
HAL Id: hal-01566393
https://hal.science/hal-01566393v13

Submitted on 20 Sep 2018 (v13), last revised 17 Oct 2018 (v14)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Strong Types for Direct Logic
Carl Hewitt

To cite this version:
Carl Hewitt. Strong Types for Direct Logic. Symposium on Logic and Collaboration for Intelligent
Applications, Mar 2017, Stanford, United States. �hal-01566393v13�

https://hal.science/hal-01566393v13
https://hal.archives-ouvertes.fr

1

Strong Types for Direct Logic

Carl Hewitt

http://plus.google.com/+CarlHewitt-StandardIoT

This article is dedicated to Alonzo Church,

Richard Dedekind, Stanisław Jaśkowski, Bertrand

Russell, Ludwig Wittgenstein, and Ernst Zermelo.

Abstract

Mathematics in this article means the precise formulation of standard

mathematical theories that axiomatize the following up to a unique isomorphism:

booleans, natural numbers, reals, ordinals, sets, lambda calculus procedures, and

Actors.

In a strongly typed mathematical theory, every proposition, term, and expression

has a type where there is no universal type Any. Types are constructed bottom up

from types that are categorically axiomatized.1

Strong types are extremely important in Direct Logic because they block all

known paradoxes including Berry [Russell 1906], Burali-Forti [Burali-Forti

1897], Church [Church 1934], Curry [Curry 1941], Girard [Girard 1972], and Liar

[Eubulides of Miletus], Löb[Löb 1955], and Russell[Russell 1902].2 Blocking

known paradoxes makes Direct Logic safer for use in Intelligent Applications by

preventing security holes. Consistent strong mathematical theories can be freely

used without introducing additional inconsistent information into inconsistency

robust empirical theories that will be the core of future Intelligent Applications.

Direct Logic3 is called “direct” because it directly deals with propositions instead

of attempting to deal with them indirectly using Gödel numbers as is done in

Provability Logic4. Because propositions in Direct Logic are uncountable, it is

impossible to give a Gödel number to every proposition.5

Inconsistency Robustness is performance of information systems (including

scientific communities) with pervasively inconsistent information.6 Inconsistency

Robustness of the community of professional mathematicians is their performance

repeatedly repairing contradictions over the centuries. In the Inconsistency

Robustness paradigm, deriving contradictions has been a progressive

https://plus.google.com/+CarlHewitt-StandardIoT

2

development and not “game stoppers.” Contradictions can be helpful instead of

being something to be “swept under the rug” by denying their existence, which

has been repeatedly attempted by authoritarian theoreticians (beginning with some

Pythagoreans). Such denial has delayed mathematical development. This article

reports how considerations of Inconsistency Robustness have recently influenced

the foundations of mathematics for Computer Science continuing a tradition

developing the sociological basis for foundations.

Having a powerful system like Direct Logic is important in computer science

because computers must be able to formalize all logical inferences (including

inferences about their own inference processes) without requiring recourse to

human intervention. Any inconsistency in Classical Direct Logic would be a

potential security hole because it could be used to cause computer systems to

adopt invalid conclusions.

After [Church 1934], logicians faced the following dilemma:

 1st order theories cannot be powerful lest they fall into inconsistency

because of Church’s Paradox.

 2nd order theories contravene the philosophical doctrine that theorems

must be computationally enumerable.

The above issues can be addressed by requiring Mathematics to be strongly typed

using so that:

 Mathematics self proves that it is “open” in the sense that theorems are

not computationally enumerable.7

 Mathematics self proves that it is formally consistent.8

 Strong mathematical theories for Natural Numbers, Ordinals, Set

Theory, the Lambda Calculus, Actors, etc. are inferentially decidable,

meaning that every true proposition is provable and every proposition

is either provable or disprovable.9

3

Mathematical Foundations for Computer Science
 All mathematical entities are instances of types.

Computer Science brought different concerns and a new perspective to

mathematical foundations including the following requirements (building on

[Maddy 2018]):

 Practicality is providing powerful machinery so that arguments (proofs) can

be short and understandable and

 Generality is formalizing inference so that all of mathematics can take place

side-by-side. Direct Logic provides a generality by formalizing theories of

the natural numbers, reals, ordinals, set theory, groups, lambda calculus, and

Actors side-by-side.

 Shared Standard of what counts as legitimate mathematics so people can join

forces and develop common techniques and technology. According to

[Burgess 2015]:

To guarantee that rigor is not compromised in the process of

transferring material from one branch of mathematics to

another, it is essential that the starting points of the branches

being connected ... be compatible. ... The only obvious way

ensure compatibility of the starting points ... is ultimate to

derive all branches from a common unified starting point.

Direct Logic provides such a common unified starting point including natural

numbers, reals, ordinals, set theory, group theory, geometry, algebra, lambda

calculus, and Actors that are axiumatized up to a unique isomorphism.

 Abstraction so that fundamental mathematical structures can be

characterized up to a unique isomorphism including natural numbers, reals,

ordinals, set theory, groups, lambda calculus, and Actors.10

 Guidance is for practioners in their day-to-day work by providing relevant

structures and methods free of extraneous factors. Direct Logic provides

guidance by providing strong parameterized types and intuitive categorical

inductive axiomatizations of natural numbers, ordinals, sets, lambda calculus,

and Actors.

 Meta-Mathematics is the formalization of logic and rules of inference. Direct

Logic facilitates meta-mathematics because it is its own meta-theory.

 Automation is facilitated in Direct Logic by making type checking very easy

and intuitive along as well as incorporating Jaśkowski natural deduction for

building an inferential system that can be used in everyday work.

4

 Risk Assessment is the danger of contradictions emerging in classical

mathematical theories. In this regard, Direct Logic formalizes long-

established and well-tested mathematical practice while blocking all known

paradoxes including Berry [Russell 1906], Burali-Forti [Burali-Forti 1897],

Church [Church 1934], Curry [Curry 1941], Girard [Girard 1972], and Liar

[Eubulides of Miletus], Löb[Löb 1955], and Russell[Russell 1902].

 Intuitive categorical inductive axiomatizations of natural numbers,

propositions, types, ordinals, sets, lambda calculus, and Actors promote

confidence in operational consistency.

 Consistent mathematical theories can be freely used in (inconsistent)

empirical theories without introducing additional inconsistency.11

Foundations with strong parameterized types

“Everyone is free to elaborate [their] own foundations. All that is required of

[a] Foundation of Mathematics is that its discussion embody absolute rigor,

transparency, philosophical coherence, and addresses fundamental

methodological issues.”12

“The aims of logic should be the creation of “a unified conceptual apparatus

which would supply a common basis for the whole of human knowledge.”

[Tarski 1940]

Note: parametrized types13 in Direct Logic are more intuitive for classical

mathematical theories than intuitionistic types [Martin-Löf 1998].14

Booleans are Propositions although Propositions are not reducible to Booleans:

 True:Boolean

 False:Boolean

 Boolean ⊑Proposition //each Boolean is a Proposition

 Boolean ≠Proposition //some Propositions are not Booleans

 (3=3) ≠ True //the proposition 3=3 is not equal to True

 (3=3) ≠ (4=4)
 //the proposition 3=3 is not equal to the proposition 4=4

 (3=4) ≠ False //the proposition 3=4 is not equal to False

5

In Direct Logic, unrestricted recursion is allowed in programs. For example,
There are uncountably many Actors. For example, the procedure call Real∎[]
can output any real number using binary representation between 0 and 1 where15
 Real:([]→ R

[0,1]
) // Real is a procedure of

 // no arguments that returns a R
[0,1]

 Real∎[] ≡ [(0 either 1), ⩛Postpone Real∎[]]
 where

o (0 either 1) is the nondeterministic choice of 0 or 1,
o [first, ⩛rest] is the list that begins with first and whose

remainder is rest, and
o Postpone expression delays execution of expression until

the value is needed.

Also, there are uncountably many propositions (because there is a different

proposition for every real number). For example, the function p defined as

follows:

 p[x] ≡ λ[y:R] (y=x)

defines a different predicate p[x] for each real number x, which holds for only one

real number, namely x.16

Sentences parse trees are important as a means for constructing propositions. If s

is a well formed sentence parse tree with no free variables, then s is a

proposition.

Every proposition is the abstraction of some sentence parse tree.

Classical Direct Logic is a foundation of mathematics for Computer Science,

which has a foundational theory (for convenience called “Mathematics”) that can

be used in any other theory. A bare turnstile is used for Mathematics so that ⊢Ψ

means that Ψ is a mathematical proposition that is a theorem of Mathematics and

Φ⊢Ψ means that Ψ can be inferred from Φ.

Direct Logic develops foundations for Mathematics by deriving sets from types

and categorical axioms for the natural numbers and ordinals.

Sentence Parse Trees
 e.g. ⦅∀[n:ℕ] ⦅∃[m:ℕ] ⦅m>n⦆⦆⦆
 i.e., sentence parse tree for proposition that

 for every ℕ there is a larger ℕ

6

Higher Order Logic

“If the mathematical community at some stage in the development of

mathematics has succeeded in becoming (informally) clear about a

particular mathematical structure, this clarity can be made

mathematically exact ... Why must there be such a characterization?

Answer: if the clarity is genuine, there must be a way to articulate it

precisely. If there is no such way, the seeming clarity must be illusory ...

for every particular structure developed in the practice of mathematics,

there is [a] categorical characterization of it.”17

Classical Direct Logic is much stronger than 1st order axiomatizations of set

theory in that it provides categoricity for natural numbers N, reals R, ordinals O.

set theory, the lambda calculus and Actors. Categoricity is very important in

Computer Science so that there are no nonstandard elements in models of

computational systems, e.g., infinite integers and infinitesimal reals. For example,

nonstandard models cause problems in model checking if a model has specified

properties.

Natural Number Induction

The mathematical theory18 Nat that axiomatises the Natural Numbers has the

following axioms:

• N :: // N is a type
• 0:N // 0 is of type N

• +1:NN

// +1 is of type N
N

• ∄[i:N] +1[i]=0
• ∀[i,j:N] +1[i]=+1[j] ⇨ i=j

In addition Nat has the following induction axiom, which has uncountable

instances:19

 ∀[P:Nat
N

] (P[0]  ∀[i:N] P[i]⇨P[+1[i]]) ⇨ ∀[i:N] P[i]

The above induction axiom makes use of the type Proposition Nat which

has the following axioms:20

• Nat :: // Nat is the type of propositions of theory Nat

• ∀[t
1
,t

2
:Type Nat; x:t

1
] (x:t

2
):Nat

• ∀[t :Type Nat; x1,x2:t] (x1=x2):Nat

7

In addition to the above, propositions of Nat have the following induction

axiom:

 ∀[Q:Nat
 Nat

]

((∀[t :Type Nat ; x1,x2:t] Q[x1=x2]) ⋀

 (∀[:Nat] Q[]⇨Q[]) ⋀

 (∀[1,2:Nat ] Q[1]Q[2]⇨Q[12]) ⋀

 (∀[t :Type Nat ; P:Nat
t

] ∀t Q[P])⇨Q[∀t P])

 ⇨ ∀[:Nat] Q[]

The above axioms characterize Proposition Nat up to a unique
isomorphism.21

The following theorem states that each proposition is the abstraction of a

sentence parse tree.22

Theorem.23 ∀[:Nat] ∃[s:Sentence Nat]  = s

Proof Checkers in Nat
 ∀[1,2:Nat]
 (1⊢Nat 2) ⇔ ∃[p:ProofChecker Nat] 1⊢

p

𝐍𝐚𝐭
 2

 where

 ProofCheckerNat ⊑Total [Nat , Nat] →1 Boolean 

Proof checking in Nat is computationally decidable.

 ∀[1,2:Nat , p:ProofCheckerNat ]

 (1⊢
p

𝑁𝑎𝑡
 2) ⇔ p∎[1,2]=True

Nat has uncountable proof checkers
There are uncountable proof checkers of the form ForAllElimChecker[c] where

t :Type Nat  and c:t such that

 ForAllElimChecker[c]∎[1,2] ≡

 1 if (∀[x:t] P[x]) then 2=P[c] else False

 // If 1 is ∀[x:t] P[x], then 2=P[c], otherwise False

Consequently,

 (∀[x:t] P[x]) ⊢
ForAllElimChecker[c]

𝑁𝑎𝑡
 P[c]

8

Computational Undecidability of Provability in Nat

The halting problem is to computationally decide whether a given procedure p

halts on a given input x, which is formally expressed as Halt[p,x]. [Church 1935;

Turing 1936] proved that the halting problem is computationally undecidable.

Whether a proposition is a theorem of Nat is computationally undecidable

because the predicate Halt can be formalized in Nat such that:

 ∀[i:N, p:([N]→N)] Halt[p, i] ⇔ ⊢
Nat Halt[p, i])

Theorem (Indiscernibility for Nat):

 ∀[i,j:N] i=j ⇔ ∀[P:Nat
N

] P[i]⇔P[j]

Proof. Define Same:(Nat
N

)
N

 Same[i] ≡ λ[j:N] i=j
∀[i,j:N] (Same[i]⇔Same[j]) ⇨ i=j

Theorem (Proof Soundness of Nat): (⊢
Nat ) ⇨ 

Proof soundness of means that a theorem in Nat can be used in proofs.

A consequence of Proof Soundness is that unrestricted cut-elimination does not

hold for Nat .24

Axiomatization of ⊨
N

Axioms of ⊨
N

 are as follows:

 ⊨
N

 True

 ⊨
N

 False

 (⊨
N ) ⇔ (⊨

N )  (⊨
N )

 (⊨
N ) ⇔ ⊨

N 

 ∀[P:Nat
N

] (⊨ ∀[i:N] P[i]) ⇔ (∀[i:N] ⊨
N

 P[i])

Theorem (Model Soundness of Nat): (⊢
Nat ) ⇨ (⊨

N
 )

Proof: Suppose ⊢
Nat

 . The theorem immediately follows because the axioms

for the theory Nat hold in the type N.

9

Theorem (Categoricity of Nat):25
If X be a type satisfying the axioms for the natural numbers Nat , then there is a
unique isomorphism I with N defined as follows:

• I:X
N

• I[0
N

] ≡ 0
X

• I[+1[j]] ≡ +1
𝑋[I[j]]

 because

• I is defined on N

• I is 1-1

• I is onto X

• I is a homomorphism

 I[0
N

] ≡ 0
X

 ∀[i:N] I[+1[j]] ≡ +1
𝑿[I[j]]

• I-1 is a homomorphism

 I-1[0
X
] ≡ 0

N

 ∀[z:X] I-1[+1
𝑿[z]] ≡ [+1[I-1[z]]

• If g is an isomorphism with X, then g=I

Note that the statement of categoricity is not a 1st order proposition because it

quantifies over every type X and over every isomorphism between X, and N.

Corollary There are no infinite numbers in models of the theory Nat , i.e.,
 ∀[X::] Nat X  ⇨ ∄[j:X] ∀[i:X] j<i

Richard Dedekind

10

Proof by Contradiction in Nat
“[Proof by contradiction is] one of a mathematician’s

first weapons . It is a far finer gambit than any chess

gambit: a chess player may offer the sacrifice of a pawn

or even a piece, but a mathematician offers the game.”

 G. H. Hardy 26

Proof by Contradiction is one of the most fundamental principles of Classical

Mathematics (going back to before Euclid), which can be formalized

 axiomatically to say that if  implies  and  then:

 (⇨) ⇨ 
 proof theoretically to say that proving the theorem ⇨ means that
 is a theorem:

 (⇨) ⇨ ⊢
Nat



 in [Jaśkowski 1934] natural deduction to say that

( infers  and ) holds in a subproof 27 of a proof infers that  holds

in the proof:

 (⊢
Nat

 )⊢
Nat 

Proof by contradiction is much more powerful than has been supposed by

many philosophers of mathematics. As shown in this article, it is sufficient to

prove the formal consistency and the inferential completeness of categorical

theories of the natural numbers, reals, ordinals, set theory, the lambda

calculus, and Actors.

Theorem:28 Inferential completeness of Nat

 ∀[:Nat] (⊨
N
) ⇒ ⊢

Nat


Proof.

Suppose in :Nat and ⊨
N
. Further suppose to obtain a

contradiction that . Hence  and , which is a contradiction.

Therefore ⊢
Nat

 using proof by contradiction in Nat.
29

11

Corollary. Equivalence of satisfiability and provability in Nat, i.e.,

 ∀[:Nat] (⊨
N

 ) ⇔ (⊢
Nat

)

Theorem. Inferential Decidability of Nat
30

, i.e.,

 ∀[:Nat] (⊢
Nat

)  (⊢
Nat

 )

Proof. Follows immediately from (⊨
N
) ⇔ (⊢

Nat
 )

Theorem. Theorems of the theory Nat are not computationally enumerable
Proof. Suppose to obtain a contradiction that theorems of Nat are

computationally enumerable. Then whether a proposition is a
theory of Nat is computationally decidable by enumerating
theorems until either the proposition or its negation is
encountered.

Theorem (Instance Adequacy of Nat):31

 ∀[P:Nat] (∀[i:N] ⊢
Nat

 P[i]) ⇨ ⊢
Nat

∀[i:N] P[i]

Proof: Suppose ∀[i:N] ⊢
Nat P[i] which means by completeness

∀[i:N] ⊨
N

 P[i]. Therefore ⊨
N

 ∀[i:N] P[i] which means by completeness

⊢
Nat ∀[i:N] P[i]

Theorem (Nat is not compact)32

Definition Total:Nat
 [N]→N

 where Total[f] ≡ ∀[i:N] ∃[j:N] f∎[i]=j

Theorem The theory Nat proves that it is formally consistent:33

 ⊢
Nat Consistent[Nat]

Proof: Suppose to derive an inconsistency that Consistent[Nat] . By the

definition of formal inconsistency for Nat , there is some proposition

Ψ0:Nat such that ⊢
Nat

 (Ψ0Ψ0) which can be used to infer in Nat

that

Ψ0Ψ0. The above contradiction completes the proof.

12

Uneven Progress

“All truth passes through three stages. First, it is ridiculed. Second, it is

violently opposed. Third, it is accepted as being self-evident.”

Arthur Schopenhauer [1818]

“Faced with the choice between changing one’s mind and proving that

there is no need to do so, almost everyone gets busy on the proof.”

