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Strong Types for Direct Logic 

 

Carl Hewitt 

http://plus.google.com/+CarlHewitt-StandardIoT 

 

This article is dedicated to Alonzo Church, Richard 

Dedekind, Bertrand Russell, and Ernst Zermelo. 
 

Abstract 
 

This article follows on the introductory article “Direct Logic for Intelligent 

Applications” [Hewitt 2017a]. Strong Types enable new mathematical theorems 

to be proved including the Formal Consistency of Mathematics. Also, Strong 

Types are extremely important in Direct Logic because they block all known 

paradoxes[Cantini and Bruni 2017].  Blocking known paradoxes makes Direct 

Logic safer for use in Intelligent Applications by preventing security holes.  

 

Inconsistency Robustness is performance of information systems with pervasively 

inconsistent information. Inconsistency Robustness of the community of 

professional mathematicians is their performance repeatedly repairing 

contradictions over the centuries. In the Inconsistency Robustness paradigm, 

deriving contradictions has been a progressive development and not “game 

stoppers.” Contradictions can be helpful instead of being something to be “swept 

under the rug” by denying their existence, which has been repeatedly attempted 

by authoritarian theoreticians (beginning with some Pythagoreans). Such denial 

has delayed mathematical development. This article reports how considerations 

of Inconsistency Robustness have recently influenced the foundations of 

mathematics for Computer Science continuing a tradition developing the 

sociological basis for foundations.1 

 

Mathematics here means the common foundation of all classical mathematical 

theories from Euclid to the mathematics used to prove Fermat's Last [McLarty 

2010].  Good evidence for the consistency Classical Direct Logic derives from 

how it blocks the known paradoxes of classical mathematics. Humans have spent 

millennia devising paradoxes for classical mathematics. 

 

Having a powerful system like Direct Logic is important in computer science 

because computers must be able to formalize all logical inferences (including 

inferences about their own inference processes) without requiring recourse to 

https://plus.google.com/+CarlHewitt-StandardIoT
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human intervention. Any inconsistency in Classical Direct Logic would be a 

potential security hole because it could be used to cause computer systems to 

adopt invalid conclusions. 

 

Mathematical Foundation for Computer Science 
 

Computer Science brought different concerns and a new perspective to 

mathematical foundations including the following requirements:2 [Arabic numeral 

superscripts refer to endnotes at the end of this article] 

 

 provide powerful inference machinery so that arguments (proofs) can be short 

and understandable and all logical inferences can be formalized 

 establish standard foundations so people can join forces and develop common 

techniques and technology 

 incorporate axioms thought to be consistent by the overwhelming consensus 

of working professional mathematicians, e.g., natural numbers [Dedekind 

1888], real numbers [Dedekind 1888], ordinals, sets of integers, reals, etc. 

 facilitate inferences about the mathematical foundations used by computer 

systems. 

Classical Direct Logic is a foundation of mathematics for Computer Science, 

which has a foundational theory (for convenience called “Mathematics”) that can 

be used in any other theory. A bare turnstile is used for Mathematics so that ├Ψ 

means that Ψ is a mathematical proposition that is a theorem of Mathematics and 

Φ├Ψ means that Ψ can be inferred from Φ. 
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Formalism of Direct Logic 

The aims of logic should be the creation of “a unified conceptual apparatus 

which would supply a common basis for the whole of human knowledge.”  

[Tarski 1940] 

 

In Direct Logic, unrestricted recursion is allowed in programs. For example, 
 There are uncountably many Actors.3 For example, Real∎[ ] can output 

any real numberi between 0 and 1 where 
        Real∎[ ] ≡ [(0 either 1), ⩛Postpone Real∎[ ]] 
           where 

o (0 either 1) is the nondeterministic choice of 0 or 1,  
o [ first, ⩛rest] is the list that begins with first and whose 

remainder is rest, and 
o Postpone expression delays execution of expression until 

the value is needed. 

 There are uncountably many propositions (because there is a 

different proposition for every real number). Consequently, 

there are propositions that are not the abstraction of any element 

of a denumerable set of sentences. For example, 

                      p ≡ λ[x:ℝ] (λ[y:ℝ] (y=x))  

defines a different predicate p[x] for each real number x, which holds for 

only one real number, namely x.ii 

 

Sentencesiii can be abstracted into propositions that can be asserted. Furthermore, 

expressionsiv can be abstracted into Actors (e.g., objects in Mathematics). 

 

Abstraction and parsing are becoming increasingly important in software 

engineering. e.g., 

 The execution of code can be dynamically checked against its 

documentation.  Also Web Services can be dynamically searched for and 

invoked on the basis of their documentation. 

 Use cases can be inferred by specialization of documentation and from   
 Code can be generated by inference from documentation and by generalization 

from use cases. 

 

                                                           
i using binary representation.  
ii For example (p[3])[y] holds if and only if y=3. 
iii which are grammar tree structures 
iv which are grammar tree structures 
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Abstraction and parsing are needed for large software systems so that that 

documentation, use cases, and code can mutually speak about what has been said and 

their relationships. 

 

For example: 

 
 

 
 

 
In Direct Logic, a sentence is a grammar tree (analogous to the ones used by linguists). 

Such a grammar tree has terminals that can be constants. And there are uncountably many 

constants, e.g., the real numbers: 

 

Note:  types in Direct Logic are much stronger than constructive types with 

constructive logic because Classical Direct Logic has all of the power of 

Classical Mathematics.  

