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Strong Types for Direct Logic 

 

Carl Hewitt 

http://plus.google.com/+CarlHewitt-StandardIoT 

 

This article is dedicated to Alonzo Church, Richard Dedekind, 

Bertrand Russell, Ludwig Wittgenstein. and Ernst Zermelo. 
 

Abstract 
 

This article follows on the introductory article “Direct Logic for Intelligent 

Applications” [Hewitt 2017a]. Strong Types enable new mathematical theorems 

to be proved including the Formal Consistency of Mathematics. Also, Strong 

Types are extremely important in Direct Logic because they block all known 

paradoxes[Cantini and Bruni 2017]. Blocking known paradoxes makes Direct 

Logic safer for use in Intelligent Applications by preventing security holes.  

 

Inconsistency Robustness is performance of information systems with pervasively 

inconsistent information. Inconsistency Robustness of the community of 

professional mathematicians is their performance repeatedly repairing 

contradictions over the centuries. In the Inconsistency Robustness paradigm, 

deriving contradictions has been a progressive development and not “game 

stoppers.” Contradictions can be helpful instead of being something to be “swept 

under the rug” by denying their existence, which has been repeatedly attempted 

by authoritarian theoreticians (beginning with some Pythagoreans). Such denial 

has delayed mathematical development. This article reports how considerations 

of Inconsistency Robustness have recently influenced the foundations of 

mathematics for Computer Science continuing a tradition developing the 

sociological basis for foundations.1 

 

Mathematics here means the common foundation of all classical mathematical 

theories from Euclid to the mathematics used to prove Fermat's Last [McLarty 

2010]. Direct Logic provides categorical axiomatizations of the Natural Numbers, 

Real Numbers, Ordinal Numbers, Set Theory, and the Lambda Calculus meaning 

that up a unique isomorphism there is only one model that satisfies the respective 

axioms. Good evidence for the consistency Classical Direct Logic derives from 

how it blocks the known paradoxes of classical mathematics. Humans have spent 

millennia devising paradoxes for classical mathematics. 

 

https://plus.google.com/+CarlHewitt-StandardIoT
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Having a powerful system like Direct Logic is important in computer science 

because computers must be able to formalize all logical inferences (including 

inferences about their own inference processes) without requiring recourse to 

human intervention. Any inconsistency in Classical Direct Logic would be a 

potential security hole because it could be used to cause computer systems to 

adopt invalid conclusions. 

 

After [Church 1934], logicians faced the following dilemma: 

 1st order theories cannot be powerful lest they fall into inconsistency 

because of Church’s Paradox. 

 2nd order theories contravene the philosophical doctrine that theorems 

must be computationally enumerable. 

 

The above issues can be addressed by requiring Mathematics to be strongly typed 

using so that: 

 Mathematics self proves that it is “open” in the sense that theorems are 

not computationally enumerable.2 

 Mathematics self proves that it is formally consistent.3 

 Strong mathematical theories for Natural Numbers, Ordinals, Set 

Theory, the Lambda Calculus, Actors, etc. are inferentially decidable, 

meaning that every true proposition is provable and every proposition 

is either provable or disprovable.  Furthermore, theorems of these 

theories are not enumerable by a provably total procedure. 

 

Mathematical Foundation for Computer Science 
 

Computer Science brought different concerns and a new perspective to 

mathematical foundations including the following requirements:4 [Arabic numeral 

superscripts refer to endnotes at the end of this article] 

 

 provide powerful inference machinery so that arguments (proofs) can be 

short and understandable and all logical inferences can be formalized 

 establish standard foundations so people can join forces and develop 

common techniques and technology 

 incorporate axioms thought to be consistent by the overwhelming 

consensus of working professional mathematicians, e.g., natural numbers 

[Dedekind 1888], real numbers [Dedekind 1888], ordinals, sets of integers, 

lambda calculus, reals, etc. 



 

 

 

 

 

 

 

 

 

3 

 facilitate inferences about the mathematical foundations used by computer 

systems. 

Sociology of Foundations 
 

“Faced with the choice between changing one’s mind and proving that 

there is no need to do so, almost everyone gets busy on the proof.”   

John Kenneth Galbraith [1971 pg. 50] 

 

“Max Planck, surveying his own career in his Scientific Autobiography 

[Planck 1949], sadly remarked that ‘a new scientific truth does not 

triumph by convincing its opponents and making them see the light, but 

rather because its opponents eventually die, and a new generation grows 

up that is familiar with it.’ ” [Kuhn 1962] 

 

The inherently social nature of the processes by which principles and propositions 

in logic are produced, disseminated, and established is illustrated by the following 

issues with examples:5 
 

 The formal presentation of a demonstration (proof) has not led 

automatically to consensus. Formal presentation in print and at several 

different professional meetings of the extraordinarily simple proof in this 

paper have not lead automatically to consensus about the theorem that 

“Mathematics proves that it is formally consistent”. New results can sound 

crazy to those steeped in conventional thinking. Paradigm shifts often 

happen because conventional thought is making assumptions taken as 

dogma.  As computer science continues to advance, such assumptions can 

get in the way and have to be discarded. 

 There has been an absence of universally recognized central logical 

principles. Disputes over the validity of the Principle of Excluded Middle 

led to the development of Intuitionistic Logic. 

 There are many ways of doing logic. One view of logic is that it is about 

truth; another view is that it is about argumentation (i.e. proofs).6  

 Argumentation and propositions have be variously (re-)connected and 

both have been re-used. Church's paradox [Church 1934] is that assuming 

theorems of mathematics are computationally enumerable leads to 

contradiction. In this article, Church’s Paradox is transformed into the 

fundamental principle that “Mathematics is Open” (i.e. it is a theorem of 
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mathematics that the proofs of mathematics are not computationally 

enumerable).i 

 New technological developments have cast doubts on traditional logical 

principles. The pervasive inconsistency of modern large-scale information 

systems has cast doubt on some logical principles, e.g., Excluded Middle.7 

 Political actions have been taken against views differing from the 

establishment theoreticians. According to [Kline 1990, p. 32], Hippasus 

was literally thrown overboard by his fellow Pythagoreans “…for having 

produced an element in the universe which denied the…doctrine that all 

phenomena in the universe can be reduced to whole numbers and their 

ratios.” Fearing that he was dying and the influence that Brouwer might have 

after his death, Hilbert fired8 Brouwer as an associate editor of 

Mathematische Annalen because of “incompatibility of our views on 

fundamental matters”9 e.g., Hilbert ridiculed Brouwer for challenging the 

validity of the Principle of Excluded Middle. [Gödel 1931] results were for 

Principia Mathematica as the foundation for the mathematics of its time 

including the categorical axiomatization of the natural numbers. In face of 

Wittgenstein's devastating criticism, Gödel insinuated10 that he was crazy 

and retreated to relational 1st order theory in an attempt to salvage his results. 

Since theoreticians found it difficult to prove anything significant about 

practical mathematical theories, they cut them down to unrealistic relational 

1st order theories where results could be proved (e.g. compactness) that did 

not hold for practical mathematical theories. In the famous words of Upton 

Sinclair:  

“It is difficult to get a man to understand something,  

when his salary depends on his not understanding it.” 

Some theoreticians have ridiculed dissenting views and attempted to limit 

their distribution by political means.11 

 

  

                                                           
i See discussion in this article. 



 

 

 

 

 

 

 

 

 

5 

Foundations with strong parameterized types 

 
“Everyone is free to elaborate [their] own foundations. All that is required of 

[a] Foundation of Mathematics is that its discussion embody absolute rigor, 

transparency, philosophical coherence, and addresses fundamental 

methodological issues.”12 

 
“The aims of logic should be the creation of “a unified conceptual apparatus 

which would supply a common basis for the whole of human knowledge.” 

[Tarski 1940] 

 

Note:  types in Direct Logic are much stronger than constructive types with 

constructive logic because Classical Direct Logic has all of the power of 

Classical Mathematics. 

 

In Direct Logic, unrestricted recursion is allowed in programs. For example, 
 There are uncountably many Actors.13 For example, Real∎[ ] can output 

any real numberi between 0 and 1 where 
        Real∎[ ]:ℝ ≡ [(0 either 1), ⩛Postpone Real∎[ ]] 
           where 

o (0 either 1) is the nondeterministic choice of 0 or 1,  
o [ first, ⩛rest] is the list that begins with first and whose 

remainder is rest, and 
o Postpone expression delays execution of expression until 

the value is needed. 

 There are uncountably many propositions (because there is a different 

proposition for every real number). For example, 

                      p[x:ℝ]:Proposition1ℝ ≡ λ[y:ℝ] (y=x)  

defines a different predicate p[x] for each real number x, which holds for 

only one real number, namely x.ii 
 

Strings can be abstracted into sentences and sentences can be abstracted into 

propositions that can be asserted.  

 

  

                                                           
i using binary representation.  
ii For example (p[3])[y] holds if and only if y=3. 
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For example: 

 
 

 
 

 
 

Classical Direct Logic is a foundation of mathematics for Computer Science, 

which has a foundational theory (for convenience called “Mathematics”) that can 

be used in any other theory. A bare turnstile is used for Mathematics so that ⊢Ψ 

means that Ψ is a mathematical proposition that is a theorem of Mathematics and 

Φ⊢Ψ means that Ψ can be inferred from Φ. 

 

Direct Logic develops foundations for Mathematics by deriving sets from types 

and categorical axioms for the natural numbers and ordinals. 

  

Propositions 
    e.g.  ∀[n:ℕ] ∃[m:ℕ] m>n 
       i.e., proposition that for every ℕ there is a larger ℕ  

 

intuitively : For every number, there is a larger number. Sentences 
  e.g. ⦅∀[n:ℕ] ⦅∃[m:ℕ] ⦅m>n⦆⦆⦆ 
    i.e., sentence for proposition that 

       for every ℕ there is a larger ℕ  
 
 

Strings 
  e.g. “⦅∀[n:ℕ] ⦅∃[m:ℕ] ⦅m>n⦆⦆⦆” 
      i.e., string for sentence for proposition that 

          for every ℕ there is a larger ℕ  
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Mathematics self proves its own formal consistency (contra [Gödel 1931]) 

The following are fundamental to Mathematics14: 

 Derivation by Contradiction, i.e. ├ (¬Φ⇒(Θ¬Θ)) ⇒ Φ, which says that 

a proposition can be proved showing that its negation implies a 

contradiction. 

 A theorem can be used in a proof 
i, i.e. ├ ((├ Φ)⇒Φ) 

 

Theorem:  Mathematics self proves its own formal consistencyii, i.e., 

├Consistent 
Formal Derivation. Suppose to obtain a contradiction, that mathematics is 

formally inconsistent, i.e.,  ¬Consistent. By definition of formal consistency, 

there is some proposition Ψ0 such that├ (Ψ0 ¬Ψ0) which by the Theorem 

Use means Ψ0¬Ψ0 , which is a contradiction. Thus, ├Consistent by 

Derivation by Contradiction. 

 

  

                                                           
i Note that the results in [Löb 1955] do not apply because propositions in Mathematics 

are strongly typed and consequently the fixed point used to establish his result does not 

exist.  See discussion of Löb’s Paradox in this article. 
ii Note that the results in [Gödel 1931] do not apply because propositions in Mathematics 

are strongly typed and consequently the fixed point used construct Gödel’s proposition 

I’mUnprovable does not exist in Mathematics. See the critique of Gödel’s results in 

this article. 

1) Consistent  // hypothesis to derive a contradiction just in this subargument

├ Consistent                          // axiom of Proof by Contradiction using 1) and 3) 

2) ├(Ψ0Ψ0)                        // definition of inconsistency using 1)

  

3)  Ψ0Ψ0                                             // axiom of Soundness using 2)
  

    Natural Deduction
i  Proof of Formal Consistency of Mathematics 
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Please note the following points:   

 The above argument formally mathematically proves that Mathematics is 

formally consistent and that it is not a premise of the theorem that 

Mathematics is formally consistent.  
 Mathematics was designed for consistent theories and consequently 

Mathematics can be used to prove its own formal consistency regardless 

of other axioms.15 
 

The above derivation means that “Mathematics is formally consistent” is a 

theorem in Classical Direct Logic. The usefulness of Classical Direct Logic 

depends crucially on the much stronger proposition that Mathematics is 

inferentially consistent, i.e., that there is no proof of contradiction from the 

sentences for the axioms using the inference rules of Direct Logic. Good evidence 

for the inferential consistency of Mathematics comes from the way that Classical 

Direct Logic avoids the known paradoxes. Humans have spent millennia devising 

paradoxes. 

 

The above self-proof of formal consistency shows that the current common 

understanding that [Gödel 1931] proved “Mathematics cannot prove its own 

formal consistency, if it is formally consistent” is inaccurate.16  

Mathematics Self Proves that it is Open  
 

Mathematics here means the common foundation of all classical mathematical 

theories from Euclid to the mathematics used to prove Fermat's Last [McLarty 

2010].i   

 

  

                                                           
i Consequently, Mathematics evolves and is not fixed. 
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Mathematics proves that it is open in the sense that it can prove that its theorems 

cannot be computationally enumerated by a provably total procedure: 

   Theorem ⊢Mathematics is Open, i.e., 

                       ⊢TheoremsEnumerableByProvedTotalProcedure 

Proof.i  
Suppose to obtain a contradiction that  

             TheoremsEnumerableByProvedTotalProcedure 
Then by the definition of 

TheoremsEnumerableByProvedTotalProcedure there is a deterministic 

total procedure TheoremsEnumerator:[ℕ]→Proposition such that the 

following hold where Total:Proposition[ℕ]→ℕ:17 

 ⊢Total[TheoremsEnumerator] 

 ∀[i:ℕ] ⊢TheoremsEnumerator∎[i] 

 ∀[p:Proposition] (⊢p) ⇒ ∃[i:ℕ] TheoremsEnumerator∎[i]=p 

A subset of the theorems enumerated by TheoremsEnumerator are those 

stating that certain deterministic procedures [ℕ]→ℕ are total. 

Consequently, there is a deterministic total procedure 

ProvedTotalsEnumerator:([ℕ]→([ℕ]→ℕ))18, which enumerates proved 

total deterministic procedures: 

 ⊢Total[ProvedTotalsEnumerator]  

 ∀[i:ℕ] ⊢Total[ProvedTotalsEnumerator∎[i] ] 

 ∀[f:([ℕ]→ℕ)] (⊢Total[f])⇒∃[i:ℕ] ProvedTotalsEnumerator∎[i]=f  

ProvedTotalsEnumerator can be used to implement the deterministic total 

procedure Diagonal:([ℕ]→ℕ) as follows: 
      Diagonal∎[i:ℕ]:ℕ ≡ 1+ (ProvedTotalsEnumerator∎[i])∎[i] 
Consequently: 

 ⊢Total[Diagonal] because it is the deterministic composition of 

proved total deterministic procedures. 

 ⊢Total[Diagonal] because Diagonal differs from every procedure 

enumerated by ProvedTotalsEnumerator. 
The above contradiction completes the proof. 

 

                                                           
i This argument appeared in [Church 1934] expressing concern that the argument meant 

that there is “no sound basis for supposing that there is such a thing as logic.”  
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[Franzén 2004] argued that Mathematics is inexhaustible because of inferential 

undecidabilityi of mathematical theories. The above theorem that Mathematics is 

open provides another independent argument for the inexhaustibility of 

Mathematics. 

 

Categoricity 

“If the mathematical community at some stage in the development of 

mathematics has succeeded in becoming (informally) clear about a 

particular mathematical structure, this clarity can be made 

mathematically exact ... Why must there be such a characterization? 

Answer: if the clarity is genuine, there must be a way to articulate it 

precisely. If there is no such way, the seeming clarity must be illusory ... 

for every particular structure developed in the practice of mathematics, 

there is [a] categorical characterization of it.”19 

 

Classical Direct Logic is much stronger than 1st order axiomatizations  of set 

theory in that it provides categoricity for natural numbers ℕ, reals ℝ, ordinals  O. 

set theory, the lambda calculus and Actors. Categoricity is very important in 

Computer Science so that there are no nonstandard elements in models of 

computational systems, e.g., infinite integers and infinitesimal reals. For example, 

nonstandard models cause problems in model checking if a model has specified 

properties. 
 
Natural Number Induction 

The mathematical theory20 Nat categorically axiomatises the Natural Numbers 

using the following induction axiom:21 

        ∀[P:Proposition1ℕ]  (P[0]  ∀[i:ℕ] P[i]⇨P[i+1]) ⇨ ∀[i:ℕ] P[i] 

 

  

                                                           
i See section immediately below. 
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The other axioms of Nat are as follows: 

• 0:ℕ 
• ∀[i:ℕ]  +1[i]:ℕ 
• ∄[i:ℕ]  +1[i]=0 
• ∀[i,j:ℕ]  +1[i]=+1[j] ⇨ i=j 

 

Theorem: Least Element.22  For  

   ∀[X:Booleanℕ] X≠{} ⇒ ∃[iX] ∀[jX] i≤j 

 

Theorem: Finite Cardinality23 

   ⊢
Nat

  ∀[X:Booleanℕ] Finite[X] ⇔ ∀[f:ℕℕ] (1to1[f, X] ⇨ Onto[f, X, X]) 

     where 

           Finite[X:Booleanℕ]:PropositionNat  ≡ ∃[i:ℕ] ∀[z∈X] z<i 
where: 

o 1to1[f:Xℕ, X:Booleanℕ]:PropositionNat  ≡  

                                                                   ∀[i1, i2X] f[i1]= f[i2] ⇨ i1=i2 

o Onto[f:Xℕ, X:Booleanℕ, Y:Booleanℕ]:PropositionNat  ≡  

                                                                                   ∀[jY] ∃[iX] f[i]=j 
 

Definition Total[f:([ℕ]⇾ℕ)]:PropositionNat  ≡ ∀[i:ℕ] ∃[j:ℕ] f∎[i]=j  

Theorem   ⊢
Nat

 Total[Ackermann]  

                                                               where Ackermann is defined as follows: 
      Ackermann∎[i:ℕ, j:ℕ]:ℕ ≡ 
          i=0 �  
               True ⦂ j+1, 
               False ⦂ j=0 � 

               True ⦂ Ackermann∎[i-1, 1] 
               False ⦂ Ackermann∎[i-1, Ackermann∎[i, j-1]] 

 

Lemma ⊢
Nat

 ∀[f:([ℕ]⇾ℕ)] PrimitiveRecursive[f]  

                                                               ⇒ ∀[x:ℕ]  ∃[m:ℕ] f∎[x]<Ackermann∎[m, x] 
 

Theorem ⊢
Nat

 PrimitiveRecursive[Ackermann]   
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Theorem Nat proves that its theorems are not enumerable by a provably total 

procedure, i.e. 

