder and anOrder:ℕ+

o (∀τ p):PropositionanOrderii and (∃τ p):PropositionanOrderiii where

x:PropositionanOrder+1τ, τ::, and anOrder:ℕ+

o (⊨):PropositionanOrder where :PropositionanOrder103
o s:PropositionanOrder where s:SentenceanOrder with no free

variables and anOrder:ℕ+

i Propositionorder is the parametrized type consisting of type Proposition

parametrized by order.
ii meaning ∀[x:τ] p[x]
iii meaning ∃[x:τ] p[x]

49

Grammar (syntax) trees (i.e. terms, expressions and sentences) are defined as follows:

 Terms, i.e., an Termτ is a discrimination of the following:
o ⦅x⦆:Constantτ where x:τ and τ::
o x:Termτ where x:Constantτ and τ::
o x:Termτ where x:Variableτ and τ::

o ⦅f1[x1:𝛕𝟏]:𝛔𝟏≡d1, ... , fn[xn:𝛕𝐧]:𝛔𝐧≡dn in y⦆:Termτ where for i in 1 to n,

fi:Variable𝛔𝐢
𝛕𝒊 in di and y, xi:Variable𝛕𝐢 in di,di:Term𝛔𝐢, y:Termτ,

and 𝛕𝐢::
 104

o ⦅x1:𝛕𝟏≡d1, ... , xn≡dn in y⦆:Termτ where for i in 1 to n, xi:Variable𝛕𝐢 in di

and y, di:Term𝛔𝐢, y:Termτ, and 𝛕𝐢::
 105

o ⦅t1⦶t2⦆:Termτ1⦶τ2, ⦅[t1, t2]⦆:Term[τ1, τ2], ⦅[t1]→t2⦆:Term[τ1]→τ2

and ⦅𝐞𝟐
𝐞𝟏⦆:Term𝛕2

𝛕1
 where t1:Termτ1, t2:Termτ2, τ1:: and τ2::

o ⦅t1 � True⦂ t2 , False⦂ t3⦆:Termτi where t1:TermBoolean, t2,t3:Termτ

and τ::
o ⦅λ[x:τ1] t⦆:Term𝛕𝟐

𝛕𝟏 where t:Termτ2, x:Variableτ1 in t, and τ1,τ2::
o ⦅t[x]⦆:Termτ2 where t:Term𝛕𝟐

𝛕𝟏, x:Termτ1, τ1:: and τ2::
o t:τ where t:Termτ with no free variables and τ::

i ⦅if e1 then e2 else e3⦆

50

 Expressions, i.e., an Expressionτ is a discrimination of the following:
o ⦅x⦆:Constantτ where x:τ and τ::
o x:Expressionτ where x:Constantτ and τ::
o x:Expressionτ where x:Variableτ and τ::

o ⦅f1[x1:𝛕𝟏]:𝛔𝟏≡d1, ... , fn[xn:𝛕𝐧]:𝛔𝐧≡d in y⦆:Expressionτ where for i in 1 to n,

fi:Variable𝛔𝐢
𝛕𝒊 in di and y, xi:Variable𝛕𝐢 in di,di:Expression𝛔𝐢,

y:Expressionτ, and 𝛕𝐢::
106

o ⦅x1:𝛕𝟏≡d1, ... , xn≡ dn in y⦆:Expressionτ where for i in 1 to n, xi:Variable𝛕𝐢

in di and y, di:Expression𝛔𝐢, y:Expressionτ, and 𝛕𝐢::
107

o ⦅e1⦶e2⦆:Expressionτ1⦶τ2, ⦅[e1, e2]⦆:Expression[τ1, τ2],

⦅[e1]→e2⦆:Expression[τ1]→τ2 and ⦅𝐞𝟐
𝐞𝟏⦆:Expression𝛕2

𝛕1
 where

e1:Expressionτ1, e2:Expressionτ2, τ1:: and τ2::
o ⦅e1 � True⦂ e2 , False⦂ e3⦆:Expressionτi where e1:ExpressionBoolean,

e2,e3:Expressionτ and τ::
o ⦅λ[x:τ1] e⦆:Expression𝛕𝟐

𝛕𝟏 where e:Expressionτ2, x:Variableτ1 in e,
and τ1,τ2::

o ⦅e∎[x]⦆:Expressionτ2 where e:Expression[τ1]→τ2, x:Expressionτ1,
τ1:: and τ2::

o SentenceanOrder⊑TermSentenceanOrder and

SentenceanOrder⊑ExpressionSentenceanOrder where

anOrder:ℕ+
ii

o e :τ where e:Expressionτ with no free variables and τ::

i ⦅if e1 then e2 else e3⦆
ii Sentences are both Terms and Expressions in order to facilitate writing functions and

procedures over Terms.

51

 Sentences, i.e., a Sentence is a discrimination of the following:

o ⦅x⦆:SentenceanOrder+1i where x:VariableSentenceanOrder and

anOrder:ℕ+
o ⦅s⦆:SentenceanOrder where s:SentenceanOrder and anOrder:ℕ+
o ⦅s1s2⦆,⦅s1s2⦆,⦅s1⇨s2⦆,⦅s1⇔s2⦆:SentenceanOrder where

s1,s2:SentenceanOrder and anOrder:ℕ+
o ⦅e � True⦂ s1, False⦂ s2⦆ii:SentenceanOrder where

e:ExpressionBoolean, s1,s2:SentenceanOrder and anOrder:ℕ+
o ⦅e1=e2⦆:Sentence1 where e1,e2:Expressionτ and τ::
o ⦅e1⊑e2⦆:Sentence1 where e1,e2:Expressionτ1, τ1:τ2 and τ2::
o ⦅e1e2⦆:Sentence1 where e1,e2:ExpressionSetτ and τ::
o ⦅e1e2⦆:Sentence1 where e1:Expressionτ, e2:ExpressionSetτ

and τ::
o ⦅e1:e2⦆:Sentence1 where e1:Expressionτ1, e2:Expressionτ2 τ1:τ3,

τ2:τ4 and τ3,τ4::
o ⦅e::⦆:Sentence1 where e:Expressionτ and τ::
o ⦅∀[x:τ] s⦆,⦅∃[x:τ] s⦆:SentenceanOrder where x:Variableτ in s,

s:SentenceanOrder and anOrder:ℕ+
o ⦅p[x]⦆:SentenceanOrder+1108 where x:Expressionτ,

p:ExpressionSentenceanOrderτ
, τ:: and anOrder:ℕ+ Also, as a

special case, ⦅p[x]⦆:SentenceanOrderiii where x:Expressionτ,

p:ConstantExpressionSentenceanOrderτ
, τ:: and anOrder:ℕ+

o ⦅s1,…,sn-1├
𝐩

𝐓
 sn⦆:SentenceanOrder where T:ExpressionTheory,

s1 to n:SentenceanOrder, p:ExpressionProof and anOrder:ℕ+

o ⦅⊨ s⦆:SentenceanOrder where s:SentenceanOrder
o SentenceanOrder⊑TermSentenceanOrder and