Propositions 
    e.g.  ∀[n:ℕ] ∃[m:ℕ] m>n 
       i.e., proposition that for every ℕ there is a larger ℕ  

 

intuitively : For every number, there is a larger number. Sentences 
  e.g. ⦅∀[n:ℕ] ⦅∃[m:ℕ] ⦅m>n⦆⦆⦆ 
    i.e., sentence for proposition that f 

       for every ℕ there is a larger ℕ  
 
 

Strings 
  e.g. “⦅∀[n:ℕ] ⦅∃[m:ℕ] ⦅m>n⦆⦆⦆” 
      i.e., string for sentence for proposition that 

          for every ℕ there is a larger ℕ  
 
 



 

 

 

 

 

 

 

 

 

5 

 

Mathematics Self Proves that it is Open  
 

Mathematics here means the common foundation of all classical mathematical 

theories from Euclid to the mathematics used to prove Fermat's Last [McLarty 

2010].i  Mathematics proves that it is open in the sense that it can prove that its 

theorems cannot be provably computationally enumerated: 

   Theorem ⊢Mathematics is Open, i.e.,   

                       ⊢TheoremsComputationalyEnumerable 
Proof.ii  

Suppose to obtain a contradiction that it is possible to prove closure, i.e., 

⊢TheoremsComputationalyEnumerable. Then there is a provably 

computable total procedure TheoremsEnumerator:[ℕ]→Theorem 

such that it is provable that the following holds: 

∀[p:Theorem] (⊢p) ⇒ ∃[i:ℕ] TheoremsEnumerator∎[i]= p 

A subset of the theorems of order n are those proving that certain procedures 

[ℕ]→ℕ are total. Consequently, there is a 

ProvedTotalsEnumerator:[ℕ]→([ℕ]→ℕ) that computationally enumerates 

the provably total computable procedures [ℕ]→ℕ that can be used in the 

implementation of the following procedure: 

      Diagonal∎[i:ℕ]:ℕ ≡ 1+ (ProvedTotalsEnumerator∎[i]) ∎[i] 
Consequently: 
• Diagonal is a proved total procedure because it is implemented using 

computable proved total procedures. 
• Diagonal is not a proved total procedure because it differs from every 

other computable proved total procedure. 
The above contradiction completes the proof. 

 

[Franzén 2004] argued that Mathematics is inexhaustible because of inferential 

undecidabilityiii of mathematical theories. The above theorem that Mathematics is 

open provides another independent argument for the inexhaustibility of 

Mathematics. 
 

                                                           
i Consequently, Mathematics evolves and is not fixed. 
ii This argument appeared in [Church 1934] expressing concern that the argument meant 

that there is “no sound basis for supposing that there is such a thing as logic.”  
iii See section immediately below. 
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Mathematics self proves its own consistency (contra Gödel et. al.) 

The following rules are fundamental to Mathematics4: 

 Derivation by Contradiction, i.e. (¬Φ⇒(Θ¬Θ))├ Φ, which says that a 

proposition can be proved showing that its negation implies a 

contradiction. 

 A theorem can be used in a proof, i.e. (├ Φ)⇒Φ 

 

Theorem:  Mathematics self proves its own consistency. 

Formal Derivation. Suppose to obtain a contradiction, that mathematics is 

formally inconsistent, i.e.,  ¬Consistent. By definition of formal 

consistency, there is some mathematical proposition Ψ such that ├(Ψ¬Ψ). 

By the rule of Existential Elimination, there is some proposition Ψ0 such 

that├ (Ψ0 ¬Ψ0) which by the rule of Theorem Use means Ψ0¬Ψ0 , 

which is a contradiction. Thus,├ Consistent by the rule of Proof by 

Contradiction. 

1) Consistent  // hypothesis to derive a contradiction just in this subargument

├ Consistent                                            // rule of Proof by Contradiction using 1) and 4)
 

2) ∃[Ψ:Proposition]→├(ΨΨ)       // definition of inconsistency using 1)
 

3)├(Ψ0Ψ0)                                          // rule of Existential Elimination using 2)
  

4) Ψ0Ψ0                                                                       // rule of Soundness using 3)
  

          

Natural Deduction
i  Derivation of Consistency of Mathematics 

  

                                                           
i [Jaśkowski 1934] developed Natural Deduction 
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Please note the following points:   

 The above argument formally mathematically proves that Mathematics is 

consistent and that it is not a premise of the theorem that Mathematics 

is consistent.  
 Mathematics was designed for consistent axioms and consequently the 

rules of Mathematics can be used to prove consistency regardless of other 

axioms.5 
 

The above derivation means that “Mathematics is consistent” is a theorem in 

Classical Direct Logic. This means that the usefulness of Classical Direct Logic 

depends crucially on the consistency of Mathematics. Good evidence for the 

consistency of Mathematics comes from the way that Classical Direct Logic 

avoids the known paradoxes. Humans have spent millennia devising paradoxes. 

 

The above recently developed self-proof of consistency shows that the current 

common understanding that Gödel proved “Mathematics cannot prove its 

own consistency, if it is consistent” is inaccurate.6  
 

Foundations with strong parameterized types 

 
“Everyone is free to elaborate [their] own foundations. All that is required of 

[a] Foundation of Mathematics is that its discussion embody absolute rigor, 

transparency, philosophical coherence, and addresses fundamental 

methodological issues.”7 

 

Direct Logic develops foundations for Mathematics by deriving sets from types 

and categorical axioms for the natural numbers and ordinals. 
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Categoricity 

“If the mathematical community at some stage in the development of 

mathematics has succeeded in becoming (informally) clear about a 

particular mathematical structure, this clarity can be made 

mathematically exact ... Why must there be such a characterization? 