                   ⊢
Nat

 TheoremsEnumerableByProvedTotalProcedure[Nat ] 

Proof:24   
1. Suppose to obtain a contradiction that  

              TheoremsEnumerableByProvedTotalProcedure[Nat ] 
Then there is a deterministic procedure 

TheoremsEnumerator:[ℕ]→PropositionNat  such that the following 

hold where Total:PropositionNat 
[ℕ]→ℕ: 25 

  ⊢
Nat

 Total[TheoremsEnumerator] 

 ∀[p:PropositionNat ] ∃[i:ℕ] TheoremsEnumerator∎[i]=p 

 ∀[i:ℕ] ⊢
Nat

 TheoremsEnumerator∎[i] 

A subset of the theorems enumerated by TheoremsEnumerator are those 

stating that certain deterministic procedures [ℕ]→ℕ are total. 

Consequently, there is a deterministic total procedure 

ProvedTotalsEnumerator:([ℕ]→([ℕ]→ℕ))26 such that the following 

hold: 

 ⊢Nat Total[ProvedTotalsEnumerator] 

 ∀[i:ℕ] ⊢Nat Total[ProvedTotalsEnumerator∎[i] ] 

 ∀[f:([ℕ]→ℕ)] (⊢Nat Total[f])⇒∃[i:ℕ] ProvedTotalsEnumerator∎[i]=f 

because 

∀[f:([ℕ]→ℕ)] (⊢Total[f])⇒∃[i:ℕ] TheoremsEnumerator∎[i]=Total[f ] 
 
ProvedTotalsEnumerator can be used to implement the deterministic total 

procedure Diagonal:([ℕ]→ℕ) as follows: 
      Diagonal∎[i:ℕ]:ℕ ≡ 1+ (ProvedTotalsEnumerator∎[i])∎[i] 
 
Consequently: 

 ⊢Nat Total[Diagonal] because Diagonal is the deterministic 

composition of proved total procedures. 

 ⊢
Nat

 Total[Diagonal] because Diagonal differs from every 

procedure enumerated by ProvedTotalsEnumerator. 
The above contradiction completes the proof. 
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Theorem Nat  proves that it is formally consistent:i ⊢
Nat

 Consistent[Nat]   

Proof:  Suppose to derive an inconsistency that Consistent[Nat] . By the 

definition of formal inconsistency for Nat, there is some proposition 

Ψ0:Proposition1 such that ⊢
Nat

 (Ψ0Ψ0) which can be used to infer 

in Nat
  
that Ψ0Ψ0. The above contradiction completes the proof. 

 

Theorem (Model Soundness of Nat ): (⊢
Nat

) ⇨ ⊨ 

Proof: Suppose ⊢
Nat

 . The theorem immediately follows because the axioms 

for the theory Nat 
 
hold in the type ℕ. 

 

Theorem (Categoricity of Nat):27  
If X be a type satisfying the axioms for the natural numbers Nat, then there is  a 
unique isomorphism with ℕ.  Nat   is strictly 
more powerful than a 1st order theory of 
Natural Numbers.28 
 

Corollary There are no infinite numbers in 

models of the theory Nat , i.e., 
      ∀[X::] NatX ⇨ ∄[i:X] ∀[j:X] j<i 

 

  

                                                           
i Note that the results in [Gödel 1931] do not apply because propositions in 

Mathematics are strongly typed and consequently the fixed point used construct 

Gödel’s proposition I’mUnprovable does not exist in Mathematics. See the critique of 

Gödel’s results in this article. 

Richard Dedekind 
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Definition:  ClosedTermsNat    is all terms of Nat  with no free variables.  

Corollary:  NatClosedTermsNat    

Proof. ClosedTermsNat  clearly satisfies the axioms of Nat.29  

Categoricity provides the answer as to which closed terms are equal.  

 

Theorem:30 Logical completeness of Nat  

   ∀[P:Proposition1ℕ]  (⊨ ∀[i:ℕ] P[i]) ⇒ ⊢
Nat

 ∀[i:ℕ] P[i] 

Proof.  Suppose in Nat  , P:Proposition1ℕ and  ⊨∀[i:ℕ] P[i]. Further 

suppose to obtain a contradiction that ∀[i:ℕ] P[i]. Therefore  
∃[i:ℕ] P[i] and by Existential Elimination P[i0] where i0:ℕ,  which 

contradicts ⊨P[i0] from the hypothesis of the theorem.  Consequently,  

   ⊢
Nat 

∀[i:ℕ] P[i] using proof by contraction in Nat. 

Although proposition has finite length, there are uncountably many 

propositions. Consequently, even though every proof has finite length, there 

are uncountably many proofs because there are uncountably many 

propositions.  Thus a proof may not be expressible as a character string because 

there are uncountable many proofs. Although by the above theorem Nat    is 

inferentially complete, some proofs are not expressible as character strings. It 

is an open problem to characterize theorems of Nat  whose proofs cannot be 

expressed as character strings. 

 

Corollary.  Equivalence of satisfiability and provability in Nat , i.e.,   

∀[P:Proposition1ℕ]  (⊨∀[i:ℕ] P[i]) ⇔ ⊢
Nat

 ∀[i:ℕ] P[i] 

 

Theorem.  Inferential Decidability of Nat , i.e.,   

          ∀[P:Proposition1ℕ]  (⊢
Nat

 ∀[i:ℕ] P[i])  ⊢
Nat

 ∃[i:ℕ] P[i] 

Proof.  Because ∀[P:Proposition1ℕ]  (⊨ ∀[i:ℕ] P[i])  ⊨ ∃[i:ℕ] P[i], 
the theorem follows from Equivalence of satisfiability and provability in Nat. 
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Actors 

For each Actor x, x[t] is the behavior of x at time t of type Timex, where 

Behavior31, where Com is the type for a communication and an outcome for a 

communication received has a finite set of created Actors, a finite set of sent 

communications, and a behavior for the next communication received. The 

mathematical theory Act categorically axiomatises Actors using the following 

axioms where ↷ is transitive and irreflexive: 

• Primitive Actors 
o ∀[i:ℕ]  i:Actor                                           // natural numbers are Actors 
o  ∀[x1,x2:Actor] [x1,x2]:Actor                  // a tuple of Actors is an Actor 

• An Actor’s event ordering 
o ∀[x:Actor, c1,c2:Com]  c1≠c2 ⇒ Receivedx[c1]↷Receivedx[c2]  

                                                                    Receivedx[c2]↷Receivedx[c1] 
o ∀[x:Actor, c1:Com]  

                       ∄[c2:Com] Receivedx[c1]↷Receivedx[c2]↷Afterx[c1] 

o ∀[x:Actor, c:Com] Initialx↷Receivedx[c]↷Afterx[c] 
o ∀[x:Actor, c1,c2:Com]  
        Finite[{c:Com | Receivedx[c1]↷Receivedx[c]↷Receivedx[c2]}] 

• An Actor’s behavior change 
o ∀[x:Actor, c1:Com]  (∄[c2:Com] Receivedx[c2]↷Receivedx[c1]) 
                                                                            ⇒ x[Receivedx[c1]]=x[Initialx] 
o ∀[x:Actor, c1,c2:Com]  
            (∄[c3:Com] Afterx[c1]↷Receivedx[c3]↷Receivedx[c2]) 

                                                                         ⇒ x[Receivedx[c2]]=x[Afterx[c1]] 
• Between Actors event ordering 
o ∀[c:Com] Sent[c]↷Received[c] 
o ∀[c1,c2:Com] Finite[{c:Com | Sent[c1]↷Received[c]↷Received[c2]}] 

 
Theorem:  Actor Induction 

    ∀[x:Actor, P:Proposition1Behavior] 

         (P[x[Initialx]]  ∀[m:Message] P[x[Receivedx[m]]]⇨P[x[Afterx[m]]]) 

               ⇨ ∀[m:Message] P[x[Receivedx[m]]]  P[x[Afterx[m]]] 
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Theorem. Categoricity of Act   
If X be a type satisfying the axioms for Act   , then there is  a unique isomorphism 
with Actor. 
 

Theorem:32 Logical completeness of Act    

   ∀[P:Proposition1Actor]  (⊨∀[x:Actor] P[x]) ⇒ ⊢
Act

 ∀[x:Actor] P[x] 

Proof.  Suppose in Act  , P:Proposition1Actor and  ⊨∀[x:Actor] P[x]. 

Further suppose to obtain a contradiction that ∀[x:Actor] P[x]. 
Therefore ∃[x:ℕ] P[x] and by Existential Elimination P[x0] where 

x0:Actor,  which contradicts ⊨P[x0] from the hypothesis of the theorem.  

Consequently, ⊢
Act

 ∀[x:Actor] P[x] using proof by contraction in Act. 

Although by the above theorem Act   is inferentially complete, a proof may 

not be expressible as a character string because there are uncountable many 

proofs. It is an open problem to characterize theorems of Act  whose proofs 

cannot be expressed as character strings. 

 

Corollary.  Equivalence of satisfiability and provability in Act , i.e.,   

    ∀[P:Proposition1Actor]  (⊨∀[x:Actor] P[x]) ⇔ ⊢
Act

 ∀[x:Actor] P[x] 

 

Theorem.  Inferential Decidability of Act , i.e.,   

∀[P:Proposition1Actor]  (⊢
Act

 ∀[x:Actor] P[x])  ⊢
Act

 ∃[x:Actor] P[x] 

Proof. 

  ∀[P:Proposition1Actor] (⊨∀[x:Actor] P[i])  ⊨ ∃[x:Actor] P[x] 
Theorem follows from Equivalence of satisfiability and provability in Act. 

 

Conclusion 
Strong Types enable new mathematical theorems to be proved including the 

Formal Consistency of Mathematics. Also, Strong Types enable proofs of the 

Categoricity of axiomatizations of the ordinals and the cumulative hierarchy of 

sets of a type. 

Furthermore, Strong Types are extremely important in Direct Logic because they 

block all know paradoxes[Cantini and Bruni 2017].  Blocking known paradoxes 

makes Direct Logic safer for use in Intelligent Applications by preventing security 

holes. For example, Strong Types block the following paradoxes:  Berry [Russell 

1906], Burali-Forti [Burali-Forti 1897], Church [Church 1934], Curry [Curry 
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1941], Girard[Coquand 1986], and Liar [Eubulides of Miletus], and Löb [Löb 

1955].  

Information Invariance is a fundamental technical goal of logic consisting of the 

following: 

1. Soundness of inference: information is not increased by inference 

2. Completeness of inference: all information that necessarily holds can be 

inferred. 

 
Computer Science needs a rigorous foundation for all of mathematics that enables 

computers to carry out all reasoning without human intervention.33 [Russell 1925] 

attempted basing foundations entirely on types, but foundered on the issue of 

being expressive enough to carry to some common mathematical reasoning. 

[Church 1932, 1933] attempted basing foundations entirely on untyped higher-

order functions, but foundered because it was shown to be inconsistent [Kleene 

and Rosser 1935]. Presently, Isabelle [Paulson 1989] and Coq [Coquand and Huet 

1986] are founded on types and do not allow theories to reason about themselves. 

Classical Direct Logic is a foundation for all of mathematical reasoning based on 

strong types (to provide grounding for concepts) that allows general inference 

about reasoning. 
 

[Gödel 1931] claimed inferential undecidabilityi results for mathematics using the 

proposition I'mUnprovable In opposition to Wittgenstein's correct argument his 

proposition leads to contradictions in mathematics, Gödel claimed that the results 

of [Gödel 1931] were for a cut-down relational 1st order theory of natural numbers. 

However, relational 1st order theories are not a suitable foundation for Computer 

Science because of the requirement that computer systems be able to carry out all 

reasoning without requiring human intervention (including reasoning about their 

own inference systems).  

 

  

                                                           
i sometimes called logical “incompleteness” 
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Following [Russell 1925, and Church 1932-1933], Direct Logic was developed 

and then investigated propositions with the following results: 

 Formalization of Wittgenstein's proof that Gödel's proposition I'mUnprovable 

leads to contradiction in mathematics. So the consistency of mathematics had 

to be rescued against Gödel's proposition constructed using what [Carnap 

1934] later called the “Diagonal Lemma” which is equivalent to the Y 

untyped fixed point operator on propositions.  Use of the Y untyped fixed 

point operator on propositions in results of [Curry 1941] and [Löb 1955] also 

lead to inconsistency in mathematics. Consequently, mathematics had to be 

rescued against these uses of the Y untyped fixed point operator for 

propositions. 

 Self-proof of the formal consistency of mathematics. Consequently, 

mathematics had to be rescued against the claim [Gödel 1931] that 

mathematics cannot prove its own formal consistency. Also, it became an 

open problem whether mathematics proves its own formal consistency, 

which was resolved by the author discovering an amazing simple proof.34 A 

solution is to require strongly typed mathematics to bar use of the Y untyped 

fixed point operator for propositions.35 However, some theoreticians have 

very reluctant to accept the solution. 

        According to [Dawson 2006]:36 

 Gödel’s results altered the mathematical landscape, but they did not 

“produce a debacle”. 

 There is less controversy today over mathematical foundations than 

there was before Gödel’s work. 

However, Gödel’s writings have produced a controversy of a very different 

kind from the one discussed by Dawson: 

 The common understanding that mathematics cannot prove its own 

formal consistencyi has been disproved. 

 Consequently, Gödel's writings have led to increased controversy over 

mathematical foundations. 

 

  

                                                           
i Gödel's writing was accepted doctrine by some theoreticians for over eight decades. 
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The development of Direct Logic has strengthened the position of working 

mathematicians as follows:i 

 Allowing freedom from the philosophical dogma of the 1st Order Thesis 

 Providing usable strong types for all of Mathematics that provides theories 

that have categorical models 

 Allowing theories to freely reason about theories 

 Providing Inconsistency Robust Direct Logic for safely reasoning about 

theories of practice that are (of necessity) pervasively inconsistent. 

 

Acknowledgements 

Tom Costello, Eric Martin, Per Stenstrom, and Johan van Benthem made 

very helpful comments and suggestions. Interactions with John Woods 

were very helpful in developing a resolution to Church’s Paradox. 

Conversations with Gordon Plotkin were helpful and his suggestions led to 

the introduction of the fixed point operator in the categorical theory of the 

lambda calculus. Michael Beeson suggested a clarification in the argument 

of Church’s Paradox. Hendrik Boom provided an excellent critique, which 

resulted in a fundamental reorganization. 

Bibliography 
Anthony Anderson and Michael Zelëny (editors). Logic, Meaning and 

Computation: Essays in Memory of Alonzo Church Springer. 2002. 
Andrea Asperti,  Herman Geuvers,  Raja Natarajan. Social processes, program 

verification and all that “Mathematical Structures in Computer Science” 

Cambridge University Press. 2009. 
Jeremy Avigad and John Harrison. Formally Verified Mathematics. CACM. April 

2014. 
Steve Awodey and Erich Reck. Completeness and Categoricity. Parts I and II: 

Nineteenth-century Axiomatics to Twentieth-century Metalogic. History and 
Philosophy of Logic. Vol. 23. 2002.  

Steve Awodey, Álvaro Pelayo, and Michael A. Warren. Voevodsky’s Univalence 
Axiom in Homotopy Type Theory Notices of AMS. October 2013.  

Jon Barwise. Model-Theoretic Logics: Background and Aims in “Model Theoretic 
Logics” Springer-Verlag. 1985. 

Francesco Berto. The Gödel Paradox and Wittgenstein’s Reasons Philosophia 
Mathematica. February, 2009. 

                                                           
i Of course, Direct Logic must preserve as much previous learning as possible. 



 

 

 

 

 

 

 

 

 

20 

Andrey Bovykin. Brief introduction to unprovability.  Logic Colloquium 2006. 
Lecture Notes in Logic 2009 

Carlo Cellucci  “Gödel's Incompleteness Theorem and the Philosophy of Open 

Systems” Kurt Gödel: Actes du Colloque, Neuchâtel 13-14 juin 1991, Travaux 

de logique N. 7, Centre de Recherches Sémiologiques, University de Neuchâtel. 

http://w3.uniroma1.it/cellucci/documents/Goedel.pdf 
Gregory Chaitin Interview in Dangerous Knowledge BBC4 documentary. 2007. 
Alan Chalmers. “What is this thing called science?” Open University Press. 1999. 