John Kenneth Galbraith [1971 pg. 50]

“Max Planck, surveying his own career in his Scientific Autobiography

[Planck 1949], sadly remarked that ‘a new scientific truth does not

triumph by convincing its opponents and making them see the light, but

rather because its opponents eventually die, and a new generation grows

up that is familiar with it.’ ” [Kuhn 1962]

The inherently social nature of the processes by which principles and propositions

in logic are produced, disseminated, and established is illustrated by the following

issues with examples:

 The formal presentation of a demonstration (proof) has not led

automatically to consensus. Formal presentation in print and at several

different professional meetings of the extraordinarily simple proof in this

paper have not lead automatically to consensus about the theorem that

“Mathematics proves that it is formally consistent”. New results can sound

crazy to those steeped in conventional thinking. Paradigm shifts often

happen because conventional thought is making assumptions taken as

dogma. As computer science continues to advance, such assumptions can

get in the way and have to be discarded.

 There has been an absence of universally recognized central logical

principles. Disputes over the validity of the Principle of Excluded Middle

led to the development of Intuitionistic Logic.

 There are many ways of doing logic. One view of logic is that it is about

truth; another view is that it is about argumentation (i.e. proofs).34

 Argumentation and propositions have be variously (re-)connected and

both have been re-used. Church's paradox [Church 1934] is that assuming

theorems of mathematics are computationally enumerable leads to

contradiction. In this article, Church’s Paradox is transformed into the

fundamental principle that “Mathematics is Open” (i.e. it is a theorem of

13

mathematics that the proofs of mathematics are not computationally

enumerable). See discussion in this article.

 New technological developments have cast doubts on traditional logical

principles. The pervasive inconsistency of modern large-scale information

systems has cast doubt on some logical principles, e.g., Excluded Middle.35

That there are proofs that cannot be expressed through text alone, overturns a

long-held philosophical dogma about mathematical theories, i.e., that all

theorems of a theory can be computationally generated by starting with

axioms and mechanically applying rules of inference.

 It has been easier to prove meta theorems for 1st order logic. Since

theoreticians found it difficult to prove anything significant about practical

mathematical theories, they cut them down to unrealistic 1st order theories

where results could be proved (e.g. compactness) that did not hold for

practical mathematical theories. In the famous words of Upton Sinclair:

“It is difficult to get a man to understand something,

when his salary depends on his not understanding it.”

Some theoreticians have ridiculed dissenting views and attempted to limit

their distribution by political means.

 Political actions have been taken against views differing from the

establishment theoreticians. According to [Kline 1990, p. 32], Hippasus was

literally thrown overboard by his fellow Pythagoreans “…for having produced

an element in the universe which denied the…doctrine that all phenomena in

the universe can be reduced to whole numbers and their ratios.” Fearing that

he was dying and the influence that Brouwer might have after his death,

Hilbert fired36 Brouwer as an associate editor of Mathematische Annalen

because of “incompatibility of our views on fundamental matters”37 e.g.,

Hilbert ridiculed Brouwer for challenging the validity of the Principle of

Excluded Middle. [Gödel 1931] results were for Principia Mathematica as the

foundation for the mathematics of its time including the categorical

axiomatization of the natural numbers. In face of Wittgenstein's devastating

criticism, Gödel insinuated38 that he was crazy and retreated to

1stOrderDedekindPeano in an attempt to salvage his results.

14

Summary of Nat

The theory Nat can be summarized as follows:

 Indiscernibility for Nat:

 ∀[i,j:N] i=j ⇔ ∀[P:Nat
N

] P[i]⇔P[j]

 Instance Adequacy of Nat:

 ∀[P:Nat
N

] (∀[i:N] ⊢
Nat

 P[i]) ⇨ ⊢Nat ∀[i:N] P[i]

 Nat is categorical for N

 ⊦
Nat

∀[X::] NatX  ⇔ UniquelyIsomorphic[X, N]

 Nat proves its own formal consistency

 ⊦
Nat

 (∃[:Nat] ⊦
Nat

)

 A proposition is true ⇔ it is provable in Nat

 ∀[:Nat] (⊨
N

 ) ⇔ (⊦
Nat

 )

 Nat is inferentially decidable

 ∀[:Nat] (⊦
Nat

)  (⊦
Nat

)

 ⊦
Nat

 is computationally undecidable

What Turing and Church Left Out

Message passing between Turing Machines (TM) [Turing 1936] was crucially

omitted thereby crippling them as a foundation for the Internet of Things (IoT).

Actors [Hewitt, et. al 1973] remedied the omission to provide scalable computation.

The lambda calculus [Church 1932] (developed before TM) also crucially omitted

lateral message passing with the consequence that an Actor message passing

machine can be millions of times faster than any corresponding parallel

nondeterministic lambda expression. Since the time of this early work, message

passing has grown to be one of the most important paradigms in computing [Hewitt

and Woods 2015; Milner 1993; Hoare 2016]. Of course, Church and Turing made

huge pioneering contributions, e.g., lambda expressions play an important role in

programming languages and TM inspired development of the stored program

sequential computer.

15

Actor message passing machines can perform computations that a

nondeterministic TM cannot perform because it was modeled on an isolated

human given enough time and writing material. Below is an example of a very

simple computation that cannot be performed by a nondeterministic TM:

There is an always-halting message passing machine (technically called an

Actor machine) that when sent a start message can compute an integer of

unbounded size. This is accomplished using variables count initially 0 and

continue initially True. The computation begins by concurrently sending the

Actor machine both a stop message and a go message such that:

 When a go message is received:

o If continue is True, increment count by 1, send this Actor machine a go

message in a hole of the region of mutual exclusion, and return Void.

o If continue is False, return Void.

 When a stop message is received, return count and set continue to False

for the next message received.

The above Actor machine will eventually receive the stop message and

Output[n] will hold for some integer n meaning that the stop message returned

n.

In the figure below for the Actor machine, yellow is used for the Actor’s region

of mutual exclusion with a hole in grey to allow other messages to be processed

and a dotted path with green head is conditional on the expression at the head.

16

Theorem. There is no nondeterministic Turing machine that implements the above

computation.

 Proof [Plotkin 1976]:

“Now the set of initial segments of execution sequences of a given

nondeterministic program P, starting from a given state, will form a

tree. The branching points will correspond to the choice points in the

program. Since there are always only finitely many alternatives at each

choice point, the branching factor of the tree is always finite. That is,

the tree is finitary. Now König's lemma says that if every branch of a

finitary tree is finite, then so is the tree itself. In the present case this

means that if every execution sequence of P terminates, then there are

only finitely many execution sequences. So if an output set of P is

infinite, it must contain a nonterminating computation.”

Theorem. It is well known that there is no 1st order theory for the above Actor

machine.

Proof. Every 1st order theory is compact meaning that every inconsistent

set of propositions has a finite inconsistent subset. Consequently, to

show that there is no 1st order theory, it is sufficient to show that

there is an inconsistent set of propositions such that every finite

subset is consistent. The set of propositions NoOutput defined to

be {Output[i] | i:N} is inconsistent meaning ⊢NoOutput
(because ⊢∃[i:N] Output[i], i.e., the Actor machine always outputs

an integer) but every finite subset S of NoOutput is consistent
meaning ⊬S (because by finiteness of S, there is an upper bound

b:N such that S is a subset of {Output[i] | i<b} but

⊬{Output[i] | i<b} and therefore ⊬S, i.e., the Actor

machine output might be larger than b).

Message passing has fundamentally transformed the foundations of computation

since the initial conceptions of Turing and Church. Although 1st order sentences

can be useful (e.g. in SAT solvers), message passing illustrates why 1st order

logic cannot be the foundation for theories in Computer Science.

17

Categorical Axiomatization of Actors

Let x[e] be the behavior of Actor x at local event e, Com

39 be the type for a

communication, and Behavior

40
 be the type for a procedure that maps a

communication received to an outcome that has a finite set of created Actors, a

finite set of sent communications, and a behavior for the next communication

received. The mathematical theory Act categorically axiomatises Actors using

the following axioms where ↷41 is transitive and irreflexive:

 Primitive Actors
o ∀[i:N] i:Actor // natural numbers are Actors
o ∀[x1,x2:Actor] [x1, x2]:Actor // a 2-tuple of Actors is an Actor

 An Actor’s event ordering
o ∀[x:Actor, c:Com] Initialx↷Receivedx[c]↷Afterx[c]42
o ∀[x:Actor, c1,c2:Com] c1≠c2 ⇒ Receivedx[c1]↷Receivedx[c2]
 ⋁ Receivedx[c2]↷Receivedx[c1]43
o ∀[x:Actor, c1:Com] ∄[c2:Com]

 Receivedx[c1]↷Receivedx[c2]↷Afterx[c1]44
 An Actor’s behavior change
o ∀[x:Actor, c1:Com] (∄[c2:Com] Receivedx[c2]↷Receivedx[c1])
 ⇒ x[Receivedx[c1]]=x[Initialx]45
o ∀[x:Actor, c:Com] x[Afterx[c]]=(x[Beforex[c]])[c]46
o ∀[x:Actor, c:Com]
 Let processing = Info[Beforex[c]]⊔Info[Receivedx[c]]⊔Info[Createdx[c]]47
 in Info[Afterx[c]]⊑processing48 ⋀ Info[Sentx[c]]⊑processing49

 Discreteness of Actors event ordering50
 ∀[e1, e2:Event] Finite[{e:Event | e1↷e↷e2]}]51

 Actor Induction

 ∀[x:Actor, P:Act
Behavior]

 (P[x[Initialx]] ∀[c:Com] P[x[Receivedx[c]]]⇨P[x[Afterx[c]]])

 ⇨ ∀[c:Com] P[x[Receivedx[c]]]  P[x[Afterx[c]]]52

 ⇨ ∀[c:Com] P[x[Receivedx[c]]]  P[x[Afterx[c]]]53

Note that the above axioms do not require that every communication sent
must be received. However, ActorScript provides that every request will
either throw a TooLong exception or respond with the response sent to its

customer.

18

Theorem. Computational Adequacy of Actors.

If for each i:N, Fi is a nondeterministic λ expression such that

∀[i:N] Fi⊑Fi+1 ⇨(limiti:N Fi):Actor

Theorem. Categoricity of Act
If X be a type satisfying the axioms for Act , then there is a unique isomorphism
between X and Actor.

Theorem: Inferential completeness of the theory Act

 ∀[:Act] (⊨
Actor

 ) ⇒ (⊢
Act
)

Corollary. Equivalence of satisfiability and provability in Act , i.e.,

 ∀[:Act] (⊨
Actor

 ) ⇔ (⊢
Act

)

Theorem. Inferential Decidability of Act , i.e.,

 ∀[:Act] (⊢
Act

)  (⊢
Act

 )

Proof. Follows immediately from (⊨
Actor

 ) ⇔ (⊢
Act
)

Mathematics self proves its own formal consistency (contra [Gödel 1931])

The following are fundamental to Mathematics54:

 Derivation by Contradiction, i.e. ├ (¬Φ⇒(Θ¬Θ)) ⇒ Φ, which says that

a proposition can be proved showing that its negation implies a

contradiction.

 A theorem can be used in a proof 55, i.e. ├ ((├ Φ)⇒Φ)

19

Theorem: Mathematics self proves its own formal consistency56, i.e.,

├Consistent
Proof. Suppose to obtain a contradiction, that mathematics is formally

inconsistent, i.e., ¬Consistent. By definition of formal consistency, there is

some proposition Ψ0 such that├ (Ψ0 ¬Ψ0) which by the Theorem Use

means Ψ0¬Ψ0 , which is a contradiction. Thus, ├ Consistent by Derivation

by Contradiction.

Please note the following points:

 The above argument mathematically proves that Mathematics is formally

consistent and that it is not a premise of the theorem that Mathematics

is formally consistent.
 Mathematics was designed for consistent theories and consequently

Mathematics can be used to prove its own formal consistency regardless

of other axioms.57

 [Gödel 1931] used formal consistency as the basis of his results. The

above theorem does not prove that Mathematics is operationally

consistent, i.e., that no contradiction can be derived using the stated

axioms and rules.

The above derivation means that “Mathematics is formally consistent” is a

theorem in Classical Direct Logic.

The above self-proof of formal consistency shows that the current common

understanding that [Gödel 1931] proved “Mathematics cannot prove its own

formal consistency, if it is formally consistent” is inaccurate.58

1)Consistent // hypothesis to derive a contradiction just in this subargument

├ Consistent // axiom of Proof by Contradiction using 1) and 3)

2) ├(Ψ0Ψ0) // definition of inconsistency using 1)

3) Ψ0Ψ0 // axiom of Soundness using 2)

 Natural Deduction Proof of Formal Consistency of Mathematics

20

Mathematics Self Proves that it is Open.

Mathematics proves that it is open in the sense that it can prove that its theorems

cannot be computationally enumerated by a provably total procedure:

 Theorem ⊢Mathematics is Open, i.e.,

 ⊢TheoremsEnumerableByProvableTotalProcedure
Proof.59

Suppose to obtain a contradiction that

 TheoremsEnumerableByProvableTotalProcedure
Then by the definition of

TheoremsEnumerableByProvableTotalProcedure
Consequently,

 ⊢TheoremsEnumerator:[N]→1 Proposition

such that

 ∀[p:Proposition] (⊢p) ⇒ ∃[i:N] TheoremsEnumerator∎[i]=p

A subset of the theorems enumerated by TheoremsEnumerator are those

stating that certain real numbers are provably computable. Consequently,

there is a provably deterministic total procedure

ProvablyComputableR
[0,1]

Enumerator:([N]→1ProvablyComputableR
[0,1]

)

which enumerates provably computable real numbers:
 Total[ProvablyComputableR

[0,1]
Enumerator]

 ∀[i:N] (ProvablyComputableR
[0,1]

Enumerator∎[i]]):ProvablyComputableR
[0,1]

 ∀[r:ProvablyComputableR
[0,1]

]

 ∃[i:N] ProvablyComputableR
[0,1]

Enumerator∎[i]=r

ProvablyTotalEnumerator can be used to implement the provably

deterministic total procedure

 ⊢Diagonal:([N]→1Boolean) as follows:

 Diagonal∎[i] ≡ 1- (ProvablyComputableR
[0,1]

Enumerator∎[i])∎[i]

Consequently:
 Diagonal:ProvablyComputableR

[0,1]
because it is the

deterministic composition of provably total deterministic
procedures.

 Diagonal:ProvablyComputableR
[0,1]

because Diagonal differs

from every provably computable real number enumerated by

ProvablyComputableR
[0,1]

Enumerator.

The above contradiction completes the proof.

21

Some but not all of the theorems of Mathematics can be computationaly

enumerated.

[Franzén 2004] argued that Mathematics is inexhaustible because of inferential

undecidability of mathematical theories. The above theorem that Mathematics is

open provides another independent argument for the inexhaustibility of

Mathematics.

Conclusion
Strong Types are extremely important in Direct Logic because they block all know

paradoxes.

Information Invariance is a fundamental technical goal of logic consisting of the

following:

1. Soundness of inference: information is not increased by inference

2. Completeness of inference: all information that necessarily holds can be

inferred.

Computer Science needs a rigorous foundation for all of mathematics that enables

computers to carry out all reasoning without human intervention.60 [Russell 1925]

attempted basing foundations entirely on types, but foundered on the issue of

being expressive enough to carry to some common mathematical reasoning.

[Church 1932, 1933] attempted basing foundations entirely on untyped higher-

order functions, but foundered because it was shown to be inconsistent [Kleene

and Rosser 1935]. Presently, Isabelle [Paulson 1989] and Coq [Coquand and Huet

1986] are founded on types and do not allow theories to reason about themselves.

Classical Direct Logic is a foundation for all of mathematical reasoning based on

strong types (to provide grounding for concepts) that allows general inference

about reasoning.

[Gödel 1931] claimed inferential undecidability61 results for mathematics using

the proposition I'mUnprovable In opposition to Wittgenstein's correct argument

his proposition leads to contradictions in mathematics, Gödel claimed that the

results of [Gödel 1931] were for 1stOrderDedekindPeano . However, 1st

order theories are not a suitable foundation for Computer Science for reasons

explained elsewhere in this article.

22

Following [Russell 1925, and Church 1932-1933], Direct Logic was developed

and then investigated propositions with results below.

Formalization of Wittgenstein's proof that Gödel's proposition I'mUnprovable

leads to contradiction in mathematics. So the consistency of mathematics had to

be rescued against Gödel's proposition constructed using what [Carnap 1934] later

called the “Diagonal Lemma” which is equivalent to the Y untyped fixed point

operator on propositions. Use of the Y untyped fixed point operator on

propositions in results of [Curry 1941] and [Löb 1955] also lead to inconsistency

in mathematics. Consequently, mathematics had to be rescued against these uses

of the Y untyped fixed point operator for propositions.

Self-proof of the formal consistency of mathematics. Consequently, mathematics

had to be rescued against the claim [Gödel 1931] that mathematics cannot prove

its own formal consistency. Also, it became an open problem whether

mathematics proves its own formal consistency, which was resolved by the author

discovering an amazing simple proof.62 A solution is to require strongly typed

mathematics to bar use of the Y untyped fixed point operator for propositions.63

However, some theoreticians have very reluctant to accept the solution.

According to [Dawson 2006]:64

o Gödel’s results altered the mathematical landscape, but they did not

“produce a debacle”.

o There is less controversy today over mathematical foundations than there

was before Gödel’s work.

However, [Gödel 1931] has produced a controversy of a very different kind from

the one discussed by Dawson:

 The common understanding that mathematics cannot prove its own

formal consistency65 has been disproved.

 Consequently, [Gödel 1931] has now led to increased controversy

over mathematical foundations.

Intelligent Applications need to use higher order logic because moderately strong

theories of 1st order logic are inconsistent. Categorical higher order theories of

Natural Numbers, Reals, and Actors are inferentially complete and inferentially

decidable.