Answer: if the clarity is genuine, there must be a way to articulate it 

precisely. If there is no such way, the seeming clarity must be illusory ... 

for every particular structure developed in the practice of mathematics, 

there is [a] categorical characterization of it.”8 

 

Classical Direct Logic is much stronger than first-order axiomatizations  of set 

theory in that it provides categoricity for natural numbers ℕ, reals ℝ, and ordinals  

O. Categoricity is very important in Computer Science so that there are no 

nonstandard elements in models of computational systems, e.g., infinite integers 

and infinitesimal reals. For example, nonstandard models cause problems in 

model checking if a model has specified properties. 
 

Proof by Natural Number Induction 

The mathematical theory Nat categorically axiomatises using the following 

induction axiom: 

        ∀[P:Proposition1ℕ]  (P[0]]  ∀[i:ℕ] P[i]⇨P[i+1]) ⇨ ∀[i:ℕ] P[i] 

The above proposition is of type Proposition2.  However, ∀[i:ℕ] P[i] in the 
above proposition is of type Proposition1.  Quine famously criticized 2nd-
order logic as nothing more than “set theory in sheep’s clothing” [Quine 1970, 
pg. 66]. However, the induction axiom above does simply formalizes more a 
more natural form the induction schema than used in the infinitely large 
number of axioms used to axiomatized the Natural Numbers in 1st order logic.9 
 
The other axioms of Nat are as follows: 

• 0:ℕ 
• ∀[i:ℕ]  +1[i]:ℕ 
• ∄[i:ℕ]  +1[i]=0 
• ∀[i,j:ℕ]  +1[i]=+1[j] ⇨ i=j 
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Theorem ProofsComputationalyEnumerableNat  is unprovable in Nat. 

Proof:10   

Suppose to obtain a contradiction that  

              ⊢
Nat

 ProofsComputationalyEnumerable[Nat ] 

Then there is a provable in Nat computable total procedure 

TheoremsEnumeratorNat :[ℕ]→TheoremNat   such that it is 

provable in Nat 
 
that 

  ∀[p:TheoremNat
  ]  ∃[i:ℕ] TheoremsEnumeratorNat  ∎[i]= p 

A subset of the proofs in Nat
 
are those proving that certain procedures [ℕ]→ℕ 

are total. Consequently, there is a procedure 

                ProvedTotalsEnumeratorNat :[ℕ]→([ℕ]→ℕ) 
that enumerates the provable in Nat 

 
total computable procedures [ℕ]→ℕ that 

can be used in the implementation of the following procedure: 

             Diagonal∎[i:ℕ]:ℕ ≡ 1+ (ProvedTotalsEnumeratorNat ∎[i]) ∎[i] 
Consequently: 

• Diagonal is a provable in Nat 
 
total procedure because it is 

implemented using computable provable in Nat 
 
total procedures. 

• Diagonal is not a provable in Nat 
 
total procedure because it differs 

from every other computable provable in Nat 
 
total procedure. 

The above contradiction completes the proof.11 
 

Theorem ⊢
Nat

 Consistent[Nat ]   

Proof:  Suppose to derive an inconsistency that Consistent[Nat ] . By the 

definition of inconsistency for Nat, there is some proposition Ψ  such that 

⊢
Nat

 (ΨΨ). By Existential Elimination, there is some proposition Ψ0 

such that ⊢
Nat

 (Ψ0Ψ0) which can be used to infer in Nat
  
that Ψ0Ψ0. 

The above contradiction completes the proof. 
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Theorem (Categoricity of Natural Numbers ℕ):12  
If X be a type satisfying the categorical axioms for the 
natural numbers Nat, then X is isomorphic to ℕ13, which 
is strictly more powerful than a 1st order theory of Natural 
Numbers.14 
 

Theorem (Categoricity of Real Numbers ℝ):15  
If X is a type satisfying the categorical axioms for the real 

numbers Real, then X is (uniquely) isomorphic to ℝ, which 

is strictly more powerful than the first-order theory of real 

closed fields.16 

 

Theorem (Model Soundness of Nat ): (⊢
Nat

 ) ⇨ ⊨  

Proof: Suppose ⊢
Nat

 . The conclusion immediately follows because the axioms 

for the theory Nat 
 
hold in the type ℕ . 

 
Theory of Ordinals 

A theory of the ordinals can be axiomatized17 using a 2nd order ordinal induction 

axiom  as follows: For each order:ℕ+ and P:PropositionorderO
: 

                   (∀[α:O] ∀[β<α:O] P[β]⇨P[α]) ⇨ ∀[α:O] P[α] 

In order to fill out the ordinals, the following limit axioms are included: 

• ∀[α:O,f:OO] ⊍α f:O 

• ∀[α,β:O,f:OO] β<⊍αf ⇔ ∃[δ<α] β≦f[δ] 

• ∀[α,β:O,f:OO] (∀[δ<α] f[δ]≦β) ⇨ ⊍αf≦β 

In order to guarantee that there are uncountable ordinals, the following axioms are 

included: 