SentenceanOrder⊑ExpressionSentenceanOrder where

anOrder:ℕ+
109

o s:PropositionanOrder where s:SentenceanOrder, anOrder:ℕ+ and

there are no free variables in s.iv

i The type of ⦅x⦆ means that the Y fixed point construction cannot be used to construct

sentences for “self-referential” propositions in Direct Logic.
ii if t then s1 else s1
iii The type of ⦅p[x]⦆ means that the Y fixed point construction cannot be used to

construct sentences for “self-referential” propositions in Direct Logic.
iv The type binding achieves much of what Russel sought to achieve in the ramified

theory of types. [Russell and Whitehead 1910-1913]

52

 Strings for sentences, i.e., a string for a sentence is a discrimination of the
following:
o “x”:StringSentenceanOrder+1110 where

x:VariableStringSentenceanOrder and anOrder:ℕ+
o “s”:StringSentenceanOrder where s:StringSentenceanOrder

and anOrder:ℕ+
o “s1 s2”,“s1 s2”,“s1 ⇨ s2”,“s1 ⇔ s2”:StringSentenceanOrder where

s1,s2:StringSentenceanOrder and anOrder:ℕ+

o “e � True⦂ s1 , False⦂ s2”i:StringSentenceanOrder where e:
StringExpressionBoolean, s1,s2:StringSentenceanOrder and

anOrder:ℕ+
o “e1=e2”:StringSentence1 where e1,e2:StringExpressionτ and τ::
o “e1⊑e2”:StringSentence1 where e1,e2:StringExpressionτ1, τ1:τ2

and τ2::
o “e1 e2”:StringSentence1 where e1,e2:StringExpressionSetτ

and τ::
o “e1e2”:StringSentence1 where e1:StringExpressionτ,

e2:StringExpressionSetτ and τ::
o “e1:e2”:StringSentence1 where e1:StringExpressionτ1,

e2:StringExpressionτ2, τ1:τ3, τ2:τ4 and τ3,τ4::
o “e::”:StringSentenceanOrder where e:StringExpressionτ and τ::
o “∀[x:τ1] s”,“∃[x:τ1] s”:StringSentenceanOrder where x:Variableτ1 in

s, s:StringSentenceanOrder and anOrder:ℕ+
o “p[x]”:StringSentenceanOrder+1ii where x:StringExpressionτ,

p:StringExpressionSentenceanOrderτ
, τ:: and anOrder:ℕ+

o “s1 , … , sn-1 ├
𝐩

𝐓
 sn”:StringSentenceanOrder where

T:StringExpressionTheory, s1 to n:StringSentenceanOrder,
p:StringExpressionProof and anOrder:ℕ+

o “⊨ s”:StringSentenceanOrder where s:StringSentenceanOrder
o StringSentenceanOrder⊑StringTermSentenceanOrder and

StringSentenceanOrder⊑StringExpressionSentenceanOrder

where anOrder:ℕ+
111

o s:SentenceanOrder where s:StringSentenceanOrder and

anOrder:ℕ+

i if t then s1 else s2
ii The type of “p[x]" ” means that the Y fixed point construction cannot be used to

construct strings for “self-referential” propositions in Direct Logic.

53

 String for terms, i.e., a string for a term is a discrimination of the following:
o “⦅x⦆”:StringTermτ where x:StringConstantτ and τ::
o “⦅x⦆”: StringTermτ where x:StringVariableτ and τ::

o “⦅f1[x1:𝛕𝟏]:𝛔𝟏≡d1, ... , fn[xn:𝛕𝐧]:𝛔𝐧≡dn "in" y⦆”:StringTermτ where for i

in 1 to n, fi:StringVariable𝛔𝐢
𝛕𝒊 in di and y, xi:StringVariable𝛕𝐢 in

di,di:StringTerm𝛔𝐢, y:StringTermτ, and 𝛕𝐢::
 112

o “⦅x1:𝛕𝟏≡d1, ... , xn≡dn "in" y⦆”:StringTermτ where for i in 1 to n,

xi:StringVariable𝛕𝐢 in di and y, di:StringTerm𝛔𝐢,

y:StringTermτ, and 𝛕𝐢::
 113

o “⦅e1⦶e2⦆”:StringTermτ1⦶τ2,

“⦅[e1, e2]⦆”:StringTerm[τ1,τ2], “⦅[e1]⇾e2⦆”:StringTerm[τ1]⇾τ2,

and “⦅𝐞𝟐
𝐞𝟏⦆”:StringTerm𝛕2

𝛕1
 where e1:StringTermτ1,

e2:StringTermτ2, and τ1:: and τ2::
o “⦅e1 � True⦂ e2 , False⦂ e3⦆”:StringTermτi where

e1:StringTermBoolean, e2,e3:StringTermτ and τ::
o “⦅λ[x:τ1] e⦆”:StringTerm𝛕𝟐

𝛕𝟏 where e:StringTermτ2,
x:StringVariableτ1 in e, and τ1,τ2::

o “⦅e[x]⦆”:StringTermτ2 where e:StringTerm𝛕𝟐
𝛕𝟏,

x:StringTermτ1, τ1:: and τ2::
o StringSentenceanOrder⊑StringTermSentenceanOrder

where anOrder:ℕ+
o e:Termτ, where e:StringTermτ and τ::

i “if e1 then e2 else e3”

54

 String for expressions, i.e., a string for an expression is a discrimination of the
following:
o “⦅x⦆”:StringExpressionτ where x:StringConstantτ and τ::
o “⦅x⦆”: StringExpressionτ where x:StringVariableτ and τ::

o “⦅f1[x1:𝛕𝟏]:𝛔𝟏≡d1, ... , fn[xn:𝛕𝐧]:𝛔𝐧≡dn "in" y⦆”:StringExpressionτ where

for i in 1 to n, fi:StringVariable𝛔𝐢
𝛕𝒊 in di and y,

xi:StringVariable𝛕𝐢 in di,di:StringExpression𝛔𝐢,

y:StringExpressionτ, and 𝛕𝐢::
 114

o “⦅x1:𝛕𝟏≡d1, ... , xn≡dn "in" y⦆”:StringExpressionτ where for i in 1 to n,

xi:StringVariable𝛕𝐢 in di and y, di:StringExpression𝛔𝐢,

y:StringExpressionτ, and 𝛕𝐢::
 115

o “⦅e1⦶e2⦆”:StringExpressionτ1⦶τ2,
“⦅[e1, e2]⦆”:StringExpression[τ1,τ2],

“⦅[e1]⇾e2⦆”:StringExpression[τ1]⇾τ2, and

“⦅𝐞𝟐
𝐞𝟏⦆”:StringExpression𝛕2

𝛕1
 where e1:StringExpressionτ1,

e2:StringExpressionτ2, and τ1:: and τ2::

o “⦅e1 � True⦂ e2 , False⦂ e3⦆”:StringExpressionτi where

e1:StringExpressionBoolean, e2,e3:StringExpressionτ and τ::
o “⦅λ[x:τ1] e⦆”:StringExpression𝛕𝟐