Although theorems of mathematical theories in higher order logic are not

computationally enumerable, proof checking is computationally decidable. Direct

Logic with strong types categorically axiomatize up to a mathematical theory T

23

for the model M for each of the following models: Natural Numbers, Real

Numbers, Computable Procedures, and Actors as follows:
 Indiscernibility for theory T:

 ∀[x1,x2:M] i=j ⇔ ∀[P:T

M

] P[x1]⇔P[x2]

 Instance Adequacy of T:

 ∀[P:T
M] (∀[x:M] ⊢

T
 P[x]) ⇨ ⊢

T
 ∀[x:M] P[x]

 T is categorical for M:

 ⊦
T

∀[X :Type T ] TX ⇔ UniquelyIsomorphic[X , M]

 T proves its own formal consistency

 ⊦
T

(∃[:T] ⊦
T
)

 A proposition is true if and only if it is provable in T

 ∀[:T] (⊨
M

 ) ⇔ (⊦
T
)

 T is inferentially decidable

 ∀[:T] (⊦
T
)  (⊦

T
)

 ⊦
T
 is computationally undecidable for :T

 ⊦
𝐩

𝑇
 is computationally decidable for p:ProofCheckerT  and :T

The development of Direct Logic has strengthened the position of working

mathematicians as follows:66

 Allowing freedom from the philosophical dogma of the 1st Order Thesis

 Providing usable strong types for all of Mathematics that provides theories

that have categorical models

 Allowing theories to freely reason about theories

 Providing Inconsistency Robust Direct Logic for safely reasoning about

theories of practice that are (of necessity) pervasively inconsistent.

Acknowledgements

Tom Costello, Eric Martin, Per Stenstrom, and Johan van Benthem made very

helpful comments and suggestions. Interactions with John Woods were very

helpful in developing a resolution to Church’s Paradox. Conversations with

Gordon Plotkin were helpful and his suggestions led to the introduction of the

24

fixed point operator in the categorical theory of the lambda calculus. Michael

Beeson suggested a clarification in the argument of Church’s Paradox. Hendrik

Boom provided an excellent critique, which resulted in a fundamental

reorganization. Wilfried Sieg provided information about provability in 1st order

logic. John Woods, John Perry, and two anonymous referees provided excellent

comments and suggestions that materially improved this article. Michael Beeson

pointed out that I needed to use the terminology “proof checker.”

Bibliography
Anthony Anderson and Michael Zelëny (editors). Logic, Meaning and

Computation: Essays in Memory of Alonzo Church Springer. 2002.
Andrea Asperti, Herman Geuvers, Raja Natarajan. Social processes, program

verification and all that “Mathematical Structures in Computer Science”

Cambridge University Press. 2009.
Jeremy Avigad and John Harrison. Formally Verified Mathematics. CACM. April

2014.
Steve Awodey and Erich Reck. Completeness and Categoricity. Parts I and II:

Nineteenth-century Axiomatics to Twentieth-century Metalogic. History and
Philosophy of Logic. Vol. 23. 2002.

Steve Awodey, Álvaro Pelayo, and Michael A. Warren. Voevodsky’s Univalence
Axiom in Homotopy Type Theory Notices of AMS. October 2013.

Jon Barwise. Model-Theoretic Logics: Background and Aims in “Model Theoretic
Logics” Springer-Verlag. 1985.

Francesco Berto. The Gödel Paradox and Wittgenstein’s Reasons Philosophia
Mathematica. February, 2009.

Andrey Bovykin. Brief introduction to unprovability. Logic Colloquium 2006.
Lecture Notes in Logic 2009.

Cesare Burali-Forti. Una questione sui numeri transfiniti Rendiconti del Circolo
Matematico di Palermo. 1897.

John Burgess. Rigor and Structure Oxford University Press. 2015.
Andrea Cantini and Riccardo Bruni. Paradoxes and Contemporary Logic

Stanford Encyclopedia of Philosophy. February 22, 2017.
Georg Cantor. Ueber eine elementare Frage der Mannigfaltigkeitslehre

Jahresbericht der Deutschen Mathematiker-Vereinigung. 1891
Carlo Cellucci “Gödel's Incompleteness Theorem and the Philosophy of Open

Systems” Kurt Gödel: Actes du Colloque, Neuchâtel 13-14 juin 1991, Travaux

de logique N. 7, Centre de Recherches Sémiologiques, University de Neuchâtel.

http://w3.uniroma1.it/cellucci/documents/Goedel.pdf
Gregory Chaitin Interview in Dangerous Knowledge BBC4 documentary. 2007.
Alan Chalmers. “What is this thing called science?” Open University Press. 1999.

http://w3.uniroma1.it/cellucci/documents/Goedel.pdf

25

Haskell Curry. “Some Aspects of the Problem of Mathematical Rigor” Bulletin of

the American Mathematical Society Vol. 4. 1941.
Alonzo Church. The Richard Paradox. Proceedings of American Mathematical

Society. Vol. 41. No. 6. 1934.
Alonzo Church. An unsolvable problem of elementary number theory Bulletin of

the American Mathematical Society 19, May, 1935. American Journal of
Mathematics, 58. 1936,

Alonzo Church: A Formulation of the Simple Theory of Types, Journal of
Symbolic Logic. vol. 5. 1940.

Alonzo Church. Introduction to Mathematical Logic Princeton University Press.
1956.

Will Clinger. Foundations of Actor Semantics MIT Mathematics Doctoral

Dissertation. June 1981.
Thierry Coquand and Gérard Huet: The calculus of constructions. Technical

Report 530, INRIA, Centre de Rocquencourt, 1986.
John Corcoran. Gaps between logical theory and mathematical practice in The

methodological unity of science. 1973.
John Corcoran. Categoricity. History and Philosophy of Logic. Vol. 1. 1980
John Corcoran. Second-order Logic. Logic, Meaning and Computation. Kluwer.

2001.
John Dawson. Shaken Foundations or Groundbreaking Realignment? A

Centennial Assessment of Kurt Gödel's Impact on Logic, Mathematics, and
Computer Science FLOC’06.

Richard Dedekind (1888) “What are and what should the numbers be?”

(Translation in From Kant to Hilbert: A Source Book in the Foundations of

Mathematics. Oxford University Press. 1996) Braunschweig.

Freeman Dyson. Heretical Thoughts about Science and Society Boston

University. November 1, 2005.
Heinz-Dieter Ebbinghaus. Ernst Zermelo: An Approach to His Life and Work

Springer. 2007.
Patrik Eklund, M. Angeles Galan, Robert Helgesson, and Jari Kortelainenc. Fuzzy

Terms Fuzzy Sets and Systems. 256. 2014.

Erwin Engeler. Algebras and Combinators Algebra Universalis. 1981.

Solomon Feferman. “Axioms for determinateness and truth” Review of Symbolic

Logic. 2008.
Mike Genesereth and Eric Kao. The Herbrand Manifesto Thinking Inside the Box.

Rule ML. August 2-5, 2015.
Jean-Yves Girard. Interprétation fonctionnelle et Élimination des coupure de

l'arithmétique d'ordre supérieur 1972

26

Kurt Gödel (1931) “On formally undecidable propositions of Principia

Mathematica” in A Source Book in Mathematical Logic, 1879-1931.

Translated by Jean van Heijenoort. Harvard Univ. Press. 1967.

G.H. Hardy. A Mathematician’s Apology Cambridge University Press, 1992.

Richard Heck. Logicism, Ontology, and the Epistemology of Second-Order Logic

in Being Necessary: Themes of Ontology and Modality from the Work of Bob

Hale. Oxford University Press. 2018.

Carl Hewitt. Planner: A Language for Proving Theorems in Robots IJCAI. 1969.

Carl Hewitt. “Procedural Embedding of Knowledge In Planner” IJCAI 1971.

Carl Hewitt and John Woods assisted by Jane Spurr, editors. Inconsistency

Robustness. College Publications. 2015.

Carl Hewitt. 2015a. Actor Model of Computation for Scalable Robust Information

Systems in “Inconsistency Robustness” College Publications. 2015.

Carl Hewitt. 2015b. ActorScript™ extension of C#®, Java®, Objective C®, C++,

JavaScript®, and SystemVerilog using iAdaptive™ concurrency in

Inconsistency Robustness. College Publications. 2015.

Carl Hewitt. 2015c. Inconsistency Robustness in Logic Programs in

“Inconsistency Robustness” College Publications. 2015.

Carl Hewitt. 2015d. Formalizing common sense reasoning for scalable

inconsistency-robust information coordination using Direct LogicTM

Reasoning and the Actor Model in “Inconsistency Robustness” College

Publications. 2015.

Carl Hewitt. 2015e. Inconsistency Robustness in Logic Programs in

“Inconsistency Robustness” College Publications. 2015.

Carl Hewitt. 2015f. Actors for CyberThings. Erlang Keynote. YouTube. March

23, 2015.

Carl Hewitt. 2016b. Future Cyberdefenses Will Defeat Cyberattacks CACM.

August 2016.

Carl Hewitt 2016c. IsletsTM Protect Sensitive IoT Information: Verifiably ending

use of sensitive IoT information for mass surveillance fosters (international)

commerce SSRN WP 2836282. 2016.

David Hilbert. Die Grundlegung der elementaren Zahlenlehre Mathematische

Annalen. Vol. 104. 1931.

David Hilbert and Paul Bernays. Grundlagen der Mathematik Springer Verlag.

1939.

J. Roger Hindley and Jonathan Seldin. λ-calculus and Combinators: An

Introduction Cambridge University Press. 2008.

Wilfrid Hodges. Mathematical Logic Oxford University Press. 2007.

http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness
http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness
http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness
http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness
http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness
http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness
http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness

27

Stanisław Jaśkowski. “On the Rules of Suppositions in Formal Logic” Studia

Logica 1, 1934. (reprinted in: Polish logic 1920-1939, Oxford University

Press, 1967.

Eric Kao. “Proof by self-refutation and excluded middle lead to explosion” in

“Inconsistency Robustness” College Publications. 2015..

Morris Kline. Mathematical thought from ancient to modern times Oxford

University Press. 1972.
Thomas Kuhn. The Structure of Scientific Revolutions University of Chicago

Press. 1962.
Imre Lakatos. Proofs and Refutations Cambridge University Press. 1976

John Law. After Method: mess in social science research Routledge. 2004.

Per Martin-Löf. An intuitionistic theory of types in Twenty-Five Years of

Constructive Type Theory. Oxford University Press. 1998.

Martin Löb. “Solution of a problem of Leon Henkin.” Journal of Symbolic Logic.

Vol. 20. 1955.

Penelope Maddy. What do we want a foundation to do? Comparing set-theoretic,

category-theoretic, and univalent approaches Reflections on Foundations:

Univalent Foundations, Set Theory and General Thoughts. 2018.
David Malone. Dangerous Knowledge BBC4 documentary. 2007.

http://www.dailymotion.com/playlist/x1cbyd_xSilverPhinx_bbc-dangerous-
knowledge/1

Colin McLarty. What Does it Take to Prove Fermat's Last Theorem?

Grothendieck and the Logic of Number Theory Journal of Symbolic Logic.

September 2010.

John-Jules Meyer. Review of Inconsistency Robustness Amazon. January, 2016.
Ray Monk. Bourgeois, Boshevist or anarchist? The Reception of Wittgenstein’s

Philosophy of Mathematics in Wittgenstein and his interpreters. Blackwell.
2007.

Nick Nielsen Alternative Foundations/philosophical February 28, 2014.
http://www.cs.nyu.edu/pipermail/fom/2014-February/017861.htmlBashar

Francis Pelletier A Brief History of Natural Deduction “History and Philosophy
of Logic” Vol. 20, Issue. 1, 1999.

William Quine. Philosophy of Logic Prentice Hall. 1970.

Bertrand Russell. Letter to Gottlob Frege 1902.

Bertrand Russell. Principles of Mathematics Norton. 1903.

Bertrand Russell. Les paradoxes de la logique Revue de métaphysique et de

morale. 1906.

Bertrand Russell. “Mathematical Logic as Based on the Theory of Types”

American Journal of Mathematics. 30 (3). 1908.
Bertrand Russell and Alfred Whitehead, Principia Mathematica (3 volumes).

Cambridge University Press. 1910-1913.

http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness
http://www.dailymotion.com/playlist/x1cbyd_xSilverPhinx_bbc-dangerous-knowledge/1
http://www.dailymotion.com/playlist/x1cbyd_xSilverPhinx_bbc-dangerous-knowledge/1

28

Arthur Schopenhauer. Die Welt als Wille und Vorstellung 1818. English
translation in The World as Will and Representation Volume I, Falcon’s Wing
Press. 1958.

Natarajan Shankar. Meta-mathematics, Machines, and Gödel’s Proof. Cambridge
University Press. 1994.

Dana Scott. Setoids/Modest Sets/PERs: Adding and Using Types with a Type-free

λ-Calculus Domains XII. August 2015.

Peter Scotch and Ray Jennings. On Detonating in Paraconsistent Logic. Springer

Verlag. 1989.

Stewart Shapiro. Foundations without Foundationalism: A Case for Second-

Order Logic Oxford University Press. 1991.
Stephen Simpson Nonprovability of certain combinatorial properties of finite

trees in Studies in Logic and the Foundations of Mathematics. North-Holland.
1985.

Alfred Tarski Introduction to Logic Oxford University Press. 1940 (and many

subsequent editions).

Michael Thau. The -Rule Studia Logica. Vol. 51, No. 2. 1992.

R. Gregory Taylor. Zermelo’s Cantorian Theory of Systems of Infinitely Long

Propositions Bulletin of Symbolic Logic December, 2002.

Rineke Verbrugge Provability Logic The Stanford Encyclopedia of Philosophy.

2010.

Rene Vestergaard. Structural Induction and the -Calculus RIMS. Kyoto

University. 2005

Ludwig Wittgenstein. 1956. Bemerkungen ¨uber die Grundlagen der

Mathematik/Remarks on the Foundations of Mathematics, Revised Edition

Basil Blackwell. 1978
Hao Wang A Logical Journey, From Gödel to Philosophy MIT Press. 1974.
Eugene Wigner. The unreasonable effectiveness of mathematics in the natural

sciences Communications on Pure and Applied Mathematics. Vol. 13. 1960.
Andrew Wiles. Modular elliptic curves and Fermat's Last Theorem Annals of

Mathematics. 141. 1995.
John Woods. How robust can inconsistency get? IfCoLoG Journal of Logics and

Their Applications. 2014.
John Woods. Inconsistency: Its present impacts and future prospects

Inconsistency Robustness 2015.
Noson Yanofsky. The Outer Limits of Reason MIT Press 2013.
Ernst Zermelo Uber Grenzzahlen und Mengenbereiche: Neue Untersuchungen

Äuber die Grundlagen der Mengenlehre Fundamenta mathematicae. 1930;
English translation by Michael Hallett, “On boundary numbers and domains
of sets: new investigations in the foundations of set theory" From Kant to

29

Hilbert: a Source Book in the Foundations of Mathematics, Oxford University
Press, 1996.

Ernst Zermelo. Uber matematische System und die Logic des Unendichen
Forschungen and Fortschritte. Vol. 8. 1932.

Ernst Zermelo. Collected Works/Gesammelte Werke: Volume I/Band I - Set
Theory, Miscellanea/Mengenlehre, Varia (Schriften der Mathematisch-
naturwissenschaftlichen Klasse) (English and German Edition) Springer.
2010.

Yoni Zohar. Reasoning Inside The Box: Gentzen Calculi for Herbrand Logics
Stanford Logic Group. June 7, 2017.

30

Appendix 1. Historical Background
“The powerful (try to) insist that their statements are literal depictions of a single

reality. ‘It really is that way’, they tell us. ‘There is no alternative.’ But those on

the receiving end of such homilies learn to read them allegorically, these are

techniques used by subordinates to read through the words of the powerful to the

concealed realities that have produced them.” [Law 2004]

Gödel was certain

“ ‛Certainty’ is far from being a sign of success; it is only a symptom of lack of

imagination and conceptual poverty. It produces smug satisfaction and prevents

the growth of knowledge.” [Lakatos 1976]

Paul Cohen [2006] wrote as follows of his interaction with Gödel:67

“His [Gödel's] main interest seemed to lie in discussing

the ‛truth’ or ‛falsity’ of these [mathematical] questions,

not merely in their undecidability. He struck me as

having an almost unshakable belief in this “realist”

position, which I found difficult to share. His ideas were

grounded in a deep philosophical belief as to what the

human mind could achieve. I greatly admired this faith

in the power and beauty of Western Culture, as he put it,

and would have liked to understand more deeply what

were the sources of his strongly held beliefs. Through

our discussions, I came closer to his point of view,

although I never shared completely his ‛realist’ point of

view, that all questions of Set Theory were in the final analysis,

either true or false.”

According to John von Neumann, Gödel was “the

greatest logician since Aristotle.”68 However, [von

Neumann 1961] expressed a very different mathematical

philosophy than Gödel:

“It is not necessarily true that the mathematical

method is something absolute, which was revealed

from on high, or which somehow, after we got hold

of it, was evidently right and has stayed evidently

right ever since.”

Kurt Gödel

John von Neumann

http://knol.google.com/k/-/-/pcxtp4rx7g1t/mdzs7d/goedel.png

31

[Gödel 1931] based incompleteness results on the thesis that mathematics

necessarily has the proposition I'mUnprovable.

Wittgenstein’s Paradox

Wittgenstein correctly noted that Gödel's I'mUnprovable (such that

I'mUnprovable ⇔⊢
Russell

 I'mUnprovable) infers inconsistency in

mathematics:69

“Let us suppose [Gödel's writings are correct and therefore] I prove70

the improvability (in Russell’s system) of [Gödel's I'mUnprovable] P; [i.e.,

⊢
Russell

 ⊬P where P⇔⊬P] then by this proof I have proved P [i.e.,

⊢
Russell

 P]. Now if this proof were one in Russell’s system [i.e.,

⊢
Russell

 ⊢
Russell

 P] — I should in this case have proved at once that it

belonged [i.e., ⊢
Russell

 P] and did not belong [i.e., ⊢
Russell

 P because

P⇔⊢
Russell

 P] to Russell’s system.

 But there is a contradiction here! [i.e., ⊢
Russell

 P and ⊢
Russell

 P]

[This] is what comes of making up such sentences.” [emphasis added]

Wittgenstein’s proof is valid in Nat, which formalizes standard mathematical

practice.

According to [Monk 2007]:

“Wittgenstein hoped that his work on

mathematics would have a cultural impact,

that it would threaten the attitudes that

prevail in logic, mathematics and the

philosophies of them. On this measure it

has been a spectacular failure.”

Unfortunately, recognition of the worth of

Wittgenstein’s work on mathematics came long

after his death. For decades, many theoreticians

mistakenly believed that they had been

completely victorious over Wittgenstein.

Ludwig Wittgenstein

32

Chaitin [2007] presented the following analysis:

Gödel’s proof of inferential undecidability [incompleteness] was too

superficial. It didn't get at the real heart of what was going on. It was more

tantalizing than anything else. It was not a good reason for something so

devastating and fundamental. It was too clever by half. It was too superficial.