• ω0 = ℕ 

• ∀[α:O] α>0O ⇨ |ω α| = |𝐁𝐨𝐨𝐥𝐞𝐚𝐧
⊍β<αωβ| 

• ∀[α,β:O] |β|=|ωα| ⇨ ωα≦β 

where |τ1| = |τ2| ⇔ ∃[f:τ2
τ1] OneToOneOntoτ1,τ2[f] 

o OneToOneτ1 ,τ2[f:τ2
τ1]   ⇔  ∀[x1,x2:τ1] f[x1]=f[x2] ⇨ x1=x2 

o OneToOneOntoτ1 ,τ2[f:τ2
τ1]  

               ⇔ OneToOneτ1 ,τ2[f:τ2
τ1]   ∀[y:τ2] ∃[x:τ1]  f[x]=y 

  

Richard Dedekind 

 



 

 

 

 

 

 

 

 

 

11 

 

Theorem (Categoricity of Ordinals O):  

If X be a type satisfying the axioms the theory of the ordinals Ord
 
, then X 

is (uniquely) isomorphic to O.18 
 

Theorem (Model Soundness of Ord ): (⊢
Ord

 ) ⇨ ⊨  

Proof: Suppose ⊢
Nat

 . The conclusion immediately follows because the axioms 

for the theory Ord 
 
hold in the type O . 

 

Type Choice 

      ∀[f:(𝐁𝐨𝐨𝐥𝐞𝐚𝐧𝛔)𝛕]  ∃[choice:στ]  ∀[x:τ]  f[x]≠{} ⇨ choice[x]∈f[x] 

 

Sets  τ defined using strong parameterized types 

 

The type Setτ can be defined as follows: 

Setτ ≡ Booleanτ 

Of course set membership is defined as follows: 

∀[x:τ:, S:Setτ]  xS ⇔ S[x]=True 
 

Inductive definition: 

1. Set0
τ ≡ Booleanτ 

2. Setα+1
τ ≡ SetSetατ 

3. α:LimitO ⇒ (S:Setατ  ⇔ ∀[X∈S] ∃[β<α:O,Y:Setβτ] X∈Y) 

S:Setsτ ⇔ ∃[α:O] S:Setατ 
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The properties below mean that Setsτ is a "universe" of mathematical 

discourse.19  

 Foundation: There are no downward infinite membership chains.20  

 Transitivity of ∈21: ∀[S:Setsτ] ∀[X∈S] X?:Setsτ 

 Powerset:22 ∀[S:Setsτ] Booleans:Setsτ 

 Union:23  

          ∀[S:Setsτ] ⋃S:Setsτ 

         ∀[S:Setsτ] ∀[X:Setsτ]  X∈⋃S ⇔  ∃[Y∈S] X∈Y   
 Replacement:24 The function image of any set is also a set, i.e.: 

     Imageτ:𝐒𝐞𝐭𝐬τ[𝐒𝐞𝐭𝐬τ𝐒𝐞𝐭𝐬τ,𝐒𝐞𝐭𝐬τ] 

     ∀[f:𝐒𝐞𝐭𝐬τ𝐒𝐞𝐭𝐬τ, S:Setsτ] 

                           ∀[y:Setsτ]  yImageτ[f, S] ⇔ ∃[x∈S] f[x]=y 

 

Setsτ is much stronger than first-order ZFC.25 
 

Theorem. Sets τ is categorical via a (unique) isomorphism. 

Proof:26 Suppose that X satisfies the axioms for Sets τ.   

       By ordinal induction, the isomorphism I:XSetsτ as follows: 

1. S:Set0
τ  

I[S] ≡ S 

2. S:Setα+1
τ 

Z∈XI[S] ⇔ ∃[Y:Setατ] I[Y]∈XZ   

3. S:Setα
τ and α:LimitO  

Z∈XI[S]  ⇔ ∃[β<α:O,Y:Setβ
τ] I[Y]∈XZ   
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I is a unique isomorphism: 

 I is one to one 

 The range of I  is X  

 I is a homomorphism:  

o I[{ }Setsτ] = { }X 

o ∀[S1,S2:Setsτ]  I [S1 ∪ S2] =  I[S1] ∪X I [S2] 

o ∀[S1 S2:Setsτ]  I[S1 ∩ S2] =  I[S1] ∩X I[S2] 

o ∀[S1,S2:Setsτ]  I[S1 - S2] =  I[S1] -X I[S2] 

o ∀[S:Setsτ]  I[⋃S] =  ⋃X {I[x] | x∈S} 

 I-1:SetsτX  is a homomorphism 

 I is a unique isomorphism: If g:XSetτ is an isomorphism, then g= I  

 

Theorem (Model Soundness of Sets τ): (⊢𝑆𝑒𝑡𝑠τ
) ⇨ ⊨  

Proof: Suppose ⊢𝑆𝑒𝑡𝑠τ
. The conclusion immediately follows because the 

axioms for the theory Sets τ hold in the type Setsτ. 
 