Haskell Curry. “Some Aspects of the Problem of Mathematical Rigor” Bulletin of 

the American Mathematical Society Vol. 4. 1941. 
Alonzo Church. The Richard Paradox. Proceedings of American Mathematical 

Society. 1934. 
Alonzo Church. An unsolvable problem of elementary number theory Bulletin of 

the American Mathematical Society 19, May, 1935. American Journal of 
Mathematics, 58. 1936, 

Alonzo Church: A Formulation of the Simple Theory of Types, Journal of 
Symbolic Logic. vol. 5. 1940. 

Will Clinger. Foundations of Actor Semantics MIT Mathematics Doctoral 

Dissertation. June 1981. 
Thierry Coquand and Gérard Huet: The calculus of constructions. Technical 

Report 530, INRIA, Centre de Rocquencourt, 1986. 
John Corcoran. Gaps between logical theory and mathematical practice in The 

methodological unity of science. 1973. 
John Corcoran. Categoricity. History and Philosophy of Logic. Vol. 1. 1980 
John Corcoran.  Second-order Logic.  Logic, Meaning and Computation. Kluwer. 

2001.  
John Dawson. Shaken Foundations or Groundbreaking Realignment? A 

Centennial Assessment of Kurt Gödel's Impact on Logic, Mathematics, and 
Computer Science FLOC’06. 

Richard Dedekind (1888) “What are and what should the numbers be?” 

(Translation in From Kant to Hilbert: A Source Book in the Foundations of 

Mathematics. Oxford University Press. 1996)  Braunschweig. 

Freeman Dyson. Heretical Thoughts about Science and Society Boston 

University. November 1, 2005. 
Heinz-Dieter Ebbinghaus. Ernst Zermelo: An Approach to His Life and Work 

Springer. 2007. 
Patrik Eklund, M. Angeles Galan, Robert Helgesson, and Jari Kortelainenc. Fuzzy 

Terms Fuzzy Sets and Systems. 256. 2014. 

Feferman “Axioms for determinateness and truth” Review of Symbolic Logic. 

2008. 

http://w3.uniroma1.it/cellucci/documents/Goedel.pdf


 

 

 

 

 

 

 

 

 

21 

Mike Genesereth and Eric Kao. The Herbrand Manifesto Thinking Inside the Box. 
Rule ML. August 2-5, 2015. 

Kurt Gödel (1931) “On formally undecidable propositions of Principia 

Mathematica” in A Source Book in Mathematical Logic, 1879-1931. 

Translated by Jean van Heijenoort. Harvard Univ. Press. 1967. 

Carl Hewitt. Planner: A Language for Proving Theorems in Robots IJCAI. 1969. 

Carl Hewitt. “Procedural Embedding of Knowledge In Planner” IJCAI 1971. 

Carl Hewitt and John Woods assisted by Jane Spurr, editors. Inconsistency 

Robustness. College Publications. 2015. 

Carl Hewitt. 2015a. Actor Model of Computation for Scalable Robust Information 

Systems in “Inconsistency Robustness”  College Publications. 2015. 

Carl Hewitt. 2015b. ActorScript™ extension of C#®, Java®, Objective C®, C++, 

JavaScript®, and SystemVerilog using iAdaptive™ concurrency in 

Inconsistency Robustness. College Publications. 2015. 

Carl Hewitt. 2015c. Inconsistency Robustness in Logic Programs in 

“Inconsistency Robustness” College Publications. 2015. 

Carl Hewitt. 2015d. Formalizing common sense reasoning for scalable 

inconsistency-robust information coordination using Direct LogicTM 

Reasoning and the Actor Model in “Inconsistency Robustness”  College 

Publications. 2015. 

Carl Hewitt. 2015e.  Inconsistency Robustness in Logic Programs in 

“Inconsistency Robustness” College Publications. 2015. 

Carl Hewitt. 2015f. Actors for CyberThings. Erlang Keynote. YouTube. March 

23, 2015. 

Carl Hewitt. 2016b. Future Cyberdefenses Will Defeat Cyberattacks CACM. 

August 2016. 

Carl Hewitt 2016c. IsletsTM Protect Sensitive IoT Information:  Verifiably ending 

use of sensitive IoT information for mass surveillance fosters (international) 

commerce  SSRN WP 2836282. 2016. 

Carl Hewitt 2017a. Direct Logic for Intelligent Applications Logic and 

Collaboration for Intelligent Applications.  Stanford.  March 30-31, 2017. 

Carl Hewitt 2017b. Axiomatics for Inconsistency Robust Direct Logic Logic and 

Collaboration for Intelligent Applications.  Stanford.  March 30-31, 2017. 

J. Roger Hindley and Jonathan Seldin. λ-calculus and Combinators: An 

Introduction Cambridge University Press. 2008 

Stanisław Jaśkowski “On the Rules of Suppositions in Formal Logic”  Studia 

Logica 1, 1934. (reprinted in: Polish logic 1920-1939, Oxford University 

Press, 1967. 

Morris Kline. Mathematical thought from ancient to modern times Oxford 

University Press. 1972. 

http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness
http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness
http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness
http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness
http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness
http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness
http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness


 

 

 

 

 

 

 

 

 

22 

Thomas Kuhn. The Structure of Scientific Revolutions University of Chicago 
Press. 1962. 

Imre Lakatos. Proofs and Refutations Cambridge University Press. 1976 

John Law. After Method:  mess in social science research Routledge. 2004. 

Martin Löb. “Solution of a problem of Leon Henkin.” Journal of Symbolic Logic. 

Vol. 20. 1955. 
David Malone. Dangerous Knowledge BBC4 documentary. 2007. 

http://www.dailymotion.com/playlist/x1cbyd_xSilverPhinx_bbc-dangerous-
knowledge/1 

Colin McLarty. What Does it Take to Prove Fermat's Last Theorem? 

Grothendieck and the Logic of Number Theory Journal of Symbolic Logic. 

September 2010. 

John-Jules Meyer. Review of Inconsistency Robustness Amazon. January, 2016. 
Ray Monk. Bourgeois, Boshevist or anarchist? The Reception of Wittgenstein’s 

Philosophy of Mathematics in Wittgenstein and his interpreters. Blackwell. 
2007. 

Nick Nielsen Alternative Foundations/philosophical February 28, 2014.  
http://www.cs.nyu.edu/pipermail/fom/2014-February/017861.htmlBashar 

Francis Pelletier A Brief History of Natural Deduction “History and Philosophy 
of Logic” Vol. 20, Issue. 1, 1999. 

William Quine. Philosophy of Logic  Prentice Hall. 1970. 

Bertrand Russell. Principles of Mathematics Norton. 1903. 

Bertrand Russell. Les paradoxes de la logique Revue de métaphysique et de 

morale. 1906. 

Bertrand Russell and Alfred Whitehead, Principia Mathematica (3 volumes).  

Cambridge University Press. 1910-1913. 
Natarajan Shankar. Meta-mathematics, Machines, and Gödel’s Proof. Cambridge 

University Press. 1994. 
Dana Scott. Setoids/Modest Sets/PERs: Adding and Using Types with a Type-free 

λ-Calculus Domains XII.  August 2015. 
Stephen Simpson Nonprovability of certain combinatorial properties of finite 

trees  in Studies in Logic and the Foundations of Mathematics. North-Holland. 
1985. 

Alfred Tarski Introduction to Logic Oxford University Press. 1940 (and many 

subsequent editions). 

R. Gregory Taylor. Zermelo’s Cantorian Theory of Systems of Infinitely Long 

Propositions Bulletin of Symbolic Logic  December, 2002. 

Rineke Verbrugge Provability Logic The Stanford Encyclopedia of Philosophy. 

2010. 

http://www.dailymotion.com/playlist/x1cbyd_xSilverPhinx_bbc-dangerous-knowledge/1
http://www.dailymotion.com/playlist/x1cbyd_xSilverPhinx_bbc-dangerous-knowledge/1


 

 

 

 

 

 

 

 

 

23 

Ludwig Wittgenstein. 1956. Bemerkungen ¨uber die Grundlagen der 

Mathematik/Remarks on the Foundations of Mathematics, Revised Edition 

Basil Blackwell. 1978 
Hao Wang A Logical Journey, From Gödel to Philosophy MIT Press. 1974. 
Andrew Wiles. Modular elliptic curves and Fermat's Last Theorem Annals of 

Mathematics. 141. 1995. 
John Woods. How robust can inconsistency get?  IfCoLoG Journal of Logics and 

Their Applications. 2014. 
John Woods. Inconsistency:  Its present impacts and future prospects 

Inconsistency Robustness 2015. 
Noson Yanofsky. The Outer Limits of Reason MIT Press 2013. 
Ernst Zermelo Uber Grenzzahlen und Mengenbereiche: Neue Untersuchungen 

Äuber die Grundlagen der Mengenlehre Fundamenta mathematicae. 1930; 
English translation by Michael Hallett, “On boundary numbers and domains 
of sets: new investigations in the foundations of set theory" From Kant to 
Hilbert: a Source Book in the Foundations of Mathematics, Oxford University 
Press, 1996. 

Ernst Zermelo. Uber matematische System und die Logic des Unendichen 
Forschungen and Fortschritte. Vol. 8. 1932. 

Ernst Zermelo. Collected Works/Gesammelte Werke: Volume I/Band I - Set 
Theory, Miscellanea/Mengenlehre, Varia (Schriften der Mathematisch-
naturwissenschaftlichen Klasse) (English and German Edition) Springer. 
2010. 

Yoni Zohar. Reasoning Inside The Box:  Gentzen Calculi for Herbrand Logics 
Stanford Logic Group.  June 7, 2017. 

 

  



 

 

 

 

 

 

 

 

 

24 

Appendix 1. Historical Background 
“The powerful (try to) insist that their statements are literal depictions of a single 

reality. ‘It really is that way’, they tell us. ‘There is no alternative.’ But those on 

the receiving end of such homilies learn to read them allegorically, these are 

techniques used by subordinates to read through the words of the powerful to the 

concealed realities that have produced them.” [Law 2004] 

 
Gödel was certain 

“ ‛Certainty’ is far from being a sign of success; it is only a symptom of lack of 

imagination and conceptual poverty. It produces smug satisfaction and prevents 

the growth of knowledge.” [Lakatos 1976] 

 

Paul Cohen [2006] wrote as follows of his interaction with Gödel:37  

“His [Gödel's] main interest seemed to lie in discussing 

the ‛truth’ or ‛falsity’ of these [mathematical] questions, 

not merely in their undecidability. He struck me as 

having an almost unshakable belief in this “realist” 

position, which I found difficult to share. His ideas were 

grounded in a deep philosophical belief as to what the 

human mind could achieve. I greatly admired this faith 

in the power and beauty of Western Culture, as he put it, 

and would have liked to understand more deeply what 

were the sources of his strongly held beliefs. Through 

our discussions, I came closer to his point of view, 

although I never shared completely his ‛realist’ point of 

view, that all questions of Set Theory were in the final analysis, 

either true or false.”  

 

According to John von Neumann, Gödel was “the 

greatest logician since Aristotle.”38 However, [von 

Neumann 1961] expressed a very different mathematical 

philosophy than Gödel: 

  

“It is not necessarily true that the mathematical 

method is something absolute, which was revealed 

from on high, or which somehow, after we got hold 

of it, was evidently right and has stayed evidently 

right ever since.” 

 

Kurt Gödel 
 

John von Neumann 

http://knol.google.com/k/-/-/pcxtp4rx7g1t/mdzs7d/goedel.png
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[Gödel 1931] based incompleteness results on the thesis that mathematics 

necessarily has the proposition I'mUnprovable in Principia Mathematica [Russell 

1902].  

 

Wittgenstein’s Paradox 

Wittgenstein correctly noted that Gödel's I'mUnprovable infers inconsistency in 

mathematics:39  

“Let us suppose [Gödel's writings are correct and therefore] I prove40 

the improvability (in Russell’s system) of [Gödel's I'mUnprovable] P; [i.e., 

⊢⊬P where P⇔⊬P] then by this proof I have proved P [i.e., ⊢P]. Now if 

this proof were one in Russell’s system [i.e., ⊢⊢P] — I should in this case 

have proved at once that it belonged [i.e., ⊢P] and did not belong [i.e., ⊢P 

because P⇔⊢P] to Russell’s system. 

    But there is a contradiction here! [i.e., ⊢P and ⊢P] 

[This] is what comes of making up such sentences.” [emphasis added] 

 
According to [Monk 2007]: 

“Wittgenstein hoped that his work on 

mathematics would have a cultural 

impact, that it would threaten the attitudes 

that prevail in logic, mathematics and the 

philosophies of them. On this measure it 

has been a spectacular failure.”  

Unfortunately, recognition of the worth of 

Wittgenstein’s work on mathematics came 

long after his death. For decades, many 

theoreticians mistakenly believed that they had 

been completely victorious over Wittgenstein. 
 

Gödel's maintained: 

“Wittgenstein did not understand it [Gödel's 

1931 article on Principia Mathematica] (or 

pretended not to understand it). He 

interpreted it as a kind of logical paradox, 

while in fact it is just the opposite, namely a mathematical theorem within an 

absolutely uncontroversial part of mathematics (finitary number theory or 

combinatorics).”41 

In the above, Gödel retreated from the [Gödel 1931] results on Principia 

Mathematic to claiming that the results were for the relational 1st order theory 

Ludwig Wittgenstein 
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Relational1stOrderNatualNumbers  in order to defend his 

I'mUnprovableInRelational1stOrderNatualNumbers. However, the [Gödel 1931] 

incompleteness result is not very impressive because 

Relational1stOrderNatualNumbers  is a very weak theory which cannot 

even prove that the Ackermann procedure is total. 
 

Trying to retain I’mUnprovable forced Gödel into a very narrow and constricted 

place of reducing propositions to strings for sentences and then to Gödel numbers 

axiomatized in a 1st order theory to avoid Wittgenstein's devastating criticism. 

This narrow constricted place is intolerable for computer science, which needs to 

reason about propositions in a more natural and flexible way using Strong Types. 

 

Let T be a theory capable of representing all computable functions on Strings and 

Natural Numbers with GödelNumber[aWellFormedString] being the Gödel 

number of aWellFormedString, where a well-formed string is here considered to 

be a proposition. A Diagonal Lemma is: 

      If F is a well-formed string in the language with one free variable, then  

            there is a well-formed string S such that the following is provable in T: 

                    S  ⇔ F[GödelNumber[S]]  

 

Letting GödelNumberToWellFormedString[n] be the well-formed string with 

Gödel number n, define Eubulides as follows (where  

“GödelNumberToWellFormedString[n]” is the string formed by prefixing the 

character  to the well-formed string with Gödel number n): 

           Eubulides[n] ≡ “GödelNumberToWellFormedString[n]”  

 

By the above Diagonal Lemma, there is a well-formed string I’mFalse such that 

the following is provable in T (where 

“GödelNumberToWellFormedString[GödelNumber[I’mFalse]]” is the result 

of prefixing the well-formed string 

GödelNumberToWellFormedString[GödelNumber[I’mFalse]] with ):42 

     I’mFalse ⇔ Eubulides[GödelNumber[I’mFalse]]  

                     ⇔ “GödelNumberToWellFormedString[GödelNumber[I’mFalse]]” 

                     ⇔ I’mFalse  
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[Chaitin 2007] complained about basing something as important as 

incompleteness something so trivial as I'mUnprovable:  

“[Gödel’s proof] was too superficial. It didn't get at the real heart of what was 

going on. It was more tantalizing than anything else. It was not a good reason 

for something so devastating and fundamental. It was too clever by half. It was 

too superficial. [It was based on the clever construction] I'mUnprovable So 

what? This doesn't give any insight how serious the problem is.” 
 

Gödel [1931] results can be formalized as follows: 

Suppose Ψ:PropositionanOrder: 

         Gödeln[p:Propositionn]:Propositionn+1] ≡ ⊢Ψ 

Gödel’s Paradox is blocked because the procedure Gödel does not have a fixed 

point 

 

However, Gödel, Church, Turing, and many other logicians continued up to the 

present time to believe in the importance of Gödel’s proof based on the 

proposition I'mUnprovable.43   
 

Although Gödel’s incompleteness results for I'mUnprovable have fundamental 

problems, the work was extremely significant in further the development of the 

history of metamathematics. For example, the following paradoxes were 

developed following along Gödel’s work: 

 Curry’s Paradox [Curry 1941] Suppose Ψ:PropositionanOrder. 

Curryn[p:Propositionn]:PropositionMax[n+1,anOrder+1] ≡ p⇒Ψ 

Curry’s Paradox is blocked because the procedure Curry does not have a 

fixed point. 

 Löb’s Paradox [Löb 1955]  Suppose Ψ:PropositionanOrder. 

Löbn[p:Propositionn]:PropositionMax[n+1,anOrder+1] ≡ (├ p)⇒Ψ 

Löb’s Paradox is blocked because the procedure Löb does not have a fixed 

point.  

 

A key difference is that Direct Logic works directly with propositions as opposed 

to the work of Gödel, Curry, and Löb, which was based on relational 1st order 

theories with propositions from sentence strings coded as integers. 
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Church's Paradox 
[Church 1932, 1933] attempted basing foundations entirely on untyped higher-
order functions, but foundered because 
contradictions emerged because  
1. His system allowed the use of the Y fixed 

point operator for untyped propositions to 
construct “self-referential” propositions 
[Kleene and Rosser 1935]  

2. Theorems in his system were 
computationally enumerable. 

 

 

The mathematical theory Nat
1
 (general 1st order 

theory of Natural Numbers) non-categorically44 
formalizes the Natural Numbers using the 

following schema where 

P:StringExpressionProposition1ℕ
:45  

                          ( P  [0]  ∀[i:ℕ]   P  [i]⇨  P  [i+1]) ⇨ ∀[i:ℕ]  P  [i]  

Nat
1
 has countably many instances of the above schema because there are only 

countably many strings.46
 

 

In addition to the induction schema above, Nat
1
 has additional schema given below.  