[It was based on the clever construction] I'm unprovable. So what? This doesn't

give any insight how serious the problem is.

Gödel's alleged Mathematical proposition I’mUnprovable comes from a

nonexistent fixed point (sometimes called the Diagonal Lemma) that doesn't exist

because of types. His results were for Principia Mathematica, which was intended

as the foundation of all of Mathematics. Unfortunately, Principia Mathematica

had some defects in its types that have been corrected in Direct Logic.

Church/Turing correctly proved inferential incompleteness (sometimes called the

“First Incompleteness Theorem”) without using a nonexistent “self-referential”

proposition as follows:

First they proved the computation undecidability of Halt[p,x] where Halt[p,x]
means that the procedure p halts on input x. By formalizing computation, it

follows that Halt[p,x]⇔⊢Halt[p,x]. Consequently it is computational
undecidable whether a proposition is a theorem.

The Church/Turing theorem and its proof are very robust. Afterward Gödel

claimed more generality and that his results applied to all consistent mathematical

systems that incorporate the Dedekind/Peano axioms for the natural numbers.

However, when he learned of Wittgenstein's devastating proof of inconsistency,71

Gödel retreated to claiming that his results were only for

1stOrderDedekindPeano :

 “Wittgenstein did not understand it [Gödel's 1931 article on Principia

Mathematica] (or pretended not to understand it). He interpreted it as a kind

of logical paradox, while in fact it is just the opposite, namely a mathematical

theorem within an absolutely uncontroversial part of mathematics (finitary

number theory or combinatorics).”72

However, Gödel engaged in historical revisionism because Wittgenstein’s

argument that Gödel's I’mUnprovable leads to inconsistency was for the higher

order theory in Russell’s system, which Gödel used in his famous 1931 article that

Wittgenstein criticized. After Wittgenstein’s criticism, Gödel retreatedi to the

position that his 1931 results were only for 1stOrderDedekindPeano ,

i without mentioning that he was retreating

33

which Gödel called “finitary number theory or combinatorics.” The upshot is that

Gödel never acknowledged that his “self-referential” propositioni implies

inconsistency in mathematics.

Retaining Gödel’s results for I’mUnprovable requires a very narrow and

constricted approach of reducing propositions to strings for sentences and then to

Gödel numbers axiomatized in 1stOrderDedekindPeano to avoid

Wittgenstein's devastating criticism. This narrow constricted view is intolerable

for computer science, which needs to reason about propositions in a more natural

and flexible way using Strong Types.

Let GödelNumber∎[s] being the Gödel number of

s:String 1stOrderDedekindPeano . The Diagonal Lemma is:

If F:[N]→String 1stOrderDedekindPeano , then

there is a S:String 1stOrderDedekindPeano  [called a “fixed point”]

such that the following is provable in 1stOrderDedekindPeano :

 S ⇔ F∎[GödelNumber∎[S]]

Define Eubulides∎[n] to be the string formed by prefixing the character “” to the

string with Gödel number n. By the above Diagonal Lemma, there is a fixed point

I’mFalse:String 1stOrderDedekindPeano  such that the following is

provable in 1stOrderDedekindPeano :73
 I’mFalse ⇔ Eubulides∎[GödelNumber∎[I’mFalse]]

 ⇔  I’mFalse

However, Church74, Turing, and many other logicians up to the present day

continued to endorse Gödel’s argument based on the proposition

I'mUnprovable.75

Although Gödel’s incompleteness results for I'mUnprovable have fundamental

problems, the work was extremely significant in further the development of the

history of metamathematics. For example, the paradoxes of Curry and Löb were

developed following along Gödel’s work.

A key difference is that Direct Logic works directly with propositions as opposed

to the work of Gödel, Curry, and Löb, which was based on 1st order theories with

propositions from sentence strings coded as integers.

i constructed using fixed points exploiting an untyped notation for mathematics

34

Attempt to Axiomatize N with Computationally Enumerable Theorems

Nat1
described below illustrates failure in attempting to axiomatize the Natural

Numbers using a theory whose theorems are computationally enumerable. The

primitive of Nat
1
are as follows:76

• 0:N

• +1:NN

 // add 1

• :𝑁𝑎𝑡1
𝑁𝑎𝑡1 // negation

• ⋀:𝑁𝑎𝑡1
𝑁𝑎𝑡1

2

 // conjunction

• ∃:Nat1
[Type Nat1, Nat1

Type Nat1]
 // existential quantifier77

 ⫦:Nat1
Nat1 // provability in Nat1

Nat1 has the following axiom schemas where s is abstraction of string s
as a proposition:

 Induction Schema

∀[P:String Nat1
N

]

 ⫦ (P [0]  ∀[i:N] P [i] ⇨ P [i+1]) ⇨ ∀[i:N] P [i]

 Instance Adequacy Schema [Hilbert 1931, Thau 1992]

∀[P:String Nat1
N

] ⫦ (∀[i:N] ⫦P [i]) ⇨ ∀[i:N] P [i]

Theorem: Axioms and theorems of Nat1
are computationally enumerable

Theorem: ∀[:Nat1] (⫦) ⇔(⊢Nat1
)

The following defines the Nat1 provable computable real numbers between

0 and 1:

Definition

 Nat
1
R

[0,1]

]

 ≡ R
[0,1]

]

∋λ[x] ⫦x:Total [N]→1 Boolean

]



35

Nat1
goes too far

Theorems of Nat1
are computationally enumerable by

Nat1TheoremsEnumerator where

 ⊦Nat1
 Nat1TheoremsEnumerator:Total [N]→1 Theorem Nat1

]



such that

⊦Nat1
∀[:Theorem Nat1]] ∃[i:N] Nat

1
TheoremsEnumerator∎[i]=

Consequently, there is a Nat1 provably total procedure
Nat1ProvablyComputableR

[0,1]
Enumerator such that

 ∀[r:Nat
1
R

[0,1]
] ⇒ ∃[i:N] Nat1ProvablyComputableR

[0,1]
Enumerator∎[i]=r

also

 ∀[i:N] ⫦ Nat1ProvablyComputableR
[0,1]

Enumerator∎[i]:Nat
1
R

[0,1]

Therefore by Nat1 Instance Adequacy,

 ⊦
Nat1

∀[i:N] Nat1ProvablyComputableR
[0,1]

Enumerator∎[i]:Nat
1
R

[0,1]

However, this means that

⊦Nat1
 Nat1ProvablyComputableR[0,1]Enumerator:Total [N]→1 Nat

1
R

[0,1]


Nat
1
Total F

]

 ≡ F∋λ[p] ⫦ p:Total F
]



Nat
1
Enumerable ≡

 Nat
1
Total [N]→1 Nat

1
R

[0,1]
∋λ[f] ∀[r:Nat

1
R

[0,1]
] ⇒ ∃[i:N] f∎[i]=r

36

Theorem: The 1st order theory Nat1 is inconsistent78

1. Nat
1
R

[0,1]
:Nat

1
Enumerable

2. Nat
1
R

[0,1]
:Nat

1
Enumerable

 Proof:

Suppose to obtain a contradiction that

 Nat
1
R

[0,1]
:Nat

1
Enumerable

 Define the following procedure:

 Diagonal∎[i] ≡ 1- (Nat1ProvablyComputableR
[0,1]

Enumerator∎[i])∎[i]

Consequently:

 ⊦Nat1
Diagonal:Nat

1
R

[0,1]
because Diagonal is the deterministic

composition of Nat1 provably total deterministic procedures.

 ⊦Nat1
Diagonal:Nat

1
R

[0,1]
because Diagonal differs from every

Nat
1
R

[0,1]
 enumerated by Nat1ProvablyComputableR

[0,1]
Enumerator.

The above contradiction completes the proof.

Nat1 Provably Computable Reals

Nat1ProvablyComputableR[0,1]Enumerator∎[i]

N

Diagonal∎[i:N]:Boolean ≡ 1-(Nat1ProvablyComputableR[0,1]Enumerator∎[i])∎[i]

i

1 - (Nat1ProvablyComputableR[0,1]Enumerator∎[i])∎[i]

37

[Church 1934] pointed out that there is no obvious way to remove the
inconsistency, which means that that if Nat

1
is taken to be valid mathematical

theory of truths of the natural numbers then,
“Indeed, if there is no formalization of logic as a whole, then there is no exact
description of what logic is, for it in the very nature of an exact description
that it implies a formalization. And if there no exact description of logic, then
there is no sound basis for supposing that there is such a thing as logic.”

After [Church 1934], logicians faced the following dilemma:

 1st order theories cannot be powerful enough to

be a foundation for Intelligent Applications lest

they fall into inconsistency because of Church’s

Paradox.

 2nd order theories contravene the philosophical

doctrine that theorems must be computationally

enumerable.

 Alonzo Church

38

There Is No 1st Order Theory That Axiomatizes Actors

By contrast with the nondeterministic lambda calculus and pure Logic Programs,

there is an always-halting Actor Unbounded that when sent a start[] message can

compute an integer of unbounded size. This is accomplished by creating a counter
with the following variables:

 count initially 0

 continue initially True

and concurrently sending it both a stop[] message and a go[] message such that:

 When a go[] message is received:

1. if continue is True, increment count by 1 and return the result of

sending this counter a go[] message.

2. if continue is False, return Void

 When a stop[] message is received, return count and set continue to False

for the next message received.

By the Actor Model of Computation, the above Actor will eventually receive the

stop[] message and return an unbounded number.

An Actor that

Provably Responds

∎∎go[]

continue=True
 also

 count := count + 1

continue := False

Integer

continue=False

initially: continue=True, count=0

count

go[]

stop[]

39

The following hold:

• ∀[t:N] ⊬
Act

 ResponseBefore[t] // unbounded response time

• ∀[t1,t2:N] t1<t2⋀ResponseBefore[t1] ⇨ ResponseBefore[t2]

• ⊨
Actor ∃[t:N] ResponseBefore[t]

Theorem: There is no 1st order theory that axiomatises Actor.
Proof: Every 1st order theory is compact meaning that every inconsistent set of

sentences has a finite inconsistent subset.

Define  ≡{ResponseBefore[t] | i:N}.  is inconsistent because

⊨
Actor ∃[t:N] ResponseBefore[t]. However, every finite subset of  is

consistent, which contradicts compactness.

P
o

w
e
r

Strong

Weak

Narrow Wide

Inconsistent

1
st
 Order Theories

40

Discussion
Church’s Paradox and other paradoxes raise a number of issues that can be

addressed by requiring mathematics to be strongly typed and using higher order

logic as follows:

1. Requiring Mathematics to be strongly typed using so that

 Mathematics self proves that it is “open” in the sense that theorems are

not computationally enumerable.79

 Mathematics self proves that it is formally consistent.80

 Strong mathematical theories for Natural Numbers, Ordinals, Set

Theory, the Lambda Calculus, Actors, etc. are inferentially decidable,

meaning that every true proposition is provable and every proposition

is either provable or disprovable. Furthermore, theorems of these

theories are not enumerable by a provably total procedure.

2. It was initially thought that mathematics could be based just on character

strings. Then diagonalization was discovered and things haven’t been the

same since. The string for the general 1st order non-categorical induction

schema is as follows for each P:String Proposition 1N

:

 (P [0]  ∀[i:N] P [i] ⇨ P [i+1]) ⇨ ∀[i:N] P [i]
which has countably many 1st order propositions as instances that are

abstracted from the countably many character strings of type

String Proposition 1 and which differs fundamentally from the

character string for the more general 2nd order categorical induction axiom,

which is as follows:81

 ∀[P:Proposition 1N] (P[0]]  ∀[i:N] P[i]⇨P[i+1]) ⇨ ∀[i:N] P[i]

Although the theory Nat has only finitely many

axioms, the above string abstracted as a proposition

has uncountably many 1st order propositions as

instances.82 In this way, Nat differs fundamentally

from a 1st order theory because, being uncountable,

not all instances of the Nat induction axiom can be

obtained by abstraction from character strings. Proofs

abstracted from character strings for the axioms of the

natural numbers

can be computationally enumerated

and are valid proofs in Nat, but this does not

enumerate all of the proofs of Nat ! What is to be

made of the uncountable number of theorems of Nat whose proofs cannot

be written down in text?

Ernst Zermelo

41

Zermelo suggested that the [Godel 1931] incompleteness results relied on an

overly restrictive conception of quantification and proof. He took it as crucial

that true proposition of set theory must be “provable” and that the validity of

a proof can reasonably be decided. To this end, he developed an infinitary

logic but did not carry it very far. In 1935 he was dismissed for failing to

salute Hitler and his proposal was not pursued by anyone else until, perhaps,

the revival of infinitary languages in the 1950s. [Shapiro 1991]

Additional limitations of 1st order theories

“[F]rom the 1950s onward, classical mathematics had just one deductive

system, namely, first-order Zermelo-Fraenkel Set Theory with [the Axiom

of] Choice ...”

[Hodges 2007]

 “By this it appears how necessary it is for nay man that aspires to true

knowledge to examine the definitions of former authors; and either to

correct them, where they are negligently set down, or to make them himself.

For the errors of definitions multiply themselves, according as the

reckoning proceeds, and lead men into absurdities, which at last they see,

but cannot avoid, without reckoning anew from the beginning; in which lies

the foundation of their errors...”

[Hobbes Leviathan, Chapter 4]83

A 1st order theory is very weak. For example, a 1st order theory is incapable of

characterizing even the natural numbers, i.e., there are infinite integers in models

of every 1st order axiomatization of the natural numbers. Furthermore, there are

infinitesimal real numbers in models of every 1st order axiomatization of the real

numbers.84 Of course, infinite integers and infinitesimal reals are monsters that

must be banned from the mathematical foundations of Computer Science.

However, some theoreticians have found 1st order theory to be useful for their

careers because it is weak enough that they can prove theorems about 1st order

axiomatizations whereas they cannot prove such theorems about stronger practical

higher order systems, e.g., Classical Direct Logic.85

Zermelo considered the 1st Order Thesis to be a mathematical “hoax” because it

necessarily allowed unintended models of axioms.86

42

[Barwise 1985] critiqued the 1st Order Thesis that mathematical foundations

should be restricted to 1st order theories as follows:

The reasons for the widespread, often uncritical

acceptance of the first-order thesis are numerous. The

first-order thesis ... confuses the subject matter of logic

with one of its tools. First-order language is just an

artificial language structured to help investigate logic,

much as a telescope is a tool constructed to help study

heavenly bodies. From the perspective of the

mathematics in the street, the first-order thesis is like

the claim that astronomy is the study of the telescope.87

Computer Science is making increasing use of Model

Analysis88 in the sense of analyzing relationships among the following:

 concurrent programs and their Actor Model denotations

 domain axiom systems and computations on these domains

In Computer Science, it is important that the natural numbers be axiomatized in a

way that does not allow non-numbers (e.g. infinite ones) in models of the axioms.

Theorem: If N is a model of a 1st order axiomatization T, then T has a model

M with an infinite integer.

Proof: The model M is constructed as an extension of N by adding a new

element ∞ with the following atomic relationships:

 {∞<∞}  { m<∞ | m:N}

 It can be shown that M is a model of T with an infinite integer ∞.

The infinite integer ∞ is a monster that must be banned from the

mathematical foundations of Computer Science.

Theorem: If R is a model of a 1st order axiomatization T, then T has a model

M with an infinitesimal.

Proof: The model M is constructed as an extension of R by adding a new

element ∞ with the following atomic relationships:

 {∞<∞}  {m<∞ | m:N}

Defining ε to be
1

∞
 , it follows that ∀[r:R] 0<ε<

1

𝑟
. It can be shown that M

is a model of T with an infinitesimal ε, which is a monster that must be

banned from the mathematical foundations of Computer Science.

Jon Barwise

43

On the other hand, since it is not limited to 1st order propositions, Classical Direct

Logic characterizes structures such as natural numbers and real numbers up to

isomorphism.89

There are many theorems of Nat that cannot be proved from 1st order axioms

[Goodstein 1944, Simpson 1985, Wiles 1995, Bovykin 2009, McLarty 2010].

Unbounded Nondeterminism

Of greater practical import, 1st order theory is not a suitable foundation for the

Internet of Things in which specifications require a device respond to a request.90

The specification that a computer responds can be formalized as follows:

∃[i:N] ResponseBefore[i]. However, the specification cannot be proved in a 1st

order theory.

Proof: In order to obtain a contradiction, suppose that it is possible to prove

in a 1st order theory ∃[i:N] ResponseBefore[i]. Therefore the infinite set

of propositions {ResponseBefore[i] | i:N} is inconsistent. By the

compactness theorem of 1st order theory, it follows that there is finite

subset of the set of propositions that is inconsistent. But this is a

contradiction, because all the finite subsets are consistent since the

amount of time before a server responds is unbounded, that is,

∄[i:N] ⊢ResponseBefore[i].

However, the above specification axiom does not compute any actual output!

Instead the above axiom simply asserts the existence of unbounded outputs for

Unbounded∎[].

44

Theorem. The nondeterministic function defined by Unbounded (earlier in this

article) cannot be implemented by a nondeterministic Logic Program91 or a

nondeterministic Turing Machine:

Proof.92

The task of a nondeterministic Logic Program P is to start with

an initial set of axioms and prove Output=n for some numeral n.

Now the set of proofs of P starting from initial axioms will form

a tree. The branching points will correspond to the

nondeterministic choice points in the program and the choices

as to which rules of inference to apply. Since there are always

only finitely many alternatives at each choice point, the

branching factor of the tree is always finite. Now König's lemma

says that if every branch of a finitary tree is finite, then so is the

tree itself. In the present case this means that if every proof of P

proves Output=n for some numeral n, then there are only finitely

many proofs. So if P nondeterministically proves Output=n for

every numeral n, it must contain a nonterminating computation

in which it does not prove Output=n for some numeral n.

The following arguments support unbounded nondeterminism in the Actor model

[Hewitt 1985]:

 There is no bound that can be placed on how long it takes a computational

circuit called an arbiter to settle. Arbiters are used in computers to deal

with the circumstance that computer clocks operate asynchronously with

input from outside, e.g., keyboard input, disk access, network input, etc.

So it could take an unbounded time

for a message sent to a computer to be

received and in the meantime the

computer could traverse an

unbounded number of states.

 Electronic mail enables unbounded

nondeterminism since mail can be

stored on servers indefinitely before

being delivered.