Lambda Induction 

The axiom is of Lambda Induction is as follows:i 

∀[P:Proposition1Λτ]  

    (P[Iτ1]  P[Kτ1, τ2]  P[Sτ1, τ2, τ3]  P[Fixτ1] 
          ∀[f1:τ1, f2:τ2] P[f1]P[f2] ⇨ P[Kτ1, τ2∎[f1, f2]] 

          ∀[f1:τ1,f2:τ2,f3:τ3] P[f1]P[f2]P[f3]⇨P[Sτ1,τ2,τ3∎[f1,f2,f3]] 

         ∀[f1:τ1] P[f1] ⇨ P[Fixτ1∎[f1]]) 

    ⇨ ∀[f:Λτ] P[f] 
 

TypeΛτ defined using strong parameterized types 

The type Λτ can be defined by Induction as follows: 

1. ([τ]→τ):TypeΛτ 

2. τ1,τ2:TypeΛτ ⇨ ([τ1]→τ2),[τ1, τ2],τ1⦶τ2:TypeΛτ 

 
Functional Definition: Functionalτ1,τ2 ≡ [([τ1]→τ2)]→([τ1]→τ2) 

  

                                                           
i τ1,τ2,τ3:TypeΛτ 
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Theory Lam  τ   
In addition to Lambda Induction (above), the theory Lam τ  has the following 

axioms:i 
1. Iτ1:([τ1]→τ1) 

Iτ1∎[f:τ1] = f 

2. Kτ1,τ2:([τ1, τ2]→τ1) 
Kτ1, τ2∎[f1:τ1, f2:τ2] = f1 

3. Sτ1, τ2, τ3:([[τ1]→ ([τ2]→τ3), [[τ1]→τ2)]→τ3, τ3]→τ3) 
Sτ1, τ2, τ3∎[f1:([τ1]→ ([τ2]→τ3)), f2:([τ1]→τ2), f3:τ1] = (f1∎[f3])∎[f2∎[f3]] 

4. Fixτ1,τ1:([Functionalτ1,τ1]→Functionalτ1,τ1)27 
Fixτ1,τ1∎[F:Functionalτ1,τ1] = F∎[Fixτ1,τ1∎[F]] 

 

Equivalence for Lam τ:ii  ∀[f:([τ1]→τ2)] f = λ[x:τ1] f∎[x] 
 

Convergence: ∀[f:([τ1]→τ2),x:τ1] f∎[x]↓ ⇔ ∃[y:τ2] f∎[x]=y 
 
Approximation: ∀[f1,f2:([τ1]→τ2)] f1≦f2 ⇔ ∀[x:τ1] f1∎[x]↓⇒f1∎[x]=f2∎[x] 
 

Bottom:  ⊥τ1,τ2 ∎[x:τ1]:τ2 ≡ x 

     Note that ∀[x:τ1] ⊥[τ1,τ2∎[x]↓ and ∀[f:([τ1]→τ2)] ⊥τ1,τ2≦f 

 

Monotone Definition:   

        F:Monotoneτ1,τ2 ⇔ F:Functionalτ1,τ2  ∀[g:([τ1]→τ2)] g≦F∎[g] 
 

Limit Theorem:  ∀[F:Monotoneτ1,τ2] F=limit𝑖:𝐍+
Fi

∎[⊥τ1,τ2]28 

 

Adequacy Theorem:  Every Direct Logic procedure in over τ can be implemented 

in Lam τ.  

                                                           
i τ1,τ2,τ3:TypeΛτ 
ii Because of Equivalence for Lam  τ, the domain of [Scott 2015] is not a valid model of 

Lam  τ. 
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Theorem. Lam 
 τ is categorical via a (unique) isomorphism. 

Proof: Suppose that X satisfies the axioms for Lam  τ.   

       By lambda induction, the isomorphism I:XΛτ is defined as follows:i 

1. I[Iτ1] ≡ IXτ1 

2. I[Kτ1, τ2] ≡ KXτ1, τ2 

3. I[Sτ1, τ2, τ3] ≡ SXτ1, τ2, τ3 

4. I[Fixτ1] ≡ FixXτ1 

5. ∀[f1:τ1, f2:[τ1]→τ2] I[f2∎[f1]] ≡ I[f2]∎X[I[f1]] 
 

I is a unique isomorphism: 

 I is one to one 

 The range of I  is X  

 I is a homomorphism:  

 I-1:ΛτX  is a homomorphism 

 I is a unique isomorphism: If g:XΛτ is an isomorphism, then g= I  

 

Theorem (Model Soundness of Lam τ): (⊢𝐿𝑎𝑚τ
) ⇨ ⊨  

Proof: Suppose ⊢𝐿𝑎𝑚τ
. The conclusion immediately follows because the 

axioms for the theory Lam  τ hold in the type Λτ. 

  

                                                           
i τ1,τ2,τ3:TypeΛτ 
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Sociology of Foundations 
 

“Faced with the choice between changing one’s mind and proving that 

there is no need to do so, almost everyone gets busy on the proof.”  John 

Kenneth Galbraith [1971 pg. 50] 

 

“Max Planck, surveying his own career in his Scientific Autobiography 

[Planck 1949], sadly remarked that ‘a new scientific truth does not 

triumph by convincing its opponents and making them see the light, but 

rather because its opponents eventually die, and a new generation grows 

up that is familiar with it.’ ” 

 [Kuhn 1962] 

 

The inherently social nature of the processes by which principles and propositions 

in logic are produced, disseminated, and established is illustrated by the following 

issues with examples:29 
 

 The formal presentation of a demonstration (proof) has not lead 

automatically to consensus. Formal presentation in print and at several 

different professional meetings of the extraordinarily simple proof in this 

paper have not lead automatically to consensus about the theorem that 

“Mathematics is Consistent”. New results can sound crazy to those steeped 

in conventional thinking. Paradigm shifts often happen because conventional 

thought is making assumptions taken as dogma.  As computer science 

continues to advance, such assumptions can get in the way and have to be 

discarded.  
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 There has been an absence of universally recognized central logical 

principles. Disputes over the validity of the Principle of Excluded Middle 

led to the development of Intuitionistic Logic. 