𝛕𝟏 where e:StringExpressionτ2,
x:StringVariableτ1 in e, and τ1,τ2::

o “⦅e∎[x]⦆”:Expressionτ2 where e:Expression[τ1]⇾τ2, x:Expressionτ1,
τ1:: and τ2::

o StringSentenceanOrder⊑StringTermSentenceanOrder and

StringSentenceanOrder⊑StringExpressionSentenceanOrder

where anOrder:ℕ+
o e:Expressionτ, where e:StringExpressionτ and τ::

i “if e1 then e2 else e3”

55

Index

�, 48, 49, 50, 51, 52, 53, 54

⦅, 49, 50, 51

⦆, 49, 50, 51

, 39, 48, 49, 50, 51, 52, 53, 54

⦶, 48, 49, 50, 51, 52

:, 48, 51, 52

::, 48, 51

=, 48, 51

∀, 48, 51

∃, 48, 51

∈, 46

∎, 50

≡, 49, 50

⊑, 48, 50, 51, 52

⊢, 48, 51

⊨, 13, 42, 44, 47, 48, 51

⋃, 46

→, 48, 49, 50

⇨, 48, 51

⇔, 48, 51

⦂, 48, 49, 50, 51, 52, 53, 54

Ackermann procedure, 29

argumentation, 3

Barwise, J., 34

Beeson, M., 19

Berry Paradox, 39

Boolean, 48

Boom, H., 19

categorical, 10, 37

categoricity

natural numbers, 13

ordinals, 44

reals, 43

Chaitin, G., 27

choice

type, 45

Church, A., 1, 17, 18, 31

Church’s Paradox, 19, 30

Church’S Paradox, 28

Classical Direct Logic, 2

Cohen, P., 24

Consistency of Mathematics, 7

Constant, 49, 50

Coq, 17

Coquand, T., 17

Curry, H., 27

Dawson, J., 18

Dedekind, R., 1

Direct Logic

sentence, 51, 52

Direct Logic, 1

expression, 50

proposition, 48

term, 49

Direct Logic

expression, 53

Direct Logic

expression, 54

expression

Direct Logic, 50, 53, 54

Expression, 50, 53, 54

First-Order Thesis, 34

Foundation

sets, 46

Galbraith, J. K., 3

Gödel

validity of incompleteness

arguments, 25

Gödel, K., 24

Huet, G., 17

I'mUnprovable, 17, 18, 25

Inconsistency Robustness, 1

Isabelle, 17

Kleene, S., 17

56

Knies, 38

Kuhn, T., 3

Lakatos, I., 24

Lam τ, 40

Lambda Induction, 41

Lambda τ, 41

Law, J., 24

Löb, M., 7, 27

Logic Program

nondeterministic, 37

pure, 35

Monk, R., 25

ℕ, 34, 48

Nat, 10, 11, 12, 13, 32

Nat
1
, 28

Natural Deduction, 7

nondeterministic lambda calculus,

35

Nondeterministic Lambda Calculus,

40

nondeterministic Logic Program, 37

nondeterministic Turing Machine,

37

O, 48

Ord, 35, 44

Paulson, L., 17

Planck, M., 3

Plotkin, G., 19

Powerset

sets, 46

primitive recursive procedure, 29

Principle of Excluded Middle, 3

proposition

Direct Logic, 48

Proposition, 48

Pythagoreans, 1

RealClosedFields, 43

reals

categoricity, 43

Reals, 43

Replacement

sets, 46

Rosser, J. B., 17

Russell, B., 1, 17, 18

schema

finite cardinality, 29

Least Element, 29

Predicate Extension, 29

sentence

Direct Logic, 51, 52

Sentence, 48, 51, 52

Set, 48

sets

Axiom of Foundation, 46

Axiom of Replacement, 46

axiom of Union, 46

powerset, 46

Transitivity of ∈, 46

ZFC, 46

Setsτ, 46

Setsτ, 45

Tarski, A., 5

term

Direct Logic, 49

Term, 49

Terminator, 38

total procedure, 29

Transitivity of ∈

sets, 46

truth, 3

Turing Machine

nondeterministic, 37

Turing, A., 27

Type, 48

Typeτ, 48

types

choice, 45

Unbounded Nondeterminism, 35

57

Union

sets, 46

universe

sets, 46

von Neumann, J., 24

Wittgenstein, L., 1, 25

Woods, J., 19

Y untyped fixed point operator, 28

Zermelo, E., 1, 33

ZFC

sets, 46

λ, 49, 50

Λτ, 48

58

End Notes

1 [White 1956, Wilder 1968, Rosental 2008]
2 In other words, the paradox that concerned [Church 1934] (because it could

mean the demise of formal mathematical logic) has been transformed into

fundamental theorem of foundations!
3 Which is not the same as proving the much stronger proposition that

Mathematics is inferentially consistent, i.e., that there is no proof of

contradiction from the axioms and inference rules of Direct Logic.
4 Mathematical foundations of Computer Science must be general, rigorous,

realistic, and as simple as possible. There are a large number of highly technical

aspects with complicated interdependencies and trade-offs. Foundations will be

used by humans and computer systems. Contradictions in the mathematical

foundations of Computer Science cannot be allowed and if found must be

repaired.

 Classical mathematics is the subject of this article. In a more general context:

 Inconsistency Robust Direct Logic is for pervasively inconsistent theories

of practice, e.g., theories for climate modeling and for modeling the

human brain.