 Communication links to servers on the Internet can be out of service

indefinitely

As a foundation of mathematics for Computer Science, Classical Direct Logic

provides categorical axiomatizations93 of numbers (integer and real), sets, lists,

trees, graphs, etc. which can be used in arbitrary mathematical theories including

1st order theory is not a

suitable mathematical

foundation for Intelligent

Applications for the

Internet of Things.

45

theories for categories, large cardinals, etc. These various theories might have

“monsters” of various kinds. However, these monsters should not imported into

models of computation used in Computer Science.

Computer Science needs stronger systems than provided by 1st order theory in

order to weed out unwanted models. In this regard, Computer Science doesn’t

have a problem computing with “infinite” objects (i.e. Actors) such as π and

uncountable sets such as the set of real numbers SetR. However, the

mathematical foundation of Computer Science is very different from the general

philosophy of mathematics in which the infinite integers and infinitesimal reals

allowed by models of 1st order theories may be of some interest. Of course, it is

always possible to have special theories that are not part of the foundations with

infinite integers, infinitesimal reals, unicorns, etc.94

Of course some problems are theoretically not computable. However, even in

these cases, it is often possible to compute approximations and cases of practical

interest.95

The mathematical foundation of Computer Science is very different from the

general philosophy of mathematics in which infinite integers and infinitesimal

reals may be of some interest. Of course, it is always possible to have special

theories with infinite integers, infinitesimal reals, unicorns, etc.

46

Appendix 2. Appendix 1. More Categorical Mathematical Theories

Theory of Nondeterministic Lambda Calculus (Lam

t ) for the

Nondeterministic Lambda Procedures Λt



 Definition: Functional t
1
,t

2
 ≡ [[t

1
]→t

2
]→([t

1
]→t

2
)

Theory Lam

t 

In addition to Lambda Induction (below), the theory Lam t  for a type t

and t
1
,t

2
:Type Lam

t  has the following axioms: 96

• Base
∀[x:t] x:Λt 

• Composition
∀[x:t

1
, f:([t

1
]→t

2
)] f∎[x]:t

2

∀[x1:t
1
, x2:t

2
] [x1, x2]:[t

1
, t

2
]

∀[x1,x2:Λt ] [x1, x2]:Λt 

• Equality
∀[f1,f2:([t

1
]→t

2
)] f1=f2 ⇔ ∀[x:t

1
] f1∎[x]=f2∎[x]

∀[f:([t
1
]→t

2
)] f = [x:t

1
] f∎[x] 97

• Primitives

∀[x:Λt ] Identityt

∎[x] = x

∀[x1,x2:Λt ] 1stt
1
,t

2
∎[[x1, x2]] = x1

∀[x1,x2:Λt ] 2ndt
1
,t

2
∎[[x1, x2]] = x2

 ∀[F:Functional t
1
, t

2
] Fixt

1
,t

2
∎[F] = F∎[Fixt

1
, t

2
∎[F]] 98

∀[x1,x2:Λt ] Eithert ∎[x1, x2]=x1  Eithert ∎[x1, x2]=x2

Lambda Induction for Lam

t  is as follows:99

∀[P:Lam

t 

Λt ]

 (P[Identityt ] P[1stt
1
, t

2
] P[2ndt

1
, t

2
]

  P[Fixt
1
, t

2
] P[Eithert ]  ∀[x:t] P[x]

  ∀[x1:t1
, x2:t2

] P[x1]P[x2] ⇨ P[[x1, x2]]

  ∀[F:Functional t
1
, t

2
] P[F] ⇨ P[Fixt

1
, t

2
∎[F]]

 ∀[x:t
1
, f:([t

1
]→t

2
)] P[x]P[f] ⇨ P[f∎[x]])

 ⇨ ∀[x:Λt

] P[x]

47

Theorem. Computational Inadequacy of Nondeterministic Lambda Calculus.
The nondeterministic lambda calculus is inadequate to implement all
computable procedures.

Proof. Fi[j:N] ≡ j>i if True then InfiniteLoop

∎[] False then i either Fi[j+1]

For each i:N, Fi is a nondeterministic λ expression but (limiti:N Fi) cannot be
implemented as a nondeterministic λ expression. However (limiti:N Fi):Actor

Convergence: ∀[f:([t
1
]→t

2
),x:t

1
] f∎[x]↓ ⇔ ∃[y:t

2
] f∎[x]=y

Approximation: ∀[f1, f2:([t

1
]→1t2

)] f1≦f2 ⇔ ∀[x:t
1
] f1∎[f3]↓ ⇒ f1∎[x]=f2∎[x]

Bottom: ∀[f:t] (⊥t ∎[f])↓

 Note: ∀[f:([t]→t)] ⊥t ≦f

Monotone:

 F:Monotone t
1
, t

2
 ⇔ F:Functional t

1
, t

2
  ∀[g:([t

1
]→ t

2
)] g≦F∎[g]

Limit Theorem: ∀[F:Monotone t ] F=limit𝑖:𝐍+
Fi

∎[⊥t ]100

Theorem: Some nondeterministic procedures have unbounded nondeterminism101

 ∃[f:([t]→t)] f:Λt 

48

Theorem.102 Lam

t  is categorical with only one model up to a unique

isomorphism.

Proof: Suppose that X satisfies the axioms for Lam

t .

 By lambda induction, the isomorphism I:XΛt is defined as follows:103

 I[Identityt ] ≡ Identity
X
t 

 I[1stt
1
, t

2
] ≡ 1st

X
t

1
, t

2


 I[2ndt
1
, t

2
] ≡ 2nd

X
t

1
, t

2


 I[Fixt
1
, t

2
] ≡ Fix

X
t

1
, t

2


 I[Eithert ] ≡ Either
X
t 

 I[[x1, x2]] ≡ [I[x1], I[x2]]
X

 ∀[x:t
1
, f:([t

1
]→t

2
)] I[f∎[x]] ≡ I[f]∎X

[I[x]]

I is the unique isomorphism:

 I is one to one

 The range of I is X

 I is a homomorphism

 I-1:Λt 
X is a homomorphism

 I is the unique isomorphism: If g:XΛt  is an isomorphism, then g=I

Theorem (Model Soundness of Lam

t ): (⊢

Lam t ) ⇨ ⊨Λt  

Proof: Suppose ⊢
Lam t . The theorem immediately follows because the

axioms for the theory Lam

t  hold in the type Λt .

Theorem (Indiscernibility for Lam

t ):104

 ∀[f,g:Λt ] f=g ⇔ ∀[P:Lam

t 

Λt ] P[f]⇔P[g]

Theorem: Inferential completeness of Lam

t 

 ∀[:Lam

t ] (⊨Λt  ) ⇒ ⊢

Lam t  

Corollary. Equivalence of satisfiability and provability in Lam

t  , i.e.,

 ∀[:Lam

t ] (⊨Λt  ) ⇔ ⊢

Lam t 

49

Theorem. Inferential Decidability of :Lam

t , i.e.,

 ∀[P:Lam

t Λt]

 (⊢
Lam t ∀[f:Λt ] P[f])  (⊢

Lam t  ∃[f:Λt ] P[f])

Weakest Preconditions

 WeakestPrecondition[, f] ≡ λ[i:N] [f∎[i]]

Theorem Weakest Preconditions are monotonic in both arguments, i.e.,105

 ∀[1,2:Lam

t 

N; f:([N]→N)]

 (1⇴2)

 ⇨ (WeakestPrecondition[1, f]⇴WeakestPrecondition[2, f])

 ∀[:Lam

t 

N

; f1,f2:([N]→N)]

 f1⊒f2 ⇨ (WeakestPrecondition[, f1]⇴WeakestPrecondition[, f2])

Theory of Reals (Reals)

Reals is strictly more powerful than the 1st order theory of

RealClosedFields.106

Theorem (Categoricity of Reals):107

If X is a type satisfying the axioms108 for the real numbers Reals, then there is a unique

isomorphism of X with R.

50

Theory of Ordinals (Ord)

A theory of the ordinals can be axiomatized109 using a 2nd order ordinal induction

axiom as follows: For each order:N
+
 and P:Ord

 O

,

 (∀[α:O] ∀[β<α:O] P[β]⇨P[α]) ⇨ ∀[α:O] P[α]

In order to fill out the ordinals, the following limit axioms are included in Ord:

• ∀[α:O, f:O
O

] ⊍α f:O

• ∀[α,β:O; f:O
O

] β<⊍αf ⇔ ∃[δ<α] β≦f[δ]

• ∀[α,β:O; f:OO] (∀[δ<α] f[δ]≦β) ⇨ (⊍αf)≦β

In order to guarantee that there are enough ordinals, the following axioms are also

included in Ord :

• ∀[α:O] ωα:O

• Definition by ordinal induction:

1. ω0 = N

2. ωα+1 = Boolean
{:O | <ωα}

3. ω α = ⊍α (λ[β:O] ω)

Theorem Ordinals have the following properties:

 Ordinals are well-ordered:

Least[{ }] = 0
O

∀[S:Boolean
O] S≠{ } ⇨ Least[S]∈S

∀[S:Boolean
O] S≠{ } ⇨ ∀[α∈S] Least[S]≦α

 Reals can be well-ordered because ω1=R

https://en.wikipedia.org/wiki/%E2%89%90

51

Proof Checkers in Ord
 ∀[1,2:Ord]
 (1⊢

Ord
2) ⇔ ∃[p:ProofCheckerOrd ] 1⊢

p

𝑂𝑟𝑑
 2

Proof checking in Ord is computationally decidable.

 ∀[1,2:Ord , p:ProofCheckerOrd ]
 (1⊢

p

𝑂𝑟𝑑
 2) ⇔ p∎[1,2]=True


Example of a proof checker with a nondenumerable domain:
The +1of Ord checker below has a nondenumerable domain (including

Ord and O) even though +1OrdChecker is an effectively computable

procedure.
+1OrdChecker:[Ord, Ord]→1 Boolean

+1OrdChecker∎[1,2] ≡1 if (:O) then s2=(+1:O), else False

 // If s1 is :O, then s2=(+1:O), otherwise False

+1OrdChecker:ProofCheckerOrd 

∀[:O] (:O) ⊢
+1 OrdChecker

𝑂𝑟𝑑
 (+1:O)

Theorem (Categoricity of Ord):
If X be a type satisfying the axioms the theory of the ordinals Ord

, then there is

a unique isomorphism with O.110

Theorem (Model Soundness of Ord): (⊢Ord ) ⇨ ⊨
O
 

Proof: Suppose ⊢
Ord

. The theorem immediately follows because the axioms for

the theory Ord

hold in the type O.

Theorem (Indiscernibility for Ord):111

 ∀[,:O] = ⇔ ∀[P:Ord
O

] P[]⇔P[]

Theorem: Inferential completeness of Ord

 ∀[:Ord] (⊨
O

 )⇒ ⊢
Ord

 

52

Corollary. Equivalence of satisfiability and provability in Ord , i.e.,

 ∀[:Ord] (⊨
O

 ) ⇔ ⊢
Ord

 

Theorem. Inferential Decidability of Ord , i.e.,

 ∀[:Ord
O

] (⊢
Ord

 )  ⊢
Ord

 

Proof. ∀[:Ord] (⊢
Ord

 ) ⇔ ⊨
O

 

Theorem follows from Equivalence of satisfiability and provability in Ord.

Type Choice

 ∀[f:(Boolean
t1)t2] ∃[choice:t1

t2

] ∀[x:t1] f[x]≠{ } ⇨ choice[x]∈f[x]

Theory SetTheoryt  defined using strong parameterized types

The type Sett  can be characterized as follows:

Sett  ≡ Boolean
t

Of course set membership is defined as follows:

∀[x:t, S:Sett ] xS ⇔ S[x]=True

A set theory SetTheoryt  for sets with base type t can be axiomatized using

a 2nd order set induction axiom as follows:

 For each P:SetTheoryt 
Setst 

:

 (∀[S:Sets t , α:O]

 (S≐α ⇨ ∀[X:Sett , β<α:O] P[X]X≐β ⇨ P[X]) ⇨ ∀[S:Sets t ] P[S]

Inductive definition:

1. Sets 0t  ≡ Boolean
t

2. Sets α+1t  ≡ SetSets αt 

3. α:LimitO  ⇒ (S:Sets αt  ⇔ ∀[X∈S] ∃[β<α:O, Y:Sets βt ] X∈Y)

S:Sets t  ⇔ ∃[α:O] S:Sets αt 

https://en.wikipedia.org/wiki/%E2%89%90
https://en.wikipedia.org/wiki/%E2%89%90

53

The properties below mean that Sets t  is a "universe" of mathematical

discourse.112

 Foundation: There are no downward infinite membership chains.113

 Transitivity of ∈114: ∀[S:Sets t ] ∀[X∈S] X:Sets t 

 Powerset:115 ∀[S:Sets t ] Boolean

s:Setst 

 Union:116

 ∀[S:Sets t ] ⋃S:Sets t 

 ∀[S:Sets t ] ∀[X:Sets t ] X∈⋃S ⇔ ∃[Y∈S] X∈Y
 Replacement:117 The function image of any set is also a set, i.e.:

 ∀[f:Sets t 
Sets

 t , S:Sets t ]

 ∀[y:Sets t ] yImaget [f, S] ⇔ ∃[x∈S] f[x]=y

Theorem. Sets t  satisfies axioms for Grothendieck universes.118

Proof. By the definition of a Grothendieck universe., it is sufficient to prove the

following:

1. ∀[S1,S2:Sets t ] {S1, S2}:Sets t 

2. ∀[S:Sets t ] Boolean
 S:Sets t 

3. ∀[f:Sets t 
Sets

 t , S:Sets t ] ⋃
x∊S

f[i]:Sets t 

54

Theorem. Theory SetTheoryt  is isomorphic to Sets t  with a unique

isomorphism.
 Proof:119 Suppose that X satisfies the axioms for SetTheoryt .

 By ordinal induction, the isomorphism I:X
Sets t as follows:

1. S:Sets 0t 

 I[S] ≡ S

2. S:Sets α+1t 

Z∈XI[S] ⇔ ∃[Y:Sets αt ] I[Y]∈XZ

3. S:Sets αt and α:LimitO 

Z∈XI[S] ⇔ ∃[β<α:O, Y:Sets βt ] I[Y]∈XZ

4. I is a unique isomorphism:

 I is one to one

 The range of I is X

 I is a homomorphism:

o I[{ }
Setst] = { }X

o ∀[S1,S2:Sets t ] I [S1 ∪ S2] = I[S1] ∪X I [S2]

o ∀[S1,S2:Sets t ] I[S1 ∩ S2] = I[S1] ∩X I[S2]

o ∀[S1,S2:Sets t ] I[S1 - S2] = I[S1] -X I[S2]

o ∀[S:Sets t ] I[⋃S] = ⋃X {I[x] | x∈S}

 I-1:Sets t 
X is a homomorphism

 I is the unique isomorphism: If g:X
Sets

 t  is an isomorphism,

then g= I

Theorem (Model Soundness of SetTheoryt ):

 (⊦
SetTheoryt  ) ⇨ ⊨

Sets t 


Proof: Suppose ⊦
SetTheoryt  . The theorem immediately follows because the

axioms for the theory SetTheoryt  hold in the type Sets t .

55

Theorem: Indiscernibility for SetTheoryt 
120

 ∀[s1,s2:Sets t ] s1=s2 ⇔ ∀[P:SetTheoryt 

Sets

t ] P[s1]⇔P[s2]

Theorem: Inferential completeness of SetTheoryt 

 ∀[:SetTheoryt ] (⊨
Sets t 

 ) ⇒ ⊦
SetTheoryt  

Corollary. Equivalence of satisfiability and provability in Sets
t
, i.e.,

 ∀[:SetTheoryt ] (⊨
Sets t  )⇔⊦

SetTheoryt  

Theorem. Inferential Decidability of SetTheoryt , i.e.,

 ∀[:SetTheoryt ] (⊦
SetTheoryt  ) (⊦

SetTheoryt  )

56

Appendix 3: Blocking Known Paradoxes
Strong types block all known paradoxes including the following:

 Liar [Eubulides of Miletus] is an example of using untyped propositions to

derive an inconsistency:121

 Fn ≡ λ[p:Proposition n] p

 // above definition has no fixed point because p has
 // order one greater than the order of p

The following argument derives a contradiction assuming the existence of a

fixed point for F:
1) I’mFalse ⇔ I’mFalse // nonexistent fixed point of F

2) I’mFalse // proof by contradiction from 1)

3) I’mFalse // from 1) and 2)

 Burali-Forti [Burali-Forti 1897] The set of all ordinals Ω is Boolean
O

 so

that: ∀[α:O] α∈Ω⇔α:O. Note that it is not the case that Ω is of type O,

thereby blocking the paradox.

 Russell [Russell 1902].

o Russell’s paradox for sets is resolved as follows:

 (Sets N ∋λ[s:Sets N ] s∉s)=Sets N  because no set is an

element of itself.

o Russell’s paradox for predicates is resolved as follows:

 Russelln[p:Propositionn+1
Propositionn] ≡ p[p]

 The above definition has no fixed point because p[p] has order one
greater than the order of p.

 Curry [Curry 1941] Suppose Ψ:Proposition anOrder and

Curryn:Proposition Max[n+1,anOrder+1
Propositionn where

 Curryn≡ λ[p:Proposition n] p⇒Ψ

Curry’s Paradox is blocked because the procedure Curry does not have a

fixed point because order of p⇒Ψ is greater than the order of p.

 Löb[Löb 1955] Suppose Ψ: Proposition anOrder.

 Löbn:PropositionMax[n+1,anOrder+1]
Propositionn where

 Löbn≡ λ[p:Proposition n] (├ p)⇒Ψ

Löb’s Paradox is blocked because the procedure Löb does not have a fixed

point because order of (├ p)⇒Ψ is greater than the order of p.

57

 Girard [Girard, J. 1972] There is no type Type thereby blocking the

paradox. However, the type of a type is a type, e.g. Type N  is the type

of N.