 There are many ways of doing logic. One view of logic is that it is about 

truth; another view is that it is about argumentation (i.e. proofs).30  

 Argumentation and propositions have be variously (re-)connected and 

both have been re-used. Church's paradox is that assuming theorems of 

mathematics are computationally enumerable leads to contradiction. In this 

papers, the paradox is transformed into the fundamental principle that 

“Mathematics is Open” (i.e. it is a theorem of mathematics that the proofs of 

mathematics are not computationally enumerable) using the argument used 

in [Church 1934]. 

 New technological developments have cast doubts on traditional logical 

principles. The pervasive inconsistency of modern large-scale information 

systems has cast doubt on some logical principles, e.g., Excluded Middle.31 

 Political actions have been taken against views differing from the 

establishment theoreticians. According to [Kline 1990, p. 32], Hippasus 

was literally thrown overboard by his fellow Pythagoreans “…for having 

produced an element in the universe which denied the…doctrine that all 

phenomena in the universe can be reduced to whole numbers and their 

ratios.” Fearing that he was dying and the influence that Brouwer might have 

after his death, Hilbert fired32 Brouwer as an associate editor of 

Mathematische Annalen because of “incompatibility of our views on 

fundamental matters”33 e.g., Hilbert ridiculed Brouwer for challenging the 

validity of the Principle of Excluded Middle. Gödel's original results were 

for Principia Mathematica (and not first-order logic) as the foundation for 

the mathematics of its time including the categorical axiomatization of the 

natural numbers. In face of Wittgenstein's devastating criticism, Gödel 

insinuated34 that he was crazy and retreated to first-order logic in an attempt 

to salvage his results. Some theoreticians turned first-order logic into a 

philosophical dogma in part it facilitated their careers. Since theoreticians 

couldn't prove anything significant about practical mathematical theories, 

they cut them down to unrealistic first-order theories where results could be 

proved (e.g. compactness) that did not hold for practical mathematical 

theories. In the famous words of Upton Sinclair:  

“It is difficult to get a man to understand something,  

when his salary depends on his not understanding it.” 

Some theoreticians have ridiculed dissenting views and attempted to limit 

their distribution by political means.35 
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Conclusion 

 
Strong Types enable new mathematical theorems to be proved including the 

Formal Consistency of Mathematics. Also, Strong Types enable proofs of the 

Categoricity of axiomatizations of the ordinals and the cumulative hierarchy of 

sets of a type. 

Furthermore, Strong Types are extremely important in Direct Logic because they 

block all know paradoxes[Cantini and Bruni 2017].  Blocking known paradoxes 

makes Direct Logic safer for use in Intelligent Applications by preventing security 

holes. For example, Strong Types block the following paradoxes:  Berry [Russell 

1906], Burali-Forti [Burali-Forti 1897], Church [Church 1934], Curry [Curry 

1941], Girard[Coquand 1986], and Liar [Eubulides of Miletus], and Löb [Löb 

1955].  

Information Invariance is a fundamental technical goal of logic consisting of the 

following: 

1. Soundness of inference: information is not increased by inference 

2. Completeness of inference: all information that necessarily holds can be 

inferred. 

 
Computer Science needs a rigorous foundation for all of mathematics that enables 

computers to carry out all reasoning without human intervention.36 [Frege 1879] 

was a good start, but it foundered on the issue of consistency. [Russell 1925] 

attempted basing foundations entirely on types, but foundered on the issue of 

being expressive enough to carry to some common mathematical reasoning. 

[Church 1932, 1933] attempted basing foundations entirely on untyped higher-

order functions, but foundered because it was shown to be inconsistent [Kleene 

and Rosser 1935]. Presently, Isabelle [Paulson 1989] and Coq [Coquand and Huet 

1986] are founded on types and do not allow theories to reason about themselves. 

Classical Direct Logic is a foundation for all of mathematical reasoning based on 

strong types (to provide grounding for concepts) that allows general inference 

about reasoning. 
 

[Gödel 1931] claimed inferential undecidabilityi results for mathematics using the 

proposition I'mUnprovable In opposition to Wittgenstein's correct argument his 

proposition leads to contradictions in mathematics, Gödel later claimed that his 

                                                           
i sometimes called “incompleteness” 
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results were for a cut-down first-order theory of natural numbers. However, first-

order logic is not a suitable foundation for Computer Science because of the 

requirement that computer systems be able to carry out all reasoning without 

requiring human intervention (including reasoning about their own inference 

systems).  

 

Following [Frege 1879, Russell 1925, and Church 1932-1933], Direct Logic was 

developed and then investigated propositions with the following results. 

 Formalization of Wittgenstein's proof that Gödel's proposition I'mUnprovable 

leads to contradiction in mathematics. So the consistency of mathematics had 

to be rescued against Gödel's proposition constructed using what [Carnap 

1934] later called the “Diagonal Lemma” which is equivalent to the Y 

untyped fixed point operator on propositions.  Use of the Y untyped fixed 

point operator on propositions in results of [Curry 1941] and [Löb 1955] also 

lead to inconsistency in mathematics. Consequently, mathematics had to be 

rescued against these uses of the Y untyped fixed point operator for 

propositions. 

 Self-proof of the formal consistency of mathematics. Consequently, 

mathematics had to be rescued against the claim [Gödel 1931] that 

mathematics cannot prove its own consistency. Also, it became an open 

problem whether mathematics proves its own formal consistency, which was 

resolved by the author discovering an amazing simple proof.37 A solution is 

to require strongly typed mathematics to bar use of the Y untyped fixed point 

operator for propositions.38 However, some theoreticians have very reluctant 

to accept the solution. 