Alonzo Church 
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Predicate Extension Schema: Where Extension:SetℕProposition1 and 

                     P:StringExpressionProposition1ℕ
: 

                                                                  ⊢𝑁𝑎𝑡1
∀[i:ℕ]  i∈Extension[ P  ] ⇔  P  [i] 

 

Least Element Schema.  For X:StringTermBooleanℕ
: 

                                                      X   ≠{} ⇒ ∃[i X   ] ∀[j X   ] i≤j 

 

Finite Cardinality Schema: For X,Y:StringTermBooleanℕ
: 

   ⊢𝑁𝑎𝑡1
Finite[ X   ] ⇔  X  ={ }  ∃[i:ℕ] ∀[j∈  X  ] j<i 

    where for f:StringTermℕℕ
: 

           Finite[ X ]:PropositionNat  ≡  

                                                     (1to1[ f ,  X ] ⇒ ∃[i:ℕ] ∀[j X ]  f  [j]<i) 

where: 

o 1to1[ f ,  X ] ⇔ ∀[i1, i2 X ]  f [i1]=  f [i2] ⇨ i1=i2 
o Onto[ f ,  X ,  Y ] ⇔ ∀[j Y ] ∃[i X ]  f [i]=j 

 

The theory Nat
1 

is moderately powerful.  For example, the theorems below 

follow: 
 

Definition Total[f:([ℕ]⇾ℕ)]:PropositionNat
1
 ≡ ∀[i:ℕ] ∃[j:ℕ] f∎[i]=j  

Theorem   ⊢𝑁𝑎𝑡1
Total[Ackermann]  

                                              where Ackermann is defined as follows: 
      Ackermann∎[i:ℕ, j:ℕ]:ℕ ≡ 
          i=0 �  
               True ⦂ j+1, 
               False ⦂ j=0 � 

               True ⦂ Ackermann∎[i-1, 1] 
               False ⦂ Ackermann∎[i-1, Ackermann∎[i, j-1]] 

 

Theorem ⊢𝑁𝑎𝑡1
PrimitiveRecursive[Ackermann]   
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Theorem (Church’s Paradox):  The general 1st order theory Nat
1
 of the Natural 

Numbers is inconsistent.47 

1. ⊢𝑁𝑎𝑡1
TheoremsEnumerableByProvedTotalProcedure[Nat

1
] 

2. ⊢𝑁𝑎𝑡1
TheoremsEnumerableByProvedTotalProcedure[Nat

1
] 

Proof: 

1. ⊢𝑁𝑎𝑡1
 TheoremsEnumerableByProvedTotalProcedure [Nat

1
]48 

2. Suppose to obtain a contradiction that  

             TheoremsEnumerableByProvedTotalProcedure[Nat
1
] 

Then there is a deterministic total procedure 

TheoremsEnumerator:[ℕ]→PropositionNat
1
 such that the following 

hold where Total:PropositionNat
1


[ℕ]→ℕ: 

 ⊢𝑁𝑎𝑡1
Total[TheoremsEnumerator] 

 ∀[p:PropositionNat
1
] ∃[i:ℕ] TheoremsEnumerator∎[i]=p 

 ∀[i:ℕ] ⊢𝑁𝑎𝑡1
TheoremsEnumerator∎[i] 

A subset of the proofs enumerated by TheoremsEnumerator are those 
proving that certain procedures [ℕ]→ℕ are total. Consequently, there is a 
deterministic total procedure 
ProvedTotalsEnumerator:([ℕ]→([ℕ]→ℕ))49 such that the following 
hold: 

 ⊢𝑁𝑎𝑡1
Total[ProvedTotalsEnumerator] 

 ∀[i:ℕ] ⊢𝑁𝑎𝑡1
Total[ProvedTotalsEnumerator∎[i] ] 

 ∀[f:([ℕ]→ℕ)](⊢𝑁𝑎𝑡1
Total[f])⇒∃[i:ℕ] ProvedTotalsEnumerator∎[i]=f 50 

ProvedTotalsEnumerator can be used to implement the deterministic total 
procedure Diagonal:([ℕ]→ℕ) as follows: 
      Diagonal∎[i:ℕ]:ℕ ≡ 1 + (ProvedTotalsEnumerator∎[i])∎[i] 
Consequently: 

 ⊢𝑁𝑎𝑡1
Total[Diagonal] since it is the deterministic composition of 

Nat
1 

proved total deterministic procedures. 

 ⊢𝑁𝑎𝑡1
Total[Diagonal] because Diagonal differs from every 

procedure enumerated by ProvedTotalsEnumerator. 

The above contradiction completes the proof. 
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[Church 1934] pointed out that there is no obvious way to remove the 
inconsistency meaning that if Nat

1 
is taken to be an exact description of logic51 

then, 
“Indeed, if there is no formalization of logic as a whole, then there is no exact 
description of what logic is, for it in the very nature of an exact description 
that it implies a formalization. And if there no exact description of logic, then 
there is no sound basis for supposing that there is such a thing as logic.” 

 
After [Church 1934], logicians faced the following dilemma: 

 1st order theories cannot be powerful lest they fall into inconsistency 

because of Church’s Paradox. 

 2nd order theories contravene the philosophical doctrine that theorems 

must be computationally enumerable. 
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The above issues can be addressed as follows: 

1. Requiring Mathematics to be strongly typed using so that 

 Mathematics self proves that it is “open” in the sense that theorems are 

not computationally enumerable.52 

 Mathematics self proves that it is formally consistent.53 

 Strong mathematical theories for Natural Numbers, Ordinals, Set 

Theory, the Lambda Calculus, Actors, etc. are inferentially decidable, 

meaning that every true proposition is provable and every proposition 

is either provable or disprovable.  Furthermore, theorems of these 

theories are not enumerable by a provably total procedure. 
2. It was initially thought that mathematics could be based just on character 

strings. Then diagonalization was discovered and things haven’t been the 
same since. The string for the general 1st order Nat

1
 non-categorical 

induction schema is as follows:i 

        "∀[P:StringExpressionProposition1ℕ
] 

                         (  P [0]  ∀[i:ℕ]   P [i]⇨ P [i+1]) ⇨ ∀[i:ℕ]  P [i]" 
which has countably many 1st order propositions as instances that are 

abstracted from the countably many character strings of type 

StringExpressionProposition1ℕ
 and which differs fundamentally 

from the character string for the more general 2nd order categorical induction 

axiom, which is as follows:54 

    "∀[P:Proposition1ℕ]  (P[0]]  ∀[i:ℕ] P[i]⇨P[i+1]) ⇨ ∀[i:ℕ] P[i]" 
Although the theory Nat  has only finitely many axioms, the above string 

abstracted as a proposition has uncountably many 1st order propositions as 

instances.ii In this way, Nat  differs fundamentally from the 1st order theory 

Nat
1
 because, being uncountable, not all instances of the Nat induction axiom 

can be obtained by abstraction from character strings. Proofs abstracted from 

character strings for the axioms of Nat
1 

can be computationally enumerated and 

are valid proofs in Nat, but this does not enumerate all of the proofs of Nat! 

What is to be made of the uncountable number of theorems of Nat  whose 

proofs cannot be written down in text? 

 

                                                           
i with the unfortunate consequence that the argument in Church’s Paradox shows that 

Nat
1
 is inconsistent 

ii with the consequence that the argument in Church’s Paradox is blocked in the theory 

Nat 
 
because theorems are not enumerable by a provably total procedure 
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Additional limitations of Relational 1st order theories 

“By this it appears how necessary it is for nay man that aspires to true 

knowledge to examine the definitions of former authors; and either to 

correct them, where they are negligently set down, or to make them himself.  

For the errors of definitions multiply themselves, according as the 

reckoning proceeds, and lead men into absurdities, which at last they see, 

but cannot avoid, without reckoning anew from the beginning; in which lies 

the foundation of their errors...” 

[Hobbes Leviathan, Chapter 4]55 

 
A relational 1st order theory is very weak. For example, a relational 1st order theory 

is incapable of characterizing even the natural numbers, i.e., there are infinite 

integers in models of every relational 1st order axiomatization of the natural 

numbers. Furthermore, there are infinitesimal real numbers  in models of every 

relational 1st order axiomatization of the real numbers.i Of course, infinite integers 

and infinitesimal reals are monsters that must be banned from the mathematical 

foundations of Computer Science. 
 

However, some theoreticians have found relational 1st order theory to be useful 

for their careers because it is weak enough that 

they can prove theorems about relational 1st 

order axiomatizations whereas they cannot 

prove such theorems about stronger practical 

systems, e.g., Classical Direct Logic.56  
 

Zermelo considered the 1st Order Thesis to be a 

mathematical “hoax” because it necessarily 

allowed unintended models of axioms.57  

 

 

  

                                                           
i Likewise, relational 1st order set theory (e.g. ZFC) is very weak. See discussion in this 

article. 

Ernst Zermelo 
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[Barwise 1985] critiqued the 1st Order Thesis that mathematical foundations 

should be restricted to 1st order theories as follows: 
 

The reasons for the widespread, often uncritical 

acceptance of the first-order thesis are numerous. The 

first-order thesis ... confuses the subject matter of logic 

with one of its tools. First-order language is just an 

artificial language structured to help investigate logic, 

much as a telescope is a tool constructed to help study 

heavenly bodies. From the perspective of the 

mathematics in the street, the first-order thesis is like 

the claim that astronomy is the study of the telescope.58 
 

Computer Science is making increasing use of Model 

Analysis59 in the sense of analyzing relationships among the following: 

 concurrent programs and their Actor Model denotations 

 domain axiom systems and computations on these domains 
 

In Computer Science, it is important that the natural numbers be axiomatized in a 

way that does not allow non-numbers (e.g. infinite ones) in models of the axioms.  

Theorem: If ℕ is a model of a 1st order axiomatization T, then T has a model 

M with an infinite integer. 

Proof:  The model M is constructed as an extension of ℕ by adding a new 

element ∞ with the following atomic relationships: 

                              {∞<∞}  { m<∞ | m:ℕ} 

 It can be shown that M is a model of T with an infinite integer ∞. 

The infinite integer ∞ is a monster that must be banned from the 

mathematical foundations of Computer Science. 

 

Theorem: If ℝ is a model of a 1st order axiomatization T, then T has a model 

M with an infinitesimal. 

Proof:  The model M is constructed as an extension of ℝ by adding a new 

element ∞ with the following atomic relationships:  

                      {∞<∞}  {m<∞ | m:ℕ} 

Defining ε to be 
1

∞
 , it follows that ∀[r:ℝ] 0<ε<

1

𝑟
.  It can be shown that M 

is a model of T with an infinitesimal ε, which is a monster that must be 

banned from the mathematical foundations of Computer Science. 

 

Jon Barwise 
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On the other hand, since it is not limited to 1st order propositions, Classical Direct 

Logic characterizes structures such as natural numbers and real numbers up to 

isomorphism.i  

 

There are many theorems that cannot be proved from 1st order axioms [Goodstein 

1944, Simpson 1985, Wiles 1995, Bovykin 2009, McLarty 2010].  

 

Unbounded Nondeterminism 

Of greater practical import, 1st order theory is not a suitable foundation for the 

Internet of Things in which specifications require a device respond to a request.ii  

The specification that a computer responds can be formalized as follows:   

∃[i:ℕ] ResponseBefore[i].  However, the specification cannot be proved in a 1st 

order theory. 

Proof:  In order to obtain a contradiction, suppose that it is possible to prove 

in a 1st order theory  ∃[i:ℕ] ResponseBefore[i]. Therefore the infinite set 

of propositions {ResponseBefore[i] | i:ℕ} is inconsistent. By the 

compactness theorem of 1st order theory, it follows that there is finite 

subset of the set of propositions that is inconsistent. But this is a 

contradiction, because all the finite subsets are consistent since the 

amount of time before a server responds is unbounded, that is,  

∄[i:ℕ] ⊢ResponseBefore[i]. 

 

By contrast with the nondeterministic lambda calculus and pure Logic Programs, 

there is an always-halting Actor Unbounded that when sent a [ ] message can 

compute an integer of unbounded size. This is accomplished by creating a 

Counter with the following variables: 

 count initially 0 

 continue initially True 

and concurrently sending it both a stop[ ] message and a go[ ] message such that: 

 When a go[ ] message is received: 

1. if continue is True, increment count by 1 and return the result of 

sending this counter a go[ ] message. 

2. if continue is False, return Void 

 When a stop[ ] message is received, return count and set continue to False 

for the next message received. 

                                                           
i proving that software developers and computer systems are using the same structures 
ii An implementation of such a system is given below in this article. 
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By the axioms for the Actor Model, the above Actor will eventually receive the 

stop[ ] message and return an unbounded number. 

 

The procedure Unbounded above can be axiomatized as follows:  

∀[n :Integer] 
    ∃[aRequest :Request, anInteger :Integer] 
        Unbounded sentaRequest [ ] ⇒ 
                  𝐒𝐞𝐧𝐭𝐑𝐞𝐬𝐩𝐨𝐧𝐬𝐞𝑎𝑅𝑒𝑞𝑢𝑒𝑠𝑡

Returned[anInteger ]  anInteger >n 
 

However, the above specification axiom does not compute any actual output! 

Instead the above axiom simply asserts the existence of unbounded outputs for 

Unbounded∎[ ]. 
 

  

             
∎∎go[ ] 

continue=True
 also

 count := count + 1 

continue := False

Integer

continue=False

initially: continue=True, count=0

count 

go[ ]

stop[ ]
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Theorem. The nondeterministic function defined by Unbounded (above) cannot 

be implemented by a nondeterministic Logic Programi or a nondeterministic 

Turing Machine: 

Proof.60 

The task of a nondeterministic Logic Program P is to start with 

an initial set of axioms and prove Output=n for some numeral n. 

Now the set of proofs of P starting from initial axioms will form 

a tree. The branching points will correspond to the 

nondeterministic choice points in the program and the choices 

as to which rules of inference to apply. Since there are always 

only finitely many alternatives at each choice point, the 

branching factor of the tree is always finite. Now König's lemma 

says that if every branch of a finitary tree is finite, then so is the 

tree itself. In the present case this means that if every proof of    P 

proves Output=n for some numeral n, then there are only finitely 

many proofs. So if  P nondeterministically proves Output=n for 

every numeral n, it must contain a nonterminating computation 

in which it does not prove Output=n for some numeral n. 
 

The following arguments support unbounded nondeterminism in the Actor model 

[Hewitt 1985, 2006]: 

 There is no bound that can be placed on how long it takes a computational 

circuit called an arbiter to settle. Arbiters are used in computers to deal 

with the circumstance that computer clocks operate asynchronously with 

input from outside, e.g., keyboard input, disk access, network input, etc.  

So it could take an unbounded time for a 

message sent to a computer to be 

received and in the meantime the 

computer could traverse an unbounded 

number of states. 

 Electronic mail enables unbounded 

nondeterminism since mail can be stored 

on servers indefinitely before being delivered. 

 Communication links to servers on the Internet can be out of service 

indefinitely 

 

As a foundation of mathematics for Computer Science, Classical Direct Logic 

provides categorical61 numbers (integer and real), sets, lists, trees, graphs, etc. 

                                                           
i the lambda calculus is a special case of Logic Programs 

1st order theory is not a 

suitable mathematical 

foundation the Internet 

of Things. 
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which can be used in arbitrary mathematical theories including theories for 

categories, large cardinals, etc. These various theories might have “monsters” of 

various kinds. However, these monsters should not imported into models of 

computation used in Computer Science. 

 

Computer Science needs stronger systems than provided by 1st order theory in 

order to weed out unwanted models. In this regard, Computer Science doesn’t 

have a problem computing with “infinite” objects (i.e. Actors) such as π and 

uncountable sets such as the set of real numbers Setℝ. However, the 

mathematical foundation of Computer Science is very different from the general 

philosophy of mathematics in which the infinite integers and infinitesimal reals 

allowed by models of 1st order theories may be of some interest. Of course, it is 

always possible to have special theories that are not part of the foundations with 

infinite integers, infinitesimal reals, unicorns, etc.62  

 

Of course some problems are theoretically not computable. However, even in 

these cases, it is often possible to compute approximations and cases of practical 

interest.i 

  

The mathematical foundation of Computer Science is very different from the 

general philosophy of mathematics in which infinite integers and infinitesimal 

reals may be of some interest. Of course, it is always possible to have special 

theories with infinite integers, infinitesimal reals, unicorns, etc. 
  

                                                           
i e.g. see Terminator [Knies 2006], which practically solves the halting problem for 

device drivers 
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Berry Paradox 
The Berry Paradox [Russell 1906] can be formalized using the proposition 

Characterize[s, k] meaning that the string s characterizes the integer k as follows: 

Characterize[s:StringTermPropositionanOrderℕ
, 

                          k:ℕ]:PropositionanOrder+1 ≡  ∀[x:ℕ]  s  [x] ⇔ x=k 
The Berry Paradox is to construct a string BString for the string for the proposition 

that holds for integer n if and only if every string with length less than 100 does 

not characterize n using the following definition:63 

  BString:StringTermPropositionanOrder+1ℕ
 ≡    

         “⦅λ[n:ℕ]  ∀[s:StringTermPropositionanOrderℕ
] 

                                                                  Length[s]<100 ⇨ Characterize[s, n]⦆” 

  Note that 
o Length[BString]<100. 

o {s:StringTermPropositionanOrderℕ
 | Length[s]<100} is 

finite. 

o Therefore,  the following set is finite: 

              {n:ℕ+ |  ∃[s:StringTermPropositionanOrderℕ
] 

                                                                        Length[s]<100  Characterize[s, n]} 

BTerm:TermPropositionanOrder+1ℕ
 ≡   BString 

BSet:Setℕ ≡ {n:ℕ+ |  BTerm [n]} 

BSet≠{  } because is {n:ℕ | n≧1} is infinite. 
 