 Berry [Russell 1906] can be formalized using the proposition

Characterize[s, k] meaning that the string s characterizes the integer k as

follows:

Characterize ≡

 λ[s:String Proposition anOrder
N

, k:N] ∀[x:N] s  [x] ⇔ x=k

The Berry Paradox is to construct a string BString for the string for the

proposition that holds for integer n if and only if every string with length less

than 100 does not characterize n using the following definition:122

 StringSmallerThan100DoesNotCharacterize:Proposition anOrder+1
N

 StringSmallerThan100DoesNotCharacterize ≡

 λ[n:N] ∀[s:String Proposition anOrder]

 Length[s]<100 ⇨ Characterize[s, n]

 BString:String Proposition anOrder+1N



 BString ≡ “StringForStringSmallerThan100DoesNotCharacterize”

 Note that
o Length[BString]<100.

o {s:String Proposition anOrder | Length[s]<100} is finite.

o Therefore, the following set is finite:

 BSet:SetN ≡ {i:N + | ∃[s:String Proposition anOrderN

]

 Length[s]<100  Characterize[s, i]}

 BSet≠{ } because is {i:N | i≧1} is infinite.
 BNumber:N ≡ Least[BSet]
 BString [BNumber]

 = ∀[s:String Proposition anOrderN

]

 Length[s]<100 ⇨ Characterize[s, BNumber]123

However BString:String Proposition anOrder+1N

 cannot be

 substituted for s:String Proposition anOrderN



58

59

Appendix 4: Notation of Direct Logic

Types i.e., a type is a discrimination of the following:124

o Boolean ::125, N::126, O::127 and Actor ::128

o Term t ::129, Expression t ::130, Λt 131,

String t ::132, and Type t ::133, where t ::134

o Proposition anOrder::135 and Sentence anOrder::136 where

anOrder:N
+

o (t
1
⦶t

2
)::137, [t 1,t

2
]::138, ([t

1
]→t

2
)::139 , ([t

1
] →1 t2

)::140 and t
2

t1::141 where

t
1
,t

2
::

o (t ∋P):: where t :: and P:Proposition
t 142

60

Propositions, i.e., a Proposition is a discrimination of the following:

o (1), 12,12,1⇨2,(1⇔2):t where 1,2:t and t ::
o (x1=x2):Proposition 1 where x1,x2:t and t ::

o (t
1
⊑t

1
):Proposition 1143

 where t
1
,t

2
::

o (x:t):Proposition 1 where t ::

o P[x]:Proposition anOrder+1 where x:t, P:Proposition anOrdert

and anOrder:N
+

o P∎[x]:Proposition anOrder+1 where P:[t]→Proposition anOrder,

x:t , t :: and anOrder:N
+

o (1⊦
T
 2):t where T:Theory

144, 1,2:Proposition anOrder and

t ⊑Proposition anOrder and anOrder:N
+

o (1├
𝐩

𝑇
 2):t where p:ProofCheckerT, T:Theory,

1,2:Proposition anOrder, and t ⊑Proposition anOrder and

anOrder:N
+

o (∀t P)145,(∃t P)146:Proposition anOrder+1 where

P:Proposition anOrdert

, t ⊑Proposition and anOrder:N
+

o (λt P)147:Proposition anOrder+1 where

P:Proposition anOrdert

, t ⊑Proposition and anOrder:N
+

o (⊨ ):t where :t, t ⊑Proposition anOrder and anOrder:N
+

o s
T

:Proposition anOrder where s:Sentence anOrder with no

free variables T:Theory, and anOrder:N
+

61

Grammar (syntax) trees (i.e. terms, expressions and sentences) are defined below.

Terms, i.e., a Term t  is a discrimination of the following:

o ⦅Boolean ⦆:ConstantType Boolean ,

⦅N⦆:ConstantType N , ⦅O⦆:ConstantType O and

⦅Actor ⦆:ConstantType Actor 

o x:Term t  where x:Constantt  and t ::

o ⦅x1⦶x2⦆:Term x1⦶x2, ⦅[x1, x2]⦆:Term [x1, x2],

⦅[x1]→x2⦆:Term [x1]→x2, ⦅[x1]→1 x2⦆:Term [x1]→1 x2 and

⦅x2x1⦆:Term t
2

t1

 where x1:Term t
1
, x2:Term t

2
, t

1
,t

2
::

o ⦅x∋P⦆:: where x:Term Type t  , P:Term Proposition
t
 and t ::

o ⦅λt
1 x⦆:Term t

2

t1

 where x:Term t
2

t1

, and t
1
,t

2
::

o ⦅Fixert
1
,t

2
[F]⦆148 where F:Term Mapping t

1
, t

2
 and t

1
,t

2
::

o ⦅f[x]⦆:Term t
2
 where f:Term t

2

t1

, x:Term t
1
, t

1
,t

2
::

o x:t where x:Term t  with no free variables and t ::

62

Expressions, i.e., an Expression t

 is a discrimination of the following:

o x:Expression t  where x:Constantt  and t ::
o x:Expression t  where x:Identifier t  and t ::

o ⦅e1⦶e2⦆:Expression t
1

⦶t
2
, ⦅[e1, e2]⦆:Expression [t

1
, t

2
],

⦅[e1]→e2⦆:Expression [t
1
]→t

2
, where e1:Expression t

1
,

e2:Expression t
2
, and t

1
,t

2
::

o ⦅e1 if True then e2 , False then e3⦆:Expression t 
149 where

e1:Expression Boolean , e2,e3:Expression t  and t ::

o ⦅Fixt
1
,t

2
∎[F]⦆150 where F:Expression Functional t

1
, t

2
 and

t
1
,t

2
::

o ⦅e1 either e2⦆:Expression t  where e1,e2:Expression t  and t ::

o ⦅t
1
 ↦ E⦆:Expression [t

1
]→t

2


151 where

E:[Expression t
1
]→Expression t

2
, and t

1
,t

2
::

o ⦅e∎[x]⦆:Expression t
2
 where e:Expression [t

1
]→t

2
,

x:Expression t
1
, and t

1
,t

2
::

o e :t where e:Expression t  with no free identifiers and t ::

Every nondeterministic computable procedure can be obtained by
abstraction from an expression:

 ∀[f:([t
1

]→t
2

)] Nondeterministic[f]⇨∃[e:Expression [t
1

]→t
2
] f=e

However as explained in this article, there are computations that
cannot be implemented in the nondeterministic lambda calculus and
therefore require Actors for their implementation.

63

Sentences, i.e., a Sentence is a discrimination of the following:

o ⦅s1⦆,⦅s1s2⦆,⦅s1s2⦆,⦅s1⇨s2⦆,⦅s1⇔s2⦆:t where s1,s2:t and t ::
o ⦅e1=e2⦆:Sentence 1 where e1,e2:Expression t  and t ::
o ⦅e1⊑e2⦆:Sentence 1 where e1,e2:Expression t

1
, t

1
:t

2 and t
2
::

o ⦅e1:e2⦆:Sentence 1 where e1:Expression t
1
,

e2:Expression t
2  and t

1
,t

1
::

o ⦅e::⦆:Sentence 1 where e:Expression t  and t ::
o ⦅∀t P⦆,⦅∃t P⦆:Expression Sentence anOrder+1 where,

P:Expression Sentence anOrder
Expression t 

,

t ⊑Expression Sentence , and t ::

o ⦅λt P⦆:Expression Sentence anOrder+1 where

P:Expression Sentence anOrder
Expression t

,

t ⊑Expression Sentence , and t ::

o ⦅t ↦P⦆:Expression Sentence anOrder+1152 where,

P:Expression Sentence anOrder
Expression t 

,

t ⊑Expression Sentence , and t ::

o ⦅P[x]⦆:Sentence anOrder+1153 where x:Expression t ,

P:Expression Sentence anOrder
Expression t 

, t :: and anOrder:N
+

o ⦅P∎[x]⦆:Sentence anOrder+1154 where x:Expression t ,

P:[Expression t ]→Expression Sentence anOrder, t :: and

anOrder:N
+

o ⦅s1⊦
T
 s2⦆:t where T:Expression Theory , s1,s2:t ⊑Sentence and

anOrder:N
+

o ⦅s1├
𝐩

𝑇
 s2⦆:t where p:Expression ProofChecker T,

T:Expression Theory , s1,s2:Expression Sentence anOrder

and t ⊑Proposition anOrder and anOrder:N
+

o ⦅⊨ s⦆:t where s:t and t ::
o s T

:Proposition anOrder where s:Sentence anOrder, anOrder:N
+

,
T:Expression Theory , and there are no free variables in s.155

64

Appendix 5: Inconsistency Robustness
Intelligent Applications must reason about pervasively inconsistency

information, which requires restriction on Unlimited Disjunction Introduction,

Contrapositive, Excluded Middle, and Proof by Contradiction as explained in

this section. In each case, a contradiction in an Empirical theory (which may

have inconsistencies) causes detonation of the theory using unrestricted versions

of the rules below.

o Unlimited Disjunction Introduction detonates every inconsistent

empirical theory

Suppose Unlimited Disjunction Introduction always holds, i.e.,

∀[,:Proposition] ⊢⋁.

Therefore ∀[,:Proposition] ,⊢ (which detonates the

theory) using ,⋁⊢.
o Unlimited Contrapositive detonates every inconsistent empirical

theory156

Suppose Unlimited Contrapositive always holds, i.e.,

∀[,:Proposition] (⊢)⊢(⊢).

Therefore ⊢(⋀) because ⋀⊢ by monotonicity.

Consequently, ∀[,:Proposition] ⊢⋁ (which detonates

the theory using Unlimited Disjunction Introduction) by

contrapositive because (⋀)⊢⋁
o Unlimited Excluded Middle detonates every inconsistent empirical

theory [Kao 2015]157
Suppose Unlimited Excluded Middle always holds, i.e.,

∀[,:Proposition] ⊢⋁.

Therefore ⊢(⋁)⋁(⋁). by instantiating Excluded Middle

with ⋁. Consequently, ⊢⋁⋁. Therefore

∀[,:Proposition] ⊢⋁ (which detonates the theory

using Unlimited Disjunction Introduction) using , ⋁⊢
o Unlimited Proof by Contradiction detonates every inconsistent

empirical theory158

Suppose Unlimited Proof by Contradiction always holds, i.e.,

 ∀[,:Proposition] ( ⊢⋀)⊢

Therefore ∀[,:Proposition] ,⊢, which detonates the

theory.

65

Appendix 6: Rules of Direct Logic
The following are core rules for Direct Logic:

• ⋀ (Conjunction)

o ⋀ Introduction

, ⊢ (⋀)

o ⋀ Elimination

⋀ ⊢ 

o Proves Both

(⊢(⋀)) ⊣⊢ ((⊢)⋀(⊢))

•  (Negation)

o Negation Distribution

(⋁) ⊢ ⋀

(⋀) ⊢ ⋁

o Double Negation

 ⊣⊢ 

• ⋁ (Disjunction)

o Disjunctive Elimination

, ⋁ ⊢ 

o Disjunctive Cases

⋁, (⊢), (⊢) ⊢ ⋁

o Conjunction infers Disjunction

⋀ ⊢ ⋁

• ⊢ (Inference)

o Idempotency

  ⊢ 

o Theorems can be used in proofs

 (⊢) ⊢ 

o Chaining

 , (⊢) ⊢ 

o Monotonicity

 (⊢) ⊢ (,⊢)

o Subproof

 (,⊢) ⊣⊢ (⊢(⊢))

o Theorems Prove Theorems

 ((⊢)⊢)⊢(⊢)

o Adequacy

 (⊢) ⊣⊢ (⊢(⊢))

66

Theorem (Step Introduction). (⊢),(,⊢)⊢(⊢)

Proof: Follows immediately from (⊢),(,⊢),⊢

Theorem (Transitivity). (⊢),(⊢) ⊢ (⊢)

Proof: Follows immediately from (⊢),(⊢),⊢ which follows from

(⊢),(⊢),,⊢

Classical Direct Logic

Classical Direct Logic adds the rule of Proof by Contradiction to the above as

follows: (⊢⋀) ⊢ 

Implication defined: ⇨ ≡ (⊢)

Theorem (Soundness). (⊢)⇨(⊨)

Proof: Axioms above are true and truth is preserved.159

Theorem (Inferential Completeness). (⊢)⇔(⊨)

Proof: It is sufficient to prove (⊨)⇨(⊢). (⊨)⊢(⊢(⊨)⋀).

Hence (⊨)⊢(⊢⋀) because (⊨)⇨. The theorem follows by

proof by contradiction.

Theorem (Formal Consistency). ⊬⋀

Proof: Follows immediately from proof by contradiction because

(⊢⋀)⊢⋀

Theorem (Contrapositive). (⊢) ⊢ (⊢)

Proof: Using proof by contradiction, follows immediately from

(⊢)⊢(⊢(⊢⋀)), which follows from (⊢),⊢(⊢) and

(⊢),⊢(⊢), the latter of which follows from (⊢),,⊢

67

Index

, 7, 57, 60, 61, 62, 63

⦶, 59, 61, 62, 70

:, 60, 63

::, 63

=, 60, 63

∀, 7, 60, 63

∃, 60, 63

∈, 53

∋, 59, 61

∎, 60, 62, 63

≐, 52

⊑, 60, 63

⊢, 60, 63

⊨, 8, 51, 54, 55, 60, 63

⋃, 53

→, 59, 61, 62, 70

↦, 62, 63

⇨, 60, 63

→1, 59, 61

⇔, 60, 63

Actor, 59, 61

Actors, 62

Computational Adequacy, 18

argumentation, 12

Barwise, J., 42

Beeson, M., 24

Berry Paradox, 57

Boolean, 4, 59, 61

Boom, H., 24

Burali-Forti, C., 56

categorical, 6, 44

categoricity

natural numbers, 9

ordinals, 51

reals, 49

choice

type, 52

Church, A., 1, 8, 21, 22, 33, 37

Church’s Paradox, 23

Classical Direct Logic, 2

Cohen, P., 30

compactness, 11

Computational Adequacy

Actors, 18

computational inadequacy

nondeterministic lambda

calculus, 47

consistency

formal, 11

Consistency of Mathematics, 18

Constant, 61, 62

Contrapositive, 64

Coq, 21

Coquand, T., 21

Curry, H., 1, 56

cut-elimination

for Nat, 8

Dawson, J., 22

decidability

inferential, 21

Dedekind, R., 1

Dijkstra, E., 14

Direct Logic

sentence, 63

Direct Logic

expression, 62

proposition, 60

term, 61

either, 62

Eubulides of Miletus, 56

Excluded Middle, 64

expression

Direct Logic, 62

Expression, 62

Expression, 59

False, 4

68

First-Order Thesis, 42

Fixer, 61

formal consistency, 14

Foundation

sets, 53

Functional, 62

Functional, 62

Galbraith, J. K., 12

Girard, J., 57

Gödel

validity of incompleteness

arguments, 31

Gödel, K., 30

Grothendieck universe, 53

Grothendieck universes, 53

Halt, 8, 32

halting problem, 8

Hayes, P., 14

higher order logic, 6

Hobbes, T., 41

Hodges, W., 41

Huet, G., 21

Identifier, 62

if, 62

I'mUnprovable, 21, 22, 31

Inconsistency Robustness, 1, 64

Contrapositive, 64

Excluded Middle, 64

Unlimited Disjunction

Introduction, 64

indiscernibility, 8, 14, 23, 48, 51, 55

inexhaustiblity

Mathematics, 21

inferability

computationally undecidable, 8

inferentially decidable, 14

Isabelle, 21

Kao, E., 64

Kleene, S., 21

Kuhn, T., 12

Lakatos, I., 30

lambda calculus

computational inadequacy, 47

Lambda Induction, 46

Lam
t
, 46

Law, J., 30

Liar Paradox, 56

Löb, M., 1, 56

Logic Program

nondeterministic, 44

pure, 38

Maddy, P., 3

Mapping, 61

Mathematical rules

Contrapositive, 64

Disjunction Introduction, 64

Excluded Middle, 64

Proof by Contradiction, 64

Mathematics

inexhaustiblity, 21

McCarthy, J., 14

Monk, R., 31

N, 6, 42, 59, 61

Nat, 6, 7, 8, 11, 40, 43

proposition, 7

Nat1, 34

Natural Deduction, 19

nondeterministic computable
procedure, 62

nondeterministic lambda calculus,

38

Nondeterministic Lambda Calculus,

46

nondeterministic Logic Program, 44

nondeterministic Turing Machine,

44

O, 59, 61

Ord, 51

69

paradox, 1

Paulson, L., 21

Planck, M., 12

Plotkin, G., 16, 23

Powerset

sets, 53

Principia Mathematica, 32

Principle of Excluded Middle, 12

Proof by Contradiction, 10

Proof Checker, 7

proof checking

computational decidability, 51

computationally decidable, 22

ProofChecker, 7, 51, 60, 63

Proofs, 51

proposition

Direct Logic, 60

Proposition, 4, 59, 60

Pythagoreans, 2

RealClosedFields, 49

reals

categoricity, 49

Reals, 49

Replacement

sets, 53

Rosser, J. B., 21

Russell, B., 1, 21, 22

Russell’s paradox

for predicates, 56

for sets, 56

self-referential propositions, 33

sentence

Direct Logic, 63

Sentence, 59, 63

sets

Axiom of Foundation, 53

Axiom of Replacement, 53

axiom of Union, 53

powerset, 53

Transitivity of ∈, 53

Sets t , 53

String, 59

Tarski, A., 4

term

Direct Logic, 61

Term, 59, 61

Theory, 60, 63

Transitivity of ∈

sets, 53

True, 4

truth, 12

Turing Machine

nondeterministic, 44

Turing, A., 8, 33

Type, 59, 70

types

choice, 52

Unbounded Nondeterminism, 43

Union

sets, 53

universe

sets, 53

Unlimited Disjunction Introduction,

64

von Neumann, J., 30

Wittgenstein

validity of Gödel incompleteness

arguments, 31

Wittgenstein, L., 1

Woods, J., 23

Zermelo, E., 1, 41

λ, 60, 61, 63

Λ, 59

70

71

End Notes

1 As in programming language integrated development environments, color has

no semantics significance.

Double colons are used to express something is a type. For example t ::

expresses that t is a type.

 Types can be composed using the following:

 All functions from t
1

into t
2
 is t

2

t1:: where t
1
,t

2
::

A function is total and may be uncomputable.

 Tuple of types is [t 1,t
2
]:: where t

1
,t

2
::

For example, [N, N] is the type of pairs of N

 Discriminated union of types is (t
1
⦶t

2
):: where t

1
,t

2
::

 Predicate restriction of a type is (t ∋P):: where t :: and P:Proposition
t

For example replacement for types (range of a function f:t
2

t1)

is t
2
∋λ[y:t

2
] ∃[x:t

1
] y=f[x]

 Computable procedures from t
1
 into t

1
 is ([t

1
]→t

2
):: where t

1
,t

2
::

A computable procedure can be partial and can be indeterminate in
its outcome.