        According to [Dawson 2006]:39 

 Gödel’s results altered the mathematical landscape, but they did not 

“produce a debacle”. 

 There is less controversy today over mathematical foundations than 

there was before Gödel’s work. 

However, Gödel’s writings have produced a controversy of a very different 

kind from the one discussed by Dawson: 

 Gödel's claim that mathematics cannot prove its own consistencyi has 

been disproved. 

 Consequently, Gödel's writings have led to increased controversy over 

mathematical foundations. 
 

                                                           
i Gödel's writing was accepted doctrine by some theoreticians for over eight decades. 
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The development of Direct Logic has strengthened the position of working 

mathematicians as follows:i 

 Allowing freedom from the philosophical dogma of the First-Order Thesis 

 Providing usable strong types for all of Mathematics that provides theories 

that have categorical models 

 Allowing theories to freely reason about theories 

 Providing Inconsistency Robust Direct Logic for safely reasoning about 

theories of practice that are (of necessity) pervasively inconsistent. 
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Appendix 1:  Notation of Direct Logic 
 

 Type i.e., a type is a discrimination 40 of the following:41 

o Boolean::42, ℕ::43, O::44 and Typeτ:: where τ::45  

o Propositionorder:: and Sentenceorder:: where order:ℕ+ 

o τ1⦶τ2::46, [τ1,τ2]::47, [τ1]→τ2::i and 𝛕𝟐
𝛕𝟏::ii where τ1:: and τ2:: 

o Setτ::iii and Expressionτ::48 where τ:: 

 

 Propositions, i.e., a Proposition is a discrimination of the following: 

o :Propositionorder where :Propositionorderiv and order:ℕ+ 

o ,,⇨,⇔:Propositionorder where 

,:Propositionorder and order:ℕ+ 
o (p  �  True⦂ 1, False⦂ 2):Propositionorder where p:Boolean, 

,:Propositionorder49 and order:ℕ+ 
o x1=x2:Proposition1 where x1,x2:τ and τ:: 
o s1s2:Proposition1 where s1,s2:Setτ and τ:: 
o xs:Proposition1 where x:τ, s:Setτ and τ:: 

o τ1⊑τ2:Proposition150
 where  τ1:: and τ2:: 

o (x::):Proposition151 
o (x:τ):Proposition1 where τ:: 

o p[x]:Propositionorder+1v where x:τ, p:Propositionorderτ and 

order:ℕ+ If τ is nonpropositional then p[x] is also of type 

Propositionorder.  

o (1, …, n-1├
𝐩

𝐓
  n):Propositionorder52 where p:Proof, T:Theory,  

1 to n:Propositionorder and order:ℕ+ 
o s:Propositionorder where s:Sentenceorder with no free variables 

and order:ℕ+ 

                                                           
i Type of computable procedures from τ1 into τ2. 

If f:([τ1]→τ2) and x:τ1, then f ∎[x]:τ2. 

ii Type of functions from τ1 into τ2. 

If f:τ2
𝛔1  and x:τ1, then f[x]:τ2. 

iii Setτ is a type parametrized by the type τ. In Java and C++, 

parametrized types are called “generics”, “<” is used for , and “>” is used 

for . The following axiom holds: ∀[τ::,s:Setτ,x∈s]  x:τ 
iv Propositionorder is the parametrized type consisting of type Proposition 

parametrized by order.  
v The type of p[x] means that the Y fixed point construction cannot be used to 

construct propositions in Direct Logic. 
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Grammar (syntax) trees (i.e. expressions and sentences) are defined as follows: 

 Expressions, i.e., an Expressionτ is a discrimination of the following: 
o ⦅x⦆:Constantτ where x:τ and τ:: 
o x:Expressionτ where x:Constantτ and τ:: 
o x:Expressionτ where x:Variableτ and τ:: 

o ⦅f1[x1:𝛕𝟏]:𝛔𝟏≡d1, ... , fn[xn:𝛕𝐧]:𝛔𝐧≡dn
53, y⦆:Expressionτ where for i in 1 to n,  

fi:Variable𝛔𝐢
𝛕𝒊 in di and y, xi:Variable𝛕𝐢 in di,di:Expression𝛔𝐢, 

y:Expressionτ, and 𝛕𝐢:: 

o ⦅x1:𝛕𝟏≡d1, ... , xn≡dn
54,  y⦆:Expressionτ where for i in 1 to n, xi:Variable𝛕𝐢 

in di and y, di:Expression𝛔𝐢, y:Expressionτ, and 𝛕𝐢:: 
o ⦅e1⦶e2⦆:Expressionτ1⦶τ2, ⦅[e1, e2]⦆:Expression[τ1, τ2], 

⦅[e1]→e2⦆:Expression[τ1]→τ2 and ⦅𝐞𝟐
𝐞𝟏⦆:Expression𝛕2

𝛕1
 where 

e1:Expressionτ1, e2:Expressionτ2, τ1:: and τ2:: 
o ⦅e1 � True⦂ e2 , False⦂ e3⦆:Expressionτi where e1:ExpressionBoolean, 

e2,e3:Expressionτ and τ:: 
o ⦅λ[x:τ1]  e⦆:Expression𝛕𝟐

𝛕𝟏 where e:Expressionτ2, x:Variableτ1 in e, 
and τ1,τ2:: 

o ⦅e[x]⦆:Expressionτ2 where e:Expression𝛕𝟐
𝛕𝟏, x:Expressionτ1, τ1:: 

and τ2:: 
o ⦅e∎[x]⦆:Expressionτ2 where e:Expression[τ1]→τ2, x:Expressionτ1, 

τ1:: and τ2:: 
o Sentenceorder⊑ExpressionSentenceorder where order:ℕ+ 
o e:τ where e:Expressionτ with no free variables and τ::  
  