1. BNumber:ℕ ≡ Least[BSet]  
2.  BTerm [BNumber]64 

3.   ⦅λ[n:ℕ] ⦅∀[s:StringTermPropositionanOrderℕ
]  

                                  Length[s]<100 ⇨ Characterize[s, n]⦆ [BNumber]65  

4.  ∀[s:StringTermPropositionanOrderℕ
]  

                                     Length[s]<100 ⇨ Characterize[s, BNumber]66 
5.  Length[BString]<100 ⇨ Characterize[BString, BNumber] 
           // above is invalid because of attempted substitution of 

                 // BString:StringTermPropositionanOrder+1ℕ
 for 

                      //  s:StringTermPropositionanOrderℕ
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Appendix 2. Appendix 1. More Categorical Mathematical Theories  
 

Theory of Nondeterministic Lambda Calculus (Lam τ) 

 

Definition: Functionalτ1,τ2 ≡ [([τ1]→τ2)]→([τ1]→τ2) 

 
Theory Lam  τ   
In addition to Lambda Induction (above), the theory Lam τ has the following 

axioms:i 
• Identityτ1:([τ1]→ τ1) 

Identityτ1∎[f1] = f1 

• Constτ1,τ2:([τ1]→([τ2]→τ1))  
Constτ1, τ2∎[f1]∎[f2] = f1 

• Substτ1, τ2, τ3:([[τ3]→([τ2]→τ4), [τ3]→τ2], τ3] → τ4)67 
Substτ1, τ2, τ3∎[f1]∎[f2]∎[f3] = (f1∎[f3])∎[f2∎[f3]] 

• Fixτ1,τ2:([Functionalτ1,τ2]→Functionalτ1,τ2)68 

Fixτ1,τ2∎[F] = F∎[Fixτ1,τ2∎[F]] 
• Eitherτ1:([τ1] → ([τ1]→τ1))  

Eitherτ1∎[f1]∎[f2]=f1  Eitherτ1∎[f1]∎[f2]=f2 
• Equality Axiom 

∀[f1,f2:([τ1]→τ2)] f1=f2 ⇔ ∀[f3:τ1] f1∎[f3]=f2∎[f3] 
• Lambda Equalityii 

∀[f1:([τ]→τ)] f1=λ[f2:τ] f1∎[f2] 

• Basis: For all f:TypeΛτ. f is equal to a composition of Identity, 
Const, Subst, Fix, and Either. 

 

  

                                                           
i τ1,τ2,τ3:TypeΛτ 
ii Because of Lambda Equality, the domain of [Scott 2015] is not a valid model of  

Lam  τ. 
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Lambda Induction 

The theorem of Lambda Induction is as follows:i 

∀[P:Proposition1Λτ]  

   (P[Identityτ1]  P[Constτ1, τ2]  P[Substτ1,τ2,τ3]  P[Fixτ1] 
      P[Eitherτ1]   ∀[f1:τ1, f2:τ2] P[f1]P[f2] ⇨ P[Constτ1, τ2∎[f1, f2]] 

     ∀[f1:τ1, f2:τ2, f3:τ3] P[f1]P[f2]P[f3]⇨P[Substτ1,τ2,τ3∎[f1]∎[f2]∎[f3]] 

         ∀[f:([τ1]→τ2)] P[f] ⇨ P[Fixτ1, τ2∎[f]]  

          ∀[f1:τ1, f2:([τ1]→τ2)] P[f1]P[f2]  ⇨ P[f2∎[f1]])  ⇨ ∀[f:Λτ] P[f] 
 

Convergence: ∀[f1:([τ1]⇾τ2),f2:τ1] f1∎[f2]↓ ⇔ ∃[f3:τ2] f1∎[f2]=f3 
 
Approximation: ∀[f1, f2:([τ1]⇾τ2)] f1≦f2 ⇔ ∀[f3:τ1] f1∎[f3]↓ ⇒ f1∎[f3]=f2∎[f3] 
 

Bottom:  ⊥τ1∎[f:τ1] ≡ f 

     Note that ∀[f2:τ1] ⊥τ1∎[f2]:↓ and ∀[f:([τ1]⇾τ1)] ⊥τ1≦f 

 

Monotone:   

        F:Monotoneτ1,τ2 ⇔ F:Functionalτ1,τ2  ∀[g:([τ1]⇾τ2)] g≦F∎[g] 
 

Limit Theorem:  ∀[F:Monotoneτ1,τ1] F=limit𝑖:𝐍+
Fi

∎[⊥τ1]69 

 

Theorem: Deterministic procedures have bounded nondeterminism   

           ∀[f:([τ1]⇾τ1))] f:TypeΛτ 

 

Theorem: Some nondeterministic procedures have unbounded nondeterminismii   

           ∃[f:([τ1]→τ1))] f:TypeΛτ 

 

  

                                                           
i τ1,τ2,τ3:TypeΛτ 
ii e.g., ones using concurrent Actors.  See discussion in this article. 
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Theorem.i  Lam 
 τ is categorical with a unique isomorphism. 

Proof: Suppose that X satisfies the axioms for Lam  τ.   

       By lambda induction, the isomorphism I:XΛτ is defined as follows:ii 

 I[Identityτ1] ≡ IdentityXτ1 

 I[Constτ1, τ2] ≡ ConstXτ1, τ2 

 I[Substτ1, τ2, τ3] ≡ SubstXτ1, τ2, τ3 

 I[Fixτ1, τ2] ≡ FixXτ1, τ2 

 I[Eitherτ1] ≡ EitherXτ1 

 ∀[f1:τ1, f2:([τ1]→τ2)] I[f2∎[f1]] ≡ I[f2]∎X[I[f1]] 

 

I is the unique isomorphism: 

 I is one to one 

 The range of I  is X  

 I is a homomorphism 

 I-1:ΛτX  is a homomorphism 

 I is the unique isomorphism: If g:XΛτ is an isomorphism, then g= I  

 

Theorem (Model Soundness of Lam τ): (⊢𝐿𝑎𝑚τ
) ⇨ ⊨ 

Proof: Suppose ⊢𝐿𝑎𝑚τ
. The theorem immediately follows because the axioms 

for the theory Lam  τ hold in the type Λτ. 
 

Theorem: Logical completeness of Lam τ 

                   ∀[P:Proposition1Λτ]  

                                           (⊨∀[f:Λτ] P[f]) ⇒ ⊢𝐿𝑎𝑚τ
 ∀[f:Λτ] P[f] 

 

Corollary.  Equivalence of satisfiability and provability in Lam  τ, i.e.,   

  ∀[P:Proposition1Λτ]  (⊨∀[f:Λτ] P[f]) ⇔ ⊢𝐿𝑎𝑚τ
∀[f:Λτ] P[f] 

 

  

                                                           
i cf. [Hindley, and Seldin 2008] 
ii τ1,τ2,τ3:TypeΛτ 
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Theorem.  Inferential Decidability of Lam  τ, i.e.,   

                 ∀[P:Proposition1Λτ] 

                                           (⊢𝐿𝑎𝑚τ
∀[f:Λτ] P[f])  ⊢𝐿𝑎𝑚τ

∃[f:Λτ] P[f] 

Proof.          ∀[P:Proposition1Λτ] 

                                         (⊨∀[f:Λτ] P[f])  ⊨∃[f:Λτ] P[f] 

Theorem follows from Equivalence of satisfiability and provability in Lam  τ. 

 

Theory of Reals (Reals ) 

Reals is strictly more powerful than the relational 1st order theory of 

RealClosedFields.70 

 

Theorem (Categoricity of Reals ):71  

If X is a type satisfying the axioms72 for the real numbers Reals, then there is a unique 
isomorphism with ℝ. 
 

Theory of Ordinals (Ord ) 

A theory of the ordinals can be axiomatized73 using a 2nd order ordinal induction 

axiom  as follows: For each order:ℕ+ and P:PropositionorderO
: 

                   (∀[α:O] ∀[β<α:O] P[β]⇨P[α]) ⇨ ∀[α:O] P[α] 

In order to fill out the ordinals, the following limit axioms are included in Ord : 

• ∀[α:O, f:OO] ⊍α f:O 

• ∀[α,β:O; f:OO] β<⊍αf ⇔ ∃[δ<α] β≦f[δ] 

• ∀[α,β:O; f:OO] (∀[δ<α] f[δ]≦β) ⇨ ⊍αf≦β 

In order to guarantee that there are uncountable ordinals, the following axioms are 

also included in Ord : 

• ω0 = ℕ 

• ∀[α:O] α>0O ⇨ |ω α| = |𝐁𝐨𝐨𝐥𝐞𝐚𝐧
⊍β<αωβ| 

• ∀[α,β:O] |β|=|ωα| ⇨ ωα≦β 

where |τ1| = |τ2| ⇔ ∃[f:τ2
τ1] 1to1Ontoτ1,τ2[f] 

o 1to1τ1 ,τ2[f:τ2
τ1]   ⇔  ∀[x1,x2:τ1] f[x1]=f[x2] ⇨ x1=x2 

o 1to1Ontoτ1 ,τ2[f:τ2
τ1]  

               ⇔ 1to1τ1 ,τ2[f:τ2
τ1]   ∀[y:τ2] ∃[x:τ1]  f[x]=y 
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Theorem Ordinals have the following properties: 

 Ordinals are well-ordered: 

Least:𝐎𝐁𝐨𝐨𝐥𝐞𝐚𝐧𝐎
 

Least[{ }] = 0O 

∀[S:BooleanO] S≠{ } ⇨ Least[S]∈S 

∀[S:BooleanO] S≠{ } ⇨ ∀[α∈S] Least[S]≦α 

 Reals can be well-ordered because |ω1|= |ℝ| 

 ∀[α:O] ∃[β:O] α<ωβ 

 The set of all ordinals Ω is BooleanO so that:  

             ∀[α:O] α∈Ω ⇔ α:O 

Note that it is not the case that Ω is of type O, thereby thwarting the Burali-

Forti paradox 

 

Theorem (Categoricity of Ord ):  
If X be a type satisfying the axioms the theory of the ordinals Ord

 
, then 

there is a unique isomorphism with O.74 
 

Theorem (Model Soundness of Ord ): (⊢
Ord

 ) ⇨ ⊨ 

Proof: Suppose ⊢
Nat

 . The theorem immediately follows because the axioms 

for the theory Ord 
 
hold in the type O . 

 

Theorem: Logical completeness of Ord  

   ∀[P:Proposition1O]  (⊨∀[α:O] P[α])⇒ ⊢
Ord

 ∀[α:O] P[α] 

Proof.  Suppose in Nat   , P:Proposition1O
 and  ⊨∀[α:O] P[α]. Further 

suppose to obtain a contradiction that ∀[α:O] P[α]. Therefore  

∃[α:ℕ] P[α] and by Existential Elimination P[α0] where α0:O, which 

contradicts ⊨P[α0], from the hypothesis of the theorem. Therefore 

⊢
Ord

∀[α:O] P[α] using proof by contraction in Ord. 

 

Corollary.  Equivalence of satisfiability and provability in Ord , i.e.,   

∀[P:Proposition1O]  (⊨∀[α:O] P[α]) ⇔ ⊢
Ord

 ∀[α:O] P[α] 
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Theorem.  Inferential Decidability of Ord , i.e.,   

          ∀[P:Proposition1O]  (⊢
Nat

 ∀[α:O] P[α])  ⊢
Nat

 ∃[α:O] P[α] 

Proof.  ∀[P:Proposition1O]  (⊨∀[α:O] P[α])  ⊨∃[α:O] P[α] 

Theorem follows from Equivalence of satisfiability and provability in Ord. 

 

Type Choice 

      ∀[f:(𝐁𝐨𝐨𝐥𝐞𝐚𝐧𝛔)𝛕] ∃[choice:στ]  ∀[x:τ]  f[x]≠{} ⇨ choice[x]∈f[x] 

 

Sets  τ defined using strong parameterized types 

 
Set Theory 

A theory of the ordinals can be axiomatized using a 2nd order set induction axiom  

as follows: For each order:ℕ+ and P:PropositionorderO
: 

  (∀[S:Setτ, α:O] (|S|=|α| ⇨ ∀[X:Setτ, β<α:O] P[X]|X|=|β| ⇨ P[X])  

               ⇨ ∀[S:Setτ] P[S] 
 

The type Setτ can be characterized as follows: 

Setτ ≡ Booleanτ 

Of course set membership is defined as follows: 

∀[x:τ:, S:Setτ]  xS ⇔ S[x]=True 
 

Inductive definition: 

1. Set0
τ ≡ Booleanτ 

2. Setα+1
τ ≡ SetSetατ 

3. α:LimitO ⇒ (S:Setατ  ⇔ ∀[X∈S] ∃[β<α:O, Y:Setβτ] X∈Y) 

S:Setsτ ⇔ ∃[α:O] S: Setατ 
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The properties below mean that Setsτ is a "universe" of mathematical 

discourse.75  

 Foundation: There are no downward infinite membership chains.76  

 Transitivity of ∈77: ∀[S:Setsτ] ∀[X∈S] X:Setsτ 

 Powerset:78 ∀[S:Setsτ] Booleans:Setsτ 

 Union:79  

          ∀[S:Setsτ] ⋃S:Setsτ 

         ∀[S:Setsτ] ∀[X:Setsτ]  X∈⋃S ⇔  ∃[Y∈S] X∈Y   
 Replacement:80 The function image of any set is also a set, i.e.: 

     Imageτ:𝐒𝐞𝐭𝐬τ[𝐒𝐞𝐭𝐬τ𝐒𝐞𝐭𝐬τ,𝐒𝐞𝐭𝐬τ] 

     ∀[f:𝐒𝐞𝐭𝐬τ𝐒𝐞𝐭𝐬τ, S:Setsτ] 

                           ∀[y:Setsτ]  yImageτ[f, S] ⇔ ∃[x∈S] f[x]=y 

 

Setsτ is much stronger than relational 1st order ZFC.81 
 

Theorem. Sets τ is categorical with a unique isomorphism. 

Proof:82 Suppose that X satisfies the axioms for Sets τ.   

       By ordinal induction, the isomorphism I:XSetsτ as follows: 

1. S:Set0
τ  

I[S] ≡ S 

2. S:Setα+1
τ 

Z∈XI[S] ⇔ ∃[Y:Setατ] I[Y]∈XZ   

3. S:Setα
τ and α:LimitO  

Z∈XI[S]  ⇔ ∃[β<α:O, Y:Setβ
τ] I[Y]∈XZ   
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I is a unique isomorphism: 

 I is one to one 

 The range of I  is X  

 I is a homomorphism:  

o I[{ }Setsτ] = { }X 

o ∀[S1,S2:Setsτ]  I [S1 ∪ S2] =  I[S1] ∪X I [S2] 

o ∀[S1 S2:Setsτ]  I[S1 ∩ S2] =  I[S1] ∩X I[S2] 

o ∀[S1,S2:Setsτ]  I[S1 - S2] =  I[S1] -X I[S2] 

o ∀[S:Setsτ]  I[⋃S] =  ⋃X {I[x] | x∈S} 

 I-1:SetsτX  is a homomorphism 

 I is the unique isomorphism: If g:XSetsτ is an isomorphism, then g= I  

 

Theorem (Model Soundness of Sets τ): (⊢𝑆𝑒𝑡𝑠τ
) ⇨ ⊨ 

Proof: Suppose ⊢𝑆𝑒𝑡𝑠τ
. The theorem immediately follows because the axioms 

for the theory Sets τ hold in the type Setsτ. 
 