 Classical Direct Logic can be freely used in theories of Inconsistency

Robust Direct Logic. See [Hewitt 2010] for discussion of Inconsistency

Robust Direct Logic. Classical Direct Logic for mathematics used in

inconsistency robust theories.
5 cf. [Rosental 2008]

59

6 According to [Concoran 2001]:

“after first-order logic had been isolated and had been assimilated by the

logic community, people emerged who could not accept the idea that first-

order logic was not comprehensive. These logicians can be viewed not as

conservatives who want to reinstate an outmoded tradition but rather as

radicals who want to overthrow an established tradition [of Dedekind,

etc.].”
7 for discussion see [Hewitt 2010]
8 in an unlawful way (Einstein, a member of the editorial board, refused to

support Hilbert's action)
9 Hilbert letter to Brouwer, October 1928
10 Gödel said “Has Wittgenstein lost his mind?”
11 For example:

From: Harvey Friedman

Sent: Wednesday, April 20, 2016 10:53

To: Carl Hewitt

Cc: Martin Davis @cs.nyu; Dana Scott @cmu; Eric Astor @uconn; Mario Carneiro

@osu; Dave Mcallester @ttic; Joe Shipman

Subject: Re: Parameterized types in the foundations of mathematics

Not if I have anything to say about it!

Harvey

On Wed, Apr 20, 2016 at 11:25 AM, Carl Hewitt wrote:

> Hi Martin,

>

> Please post the message below to FOM [Foundations of Mathematics

forum].

>

> Thanks!

>

> Carl

>

> According to Harvey Friedman on the FOM Wiki: "I have not yet seen any

seriously alternative foundational setup that tries to be better than ZFC in this

[categoricity of models] and other respects that isn't far far worse than ZFC in

other even more important respects."

>

> Of course, ZFC is a trivial consequence of parameterized types with the

following definition for set of type τ:

>

> Setτ ≡ Booleanτ

60

>> Also of course, classical mathematics can be naturally formalized using

parameterized types. For example, see “Inconsistency

Robustness in Foundations: Mathematics self proves its own Consistency and

Other Matters” in HAL Archives.

>

> Regards,

> Carl
12 [Nielsen 2014]
13 By the Computational Representation Theorem [Hewitt 2006], which can

define all the possible executions of a procedure.
14 Again, Mathematics here means the common foundation of all classical

mathematical theories from Euclid to the mathematics used to prove Fermat's

Last [McLarty 2010].
15 As shown above, there is a simple proof in Classical Direct Logic that

Mathematics (├) is formally consistent. If Classical Direct Logic has a bug, then

there might also be a proof that Mathematics is inconsistent. Of course, if a such

a bug is found, then it must be repaired. The Classical Direct Logic proof that

Mathematics (├) is formally consistent is very robust. One explanation is that

formal consistency is built in to the very architecture of Mathematics because it

was designed to be consistent. Consequently, it is not absurd that there is a

simple proof of the formal consistency of Mathematics (├) that does not use all

of the machinery of Classical Direct Logic.

 In reaction to paradoxes, philosophers developed the dogma of the necessity

of strict separation of “object theories” (theories about basic mathematical

entities such as numbers) and “meta theories” (theories about theories). This

linguistic separation can be very awkward in Computer Science. Consequently,

Direct Logic does not have the separation in order that some propositions can

be more “directly” expressed. For example, Direct Logic can use ├├Ψ to

express that it is provable that Ψ is provable in Mathematics. It turns out in

Classical Direct Logic that ├├Ψ holds if and only if ├Ψ holds. By using such

expressions, Direct Logic contravenes the philosophical dogma that the

proposition ├├Ψ must be expressed using Gödel numbers.

61

16 [Gödel 1931] based incompleteness results on the thesis that Mathematics

necessarily has the proposition I'mUnprovable using what was later called the

“Diagonal Lemma” [Carnap 1934], which is equivalent to the Y untyped fixed

point operator on propositions. Using strong parameterized types, it is

impossible to construct I'mUnprovable because the Y untyped fixed point

operator does not exist for strongly typed propositions. In this way, formal

consistency of Mathematics is preserved without giving up power because there

do not seem to be any practical uses for I'mUnprovable in Computer Science.

 A definition of NotProvable could be attempted as follows:

 NotProvable[p] ≡ ⊬p

 With strong types, the attempted definition becomes:

 NotProvablen:ℕ+[p:Propositionn]:Propositionn+1 ≡ ⊬p
 Consequently, there is no fixed point I'mUnprovable for the procedure

NotProvablen:ℕ+ such that the following holds:

 NotProvablen:ℕ+[I'mUnprovable]⇔I'mUnprovable
 Thus Gödel’s I'mUnprovable does not exist in Strongly Typed Mathematics.

 In arguing against Wittgenstein’s criticism, Gödel maintained that his results

on I'mUnprovable followed from properties of ℕ using Gödel numbers for

strings that are well-formed. The procedure NotProvable could be attempted for

strings as follows: NotProvable[s] ≡ “⊬ s” With strong types, the attempted

definition becomes:

 NotProvablen:ℕ+[s:StringPropositionn]:StringPropositionn+1≡“⊬s”

Consequently, there is no fixed point I'mUnprovableString for the procedure

NotProvablen:ℕ+ such that the following holds (where s is the

proposition for well-formed string s):

 NotProvablen:ℕ+ [I'mUnprovableString] ⇔ I'mUnprovableString
 Thus Gödel’s I'mUnprovableString does not exist in Strongly Typed

Mathematics.

 Furthermore, Strong Types thwart the known paradoxes while at the same

time facilitating proof of new theorems, such as categoricity of the set theory.
17 Total[f] ⇔ ∀[i:ℕ] ∃[j:ℕ] f∎[i] = j

62

18 ProvedTotalsEnumerator∎[i:ℕ]:([ℕ]→ℕ)) ≡ Next∎[i, 0, 0]
 Next∎[i:ℕ, totalsIterator:ℕ, theoremsIterator:ℕ]:([ℕ]→ℕ)) ≡
 TheoremsEnumerator[theoremsIterator] �
 Total[f] ⦂ // TheoremsEnumerator[theoremsIterator]=Total[f]
 totalsIterator=i �
 True ⦂ f,
 False⦂ Next∎[i, totalsIterator+1, theoremsIterator+1]
 else ⦂ Next∎[i, totalsIterator, theoremsIterator+1]

Theorem ⊢Total[ProvedTotalsEnumerator]
 Proof: ProvedTotalsEnumerator always converges because.

 ⊢∀[i:ℕ] ∃[j:ℕ, g:([ℕ]→ℕ)] j>i TheoremsEnumerator∎[j]=Total[g]
19 [Isaacson 2007]
20 A theory is defined by a set of propositions in Direct Logic that are taken to be

axioms of the theory.
21 The whole induction axiom is of type Proposition2. However, ∀[i:ℕ] P[i]

within the induction axiom is of type Proposition1. Quine famously
criticized 2nd order theory as nothing more than “set theory in sheep’s
clothing” [Quine 1970, pg. 66]. However, the induction axiom is a more
natural axiomatization of the Natural Numbers than the 1st order induction
schema which provides an infinitely large number of axioms.
 [Zermelo 1932] noted that the Natural Number Induction Axiom can be

expressed using infinite conjunctions as follows:

∀[P:Proposition1ℕ] (P[0] i:ℕ P[i]⇨P[i+1]) ⇨ i:ℕ P[i]

 Also, the induction axiom per se does not commit to sets of Booleanℕ. Given

Booleanℕ, as shown below, the set theory version of the Natural Number

induction axiom is logically equivalent to the propositional version.