 Type of a type is Type t :: where t :: and Type is a parametrized

type with parameter t . Parametrized types have become popular in
programming languages where in Java they are called “generics.”

 There is no unparameterized type Type in order to block Girard’s

paradox.
2 Blocking all the known paradoxes is necessary to defeat hackers.
3 Inference rules for Direct Logic are presented in an appendix.
4 [Verbrugge 2010]
5 Axioms and rules of Direct Logic are presented in appendices of this article.
6 Performance of computer information systems is measured in consumption of

processing cycles and storage space as well as latency for response. Pervasive

inconsistency for information systems means that there are numerous

inconsistencies that cannot be readily found and that many of the ones that are

found cannot be easily removed.

72

7 In this sense, Mathematics is “incomplete”, but nor in the sense of Gödel’s

results. See below on the inferential completeness of standard theories of

mathematics, such as natural numbers, real numbers, ordinal numbers, set

theory, lambda calculus, and Actors.
8 Which is not the same as proving the much stronger proposition that no

contradiction can be derived from the exact axioms and inference rules of Direct

Logic.
9 Furthermore, theorems of these theories are not enumerable by a provably total

procedure.
10 Of course, abstraction means that 1st order logic is not a suitable foundation.
11 cf. [Wigner 1960]
12 [Nielsen 2014]
13 parametrized types have become very popular in programming languages, e.g.,

Java where they are called “generics.”
14 Classical results can be embedded in intuitionistic logic as follows:

 ⇔

 ∃ can be transformed to ∀

 1⋁2 can be transformed to (1⋀2)
15 Some of the outputs are conventionally identified as being the same real

number, e.g., .0111111.... and .1000000000
16 For example (p[3])[y] holds if and only if y=3.
17 [Isaacson 2007]
18 A theory is defined by a set of propositions in Direct Logic that are taken to be

axioms of the theory.
19 There are no sets in the induction axiom. Quine famously criticized 2nd order

theory as nothing more than “set theory in sheep’s clothing” [Quine 1970,
pg. 66].

73

20 Type Nat :: and

 ∀[P:Nat
Type Nat ]

((∀[t
1
,t

2
:Type Nat ] P[t

1
]P[t

1
]⇒P[t

2

t1])

 // all functions from t
1
into t

2

 (∀[t
1
,t

2
:Type Nat ] P[t

1
]P[t

2
]⇒P[t

1
⦶t

2
])

 // discriminated union of t
1
and t

2

 (∀[t :Type Nat  Q:Nat
Type Nat 

] P[t]⇒P[t ∋| Q])

 // restriction of t

by Q

 (∀[t :Type Nat ] P[t]⇒P[Type t ]) // type of t

 (∀[t
1
,t

2
:Type Nat ] P[t

1
]P[t

1
]⇒P[[t

1
]→t

2
]))

 // computable procedures from t
1
into t

2

 ⇒ (∀[t :Type Nat ] P[t])
Above characterizes Type Nat  up to a unique isomorphism.

21 Proof. Suppose that X is propositions of a theory which satisfies the axioms

for propositions of Nat. Inductively define I:X
Nat

 as follows:

 I[x1=x2] ≡ (x1=x2)

 I [] ≡ I[]

 I[12] ≡ I[1]  I[2]

 I[∀[x:t] P[x]] ≡ ∀[x:t] I[P[x]] where t :Type Nat  and P:Nat
t

I is a unique isomorphism between Nat and X
22 There are uncountable sentence parse trees because the constants which they

contain are uncountable.

74

23 Proof. Induction on propositions of Nat

 Inductively suppose that

 ∀[:Nat] ∃[s:Sentence Nat] s = 

 Consequently, ∀[:Nat] ∃[s:Sentence Nat ] ⦅s⦆ = 

 Therefore, ∀[:Nat] ∃[s:Sentence Na t] s = 

 Inductively suppose that

 ∀[1,2:Nat] ∃[s1,s2:Sentence Nat ] s1 =1 ⋀ s2 =2

 Consequently, ∀[1,2:Nat]

 ∃[s1,s2:Sentence Nat ] ⦅s1⋀s2⦆ = 1⋀2

Therefore, ∀[1,2:Nat] ∃[s:Sentence Nat ] s = 1⋀2

 Inductively suppose that

 ∀ [t :Type Nat , x:t , P:Nat
t

] ∃[s:Sentence Nat] s = P[x]

 which can be rephrased as follows:

 ∀[t :Type Nat , x:t , P:Nat
t

]

 ∃[f:𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑁𝑎𝑡[𝑇𝑦𝑝𝑒 𝑁𝑎𝑡,𝑡 ,𝑁𝑎𝑡t]] f [t, P, x] = P[x]
 which means that

 ∀[t :Type Nat , x:t , P:Nat
t

] ∃[g:𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑁𝑎𝑡[𝑇𝑦𝑝𝑒 𝑁𝑎𝑡,𝑁𝑎𝑡𝑡]
𝑡

]

 g[t, P][x] = P[x]
which means that

 ∀[t :Type Nat , x:t , P:Nat
t

] ∃[g:𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑁𝑎𝑡𝑡[𝑇𝑦𝑝𝑒 𝑁𝑎𝑡,𝑁𝑎𝑡t]
]

 λt g[t, P]] [x] = P[x]
 which means that

 ∀[t :Type Nat, x:t , P:Nat
t

]

 ∃[h:𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑁𝑎𝑡𝑡[𝑇𝑦𝑝𝑒 𝐍𝐚𝐭,𝑁𝑎𝑡t]
] ⦅λt h[t, P]⦆][x] = P[x]

 which means that

 ∀[t :Type Nat , P:Nat
t

] ∃[k:𝑁𝑎𝑡𝑡[𝑇𝑦𝑝𝑒 𝑁𝑎𝑡,𝑁𝑎𝑡𝑡]
] k[t, P] = P

 Therefore because ⦅∀t k [t, P]⦆ = ∀t  k [t, P]

 ∀[t :Type Nat , P:Nat
t

]

 ∃[k:𝑁𝑎𝑡𝑡[𝑇𝑦𝑝𝑒 𝑁𝑎𝑡,𝑁𝑎𝑡𝑡]
] ⦅∀t k[t, P]⦆ = ∀t P

 Consequently,

 ∀[t :Type Nat , P:Nat
t

] ∃[s:Sentence Nat] s = ∀t P

75

24 For example,  cannot be cut from the following proof:

 (⊢
Nat ), (⊢

Nat False) ⊢
Nat

(⊢
Nat False)

25 [Dedekind 1888] According to [Isaacson 2007]:

“Second-order quantification is significant for philosophy of mathematics

since it is the means by which mathematical structures may be

characterized. But it is also significant for mathematics itself. It is the means

by which the significant distinction can be made between the independence

of Euclid's Fifth postulate from the other postulates of geometry and the

independence of Cantor's Continuum hypothesis [conjecture] from the

axioms of set theory. The independence of the Fifth postulate rejects the

fact, which can be expressed and established using second-order logic, that

there are different geometries, in one of which the Fifth postulate holds (is

true), in others of which it is false.”
26 [Hardy 1992] page 19.
27 highlighted below
28 cf. [Zermelo 1932] pp. 6-7.
29 Examples:

o ∀[P:Nat
 N] (⊨

N
 ∀[i:N] P[i])⇒ ⊢

Nat
 ∀[i:N] P[i]

Suppose in Nat, P:Nat
 N

 and ⊨
N
 ∀[i:N] P[i]. Further suppose to

obtain a contradiction that ∀[i:N] P[i].
Therefore ∃[i:N] P[i] and by Existential Elimination P[i0] where

i0:N, which contradicts ⊨
N
 P[i0], from the hypothesis of the theorem.

Therefore ⊢
Nat

∀[i:N] P[i] using proof by contradiction in Nat.

o ∀[P:Nat
 N] (⊨

N
 ∃[i:N] P[i])⇒ ⊢

Nat
 ∃[i:N] P[i]

Suppose in Nat , P:Nat
 N

 and ⊨
N
 ∃[i:N] P[i]. Further suppose to

obtain a contradiction that ∃[i:N] P[i] and therefore

∀[i:N] P[i]. However, ⊨
N

 P[i0] where i0:N, which contradicts P[i0].

Therefore ⊢
Nat

∃[i:N] P[i] using proof by contradiction in Nat.

76

30 It is well known that Nat inferentially decides the Continuum Hypothesis.

ContinuumForNat is defined as follows:

 ContinuumForNat ⇔ ∄[S:Boolean
N] N⋖S⋖ Boolean

N

 where X⋖Y is defined to mean that there is no 1-to-1 X
Y

ContinuumForNat has been proved for well-behaved types, such as Borel as

follows:

 ContinuumForBorel ⇔ ∄[S:Borel] N⋖S⋖ Boolean
N

 where a Borel is formed from the countable union, countable

intersection, and relative complement of open elements of

Boolean
N

However, ContinuumForNat remains a famous open problem.

31 often misleading called -consistency [Gödel 1931]
32 Compactness of Nat is defined to be that every Nat inconsistent set of

propositions has a finite inconsistent subset.

Proof of Noncompactness of Nat : Define predicates Bounded and Beyond

as follows:

 Bounded[S⊆N] ≡ ∃[k:N] ∀[j∊S] j<k

 Beyond[i:N, S⊆N] ≡ ∃[j>i] j∊S
To show that Nat is not compact consider the following sets of Nat

propositions:

 Bounded&BeyoundEach[S⊆N] ≡ {Bounded[S]}⋃{Beyond[i, S] | i:N}.

Then ⊢
Nat ∀[S⊆N] Consistent

Nat
 [Bounded&BeyoundEach[S]] because by

boundedness of S, there is some k0:N such that ∀[j∊S] j<k0 which

contradicts Beyond[k0, S] meaning ∃[j> k0] j∊S.

To finish showing that Nat is not compact, let S0⊆N and therefore

 Consistent
Nat

 [Bounded&BeyoundEach[S0]]

Suppose to obtain a contradiction that the following holds: there is some

0⊆Bounded&BeyoundEach[S0] such that

 Consistent
Nat

 [0]⋀Finite
Nat

 [0]

Because Finite
Nat

 [0], there is an i0:N such that

 0⊆{Bounded[S0]}⋃{Beyond[i, S0] | i< i0}

 Therefore Consistent
Nat

 [0], which is a contradiction.

77

33 Note that the results in [Gödel 1931] do not apply because propositions in

Mathematics are strongly typed and consequently the fixed point used

construct Gödel’s proposition I’mUnprovable does not exist in Mathematics.

See the critique of Gödel’s results in this article.
34 According to [Concoran 2001]:

“after first-order logic had been isolated and had been assimilated by the

logic community, people emerged who could not accept the idea that first-

order logic was not comprehensive. These logicians can be viewed not as

conservatives who want to reinstate an outmoded tradition but rather as

radicals who want to overthrow an established tradition [of Dedekind,

etc.].”
35 for discussion see [Hewitt 2015d]
36 in an unlawful way (Einstein, a member of the editorial board, refused to

support Hilbert's action)
37 Hilbert letter to Brouwer, October 1928
38 Gödel said “Has Wittgenstein lost his mind?”
39 A Com is a Return, Throw, or a Request that has a Message and a

Customer to which a Throw or Request for the request can be
sent.

40 of type [Com]→

 Outcome [created= FiniteSetActor , // new Actors

 sent= FiniteSetCom , // new Communications
 next= Behavior] // behavior for next Com received

41 ↷ is read as “precedes”
42 A Com is received before it has finished being processed
43 The reception order of an Actor is total.
44 A Com is not received until the previous one has been processed.
45 Behavior of an Actor on first Com received is the same as its initial behavior.
46 Behavior of an Actor after a Com is received is the behavior that results from

processing the Com .

47 Information in an Actor while processing a Com is contained in the following:

 information in the Actor before the Com is received

 information received in the Com

 information for Actors created in processing the Com .
48 Information in an Actor after a Com has been processed is contained in

information while processing the Com .
49 Information sent by an Actor while processing a received Com is contained in

information while processing the Com .

78

50 ∀[x:Actor, c:Com] Receivedx[c]:Event ⋀ Afterx[c]:Event

Consequently,

 ∀[x:Actor, c1,c2:Com]
 Finite[{c:Com | Receivedx[c1]↷Receivedx[c]↷Receivedx[c2]}]

51 There are only finitely many events in ↷ ordering between two events.
52 An actor behavior always has property P if it initially has the property and

whenever it has the property before a Com is received then it has the property

afterward.
53 An actor behavior always has property P if it initially has the property and

whenever it has the property before a Com is received then it has the property

afterward.
54 Again, Mathematics here means the common foundation of all classical

mathematical theories from Euclid to the mathematics used to prove Fermat's

Last [McLarty 2010].
55 Note that the results in [Löb 1955] do not apply because propositions in

Mathematics are strongly typed and consequently the fixed point used to

establish his result does not exist. See discussion of Löb’s Paradox in this

article.
56 Note that the results in [Gödel 1931] do not apply because propositions in

Mathematics are strongly typed and consequently the fixed point used

construct Gödel’s proposition I’mUnprovable does not exist in Mathematics.

See the critique of Gödel’s results in this article.
57 As shown above, there is a simple proof in Classical Direct Logic that

Mathematics (├) is formally consistent. If the stated axioms and rules of

inference of Classical Direct Logic have a bug, then there might also be a proof

that Mathematics is operationally inconsistent. Of course, if a such a bug is

found, then it must be repaired. The Classical Direct Logic proof that

Mathematics (├) is formally consistent is very robust. One explanation is that

formal consistency is built in to the very architecture of Mathematics because it

was designed to be consistent. Consequently, it is not absurd that there is a

simple proof of the formal consistency of Mathematics (├) that does not use all

of the machinery of Classical Direct Logic.

 The usefulness of Classical Direct Logic depends crucially on the much

stronger proposition that Mathematics is operationally consistent, i.e., that there

is no proof of contradiction from the stated axioms and inference rules of Direct

Logic. Good evidence for the operational consistency of Classical Direct Logic

comes from the way that it avoids the known paradoxes. Humans have spent

millennia devising paradoxes.

79

 In reaction to paradoxes, philosophers developed the dogma of the necessity

of strict separation of “object theories” (theories about basic mathematical

entities such as numbers) and “meta theories” (theories about theories). This

linguistic separation can be very awkward in Computer Science. Consequently,

Direct Logic does not have the separation in order that some propositions can

 be more “directly” expressed. For example, Direct Logic can use ├├Ψ to

express that it is provable that Ψ is provable in Mathematics. It turns out in

Classical Direct Logic that ├├Ψ holds if and only if ├Ψ holds. By using such

expressions, Direct Logic contravenes the philosophical dogma that the

proposition ├├Ψ must be expressed using Gödel numbers.
58 [Gödel 1931] based incompleteness results on the thesis that Mathematics

necessarily has the proposition I'mUnprovable using what was later called the

“Diagonal Lemma” [Carnap 1934], which is equivalent to the Y untyped fixed

point operator on propositions. Using strong parameterized types, it is

impossible to construct I'mUnprovable because the Y untyped fixed point

operator does not exist for strongly typed propositions. In this way, formal

consistency of Mathematics is preserved without giving up power because there

do not seem to be any practical uses for I'mUnprovable in Computer Science.

 A definition of NotProvable could be attempted as follows:

 NotProvable ≡ λ[p] ⊬p

 With strong types, the attempted definition becomes:

 NotProvablen:N
+
[Proposition n]→1 Proposition n+1

 NotProvablen:N
+
≡ λ[p:Proposition n] ⊬p

 Consequently, there is no fixed point I'mUnprovable for the procedure

NotProvablen:N
+
 such that the following holds:

 NotProvablen:N
+
[I'mUnprovable]⇔I'mUnprovable

 Thus Gödel’s I'mUnprovable does not exist in Strongly Typed Mathematics.

 In arguing against Wittgenstein’s criticism, Gödel maintained that his results

on I'mUnprovable followed from properties of N using Gödel numbers for

strings that are well-formed. The procedure NotProvable could be attempted for

strings as follows: NotProvable ≡ λ[s] “"⊬" s”

 With strong types, the attempted definition becomes:

 NotProvablen:N
+
[String Proposition n]

 →1 String Proposition n+1

 NotProvablen:N
+
 ≡ λ[s:String Proposition n] “"⊬" s”

80

 Consequently, there is no fixed point I'mUnprovableString for the procedure

NotProvablen:N
+
 such that the following holds (where s  is the proposition

for well-formed string s):

 NotProvablen:N+[I'mUnprovableString] ⇔ I'mUnprovableString
 Thus Gödel’s I'mUnprovableString does not exist in Strongly Typed

Mathematics.

 Furthermore, Strong Types thwart the known paradoxes while at the same

time facilitating proof of new theorems, such as categoricity of the set theory.
59 This argument appeared in [Church 1934] expressing concern that the

argument meant that there is “no sound basis for supposing that there is such a

thing as logic.”
60 Consequently, there can cannot be any escape hatch into an unformalized

“meta-theory.”
61 sometimes called logical “incompleteness”
62 The claim also relied on Gödel's proposition I'mUnprovable.
63 Fixed points exist for types other than propositions.
64 emphasis in original
65 [Gödel 1931] was accepted doctrine by mainstream logicians for over eight

decades.
66 Of course, Direct Logic must preserve as much previous learning as possible.
67 According to Solomon Feferman, Gödel was “the most important logician of

the 20th century” and according to John Von Neumann he was “the greatest

logician since Aristotle.” [Feferman 1986, pg. 1 and 8]
68 [Feferman 1986, pg. 1 and 8]
69 Wittgenstein in 1937 published in Wittgenstein 1956, p. 50e and p. 51e]

70 Wittgenstein was granting the supposition that [Gödel 1931] had proved

inferential undecidability (sometimes called “incompleteness”) of Russell’s
system, that is., ⊢

Russell
 ⊬

Russell
 P. However, inferential undecidability is easy

to prove using the proposition P where P⇔⊬P:
Proof. Suppose to obtain a contradiction that ⊢

Russell
 P. Both of the following

can be inferred:
1) ⊢

Russell
⊬

Russell
 P from the hypothesis because P⇔⊬P

2) ⊢
Russell

⊢
Russell

 P from the hypothesis by Adequacy.

81

But 1) and 2) are a contradiction. Consequently, ⊢
Russell

 ⊬
Russell

P follows
from proof by contradiction.