Theorem: Logical completeness of Sets τ 

                   ∀[P:Proposition1Setsτ]  

                                 (⊨∀[s:Setsτ] P[s]) ⇒ ⊢𝑆𝑒𝑡𝑠τ
 ∀[s:Setsτ] P[s] 

 

Corollary.  Equivalence of satisfiability and provability in Sets  τ, i.e.,   

   ∀[P:Proposition1Setsτ] 

                                  (⊨∀[s:Setsτ] P[s])⇔⊢𝑆𝑒𝑡𝑠τ
∀[s:Setsτ] P[s] 

 

Theorem.  Inferential Decidability of Sets  τ, i.e.,   

                 ∀[P:Proposition1Setsτ] 

                                    (⊢𝑆𝑒𝑡𝑠τ
∀[s:Setsτ] P[s])  ⊢𝑆𝑒𝑡𝑠τ

∃[s:Setsτ] P[s] 

Proof.  ∀[P:Proposition1Setsτ] 

                      (⊨∀[s:Setsτ] P[s])  ⊨∃[s:Setsτ] P[s] 

Theorem follows from Equivalence of satisfiability and provability in Sets  τ. 
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Appendix 3:  Notation of Direct Logic 
 

 Type i.e., a type is a discrimination 83 of the following:84 

o Boolean::85, ℕ::, O::86, Λτ::87, and Typeτ:: where τ::88 

o PropositionanOrder:: and SentenceanOrder:: where anOrder:ℕ+ 

o (τ1⦶τ2)::89, [τ1,τ2]::90, ([τ1]→τ2)::91 and 𝛕𝟐
𝛕𝟏::92 where τ1:: and τ2:: 

o (τ∋| P):: where τ:: and P:Proposition1τ 93 

o Termτ::94, Expressionτ::95, Stringτ::96, and Setτ::97 where τ:: 

 

 Propositions, i.e., a Proposition is a discrimination of the following: 

o ():PropositionanOrder where :PropositionanOrderi and 

anOrder:ℕ+ 
o ,,⇨,(⇔):PropositionanOrder where 

,:PropositionanOrder and anOrder:ℕ+ 
o (p  � True⦂ 1, False⦂ 2):PropositionanOrder where p:Boolean, 

,:PropositionanOrder98 and anOrder:ℕ+ 
o (x1=x2):Proposition1 where x1,x2:τ and τ:: 
o (s1s2):Proposition1 where s1,s2:Setτ and τ:: 
o (xs):Proposition1 where x:τ, s:Setτ and τ:: 

o (τ1⊑τ2):Proposition199
 where  τ1:: and τ2:: 

o (x::):Proposition1100 
o (x:τ):Proposition1 where τ:: 

o p[x]:PropositionanOrder+1101 where x:τ, p:PropositionanOrderτ and 

anOrder:ℕ+ Also, as a special case, p[x]:PropositionanOrder where 

x:τ, p:ConstantPropositionanOrderτ
 and anOrder:ℕ+  

o (1, …, n-1├
𝐩

𝐓
  n):PropositionanOrder102 where p:Proof, T:Theory,  

1 to n:PropositionanOrder and anOrder:ℕ+ 

o (∀τ p):PropositionanOrderii and (∃τ p):PropositionanOrderiii where 

x:PropositionanOrder+1τ, τ::, and anOrder:ℕ+ 

o (⊨ ):PropositionanOrder where :PropositionanOrder103 
o s:PropositionanOrder where s:SentenceanOrder with no free 

variables and anOrder:ℕ+ 

                                                           
i Propositionorder is the parametrized type consisting of type Proposition 

parametrized by order.  
ii meaning ∀[x:τ] p[x] 
iii meaning ∃[x:τ] p[x] 
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Grammar (syntax) trees (i.e. terms, expressions and sentences) are defined as follows: 

 Terms, i.e., an Termτ is a discrimination of the following: 
o ⦅x⦆:Constantτ where x:τ and τ:: 
o x:Termτ where x:Constantτ and τ:: 
o x:Termτ where x:Variableτ and τ:: 

o ⦅f1[x1:𝛕𝟏]:𝛔𝟏≡d1, ... , fn[xn:𝛕𝐧]:𝛔𝐧≡dn in y⦆:Termτ where for i in 1 to n,  

fi:Variable𝛔𝐢
𝛕𝒊 in di and y, xi:Variable𝛕𝐢 in di,di:Term𝛔𝐢, y:Termτ, 

and 𝛕𝐢::
 104 

o ⦅x1:𝛕𝟏≡d1, ... , xn≡dn in  y⦆:Termτ where for i in 1 to n, xi:Variable𝛕𝐢 in di 

and y, di:Term𝛔𝐢, y:Termτ, and 𝛕𝐢::
 105 

o ⦅t1⦶t2⦆:Termτ1⦶τ2, ⦅[t1, t2]⦆:Term[τ1, τ2], ⦅[t1]→t2⦆:Term[τ1]→τ2 

and ⦅𝐞𝟐
𝐞𝟏⦆:Term𝛕2

𝛕1
 where t1:Termτ1, t2:Termτ2, τ1:: and τ2:: 

o ⦅t1 � True⦂ t2 , False⦂ t3⦆:Termτi where t1:TermBoolean, t2,t3:Termτ 

and τ:: 
o ⦅λ[x:τ1] t⦆:Term𝛕𝟐

𝛕𝟏 where t:Termτ2, x:Variableτ1 in t, and τ1,τ2:: 
o ⦅t[x]⦆:Termτ2 where t:Term𝛕𝟐

𝛕𝟏, x:Termτ1, τ1:: and τ2:: 
o t:τ where t:Termτ with no free variables and τ::  

  

                                                           
i ⦅if e1 then e2  else e3⦆ 
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 Expressions, i.e., an Expressionτ is a discrimination of the following: 
o ⦅x⦆:Constantτ where x:τ and τ:: 
o x:Expressionτ where x:Constantτ and τ:: 
o x:Expressionτ where x:Variableτ and τ:: 

o ⦅f1[x1:𝛕𝟏]:𝛔𝟏≡d1, ... , fn[xn:𝛕𝐧]:𝛔𝐧≡d in y⦆:Expressionτ where for i in 1 to n,  

fi:Variable𝛔𝐢
𝛕𝒊 in di and y, xi:Variable𝛕𝐢 in di,di:Expression𝛔𝐢, 

y:Expressionτ, and 𝛕𝐢:: 
106 

o ⦅x1:𝛕𝟏≡d1, ... , xn≡ dn in y⦆:Expressionτ where for i in 1 to n, xi:Variable𝛕𝐢 

in di and y, di:Expression𝛔𝐢, y:Expressionτ, and 𝛕𝐢::
107 

o ⦅e1⦶e2⦆:Expressionτ1⦶τ2, ⦅[e1, e2]⦆:Expression[τ1, τ2], 

⦅[e1]→e2⦆:Expression[τ1]→τ2 and ⦅𝐞𝟐
𝐞𝟏⦆:Expression𝛕2

𝛕1
 where 

e1:Expressionτ1, e2:Expressionτ2, τ1:: and τ2:: 
o ⦅e1 � True⦂ e2 , False⦂ e3⦆:Expressionτi where e1:ExpressionBoolean, 

e2,e3:Expressionτ and τ:: 
o ⦅λ[x:τ1] e⦆:Expression𝛕𝟐

𝛕𝟏 where e:Expressionτ2, x:Variableτ1 in e, 
and τ1,τ2:: 

o ⦅e∎[x]⦆:Expressionτ2 where e:Expression[τ1]→τ2, x:Expressionτ1, 
τ1:: and τ2:: 

o SentenceanOrder⊑TermSentenceanOrder and 

SentenceanOrder⊑ExpressionSentenceanOrder where 

anOrder:ℕ+
ii 

o e :τ where e:Expressionτ with no free variables and τ::  
  

                                                           
i ⦅if e1 then e2  else e3⦆ 
ii Sentences are both Terms and Expressions in order to facilitate writing functions and 

procedures over Terms. 
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 Sentences, i.e., a Sentence is a discrimination of the following: 

o ⦅x⦆:SentenceanOrder+1i where x:VariableSentenceanOrder and 

anOrder:ℕ+ 
o ⦅s⦆:SentenceanOrder where s:SentenceanOrder and anOrder:ℕ+ 
o ⦅s1s2⦆,⦅s1s2⦆,⦅s1⇨s2⦆,⦅s1⇔s2⦆:SentenceanOrder where 

s1,s2:SentenceanOrder and anOrder:ℕ+ 
o ⦅e � True⦂ s1, False⦂ s2⦆ii:SentenceanOrder where 

e:ExpressionBoolean, s1,s2:SentenceanOrder and anOrder:ℕ+  
o ⦅e1=e2⦆:Sentence1 where e1,e2:Expressionτ and τ:: 
o ⦅e1⊑e2⦆:Sentence1 where e1,e2:Expressionτ1, τ1:τ2  and τ2:: 
o ⦅e1e2⦆:Sentence1 where e1,e2:ExpressionSetτ and τ:: 
o ⦅e1e2⦆:Sentence1 where e1:Expressionτ, e2:ExpressionSetτ 

and τ:: 
o ⦅e1:e2⦆:Sentence1 where e1:Expressionτ1, e2:Expressionτ2 τ1:τ3, 

τ2:τ4 and τ3,τ4:: 
o ⦅e::⦆:Sentence1 where e:Expressionτ and τ:: 
o ⦅∀[x:τ] s⦆,⦅∃[x:τ] s⦆:SentenceanOrder where x:Variableτ in s, 

s:SentenceanOrder and anOrder:ℕ+ 
o ⦅p[x]⦆:SentenceanOrder+1108 where x:Expressionτ, 

p:ExpressionSentenceanOrderτ
, τ:: and anOrder:ℕ+  Also, as a 

special case, ⦅p[x]⦆:SentenceanOrderiii where x:Expressionτ, 

p:ConstantExpressionSentenceanOrderτ
, τ:: and anOrder:ℕ+   

o ⦅s1,…,sn-1├
𝐩

𝐓
 sn⦆:SentenceanOrder where T:ExpressionTheory, 

s1 to n:SentenceanOrder, p:ExpressionProof and anOrder:ℕ+ 

o ⦅⊨ s⦆:SentenceanOrder where s:SentenceanOrder 
o SentenceanOrder⊑TermSentenceanOrder and 

SentenceanOrder⊑ExpressionSentenceanOrder where 

anOrder:ℕ+
109 

o s:PropositionanOrder where s:SentenceanOrder, anOrder:ℕ+ and 

there are no free variables in s.iv 
  

                                                           
i The type of ⦅x⦆ means that the Y fixed point construction cannot be used to construct 

sentences for “self-referential” propositions in Direct Logic. 
ii if t then s1 else s1 
iii The type of ⦅p[x]⦆ means that the Y fixed point construction cannot be used to 

construct sentences for “self-referential” propositions in Direct Logic.  
iv The type binding achieves much of what Russel sought to achieve in the ramified 

theory of types. [Russell and Whitehead 1910-1913] 
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 Strings for sentences, i.e., a string for a sentence is a discrimination of the 
following: 
o “x”:StringSentenceanOrder+1110 where 

x:VariableStringSentenceanOrder and anOrder:ℕ+ 
o “s”:StringSentenceanOrder where s:StringSentenceanOrder 

and anOrder:ℕ+ 
o “s1  s2”,“s1  s2”,“s1 ⇨ s2”,“s1 ⇔ s2”:StringSentenceanOrder where 

s1,s2:StringSentenceanOrder and anOrder:ℕ+ 

o “e � True⦂ s1 , False⦂ s2”i:StringSentenceanOrder where e: 
StringExpressionBoolean, s1,s2:StringSentenceanOrder and 

anOrder:ℕ+  
o “e1=e2”:StringSentence1 where e1,e2:StringExpressionτ and τ:: 
o “e1⊑e2”:StringSentence1 where e1,e2:StringExpressionτ1, τ1:τ2  

and τ2:: 
o “e1 e2”:StringSentence1 where e1,e2:StringExpressionSetτ 

and τ:: 
o “e1e2”:StringSentence1 where e1:StringExpressionτ, 

e2:StringExpressionSetτ and τ:: 
o “e1:e2”:StringSentence1 where e1:StringExpressionτ1, 

e2:StringExpressionτ2, τ1:τ3, τ2:τ4 and τ3,τ4:: 
o “e::”:StringSentenceanOrder where e:StringExpressionτ and τ:: 
o “∀[x:τ1] s”,“∃[x:τ1] s”:StringSentenceanOrder where x:Variableτ1 in 

s, s:StringSentenceanOrder and anOrder:ℕ+ 
o “p[x]”:StringSentenceanOrder+1ii where x:StringExpressionτ, 

p:StringExpressionSentenceanOrderτ
, τ:: and anOrder:ℕ+  

o “s1 , … , sn-1 ├
𝐩

𝐓
  sn”:StringSentenceanOrder where 

T:StringExpressionTheory, s1 to n:StringSentenceanOrder, 
p:StringExpressionProof and anOrder:ℕ+ 

o “⊨ s”:StringSentenceanOrder where s:StringSentenceanOrder  
o StringSentenceanOrder⊑StringTermSentenceanOrder and 

StringSentenceanOrder⊑StringExpressionSentenceanOrder 

where anOrder:ℕ+
111 

o s:SentenceanOrder where s:StringSentenceanOrder and 

anOrder:ℕ+ 

  

                                                           
i if  t then s1 else s2 
ii The type of “p[x]" ” means that the Y fixed point construction cannot be used to 

construct strings for “self-referential” propositions in Direct Logic.  
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 String for terms, i.e., a string for a term is a discrimination of the following: 
o “⦅x⦆”:StringTermτ where x:StringConstantτ and τ:: 
o “⦅x⦆”: StringTermτ where x:StringVariableτ and τ:: 

o “⦅f1[x1:𝛕𝟏]:𝛔𝟏≡d1, ... , fn[xn:𝛕𝐧]:𝛔𝐧≡dn "in" y⦆”:StringTermτ where for i 

in 1 to n,  fi:StringVariable𝛔𝐢
𝛕𝒊 in di and y, xi:StringVariable𝛕𝐢 in 

di,di:StringTerm𝛔𝐢, y:StringTermτ, and 𝛕𝐢::
 112 

o “⦅x1:𝛕𝟏≡d1, ... , xn≡dn "in" y⦆”:StringTermτ where for i in 1 to n, 

xi:StringVariable𝛕𝐢 in di and y, di:StringTerm𝛔𝐢, 

y:StringTermτ, and 𝛕𝐢::
 113 

o “⦅e1⦶e2⦆”:StringTermτ1⦶τ2, 

“⦅[e1, e2]⦆”:StringTerm[τ1,τ2], “⦅[e1]⇾e2⦆”:StringTerm[τ1]⇾τ2, 

and “⦅𝐞𝟐
𝐞𝟏⦆”:StringTerm𝛕2

𝛕1
 where e1:StringTermτ1, 

e2:StringTermτ2, and τ1:: and τ2:: 
o “⦅e1 � True⦂ e2 , False⦂ e3⦆”:StringTermτi where 

e1:StringTermBoolean, e2,e3:StringTermτ and τ:: 
o “⦅λ[x:τ1]  e⦆”:StringTerm𝛕𝟐

𝛕𝟏 where e:StringTermτ2, 
x:StringVariableτ1 in e, and τ1,τ2:: 

o “⦅e[x]⦆”:StringTermτ2 where e:StringTerm𝛕𝟐
𝛕𝟏, 

x:StringTermτ1, τ1:: and τ2:: 
o StringSentenceanOrder⊑StringTermSentenceanOrder 

where anOrder:ℕ+ 
o e:Termτ, where e:StringTermτ and τ::  

  

                                                           
i “if e1 then e2  else e3” 
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 String for expressions, i.e., a string for an expression is a discrimination of the 
following: 
o “⦅x⦆”:StringExpressionτ where x:StringConstantτ and τ:: 
o “⦅x⦆”: StringExpressionτ where x:StringVariableτ and τ:: 

o “⦅f1[x1:𝛕𝟏]:𝛔𝟏≡d1, ... , fn[xn:𝛕𝐧]:𝛔𝐧≡dn "in" y⦆”:StringExpressionτ where 

for i in 1 to n,  fi:StringVariable𝛔𝐢
𝛕𝒊 in di and y, 

xi:StringVariable𝛕𝐢 in di,di:StringExpression𝛔𝐢, 

y:StringExpressionτ, and 𝛕𝐢::
 114 

o “⦅x1:𝛕𝟏≡d1, ... , xn≡dn "in" y⦆”:StringExpressionτ where for i in 1 to n, 

xi:StringVariable𝛕𝐢 in di and y, di:StringExpression𝛔𝐢, 

y:StringExpressionτ, and 𝛕𝐢::
 115 

o “⦅e1⦶e2⦆”:StringExpressionτ1⦶τ2, 
“⦅[e1, e2]⦆”:StringExpression[τ1,τ2], 

“⦅[e1]⇾e2⦆”:StringExpression[τ1]⇾τ2, and 

“⦅𝐞𝟐
𝐞𝟏⦆”:StringExpression𝛕2

𝛕1
 where e1:StringExpressionτ1, 

e2:StringExpressionτ2, and τ1:: and τ2:: 

o “⦅e1 � True⦂ e2 , False⦂ e3⦆”:StringExpressionτi where 

e1:StringExpressionBoolean, e2,e3:StringExpressionτ and τ:: 
o “⦅λ[x:τ1]  e⦆”:StringExpression𝛕𝟐

𝛕𝟏 where e:StringExpressionτ2, 
x:StringVariableτ1 in e, and τ1,τ2:: 

o “⦅e∎[x]⦆”:Expressionτ2 where e:Expression[τ1]⇾τ2, x:Expressionτ1, 
τ1:: and τ2:: 

o StringSentenceanOrder⊑StringTermSentenceanOrder and 

StringSentenceanOrder⊑StringExpressionSentenceanOrder 

where anOrder:ℕ+ 
o e:Expressionτ, where e:StringExpressionτ and τ::  

  

                                                           
i “if e1 then e2  else e3” 
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End Notes 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 [White 1956, Wilder 1968, Rosental 2008] 
2 In other words, the paradox that concerned [Church 1934] (because it could 

mean the demise of formal mathematical logic) has been transformed into 

fundamental theorem of foundations! 
3 Which is not the same as proving the much stronger proposition that 

Mathematics is inferentially consistent, i.e., that there is no proof of 

contradiction from the axioms and inference rules of Direct Logic. 
4 Mathematical foundations of Computer Science must be general, rigorous, 

realistic, and as simple as possible. There are a large number of highly technical 

aspects with complicated interdependencies and trade-offs. Foundations will be 

used by humans and computer systems. Contradictions in the mathematical 

foundations of Computer Science cannot be allowed and if found must be 

repaired. 

     Classical mathematics is the subject of this article. In a more general context: 

 Inconsistency Robust Direct Logic is for pervasively inconsistent theories 

of practice, e.g., theories for climate modeling and for modeling the 

human brain. 