Theorem. ∀[X:Booleanℕ] (0∈X ∀[i:ℕ] i∈X⇨i+1∈X) ⇨ ∀[i:ℕ] i∈X

 Proof: Suppose X:Booleanℕ. P[i:ℕ]:Proposition1 ≡ i∈X. The theorem

follows immediately.

Theorem. Set theory version of the Natural Number induction axiom implies

propositional version.

Proof: Suppose ∀[X:Boolean1ℕ] (0∈X∀[i:ℕ] i∈X⇨i+1∈X) ⇨ ∀[i:ℕ] i∈X

Further suppose P:Proposition1ℕ. Define X:Booleanℕ ≡ {i:ℕ | P[i]}. It

follows that (P[0] ∀[i:ℕ] P[i]⇨P[i+1]) ⇨ ∀[i:ℕ] P[i].

63

22 Proof: Suppose X≠{}. Suppose to obtain a contradiction that X doesn’t have a

least element. 0∉X because otherwise it would be the least element. Therefore

0∈~X where ~X is the complement of X.

 To prove ~X= ℕ that using for course of values induction with i:ℕ
assume that ∀[j≤i] j∈ℕ. Therefore i+1∈~X because otherwise i+1 is the

least element of X since every integer smaller that i+1 is in ~X.

Consequently ~X= ℕ, by course of value values induction.

Consequently, X≠{} is contradicted because ~X=ℕ.
23 Proof.

o Proof by induction that

 ∀[i:ℕ, X:Booleanℕ] |X]=i ⇨ ∀[f:ℕℕ] (1to1[f, X] ⇨ Onto[f, X, X])

Suppose for i:ℕ that

 ∀[X:Booleanℕ, f:ℕℕ] |X]=i ⇨ (1to1[f, X] ⇨ Onto[f, X, X])

To prove ∀[X:Booleanℕ, f:ℕℕ] |X]=i+1 ⇨ (1to1[f, X] ⇨ Onto[f, X, X]),
suppose |X]=i+1 so that X=Y⋃{z} where z∉Y and consequently

|Y|=i. By the inductive hypothesis, ∀[f:ℕℕ] 1to1[f, Y] ⇨ Onto[f, Y, Y].
To prove Onto[f, X, X], suppose 1to1[f, X]. Therefore 1to1[f, Y] and
so Onto[f, Y, Y]. Therefore f[z]∈X because 1to1[f, X] and
consequently Onto[f, X, X].

o Suppose ∀[f:ℕℕ] (1to1[f, X] ⇨ Onto[f, X, X]). Further suppose to obtain a

contradiction Finite[X] and thus ∃[i:ℕ] ∀[j∈X] j<i which means

there is a monotonic f:Xℕ be such that 1to1[f, ℕ]. Define

g[i:X]:X ≡ f[i+1]. Consequently, 1to1[g, X] but Onto[g, X, X] because
g[j]∉X for the least element of X, which is a contradiction.

24 This argument appeared in [Church 1934] expressing concern that the argument

meant that there is “no sound basis for supposing that there is such a thing as

logic.”
25 Total[f] ⇔ ∀[i:ℕ] ∃[j:ℕ] f∎[i] = j

64

26 ProvedTotalsEnumerator∎[i:ℕ]:([ℕ]→ℕ)) ≡ Next∎[i, 0, 0]
 Next∎[i:ℕ, totalsIterator:ℕ, theoremsIterator:ℕ]:([ℕ]→ℕ)) ≡
 TheoremsEnumerator[theoremsIterator] �
 Total[f] ⦂ // TheoremsEnumerator[theoremsIterator]=Total[f]
 totalsIterator=i �
 True⦂ f,
 False⦂ Next∎[i, totalsIterator+1, theoremsIterator+1]
 else ⦂ Next∎[i, totalsIterator, theoremsIterator+1]

Theorem ⊢Nat Total[ProvedTotalsEnumerator]

 Proof: ProvedTotalsEnumerator always converges because.

 ⊢Nat ∀[i:ℕ] ∃[j:ℕ,g:([ℕ]→ℕ)] j>i TheoremsEnumerator∎[j]=Total[g]
27 [Dedekind 1888] According to [Isaacson 2007]:

“Second-order quantification is significant for philosophy of mathematics

since it is the means by which mathematical structures may be

characterized. But it is also significant for mathematics itself. It is the means

by which the significant distinction can be made between the independence

of Euclid's Fifth postulate from the other postulates of geometry and the

independence of Cantor's Continuum hypothesis [conjecture] from the

axioms of set theory. The independence of the Fifth postulate rejects the

fact, which can be expressed and established using second-order logic, that

there are different geometries, in one of which the Fifth postulate holds (is

true), in others of which it is false.”
28 For example, there are nondeterministic Turing machines that the theory Nat

proves always halt that cannot be proved to halt in the relational 1st order

theory of Natural Numbers.
29 cf. [Genesereth and Kao 2015; Zohar 2017]
30 cf. [Zermelo 1932] pp. 6-7.
31 of type [Com]→

 Outcome[created=FiniteSetActor, // new Actors

 sent=FiniteSetCom, // new Communications
 next=Behavior]

32 cf. [Zermelo 1932] pp. 6-7.

33 Consequently, there can cannot be any escape hatch into an unformalized

“meta-theory.”
34 The claim also relied on Gödel's proposition I'mUnprovable.
35 Formal syntax was invented long after [Gödel 1931].
36 emphasis in original

65

37 According to Solomon Feferman, Gödel was “the most important logician of

the 20th century” and according to John Von Neumann he was “the greatest

logician since Aristotle.” [Feferman 1986, pg. 1 and 8]
38 [Feferman 1986, pg. 1 and 8]
39 Wittgenstein in 1937 published in Wittgenstein 1956, p. 50e and p. 51e]
40 Wittgenstein was granting the supposition that [Gödel 1931] had proved

inferential undecidability (sometimes called “incompleteness”) of Russell’s
system, that is., ⊢⊬P. However, inferential undecidability is easy to prove
using the proposition P where P⇔⊬P:

Proof. Suppose to obtain a contradiction that ⊢

P. Both of the following can

be inferred:
1) ⊢

⊬P from the hypothesis because P⇔⊬P

2) ⊢

⊢P from the hypothesis by Adequacy.