71 [Wittgenstein in 1937 published in Wittgenstein 1956, p. 50e and p. 51e]
72 [Wang 1972] The theory 1stOrderDedekindPeano to which Gödel

refers is not strictly speaking a subtheory of Nat even though

∀[:1stOrderDedekindPeano] (⊢
1stOrderDedekindPeano

)⇨⊢
Nat


because 1stOrderDedekindPeano is compact and inferentially undecidable.
73 The Liar Paradox [Eubulides of Miletus] is an example of using untyped

propositions to derive an inconsistency. See appendix on paradoxes.
74 According to [Church 1956 page 329]: “completeness [as to inferential

provability] is unattainable, as is shown in the incompleteness theorems of

Gödel.”
75 [Church 1935] correctly proved computational undecidability without using

Gödel's I’mUnprovable. The Church theorem and its proof are very robust.
76 The following axioms hold for the primitives

• ∄[i:N] +1[i]=0
• ∀[i,j:N] +1[i]=+1[j] ⇨ i=j

• ∀[:Nat1] (⫦) ⇔ ⫦

• ∀[,:Nat1] (⫦⋀) ⇔ (⫦)⋀(⫦)

• ∀[,:Nat1] (⫦⇨) ⇔ ⫦(⋀)

• ∀[:Nat1] (⫦⋀) ⇔ ⫦

• ∀[,:Nat1] (⫦⋀) ⇔ ⫦⋀

• ∀[,,:Nat1] (⫦(⋀)⋀) ⇔ ⫦⋀(⋀)

• ∀[,:Nat1] (⫦)⋀(⫦⇨) ⇨ ⫦

• ∀[,:Nat1] (⫦⇨⋀) ⇨ ⫦
77 (∃t P) ⇔ ∃[x:t] P[x]
78 This inconsistency is mentioned in [Hilbert and Bernays 1939] page 123-125.
79 In other words, the paradox that concerned [Church 1934] (because it could

mean the demise of formal mathematical logic) has been transformed into

fundamental theorem of foundations!
80 Which is not the same as proving the much stronger proposition that

Mathematics is operationally consistent, i.e., that there is no proof of

contradiction from the stated axioms and inference rules of Direct Logic.

81 Theorem: ⊢
Nat

 ∀[P:String Proposition 1N

]

 (P  [0]  ∀[i:N] P [i] ⇨P  [i+1]) ⇨ ∀[i:N] P [i]

82

82 with the consequence that the argument in Church’s Paradox is blocked in the

83

theory Nat

because theorems are not enumerable by a provably total

procedure
83 In 1666, England's House of Commons introduced a bill against atheism and

blasphemy, singling out Hobbes’ Leviathan. Oxford university condemned and

burnt Leviathan four years after the death of Hobbes in 1679.
84 Likewise, 1st order set theory (e.g. ZFC) is very weak. See discussion in this

article.
85 The ContinuumHypothesis is defined as follows:

 ContinuumHypothesis ⇔ ∄[S:Boolean
N

] N⋖S⋖Boolean
N

 where X⋖Y is defined to mean that there is no 1-to-1 X
Y

ContinuumHypothesis has been proved for well-behaved types, such as Borel

as follows:

 ContinuumForBorel ⇔ ∄[S:Borel] N⋖S⋖ Boolean
N

 where a Borel is formed from the countable union, countable

intersection, and relative complement of open elements of

Boolean
N

Note that it is important not to confuse ContinuumHypothesis with

ContinuumFor1stOrderZFC. 1stOrderZFC has countably many 1st order

propositions as axioms. [Cohen 1963] proved the following theorem which is

much weaker than ContinuumHypothesis because sets in the models of

1stOrderZFC do not include all of Proposition 1
N and the theory

1stOrderZFC is much weaker than the theory SetTheory N:
 ⊬

1stOrderZFC ContinuumFor1stOrderZFC
 ⊬

1stOrderZFC ContinuumFor1stOrderZFC
Cohen's result above is very far from being able to decide the following:

 ⊢
Nat ContinuumHypothesis

86 [Zermelo 1930, van Dalen 1998, Ebbinghaus 2007]
87 1st order theories fall prey to paradoxes like the Löwenheim–Skolem theorems

(e.g. any 1st order theory of the real numbers has a countable model). Theorists

have used the weakness of 1st order theory to prove results that do not hold in

stronger formalisms such as Direct Logic [Cohen 1963, Barwise 1985].
88 a restricted form of Model Checking in which the properties checked are

limited to those that can be expressed in Linear-time Temporal Logic has

been studied [Clarke, Emerson, Sifakis, etc. ACM 2007 Turing Award].
89 proving that software developers and computer systems are using the same

structures

84

90 An implementation of such a system is given below in this article.
91 the lambda calculus is a special case of Logic Programs
92 cf. Plotkin [1976]

93 only one model up to a unique isomorphism
94 Rejection of the 1st Order Thesis resolves the seeming paradox between the

formal proof in this article that Mathematics formally proves its own formal

consistency and the proof that ‘Every “strong enough” formal system that

admits a proof of its own consistency is actually inconsistent.’ [Paulson 2014].

Although Mathematics is “strong enough,” the absence of “self-referential”

propositions (constructed using the Y untyped fixed point operator on

propositions) blocks the proof of formal inconsistency to which Paulson

referred.
95 e.g. see Terminator [Knies 2006], which practically solves the halting problem

for device drivers
96 In order to show that the listed primitives are an adequate basis for Lam

t

, it is sufficient to the show that the Substitute combinator (called S in the

literature) can be implemented. The following definition suffices:

Substitutet
1
, t

2
, t

3
:([t

1
, [[t

1
]→t

2
, [t

2
]→t

3
]] → t

3
)

Substitutet
1
, t

2
, t

3
∎[x, pair] ≡ ((2nd∎[pair])∎[x])∎[1st∎[pair])∎[x]]

97 Because of Lambda Equality, the domain of [Scott 2015] is not a valid model

of Lam

t .

98 Fix implements recursion.

For example:
 F:([N]→N)→([N]→N)

 F∎[g] ≡ [i:N] ↦ i=1 if True then 1 , False then ig∎[i-1]
Therefore by the Fix axiom, FixN, N∎[F]=F∎[FixN, N∎[F]] and
FixN, N∎[F] = F∎[Factorial] = Factorial where

 Factorial ≡ [i:N] ↦ i=1 if True then 1, False then iFactorial∎[i-1]

99 t,t
1
,t

2:Type Λt 

 cf. [Vestergaard 2005]
100 where F1

∎[x] ≡ F∎[x]

 Fn+1
∎[x] ≡ Fn

∎[F∎[x]]
101 e.g., ones using concurrent Actors. See discussion in this article.
102 cf. [Engeler 1981; Hindley, and Seldin 2008]
103 t,t

1
,t

2::Type Λt 
104 Prove by induction on f,g:Λt 

85

105 1⇴2 means ∀[i:N] 1[i]⇨2[i]
 Weakest precondition because:

 ∀[:Lam

t 

N

]

 (⇴λ[i:N] [f∎[i]]) ⇨ (⇴WeakestPrecondition[, f])
106 Robinson [1961]
107 [Dedekind 1888]
108 The following can be used to characterize the real numbers (R) up to a unique

isomorphism:

 ∀[S:SetR] S≠{ }  Bounded[S] ⇨ HasLeastUpperBound[S]
 where
 Bounded[S:SetR] ⇔ ∃[b:R] UpperBound[b, S]

 UpperBound[b:R, S:SetR] ⇔ bS  ∀[xS] x≦b
 HasLeastUpperBound[S:SetR]] ⇔ ∃[b:R] LeastUpperBound[b, S]
 LeastUpperBound[b:R, S:SetR]

 ⇔ UpperBound[b,S]  ∀[xS] UpperBound[x, S] ⇨ x≦b

109 The theory of the ordinals Ord can be axiomatised as follows:

 0
O

:O

 Successor ordinals

o ∀[α:O] +1[α]:O  +1[α]>α

o ∀[α:O] ∄[β:O] α<β<+1[α]

 Replacement for ordinals:

o ∀[α:O,f:OO] ⊍αf:O

86

o ∀[α,β:O,f:O
O

] β∈⊍αf ⇔ ∃[δ<α] β≦f[δ]

o ∀[α,β:O,f:OO] (∀[δ<α] f[δ]≦β) ⇨ ⊍αf≦β

 Cardinal ordinals

ω0 = N

 ∀[α:O] α>0
O

 ⇨ ω α≐ Boolean
{:O | <ωα}

∀[α,β:O] β≐ωα ⇨ ωα=β  ωα∈β

 where t1≐t2 ⇔ ∃[f: t2t1] 1to1ontot1, t2[f]

 1to1t1, t2[f:t2t1] ⇔ ∀[x1,x2:t
1
] f[x1]=f[x2] ⇨ x1=x2

 1to1ontot1, t2[f:t2t1]

 ⇔ 1to1t1, t2[f:t2t1]  ∀[y:t2] ∃[x:t1] f[x]=y

 Tansitivity of <

∀[α,β<α,δ<β:O] α<δ

 ∀[α,β:O] α<β  α=β  β<α

 ∀[α,β:O] α<β ⇨ β<α

 The following ordinal induction axiom holds:

 ∀[P:Ord
O] (∀[α:O] ∀[β<α:O] P[β]⇨P[α]) ⇨ ∀[α:O] P[α]

110 For each type X that satisfies the theory Ord there is a unique isomorphism

with O that is I:X
O

 inductively defined as follows:

 I[0
O

] ≡ 0
X

 ∀[α:O] I[+1[α]] ≡ +1
𝑋[I[α]]

 ∀[α:LimitO ] I[α] ≡ y

 where y:X  ∀[β<α] y≦
X

I[β]  ∀[z:X] (∀[β<α] z≦
X

I[β]) ⇒ y≦
X

z

Using proofs by ordinal induction on O and X, the following follow:

1. I is defined for every O

2. I is one-to-one: ∀[α,β:O] I[α] = I[β] ⇒ α=β

3. The range of I is all of X: ∀[y:X] ∃[α:O] I[α] = y

4. I is a homomorphism:

 I[0
O

] = 0
X

 ∀[α:O] I[+1[α]] = +1
𝑿[I[α]]

https://en.wikipedia.org/wiki/%E2%89%90
https://en.wikipedia.org/wiki/%E2%89%90
https://en.wikipedia.org/wiki/%E2%89%90

87

 ∀[α:LimitO , f:O
O

] I[⊍α f] = ⊍f[α]
𝒙

I⚬f⚬I-1

5. I-1:OX is a homomorphism

6. I is the unique isomorphism: If g:X
O

 is an isomorphism then g=I
111 Prove by ordinal induction on ,:O
112 [Bourbaki 1972; Fantechi, et. al. 2005]
113 This implies, for example, that no set is an element of itself.
114 Proof: Suppose S:Sets t  and therefore ∃[α:O] S:Sets αt 

 Proof by ordinal induction on

 P[β:O] ≡ ∀[X∈S] X:Sets βt 

 Assume: (∀[β<α:O] ∀[X∈S] X:Set βt ) ⇨ ∀[X∈S] X:Sets αt 

Show: ∀[X∈S] X:Sets αt 

Assume: X∈S

Show X:Sets αt 

Proof by cases on α

1. X:Sets 0t 

X:Boolean
t

 2. ∀[α:O] Sets αt  = SetSets α-1t 

 X:Sets α-1t  QED by induction hypothesis

 3. ∀[α:LimitO ] ∃[β<α,Y:Sets βt ] X∈Y
 QED by induction hypothesis
115 Proof: Suppose S:Sets t  and therefore ∃[α:O] S:Sets αt 

 S:Sets αt 

 Show: Boolean
s:Sets t 

 Boolean
s:Sets α+1t QED

116 Proof by ordinal induction on

 P[α:O] ≡ ∀[S:Sets αt ] ⋃S:Sets t 

Assume: ∀[β<α:O] ∀[S:Sets βt ] ⋃S:Sets t 

Show: ∀[S:Sets αt ] ⋃S:Sets t 

Assume: S:Sets αt 

Show: ⋃S:Sets t 

∀[X:Sets t ] X∈⋃S ⇔ ∃[Y∈S] X∈Y

88

∀[X:Sets t ] X∈⋃S ⇔ ∃[β<α:O,Y:Sets βt ] X∈Y

∀[X:Sets t ] X∈⋃S ⇒ X:Sets t 

 QED by definition of Sets t 
117 Suppose f:Sets t 

Sets t  and S:Sets t 

 Show Imaget [f, S]:Sets t 

Proof by ordinal induction on

 P[α:O] ⇔ S:Sets αt ⇒ Imaget [f, S]:Sets t 

 Suppose ∀[β<α:O] S:Sets βt  ⇒ Imaget [f, S]:Sets t 

 Show S:Sets αt ⇒ Imaget [f, S]:Sets t 

 Suppose S:Sets αt 

 Show Imaget [f, S]:Sets t 

 ∀[y:Sets t ] y:Imaget [f, S] ⇔ ∃[x∈S] f[x]=y

 Show ∀[y:Sets t ] y∈Imaget [f, S] ⇒ y:Sets t 

 Suppose y:Sets t  y∈Imaget [f, S]

 Show y:Sets t 

 ∃[x∈S] f[x]=y because y∈Imaget [f, S]

 ∃[β<α:O] x:Sets βt  because x∈S and S:Sets αt 

 Imaget [f, x]:Sets t  by induction hypothesis

 Show f[x]:Sets t 

 Suppose z∈f[x]
 Show z:Sets t 

 z∈Sets t  because z∈f[x] and Imaget [f, x]:Sets t 

 f[x]:Sets t 

 y:Sets t because f[x]=y
118 Consequently, Sets t  is much stronger than 1st order ZFC.
119 Note that this proof is fundamentally different from the categoricity proof in

[Martin 2015].
120 Prove by ordinal rank on s1,s2:Sets t 
121 According to [Russell 1908]:

if Epimenides asserts “all first-order propositions affirmed by me are

false,” he asserts a second-order proposition.
122 Note that the Berry paradox is blocked using strong types because BString is

a string for a term of a proposition of anOrder+1 thereby preventing it from

being substituted for a string for a term of a proposition of anOrder.
123 substituting BNumber for n

89

124 There is no universal type. Instead, Type is parameterized, e.g.,

Boolean :Type Boolean  and N:Type N 
125 True≠False, True:Boolean, and False:Boolean

 ∀[x:Boolean] x=True  x=False
126 N is the type of the natural numbers
127 O is the type of ordinals
128 Actor is the type of Actors
129 term of type t. The following axiom holds:

 ∀[t::, x:Term t ] x ::t
130 expression of type t. The following axiom holds:

 ∀[t::, e:Expression t ] e::t
131 Λt  is the type of lambda procedures over t
132 string of type t. The following axiom holds:

 ∀[t::, s:String t ] s::t
133 type of type t
134 ∀[t ::] t :Type t 
135 Proposition anOrder is the parametrized type consisting of type

Proposition parametrized by anOrder.
136 Sentence anOrder is the parametrized type consisting of type

Sentence parametrized by anOrder.
137 Discrimination of t

1 and t
2

 For i=1,2

 If x:t i, then ((t 1⦶t 2)[x]):(t 1⦶t 2) and x=((t
1
⦶t

2
)[x])↓t

i
.

 ∀[z:t] z:t
1
⦶t

2 ⇔ ∃[x:t
i
] z=(t

1
⦶t

2
)[x]

138 type of 2-element list with first element of type t
1
 and with second element

of type t
2

139 Type of computable nondeterministic procedures from t
1
into t

2
.

If f:([t
1
]→t

2
) and x:t

1
, then f∎[x]:t

2

140 Type of computable deterministic procedures from t
1
into t

2
.

If f:([t
1
] →1 t2

) and x:t
1
, then f∎[x]:t

2
.

141 Type of functions from t
1
 into t

2
. If f:t

2

t1

 and x:t
1
, then f[x]:t

2
.

142 ∀[x:t] x:t ∋| P ⇔ P[x]

90

For example,

 ∀[t ::, X:SetSett ] ∪X ≡ t ∋| λ[y:t] ∃[Z:Sett ] ZXyZ
143 t

1
 is a subtype of t

2, i.e., ∀[x:t
1
] x:t

2

144 Theory ≡ Boolean

Proposition

, i.e., sets of propositions

145 meaning ∀[x:t] P[x]
146 meaning ∃[x:t] P[x]
147 meaning λ[x:t] P[x]

148 Mapping t
1
,t

2
 ≡ t2

t1
t2

t1

 Fixert
1
,t

2
:Mapping t

1
,t

2


Mapping t1,t2

 Fixert
1
,t

2
[F] = F[Fixert

1
, t

2
[F]]

149 ⦅if e1 then e2 else e3⦆
150 Functional t

1
,t

2
 ≡ [([t

1
]→t

2
)]→([t

1
]→t

2
)

 Fixt
1
,t

2
:([Functional t

1
, t

2
]→Functional t

1
, t

2
)

 Fixt
1
,t

2
∎[F] = F∎[Fixt

1
, t

2
∎[F]]

151 i.e. ⦅[x:t] ↦ E∎[x]⦆
152 i.e. ⦅[x:t] ↦ P[x]⦆
153 The type of ⦅p[x]⦆ means that the untyped Y fixed point construction cannot

be used to construct sentences for “self-referential” propositions in Direct

Logic.
154 The type of ⦅p[x]⦆ means that the untyped Y fixed point construction cannot

be used to construct sentences for “self-referential” propositions in Direct

Logic.
155 Constructing propositions from sentences achieves much of what Russel

sought to achieve in the ramified theory of types. [Russell and Whitehead

1910-1913]

156 An inconsistency robust version is the following:

 ((⊢)⊢(⋀)) ⊢ (⊢ )

In other words, non-contradiction with hypothesis infers contrapositive.
157 An inconsistency robust version is the following:

 ∀[,:Proposition] (⋀)⊢⋁

In other words, non-contradiction infers excluded middle.
158 An inconsistency robust version is the following:

91

 ∀[,:Proposition] (⊢),(⊢),( ⊢⋀)⊢ 

In addition to ⊢⋀, its contrapositive (⊢ )⋀(⊢ ) is also

required in order to better connect the hypothesis with the inferred

contradiction.
159 The following are axioms for ⊨:

 ⊨ True

 ⊨ False

 (⊨ ) ⇔ (⊨ )  (⊨ )

 (⊨ ) ⇔ (⊨ )  (⊨ )

 (⊨ ) ⇔ ⊨ 

 (⊨(⊢)) ⇔ ((⊨ )⇨(⊨ ))