 Classical Direct Logic can be freely used in theories of Inconsistency 

Robust Direct Logic. See [Hewitt 2010] for discussion of Inconsistency 

Robust Direct Logic. Classical Direct Logic for mathematics used in 

inconsistency robust theories. 
5 cf. [Rosental 2008] 
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6 According to [Concoran 2001]: 

“after first-order  logic had been isolated and had been assimilated by the 

logic community, people emerged who could not accept the idea that first-

order logic was not comprehensive. These logicians can be viewed not as 

conservatives who want to reinstate an outmoded tradition but rather as 

radicals who want to overthrow an established tradition [of Dedekind, 

etc.].” 
7 for discussion see [Hewitt 2010] 
8 in an unlawful way (Einstein, a member of the editorial board, refused to 

support Hilbert's action) 
9 Hilbert letter to Brouwer, October 1928 
10 Gödel said “Has Wittgenstein lost his mind?” 
11 For example: 

From: Harvey Friedman 

Sent: Wednesday, April 20, 2016 10:53 

To: Carl Hewitt 

Cc: Martin Davis @cs.nyu; Dana Scott @cmu; Eric Astor @uconn; Mario Carneiro 

@osu; Dave Mcallester @ttic; Joe Shipman 

Subject: Re: Parameterized types in the foundations of mathematics 

 

Not if I have anything to say about it! 

 

Harvey 

 

On Wed, Apr 20, 2016 at 11:25 AM, Carl Hewitt wrote: 

 

> Hi Martin, 

> 

> Please post the message below to FOM [Foundations of Mathematics 

forum]. 

> 

> Thanks! 

> 

> Carl 

> 

 

> According to Harvey Friedman on the FOM Wiki:  "I have not yet seen any 

seriously alternative foundational setup that tries to be better than ZFC in this 

[categoricity of models] and other respects that isn't far far worse than ZFC in 

other even more important respects." 

> 

 

> Of course, ZFC is a trivial consequence of parameterized types with the 

following definition for set of type τ: 

> 

>        Setτ ≡ Booleanτ 
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>> Also of course, classical mathematics can be naturally formalized  using 

parameterized types.  For example, see “Inconsistency 

Robustness in Foundations: Mathematics self proves its own Consistency and 

Other Matters” in HAL Archives. 

>  

> Regards, 

> Carl 
12 [Nielsen 2014] 
13 By the Computational Representation Theorem [Hewitt 2006], which can 

define all the possible executions of a procedure. 
14 Again, Mathematics here means the common foundation of all classical 

mathematical theories from Euclid to the mathematics used to prove Fermat's 

Last [McLarty 2010].  
15 As shown above, there is a simple proof in Classical Direct Logic that 

Mathematics (├) is formally consistent. If Classical Direct Logic has a bug, then 

there might also be a proof that Mathematics is inconsistent. Of course, if a such 

a bug is found, then it must be repaired. The Classical Direct Logic proof that 

Mathematics (├) is formally consistent is very robust. One explanation is that 

formal consistency is built in to the very architecture of Mathematics because it 

was designed to be consistent. Consequently, it is not absurd that there is a 

simple proof of the formal consistency of Mathematics (├) that does not use all 

of the machinery of Classical Direct Logic.        

          In reaction to paradoxes, philosophers developed the dogma of the necessity 

of strict separation of “object theories” (theories about basic mathematical 

entities such as numbers) and “meta theories” (theories about theories). This 

linguistic separation can be very awkward in Computer Science. Consequently, 

Direct Logic does not have the separation in order that some propositions can 

be more “directly” expressed. For example, Direct Logic can use ├├Ψ to 

express that it is provable that Ψ is provable in Mathematics. It turns out in 

Classical Direct Logic that ├├Ψ holds if and only if ├Ψ holds. By using such 

expressions, Direct Logic contravenes the philosophical dogma that the 

proposition ├├Ψ must be expressed using Gödel numbers. 
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16 [Gödel 1931] based incompleteness results on the thesis that Mathematics 

necessarily has the proposition I'mUnprovable using what was later called the 

“Diagonal Lemma” [Carnap 1934], which is equivalent to the Y untyped fixed 

point operator on propositions. Using strong parameterized types, it is 

impossible to construct I'mUnprovable because the Y untyped fixed point 

operator does not exist for strongly typed propositions. In this way, formal 

consistency of Mathematics is preserved without giving up power because there 

do not seem to be any practical uses for I'mUnprovable in Computer Science. 

        A definition of NotProvable could be attempted as follows: 

                   NotProvable[p] ≡ ⊬p  

   With strong types, the attempted definition becomes: 

              NotProvablen:ℕ+[p:Propositionn]:Propositionn+1 ≡ ⊬p 
   Consequently, there is no fixed point I'mUnprovable for the procedure 

NotProvablen:ℕ+ such that the following holds:  

                    NotProvablen:ℕ+[I'mUnprovable]⇔I'mUnprovable 
   Thus Gödel’s I'mUnprovable does not exist in Strongly Typed Mathematics.  

    In arguing against Wittgenstein’s criticism, Gödel maintained that his results 

on I'mUnprovable followed from properties of ℕ using Gödel numbers for 

strings that are well-formed. The procedure NotProvable could be attempted for 

strings as follows: NotProvable[s] ≡ “⊬ s” With strong types, the attempted 

definition becomes: 

   NotProvablen:ℕ+[s:StringPropositionn]:StringPropositionn+1≡“⊬s” 

Consequently, there is no fixed point I'mUnprovableString for the procedure 

NotProvablen:ℕ+ such that the following holds (where   s   is the 

proposition for well-formed string s):  

      NotProvablen:ℕ+ [I'mUnprovableString]  ⇔  I'mUnprovableString  
   Thus Gödel’s I'mUnprovableString does not exist in Strongly Typed 

Mathematics.    

        Furthermore, Strong Types thwart the known paradoxes while at the same 

time facilitating proof of new theorems, such as categoricity of the set theory. 
17 Total[f] ⇔ ∀[i:ℕ] ∃[j:ℕ] f∎[i] = j 
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18 ProvedTotalsEnumerator∎[i:ℕ]:([ℕ]→ℕ)) ≡ Next∎[i, 0, 0] 
   Next∎[i:ℕ, totalsIterator:ℕ, theoremsIterator:ℕ]:([ℕ]→ℕ)) ≡  
        TheoremsEnumerator[theoremsIterator]  � 
              Total[f] ⦂             // TheoremsEnumerator[theoremsIterator]=Total[f] 
                    totalsIterator=i � 
                        True ⦂ f, 
                        False⦂ Next∎[i, totalsIterator+1, theoremsIterator+1] 
               else ⦂ Next∎[i, totalsIterator, theoremsIterator+1] 

Theorem ⊢Total[ProvedTotalsEnumerator]  
    Proof: ProvedTotalsEnumerator always converges because. 

      ⊢∀[i:ℕ] ∃[j:ℕ, g:([ℕ]→ℕ)] j>i  TheoremsEnumerator∎[j]=Total[g] 
19 [Isaacson 2007] 
20 A theory is defined by a set of propositions in Direct Logic that are taken to be 

axioms of the theory. 
21 The whole induction axiom is of type Proposition2.  However, ∀[i:ℕ] P[i] 

within the induction axiom is of type Proposition1.  Quine famously 
criticized 2nd order theory as nothing more than “set theory in sheep’s 
clothing” [Quine 1970, pg. 66]. However, the induction axiom is a more 
natural axiomatization of the Natural Numbers than the 1st order induction 
schema which provides an infinitely large number of axioms. 
    [Zermelo 1932] noted that the Natural Number Induction Axiom can be 

expressed using infinite conjunctions as follows: 

∀[P:Proposition1ℕ]  (P[0]  i:ℕ P[i]⇨P[i+1]) ⇨ i:ℕ P[i]   

    Also, the induction axiom per se does not commit to sets of Booleanℕ. Given 

Booleanℕ, as shown below, the set theory version of the Natural Number 

induction axiom is logically equivalent to the propositional version. 

Theorem.  ∀[X:Booleanℕ]  (0∈X  ∀[i:ℕ] i∈X⇨i+1∈X) ⇨ ∀[i:ℕ] i∈X 

    Proof:  Suppose X:Booleanℕ.  P[i:ℕ]:Proposition1 ≡ i∈X.  The theorem 

follows immediately. 

Theorem. Set theory version of the Natural Number induction axiom implies 

propositional version. 

Proof: Suppose ∀[X:Boolean1ℕ] (0∈X∀[i:ℕ] i∈X⇨i+1∈X) ⇨ ∀[i:ℕ] i∈X 

Further suppose P:Proposition1ℕ. Define X:Booleanℕ ≡ {i:ℕ | P[i]}. It 

follows that (P[0]  ∀[i:ℕ] P[i]⇨P[i+1]) ⇨ ∀[i:ℕ] P[i]. 
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22 Proof: Suppose X≠{}. Suppose to obtain a contradiction that X doesn’t have a 

least element. 0∉X because otherwise it would be the least element.  Therefore 

0∈~X where ~X is the complement of X.  

    To prove ~X= ℕ that using for course of values induction with i:ℕ 
assume that ∀[j≤i] j∈ℕ. Therefore i+1∈~X because otherwise i+1 is the 

least element of  X since every integer smaller that i+1 is in ~X. 

Consequently ~X= ℕ, by course of value values induction. 

Consequently, X≠{} is contradicted because ~X=ℕ. 
23 Proof.  

o Proof by induction that  

       ∀[i:ℕ, X:Booleanℕ]  |X]=i  ⇨ ∀[f:ℕℕ] (1to1[f, X] ⇨ Onto[f, X, X]) 

Suppose for i:ℕ that 

                  ∀[X:Booleanℕ, f:ℕℕ] |X]=i  ⇨ (1to1[f, X] ⇨ Onto[f, X, X]) 

To prove ∀[X:Booleanℕ, f:ℕℕ] |X]=i+1 ⇨ (1to1[f, X] ⇨ Onto[f, X, X]), 
suppose |X]=i+1 so that X=Y⋃{z} where z∉Y and consequently 

|Y|=i.  By the inductive hypothesis, ∀[f:ℕℕ] 1to1[f, Y] ⇨ Onto[f, Y, Y]. 
To prove Onto[f, X, X], suppose 1to1[f, X].  Therefore 1to1[f, Y] and 
so Onto[f, Y, Y].  Therefore f[z]∈X because 1to1[f, X] and 
consequently Onto[f, X, X]. 

o Suppose ∀[f:ℕℕ] (1to1[f, X] ⇨ Onto[f, X, X]). Further suppose to obtain a 

contradiction Finite[X] and thus ∃[i:ℕ] ∀[j∈X] j<i which means 

there is a monotonic f:Xℕ be such that 1to1[f, ℕ].  Define  

g[i:X]:X ≡ f[i+1]. Consequently, 1to1[g, X] but Onto[g, X, X] because 
g[j]∉X for the least element of X, which is a contradiction. 

24 This argument appeared in [Church 1934] expressing concern that the argument 

meant that there is “no sound basis for supposing that there is such a thing as 

logic.” 
25 Total[f] ⇔ ∀[i:ℕ] ∃[j:ℕ] f∎[i] = j 
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26 ProvedTotalsEnumerator∎[i:ℕ]:([ℕ]→ℕ)) ≡ Next∎[i, 0, 0] 
   Next∎[i:ℕ, totalsIterator:ℕ, theoremsIterator:ℕ]:([ℕ]→ℕ)) ≡  
        TheoremsEnumerator[theoremsIterator]  � 
              Total[f] ⦂             // TheoremsEnumerator[theoremsIterator]=Total[f] 
                    totalsIterator=i � 
                        True⦂ f, 
                         False⦂ Next∎[i, totalsIterator+1, theoremsIterator+1] 
               else ⦂ Next∎[i, totalsIterator, theoremsIterator+1] 

Theorem ⊢Nat Total[ProvedTotalsEnumerator]  

 Proof: ProvedTotalsEnumerator always converges because. 

        ⊢Nat ∀[i:ℕ] ∃[j:ℕ,g:([ℕ]→ℕ)] j>i  TheoremsEnumerator∎[j]=Total[g] 
27 [Dedekind 1888] According to [Isaacson 2007]: 

“Second-order quantification is significant for philosophy of mathematics 

since it is the means by which mathematical structures may be 

characterized. But it is also significant for mathematics itself. It is the means 

by which the significant distinction can be made between the independence 

of Euclid's Fifth postulate from the other postulates of geometry and the 

independence of Cantor's Continuum hypothesis [conjecture] from the 

axioms of set theory. The independence of the Fifth postulate rejects the 

fact, which can be expressed and established using second-order logic, that 

there are different geometries, in one of which the Fifth postulate holds (is 

true), in others of which it is false.” 
28 For example, there are nondeterministic Turing machines that the theory Nat 

proves always halt that cannot be proved to halt in the relational 1st order 

theory of Natural Numbers. 
29 cf. [Genesereth and Kao 2015; Zohar 2017] 
30 cf. [Zermelo 1932]  pp. 6-7. 
31 of type [Com]→ 

       Outcome[created=FiniteSetActor,     // new Actors 

                          sent=FiniteSetCom,             // new Communications 
                          next=Behavior] 

32 cf. [Zermelo 1932]  pp. 6-7. 

 
33 Consequently, there can cannot be any escape hatch into an unformalized 

“meta-theory.” 
34 The claim also relied on Gödel's proposition I'mUnprovable. 
35 Formal syntax was invented long after [Gödel 1931]. 
36 emphasis in original 
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37 According to Solomon Feferman, Gödel was “the most important logician of 

the 20th century” and according to John Von Neumann he was “the greatest 

logician since Aristotle.” [Feferman 1986, pg. 1 and 8] 
38 [Feferman 1986, pg. 1 and 8] 
39 Wittgenstein in 1937 published in Wittgenstein 1956, p. 50e and p. 51e] 
40 Wittgenstein was granting the supposition that [Gödel 1931] had proved 

inferential undecidability (sometimes called “incompleteness”) of Russell’s 
system, that is., ⊢⊬P. However, inferential undecidability is easy to prove 
using the proposition P where P⇔⊬P:  

Proof. Suppose to obtain a contradiction that ⊢
 
P. Both of the following can 

be inferred:  
1) ⊢

 
⊬P from the hypothesis because P⇔⊬P 

2) ⊢
 
⊢P from the hypothesis by Adequacy. 

But 1) and 2) are a contradiction. Consequently, ⊢⊬
 
P follows from proof by 

contradiction. 
41 [Wang 1972] 
42 The Liar Paradox [Eubulides of Miletus] is an example of using untyped 

propositions to derive an inconsistency:  

         Fn[p:Propositionn]:Propositionn+1  ≡  p 

       // above definition has no fixed point because p has 
             // order greater than p 

The following argument derives a contradiction assuming the existence of a 

fixed point for F:   
1) I’mFalse ⇔  I’mFalse       // nonexistent fixed point of F 

2) I’mFalse                              // proof by contradiction from 1) 

3) I’mFalse                                 // from 1) and 2) 
43 [Church 1935]  correctly proved computational undecidability  without using 

Gödel's I’mUnprovable. The Church theorem and its proof are very robust. 
44 Nat

1
 is not a categorical theory of the natural numbers because there are 

nonstandard (different from ℕ) countable types which satisfy the axioms of Nat
1
 

that have a (nonstandard) element that is larger than any number which can be 
reached by finitely iterating the successor function starting with 0. Such a 
nonstandard model can be constructed creating a new theory Nat

1
*  by adding a 

new symbol ∞, the axiom ∞<∞, and countably many axioms of the form i<∞ 
for each Natural Number i. Since Nat

1
*  is consistent, there is a type ℕ* which 

satisfies the theory Nat
1
*. The type ℕ* also satisfies the theory Nat

1
 because 

the axioms of Nat
1 

are a subset of the axioms of Nat
1
*. 

    However, ℕ* does not satisfy the theory Nat  because it is not isomorphic to 
ℕ. 
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45 instead of using the categorical induction axiom of Nat 

Theorem.  ⊢𝑁𝑎𝑡1
∀[X:StringExpression Booleanℕ

]  

                                        (0∈ X   ∀[i:ℕ] i∈ X ⇨i+1∈ X ) ⇨ ∀[i:ℕ] i∈ X  

    Proof:  Suppose X:StringExpressionBooleanℕ
.  Define 

                         P:StringExpressionProposition1ℕ
 ≡ “λ[i:ℕ]  i∈ X  ” 

      The theorem follows immediately. 
46 In conformance with the context of Church’s Paradox, the general 1st order 

theory Nat1 is considerably stronger than the relational 1st order theory PA (so-

called “Peano Arithmetic”). For example, PA cannot proved that the 

Ackermann procedure below is total. 
    The following schema can be used to (non-categorically) axiomatize the real 

numbers (ℝ) where S:StringSetℝ: 
      S  ≠{ }ℝ  Bounded[ S ] ⇨ HasLeastUpperBound[ S ] 
 where   
    Bounded[ S ] ⇔ ∃[b:ℝ] UpperBound[b,  S ]  
    UpperBound[b:ℝ,  S ] ⇔  b S    ∀[x S ] x≦b 
    HasLeastUpperBound[ S ]] ⇔ ∃[b:ℝ] LeastUpperBound[b,  S ] 

    LeastUpperBound[b:ℝ,  S ] 
                 ⇔  UpperBound[b,  S ]  ∀[x S ] UpperBound[x,  S ] ⇨ x≦b 
47 cf. [Church 1934] 
48 In Nat

1 
all of the instances of the induction schema can be enumerated by 

a proved total deterministic procedure which then can be used to 
enumerate the theorems of Nat

1 
using a proved total deterministic 

procedure. 
49 ProvedTotalsEnumerator∎[i:ℕ]:([ℕ]→ℕ)) ≡ Next∎[i, 0, 0] 
      Next∎[i:ℕ, totalsIterator:ℕ, theoremsIterator:ℕ]:([ℕ]→ℕ)) ≡  
        TheoremsEnumerator[theoremsIterator]  � 
              Total[f] ⦂             // TheoremsEnumerator[theoremsIterator]=Total[f] 
                    totalsIterator=i � 
                        True ⦂ f, 
                         False⦂ Next∎[i, totalsIterator+1, theoremsIterator+1] 
               else ⦂ Next∎[i, totalsIterator, theoremsIterator+1] 

Theorem ⊢𝑁𝑎𝑡1
Total[ProvedTotalsEnumerator]  

  Proof: ProvedTotalsEnumerator always converges because. 