But 1) and 2) are a contradiction. Consequently, ⊢⊬

P follows from proof by

contradiction.
41 [Wang 1972]
42 The Liar Paradox [Eubulides of Miletus] is an example of using untyped

propositions to derive an inconsistency:

 Fn[p:Propositionn]:Propositionn+1 ≡ p

 // above definition has no fixed point because p has
 // order greater than p

The following argument derives a contradiction assuming the existence of a

fixed point for F:
1) I’mFalse ⇔ I’mFalse // nonexistent fixed point of F

2) I’mFalse // proof by contradiction from 1)

3) I’mFalse // from 1) and 2)
43 [Church 1935] correctly proved computational undecidability without using

Gödel's I’mUnprovable. The Church theorem and its proof are very robust.
44 Nat

1
 is not a categorical theory of the natural numbers because there are

nonstandard (different from ℕ) countable types which satisfy the axioms of Nat
1

that have a (nonstandard) element that is larger than any number which can be
reached by finitely iterating the successor function starting with 0. Such a
nonstandard model can be constructed creating a new theory Nat

1
* by adding a

new symbol ∞, the axiom ∞<∞, and countably many axioms of the form i<∞
for each Natural Number i. Since Nat

1
* is consistent, there is a type ℕ* which

satisfies the theory Nat
1
. The type ℕ also satisfies the theory Nat

1
 because

the axioms of Nat
1

are a subset of the axioms of Nat
1
*.

 However, ℕ* does not satisfy the theory Nat because it is not isomorphic to
ℕ.

66

45 instead of using the categorical induction axiom of Nat

Theorem. ⊢𝑁𝑎𝑡1
∀[X:StringExpression Booleanℕ

]

 (0∈ X ∀[i:ℕ] i∈ X ⇨i+1∈ X) ⇨ ∀[i:ℕ] i∈ X

 Proof: Suppose X:StringExpressionBooleanℕ
. Define

 P:StringExpressionProposition1ℕ
 ≡ “λ[i:ℕ] i∈ X ”

 The theorem follows immediately.
46 In conformance with the context of Church’s Paradox, the general 1st order

theory Nat1 is considerably stronger than the relational 1st order theory PA (so-

called “Peano Arithmetic”). For example, PA cannot proved that the

Ackermann procedure below is total.
 The following schema can be used to (non-categorically) axiomatize the real

numbers (ℝ) where S:StringSetℝ:
 S ≠{ }ℝ Bounded[S] ⇨ HasLeastUpperBound[S]
 where
 Bounded[S] ⇔ ∃[b:ℝ] UpperBound[b, S]
 UpperBound[b:ℝ, S] ⇔ b S ∀[x S] x≦b
 HasLeastUpperBound[S]] ⇔ ∃[b:ℝ] LeastUpperBound[b, S]

 LeastUpperBound[b:ℝ, S]
 ⇔ UpperBound[b, S] ∀[x S] UpperBound[x, S] ⇨ x≦b
47 cf. [Church 1934]
48 In Nat

1
all of the instances of the induction schema can be enumerated by

a proved total deterministic procedure which then can be used to
enumerate the theorems of Nat

1
using a proved total deterministic

procedure.
49 ProvedTotalsEnumerator∎[i:ℕ]:([ℕ]→ℕ)) ≡ Next∎[i, 0, 0]
 Next∎[i:ℕ, totalsIterator:ℕ, theoremsIterator:ℕ]:([ℕ]→ℕ)) ≡
 TheoremsEnumerator[theoremsIterator] �
 Total[f] ⦂ // TheoremsEnumerator[theoremsIterator]=Total[f]
 totalsIterator=i �
 True ⦂ f,
 False⦂ Next∎[i, totalsIterator+1, theoremsIterator+1]
 else ⦂ Next∎[i, totalsIterator, theoremsIterator+1]

Theorem ⊢𝑁𝑎𝑡1
Total[ProvedTotalsEnumerator]

 Proof: ProvedTotalsEnumerator always converges because.

 ⊢𝑁𝑎𝑡1
∀[i:ℕ] ∃[j:ℕ,g:([ℕ]→ℕ)] j>i TheoremsEnumerator∎[j]=Total[g]

50 because

 ∀[f:([ℕ]→ℕ)] (⊢Total[f])⇒∃[i:ℕ] TheoremsEnumerator∎[i]=Total[f]

67

51 in accord with the opinion of a large fraction of contemporary philosophers of

logic
52 In other words, the paradox that concerned [Church 1934] (because it could

mean the demise of formal mathematical logic) has been transformed into

fundamental theorem of foundations!
53 Which is not the same as proving the much stronger proposition that

Mathematics is inferentially consistent, i.e., that there is no proof of

contradiction from the axioms and inference rules of Direct Logic.

54 Theorem: ⊢
Nat

 ∀[P:StringExpressionProposition1ℕ
]

 (P [0] ∀[i:ℕ] P [i]⇨ P [i+1]) ⇨ ∀[i:ℕ] P [i]
55 In 1666, England's House of Commons introduced a bill against atheism and

blasphemy, singling out Hobbes’ Leviathan. Oxford university condemned and

burnt Leviathan four years after the death of Hobbes in 1679.
56 ContinuumForReals is defined as follows:

 ContinuumForReals ⇔ ∄[S:Booleanℕ] |ℕ| < |S| < |Booleanℕ|

ContinuumForReals has been proved for well-behaved subsets of the reals,

such as Borel sets as follows:

 ContinuumForBorelSets ⇔ ∄[S:BorelSet] |ℕ| < |S| < |Booleanℕ|

 where a Borel Set is formed from the countable union, countable
intersection, and relative complement of open sets

That ContinuumForReals is an open problem is not so important for Computer

Science because for ContinuumForComputableReals is immediate because the

computable real numbers are enumerable.

For less well behaved subset of ℝ, ContinuumForReals remains an open

problem.

 Note that it is important not to confuse ContinuumForReals with

ContinuumForRelational1stOrderZFC. Relational1stOrderZFC has

countably many 1st order propositions as axioms. [Cohen 1963] proved the

following theorem which is much weaker than ContinuumForReals because

sets in the models of Relational1stOrderZFC do not include all of

Proposition1ℕ and the theory Relational1stOrderZFC is much

weaker than the theory Sets ℕ:
 ⊬

Relational1stOrderZFC ContinuumForRelational1stOrderZFC
 ⊬

Relational1stOrderZFC ContinuumForRelational1stOrderZFC
Cohen's result above is very far from being able to decide the following:

 ⊦𝑆𝑒𝑡𝑠ℕ
 ContinuumForReals

57 [Zermelo 1930, van Dalen 1998, Ebbinghaus 2007]

68

58 1st order theories fall prey to paradoxes like the Löwenheim–Skolem theorems

(e.g. any 1st order theory of the real numbers has a countable model). Theorists

have used the weakness of 1st order theory to prove results that do not hold in

stronger formalisms such as Direct Logic [Cohen 1963, Barwise 1985].
59 a restricted form of Model Checking in which the properties checked are

limited to those that can be expressed in Linear-time Temporal Logic has

been studied [Clarke, Emerson, Sifakis, etc. ACM 2007 Turing Award].
60 cf. Plotkin [1976]

61 up to a unique isomorphism
62 Rejection of the 1st Order Thesis resolves the seeming paradox between the

formal proof in this article that Mathematics formally proves its own formal

consistency and the proof that ‘Every “strong enough” formal system that

admits a proof of its own consistency is actually inconsistent.’ [Paulson 2014].

Although Mathematics is “strong enough” the absence of “self-referential”

propositions (constructed using the Y untyped fixed point operator on

propositions) blocks the proof of formal inconsistency to which Paulson

referred.
63 Note that the Berry paradox is blocked using strong types because BString is a

string for a term of a proposition of anOrder+1 thereby preventing it from

being substituted for a string for a term of a proposition of anOrder.
64 using definition of BSet
65 using definition of BExpression
66 substituting BNumber for n
67 Subst is the substitution procedure, which substitutes its third argument

into the application of its first two arguments
68 Fix implements recursion. It can be defined in Direct Logic as follows;

 Fixτ1,τ1∎[F:Functionalτ1,τ1]:([τ1]→τ2)

 ≡ λ[x:τ1] (F∎[Fixτ1,τ1∎[F]])∎[x]

For example, suppose

 F[g:[ℕ]→ℕ]:([ℕ]→ℕ) ≡ λ[i:ℕ] i=1 � True⦂ 1 , False⦂ ig∎[i-1]
Therefore by the Fix axiom, Fixℕ,ℕ∎[F]=F∎[Fixℕ,ℕ∎[F]] and
Fixℕ,ℕ∎[F] = F∎[Factorial] = Factorial where

 Factorial ≡ λ[i:ℕ] i=1 � True⦂ 1 , False⦂ iFactorial∎[i-1]
69 where F1

∎[x] ≡ F∎[x]

 Fn+1
∎[x] ≡ Fn

∎[F∎[x]]
70 Robinson [1961]
71 [Dedekind 1888]

69

72 The following can be used to characterize the real numbers (ℝ) up to a unique

isomorphism:

 ∀[S:Setℝ] S≠{ }ℝ Bounded[S] ⇨ HasLeastUpperBound[S]
 where
 Bounded[S:Setℝ] ⇔ ∃[b:ℝ] UpperBound[b, S]
 UpperBound[b:ℝ, S:Setℝ] ⇔ bS ∀[xS] x≦b
 HasLeastUpperBound[S:Setℝ]] ⇔ ∃[b:ℝ] LeastUpperBound[b, S]
 LeastUpperBound[b:ℝ, S:Setℝ]
 ⇔ UpperBound[b,S] ∀[xS] UpperBound[x, S] ⇨ x≦b

73 The theory of the ordinals Ord is axiomatised as follows:

 0O:O

 Successor ordinals

o ∀[α:O] +1[α]:O +1[α]>α

o ∀[α:O] ∄[β:O] α<β<+1[α]

 Replacement for ordinals:

o ∀[α:O,f:OO] ⊍αf:O

o ∀[α,β:O,f:OO] β∈⊍αf ⇔ ∃[δ<α] β≦f[δ]

o ∀[α,β:O,f:OO] (∀[δ<α] f[δ]≦β) ⇨ ⊍αf≦β

 Cardinal ordinals

ω0 = ℕ

∀[α:O] α>0O ⇨ |ω α| = |𝐁𝐨𝐨𝐥𝐞𝐚𝐧
⊍β<αωβ|

∀[α,β:O] |β|=|ωα| ⇨ ωα=β ωα∈β

 where |τ1| = |τ2| ⇔ ∃[f:τ2
τ1] 1to1ontoτ1,τ2[f]

 1to1τ1 ,τ2[f:τ2
τ1] ⇔ ∀[x1,x2:τ1] f[x1]=f[x2] ⇨ x1=x2

 1to1ontoτ1 ,τ2[f:τ2
τ1]

 ⇔ 1to1τ1 ,τ2[f:τ2
τ1] ∀[y:τ2] ∃[x:τ1] f[x]=y

 Tansitivity of <
∀[α,β<α,δ<β:O] α<δ

 ∀[α,β:O] α<β α=β β<α

 ∀[α,β:O] α<β ⇨ β<α

 For each order:ℕ+ and P:PropositionorderO
:

the following ordinal induction axiom holds:

 (∀[α:O] ∀[β<α:O] P[β]⇨P[α]) ⇨ ∀[α:O] P[α]

70

74 For each type X that satisfies the theory Ord there is a unique isomorphism

I:XO
 inductively defined as follows:

 I[0O] ≡ 0X

 ∀[α:O] I[+1[α]] ≡ +1
𝐗[I[α]]

 ∀[α:LimitO] I[α] ≡ y

 where y:X ∀[β<α] y≦XI[β]

 ∀[z:X] (∀[β<α] z≦XI[β]) ⇒ y≦Xz

Using proofs by ordinal induction on O and X, the following follow:

1. I is defined for every O

2. I is one-to-one: ∀[α,β:O] I[α] = I[β] ⇒ α=β

3. The range of I is all of X: ∀[y:X] ∃[α:O] I[α] = y

4. I is a homomorphism:

 I[0O] = 0X

 ∀[α:O] I[+1[α]] = +1
𝐗[I[α]]

 ∀[α:LimitO, f:OO] I[⊍α f] = ⊍f[α]
x

I⚬f⚬I-1

5. I-1:OX is a homomorphism

6. I is the unique isomorphism: If g:X

O
 is an isomorphism then g=I

75 [Bourbaki 1972; Fantechi, et. al. 2005]
76 This implies, for example, that no set is an element of itself.