        ⊢𝑁𝑎𝑡1
∀[i:ℕ] ∃[j:ℕ,g:([ℕ]→ℕ)] j>i  TheoremsEnumerator∎[j]=Total[g] 

50 because  

            ∀[f:([ℕ]→ℕ)] (⊢Total[f])⇒∃[i:ℕ] TheoremsEnumerator∎[i]=Total[f ] 
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51 in accord with the opinion of a large fraction of contemporary philosophers of 

logic 
52 In other words, the paradox that concerned [Church 1934] (because it could 

mean the demise of formal mathematical logic) has been transformed into 

fundamental theorem of foundations! 
53 Which is not the same as proving the much stronger proposition that 

Mathematics is inferentially consistent, i.e., that there is no proof of 

contradiction from the axioms and inference rules of Direct Logic. 

54 Theorem: ⊢
Nat

 ∀[P:StringExpressionProposition1ℕ
]  

                                     (  P [0]  ∀[i:ℕ]   P [i]⇨ P [i+1]) ⇨ ∀[i:ℕ]  P [i] 
55 In 1666, England's House of Commons introduced a bill against atheism and 

blasphemy, singling out Hobbes’ Leviathan. Oxford university condemned and 

burnt Leviathan four years after the death of Hobbes in 1679. 
56 ContinuumForReals is defined as follows: 

         ContinuumForReals ⇔  ∄[S:Booleanℕ] |ℕ| < |S| < |Booleanℕ| 

ContinuumForReals has been proved for well-behaved subsets of the reals, 

such as Borel sets as follows: 

          ContinuumForBorelSets ⇔  ∄[S:BorelSet] |ℕ| < |S| < |Booleanℕ| 

 where a Borel Set is formed from the countable union, countable 
intersection, and relative complement of open sets 

That ContinuumForReals is an open problem is not so important for Computer 

Science because for ContinuumForComputableReals is immediate because the 

computable real numbers are enumerable. 

For less well behaved subset of ℝ, ContinuumForReals remains an open 

problem. 

    Note that it is important not to confuse ContinuumForReals with 

ContinuumForRelational1stOrderZFC. Relational1stOrderZFC has 

countably many 1st order propositions as axioms. [Cohen 1963] proved the 

following theorem which is much weaker than ContinuumForReals because 

sets in the models of Relational1stOrderZFC do not include all of 

Proposition1ℕ and the theory Relational1stOrderZFC is much 

weaker than the theory Sets ℕ: 
 ⊬

Relational1stOrderZFC ContinuumForRelational1stOrderZFC 
 ⊬

Relational1stOrderZFC ContinuumForRelational1stOrderZFC 
Cohen's result above is very far from being able to decide the following: 

    ⊦𝑆𝑒𝑡𝑠ℕ
 ContinuumForReals 

57 [Zermelo 1930, van Dalen 1998, Ebbinghaus 2007] 
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58 1st order theories fall prey to paradoxes like the Löwenheim–Skolem theorems 

(e.g. any 1st order theory of the real numbers has a countable model). Theorists 

have used the weakness of 1st order theory to prove results that do not hold in 

stronger formalisms such as Direct Logic [Cohen 1963, Barwise 1985]. 
59 a restricted form of Model Checking in which the properties checked are 

limited to those that can be expressed in Linear-time Temporal Logic has 

been studied [Clarke, Emerson, Sifakis, etc. ACM 2007 Turing Award]. 
60 cf. Plotkin [1976] 

61 up to a unique isomorphism 
62 Rejection of the 1st Order Thesis resolves the seeming paradox between the 

formal proof in this article that Mathematics formally proves its own formal 

consistency and the proof that ‘Every “strong enough” formal system that 

admits a proof of its own consistency is actually inconsistent.’ [Paulson 2014].  

Although Mathematics is “strong enough” the absence of “self-referential” 

propositions (constructed using the Y untyped fixed point operator on 

propositions) blocks the proof of formal inconsistency to which Paulson 

referred.  
63 Note that the Berry paradox is blocked using strong types because BString is a 

string for a term of a proposition of anOrder+1 thereby preventing it from 

being substituted for a string for a term of a proposition of anOrder. 
64 using definition of BSet 
65 using definition of BExpression 
66 substituting BNumber for n 
67 Subst is the substitution procedure, which substitutes its third argument 

into the application of its first two arguments 
68 Fix implements recursion. It can be defined in Direct Logic as follows; 

       Fixτ1,τ1∎[F:Functionalτ1,τ1]:([τ1]→τ2)  

                                                                         ≡ λ[x:τ1] (F∎[Fixτ1,τ1∎[F]] )∎[x]   

For example, suppose  

                F[g:[ℕ]→ℕ]:([ℕ]→ℕ) ≡ λ[i:ℕ] i=1  � True⦂ 1 , False⦂ ig∎[i-1] 
Therefore by the Fix axiom,  Fixℕ,ℕ∎[F]=F∎[Fixℕ,ℕ∎[F]] and  
Fixℕ,ℕ∎[F] = F∎[Factorial] = Factorial where 

                             Factorial ≡ λ[i:ℕ] i=1  � True⦂ 1 , False⦂ iFactorial∎[i-1] 
69 where F1

∎[x] ≡ F∎[x] 

              Fn+1
∎[x]  ≡ Fn

∎[F∎[x]] 
70 Robinson [1961] 
71 [Dedekind 1888] 
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72 The following can be used to characterize the real numbers (ℝ) up to a unique 

isomorphism: 

     ∀[S:Setℝ]  S≠{ }ℝ  Bounded[S] ⇨ HasLeastUpperBound[S] 
 where   
    Bounded[S:Setℝ] ⇔ ∃[b:ℝ] UpperBound[b, S]  
    UpperBound[b:ℝ, S:Setℝ] ⇔  bS  ∀[xS] x≦b 
    HasLeastUpperBound[S:Setℝ]]  ⇔ ∃[b:ℝ] LeastUpperBound[b, S] 
    LeastUpperBound[b:ℝ, S:Setℝ] 
                    ⇔  UpperBound[b,S]  ∀[xS] UpperBound[x, S] ⇨ x≦b 

73 The theory of the ordinals Ord  is axiomatised as follows: 

 0O:O 

 Successor ordinals 

o ∀[α:O]  +1[α]:O  +1[α]>α 

o ∀[α:O]  ∄[β:O]  α<β<+1[α] 

 Replacement for ordinals: 

o ∀[α:O,f:OO] ⊍αf:O 

o ∀[α,β:O,f:OO] β∈⊍αf ⇔ ∃[δ<α] β≦f[δ] 

o ∀[α,β:O,f:OO] (∀[δ<α] f[δ]≦β) ⇨ ⊍αf≦β 

 Cardinal ordinals 

ω0 = ℕ 

∀[α:O] α>0O ⇨ |ω α| = |𝐁𝐨𝐨𝐥𝐞𝐚𝐧
⊍β<αωβ| 

∀[α,β:O] |β|=|ωα| ⇨ ωα=β  ωα∈β 

        where |τ1| = |τ2| ⇔ ∃[f:τ2
τ1] 1to1ontoτ1,τ2[f] 

                 1to1τ1 ,τ2[f:τ2
τ1] ⇔  ∀[x1,x2:τ1] f[x1]=f[x2] ⇨ x1=x2 

            1to1ontoτ1 ,τ2[f:τ2
τ1]  

                                      ⇔ 1to1τ1 ,τ2[f:τ2
τ1]   ∀[y:τ2] ∃[x:τ1]  f[x]=y 

 Tansitivity of < 
∀[α,β<α,δ<β:O]  α<δ 

 ∀[α,β:O]  α<β  α=β  β<α 

 ∀[α,β:O]  α<β ⇨ β<α 

 For each order:ℕ+ and P:PropositionorderO
: 

the following ordinal induction axiom holds: 

                   (∀[α:O] ∀[β<α:O] P[β]⇨P[α]) ⇨ ∀[α:O] P[α] 
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74 For each type X that satisfies the theory Ord  there is a unique isomorphism 

I:XO
 inductively defined as follows: 

             I[0O] ≡ 0X 

             ∀[α:O] I[+1[α]] ≡ +1
𝐗[I[α]] 

          ∀[α:LimitO] I[α] ≡ y 

              where y:X  ∀[β<α] y≦XI[β] 

                                    ∀[z:X] (∀[β<α] z≦XI[β]) ⇒ y≦Xz 

 

Using proofs by ordinal induction on O and X, the following follow: 

1. I is defined for every O 

2. I is one-to-one: ∀[α,β:O] I[α] = I[β] ⇒ α=β 

3. The range of I is all of X: ∀[y:X] ∃[α:O] I[α] = y 

4. I is a homomorphism:  

 I[0O] = 0X 

 ∀[α:O] I[+1[α]] = +1
𝐗[I[α]] 

 ∀[α:LimitO, f:OO] I[⊍α f] =  ⊍f[α]
x

I⚬f⚬I-1 

5. I-1:OX is a homomorphism 

6. I is the unique isomorphism:  If g:X 

O
 is an isomorphism then g=I 

75 [Bourbaki 1972; Fantechi, et. al. 2005] 
76 This implies, for example, that no set is an element of itself. 

77 Proof: Suppose S:Setsτ and therefore ∃[α:O] S:Set
α
τ. 

     Proof by ordinal induction on  

           P[β:O]:Proposition1  ≡ ∀[X∈S] X:Setβ
τ 

    Assume: (∀[β<α:O] ∀[X∈S] X:Setβ
τ)  ⇨  ∀[X∈S] X:Setα

τ 

Show:  ∀[X∈S] X:Setα
τ 

Assume: X∈S 

Show X:Setα
τ 

Proof by cases on α 

1. X:Set0
τ 

X:Booleanτ 

       2.   ∀[α:O] Sets
α
τ =  SetSet

α-1
τ   

              X:Setα-1
τ QED by induction hypothesis 
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       3.  ∀[α:LimitO] ∃[β<α,Y:Setβ
τ] X∈Y 

              QED by induction hypothesis 
78 Proof: Suppose S:Setsτ and therefore ∃[α:O] S:Setsα

τ 

     S:Sets
α
τ 

     Show: Booleans:Setsτ 

     Booleans:Setsα+1
τ QED 

79 Proof by ordinal induction on 

          P[α:O]:Proposition1  ≡  ∀[S:Sets
α
τ] ⋃S:Setsτ 

Assume:  ∀[β<α:O] ∀[S:Setsβ
τ] ⋃S:Setsτ     

Show:  ∀[S:Setsα
τ] ⋃S:Setsτ 

Assume:  S:Sets
α
τ 

Show:  ⋃S:Setsτ    

∀[X:Setsτ]  X∈⋃S ⇔  ∃[Y∈S] X∈Y   

∀[X:Setsτ]  X∈⋃S ⇔  ∃[β<α:O,Y:Sets
β
τ] X∈Y  

∀[X:Setsτ]  X∈⋃S ⇒ X:Setsτ    

QED by definition of Setsτ  
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80 Suppose f:𝐒𝐞𝐭𝐬τ𝐒𝐞𝐭𝐬τ and S:Setsτ 

Show Imageτ[f, S]:Setsτ 

Proof by ordinal induction on  

   P[α:O] ⇔ S:Setα
τ ⇒ Imageτ[f, S]:Setsτ 

Suppose ∀[β<α:O] S:Setβ
τ ⇒ Imageτ[f, S]:Setsτ 

Show S:Setα
τ ⇒ Imageτ[f, S]:Sets τ 

Suppose  S:Setα
τ 

Show Imageτ[f, S]:Setsτ 

∀[y:Setsτ]  y:Imageτ[f, S] ⇔ ∃[x∈S] f[x]=y 

Show ∀[y:Setsτ]  y∈Imageτ[f, S] ⇒ y:Setsτ 

Suppose y:Setsτ   y∈Imageτ[f, S] 

Show y:Setsτ 

∃[x∈S] f[x]=y because y∈Imageτ[f, S] 

∃[β<α:O] x:Setβ
τ because x∈S and S:Setα

τ 

Imageτ[f, x]:Setsτ by induction hypothesis 

Show f[x]:Setsτ   

Suppose z∈f[x] 

Show z:Setsτ 

z∈Setsτ because z∈f[x] and Imageτ[f, x]:Setsτ 

f[x]:Setsτ   

y:Setsτ  because f[x]=y 
81 [Mizar; Matuszewski1 and Rudnicki: 2005; Naumowicz and Artur 

Korniłowicz 2009; Naumowicz 2009] 
 
82 Note that this proof is fundamentally different from the categoricity proof in 

[Martin 2015]. 
83 For every type there is a larger type, i.e.., ∀[τ1::]  ∃[τ2::]  τ1⋤τ2 
84 There is no universal type.  Instead, Type is parameterized, e.g., 

Boolean:TypeBoolean and ℕ:Typeℕ 
85 True≠False, True:Boolean, and False:Boolean 
     ∀[x:Boolean] x=True  x=False 
86 Λτ is the type of lambda procedures over τ 
87 O is the type of the Ordinals 

88 ∀[τ::]  τ:Typeτ 
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89 Discrimination of τ1 and τ2 

   For i=1,2  

 If x:τi, then ((τ1⦶τ2)[x]):(τ1⦶τ2) and x=((τ1⦶τ2)[x])↓τi.  

 ∀[z:τ] z:τ1⦶τ2 ⇔ ∃[x:τi] z=(τ1⦶τ2)[x] 
90 type of 2-element list with first element of type τ1 and with second element 

of type τ2 
91 Type of computable nondeterministic procedures from τ1 into τ2. 

If f:([τ1]→τ2) and x:τ1, then f∎[x]:τ2. The following holds: 

       ∀[f:([ℕ]→ℕ)] ∃[aString:(StringExpression[ℕ]→ℕ)] f =  aString   

Furthermore, if e:Expression[τ1]→τ2 with no free variables, then 

e:[τ1]→τ2). [τ1]⇾τ2 is the subtype of [τ1]→τ2 that is the computable 

deterministic procedures from τ1 into τ2. 
92 Type of functions from τ1 into τ2. If f:τ2

𝛕1  and x:τ1, then f[x]:τ2. 
93 ∀[x:τ]  x:τ∋| P ⇔ P[x] 

For example,  

     ∀[τ::, X:𝐁𝐨𝐨𝐥𝐞𝐚𝐧𝐁𝐨𝐨𝐥𝐞𝐚𝐧𝛕
] ∪X ≡ τ∋| λ[y:τ] ∃[Z:𝐁𝐨𝐨𝐥𝐞𝐚𝐧𝛕] ZXyZ 

94 expression of type τ. The following axiom holds: 

 ∀[τ::,t:Termτ]  t ::τ 
95 expression of type τ. The following axiom holds: 

 ∀[τ::, e:Expressionτ]  e::τ 
96 string of type τ. The following axiom holds: 

 ∀[τ::,s:Stringτ]  s::τ 
97 Setτ is a type parametrized by the type τ. In Java and C++, 

parametrized types are called “generics” using “<” for , and “>” 

for . The following axiom holds: ∀[τ::, s:Setτ, x∈s]  x:τ 
98 if p then 1  else 2 
99 x1 is a subtype of x2, i.e.,  ∀[x:τ1] x:τ2 
100 The proposition that τ is a type 
101 The type of p[x] means that the Y fixed point construction cannot be used 

to construct propositions in Direct Logic. 
102 1, … and n-1  infer n 

103 The following: hold 

 (⊨ ) ⇔ (⊨ )  (⊨ ) 

 (⊨ ) ⇔ (⊨ )  (⊨ ) 

 (⊨ ⇨) ⇔ (⊨ ) ⇨ (⊨ ) 

 (⊨ ) ⇔ ⊨  

 (⊨ ∀[x:τ] p[x]) ⇔ ∀[x:τ] ⊨ p[x] 

 (⊨ ∃[x:τ] p[x]) ⇔ ∃[x:τ] ⊨ p[x] 
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104 mutually recursive definitions of functions f1 to n   
105 mutually recursive definitions of variables x1 to n  
106 mutually recursive definitions of functions f1 to n   
107 mutually recursive definitions of variables x1 to n  
108 The type of ⦅p[x]⦆ means that the Y fixed point construction cannot be used 

to construct sentences for “self-referential” propositions in Direct Logic. 
109 Sentences are both Terms and Expressions in order to facilitate writing 

functions and procedures, respectively, over terms. 
110 The type of “x” means that the Y fixed point construction cannot be used to 

construct strings for “self-referential” propositions in Direct Logic. 
111 A Sentences is both a Term and an Expression in order to facilitate writing 

functions and procedures, respectively, over terms. 
112 mutually recursive definitions of functions f1 to n   
113 mutually recursive definitions of variables x1 to n   
114 mutually recursive definitions of functions f1 to n   
115 mutually recursive definitions of variables x1 to n   

 

 

 

 