77 Proof: Suppose S:Setsτ and therefore ∃[α:O] S:Set
α
τ.

 Proof by ordinal induction on

 P[β:O]:Proposition1 ≡ ∀[X∈S] X:Setβ
τ

 Assume: (∀[β<α:O] ∀[X∈S] X:Setβ
τ) ⇨ ∀[X∈S] X:Setα

τ

Show: ∀[X∈S] X:Setα
τ

Assume: X∈S

Show X:Setα
τ

Proof by cases on α

1. X:Set0
τ

X:Booleanτ

 2. ∀[α:O] Sets
α
τ = SetSet

α-1
τ

 X:Setα-1
τ QED by induction hypothesis

71

 3. ∀[α:LimitO] ∃[β<α,Y:Setβ
τ] X∈Y

 QED by induction hypothesis
78 Proof: Suppose S:Setsτ and therefore ∃[α:O] S:Setsα

τ

 S:Sets
α
τ

 Show: Booleans:Setsτ

 Booleans:Setsα+1
τ QED

79 Proof by ordinal induction on

 P[α:O]:Proposition1 ≡ ∀[S:Sets
α
τ] ⋃S:Setsτ

Assume: ∀[β<α:O] ∀[S:Setsβ
τ] ⋃S:Setsτ

Show: ∀[S:Setsα
τ] ⋃S:Setsτ

Assume: S:Sets
α
τ

Show: ⋃S:Setsτ

∀[X:Setsτ] X∈⋃S ⇔ ∃[Y∈S] X∈Y

∀[X:Setsτ] X∈⋃S ⇔ ∃[β<α:O,Y:Sets
β
τ] X∈Y

∀[X:Setsτ] X∈⋃S ⇒ X:Setsτ

QED by definition of Setsτ

72

80 Suppose f:𝐒𝐞𝐭𝐬τ𝐒𝐞𝐭𝐬τ and S:Setsτ

Show Imageτ[f, S]:Setsτ

Proof by ordinal induction on

 P[α:O] ⇔ S:Setα
τ ⇒ Imageτ[f, S]:Setsτ

Suppose ∀[β<α:O] S:Setβ
τ ⇒ Imageτ[f, S]:Setsτ

Show S:Setα
τ ⇒ Imageτ[f, S]:Sets τ

Suppose S:Setα
τ

Show Imageτ[f, S]:Setsτ

∀[y:Setsτ] y:Imageτ[f, S] ⇔ ∃[x∈S] f[x]=y

Show ∀[y:Setsτ] y∈Imageτ[f, S] ⇒ y:Setsτ

Suppose y:Setsτ y∈Imageτ[f, S]

Show y:Setsτ

∃[x∈S] f[x]=y because y∈Imageτ[f, S]

∃[β<α:O] x:Setβ
τ because x∈S and S:Setα

τ

Imageτ[f, x]:Setsτ by induction hypothesis

Show f[x]:Setsτ

Suppose z∈f[x]

Show z:Setsτ

z∈Setsτ because z∈f[x] and Imageτ[f, x]:Setsτ

f[x]:Setsτ

y:Setsτ because f[x]=y
81 [Mizar; Matuszewski1 and Rudnicki: 2005; Naumowicz and Artur

Korniłowicz 2009; Naumowicz 2009]

82 Note that this proof is fundamentally different from the categoricity proof in

[Martin 2015].
83 For every type there is a larger type, i.e.., ∀[τ1::] ∃[τ2::] τ1⋤τ2
84 There is no universal type. Instead, Type is parameterized, e.g.,

Boolean:TypeBoolean and ℕ:Typeℕ
85 True≠False, True:Boolean, and False:Boolean
 ∀[x:Boolean] x=True x=False
86 Λτ is the type of lambda procedures over τ
87 O is the type of the Ordinals

88 ∀[τ::] τ:Typeτ

73

89 Discrimination of τ1 and τ2

 For i=1,2

 If x:τi, then ((τ1⦶τ2)[x]):(τ1⦶τ2) and x=((τ1⦶τ2)[x])↓τi.

 ∀[z:τ] z:τ1⦶τ2 ⇔ ∃[x:τi] z=(τ1⦶τ2)[x]
90 type of 2-element list with first element of type τ1 and with second element

of type τ2
91 Type of computable nondeterministic procedures from τ1 into τ2.

If f:([τ1]→τ2) and x:τ1, then f∎[x]:τ2. The following holds:

 ∀[f:([ℕ]→ℕ)] ∃[aString:(StringExpression[ℕ]→ℕ)] f = aString

Furthermore, if e:Expression[τ1]→τ2 with no free variables, then

e:[τ1]→τ2). [τ1]⇾τ2 is the subtype of [τ1]→τ2 that is the computable

deterministic procedures from τ1 into τ2.
92 Type of functions from τ1 into τ2. If f:τ2

𝛕1 and x:τ1, then f[x]:τ2.
93 ∀[x:τ] x:τ∋| P ⇔ P[x]

For example,

 ∀[τ::, X:𝐁𝐨𝐨𝐥𝐞𝐚𝐧𝐁𝐨𝐨𝐥𝐞𝐚𝐧𝛕
] ∪X ≡ τ∋| λ[y:τ] ∃[Z:𝐁𝐨𝐨𝐥𝐞𝐚𝐧𝛕] ZXyZ

94 expression of type τ. The following axiom holds:

 ∀[τ::,t:Termτ] t ::τ
95 expression of type τ. The following axiom holds:

 ∀[τ::, e:Expressionτ] e::τ
96 string of type τ. The following axiom holds:

 ∀[τ::,s:Stringτ] s::τ
97 Setτ is a type parametrized by the type τ. In Java and C++,

parametrized types are called “generics” using “<” for , and “>”

for . The following axiom holds: ∀[τ::, s:Setτ, x∈s] x:τ
98 if p then 1 else 2
99 x1 is a subtype of x2, i.e., ∀[x:τ1] x:τ2
100 The proposition that τ is a type
101 The type of p[x] means that the Y fixed point construction cannot be used

to construct propositions in Direct Logic.
102 1, … and n-1 infer n

103 The following: hold

 (⊨) ⇔ (⊨) (⊨)

 (⊨) ⇔ (⊨) (⊨)

 (⊨ ⇨) ⇔ (⊨) ⇨ (⊨)

 (⊨) ⇔ ⊨

 (⊨ ∀[x:τ] p[x]) ⇔ ∀[x:τ] ⊨ p[x]

 (⊨ ∃[x:τ] p[x]) ⇔ ∃[x:τ] ⊨ p[x]

74

104 mutually recursive definitions of functions f1 to n
105 mutually recursive definitions of variables x1 to n
106 mutually recursive definitions of functions f1 to n
107 mutually recursive definitions of variables x1 to n
108 The type of ⦅p[x]⦆ means that the Y fixed point construction cannot be used

to construct sentences for “self-referential” propositions in Direct Logic.
109 Sentences are both Terms and Expressions in order to facilitate writing

functions and procedures, respectively, over terms.
110 The type of “x” means that the Y fixed point construction cannot be used to

construct strings for “self-referential” propositions in Direct Logic.
111 A Sentences is both a Term and an Expression in order to facilitate writing

functions and procedures, respectively, over terms.
112 mutually recursive definitions of functions f1 to n
113 mutually recursive definitions of variables x1 to n
114 mutually recursive definitions of functions f1 to n
115 mutually recursive definitions of variables x1 to n