                                                           
i ⦅if e1 then e2  else e3⦆ 
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 Sentences, i.e., a Sentence is a discrimination of the following: 

o ⦅x⦆:Sentenceorder+1i where x:VariableSentenceorder and 

order:ℕ+ 
o ⦅s⦆:Sentenceorder where s:Sentenceorder and order:ℕ+ 
o ⦅s1s2⦆,⦅s1s2⦆,⦅s1⇨s2⦆,⦅s1⇔s2⦆:Sentenceorder where 

s1,s2:Sentenceorder and order:ℕ+ 
o ⦅e  � True⦂ s1,  False⦂ s2⦆ii:Sentenceorder where e:ExpressionBoolean, 

s1,s2:Sentenceorder and order:ℕ+  
o ⦅e1=e2⦆:Sentence1 where e1,e2:Expressionτ and τ:: 
o ⦅e1⊑e2⦆:Sentence1 where e1,e2:Expressionτ1, τ1:τ2  and τ2:: 
o ⦅e1e2⦆:Sentence1 where e1,e2:ExpressionSetτ and τ:: 
o ⦅e1e2⦆:Sentence1 where e1:Expressionτ, e2:ExpressionSetτ 

and τ:: 
o ⦅e1:e2⦆:Sentence1 where e1:Expressionτ1, e2:Expressionτ2 τ1:τ3, 

τ2:τ4 and τ3,τ4:: 
o ⦅e::⦆:Sentence1 where e:Expressionτ and τ:: 
o ⦅∀[x:τ1] s⦆,⦅∃[x:τ1] s⦆:Sentenceorder where x:Variableτ1 in s, 

s:Sentenceorder and order:ℕ+ 
o ⦅p[x]⦆:Sentenceorder+1iii where x:Expressionτ, 

p:ExpressionSentenceorderτ
, τ:: and order:ℕ+ If τ is 

nonpropositional then ⦅p[x]⦆ is also of type Sentenceorder. 

o ⦅s1,…,sn-1├
𝐩

𝐓
 sn⦆:Sentenceorder where T:ExpressionTheory, 

s1 to n:Sentenceorder, p:ExpressionProof and order:ℕ+ 
o s:Propositionorder where s:Sentenceorder, order:ℕ+ and there 

are no free variables in s.iv 
  

                                                           
i The type of ⦅x⦆ means that the Y fixed point construction cannot be used to construct 

sentences for “self-referential” propositions in Direct Logic. 
ii if t then s1 else s1 
iii The type of ⦅p[x]⦆ means that the Y fixed point construction cannot be used to 

construct sentences for “self-referential” propositions in Direct Logic.  
iv The type binding achieves much of what Russel sought to achieve in the ramified 

theory of types. [Russell and Whitehead 1910-1913] 
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 Strings for sentences, i.e., a string for a sentence is a discrimination of the 
following: 

o “x”:StringSentenceorder+1i where 

x:VariableStringSentenceorder and order:ℕ+ 
o “s”:StringSentenceorder where s:StringSentenceorder and 

order:ℕ+ 
o “s1  s2”,“s1  s2”,“s1 ⇨ s2”,“s1 ⇔ s2”:StringSentenceorder where 

s1,s2:StringSentenceorder and order:ℕ+ 

o “e � True⦂ s1 , False⦂ s2”ii:StringSentenceorder where e: 
StringExpressionBoolean, s1,s2:StringSentenceorder and 

order:ℕ+  
o “e1=e2”:StringSentence1 where e1,e2:StringExpressionτ and τ:: 
o “e1⊑e2”:StringSentence1 where e1,e2:StringExpressionτ1, τ1:τ2  

and τ2:: 
o “e1 e2”:StringSentence1 where e1,e2:StringExpressionSetτ 

and τ:: 
o “e1e2”:StringSentence1 where e1:StringExpressionτ, 

e2:StringExpressionSetτ and τ:: 
o “e1:e2”:StringSentence1 where e1:StringExpressionτ1, 

e2:StringExpressionτ2, τ1:τ3, τ2:τ4 and τ3,τ4:: 
o “e::”:StringSentenceorder where e:StringExpressionτ and τ:: 
o “∀[x:τ1] s”,“∃[x:τ1] s”:StringSentenceorder where x:Variableτ1 in s, 

s:StringSentenceorder and order:ℕ+ 
o “p[x]”:StringSentenceorder+1iii where x:StringExpressionτ, 

p:StringExpressionSentenceorderτ
, τ:: and order:ℕ+ If τ is 

nonpropositional then “p[x]” is also of type StringSentenceorder 

o “s1 , … , sn-1 ├
𝐩

𝐓
  sn”:Stringorder where T:StringExpressionTheory, 

s1 to n:Stringorder, p:StringExpressionProof and order:ℕ+ 
o s:Sentenceorder where s:StringSentenceorder and order:ℕ+ 

  

                                                           
i The type of “x” means that the Y fixed point construction cannot be used to construct 

strings for “self-referential” propositions in Direct Logic. 
ii if t then s1 else s1 
iii The type of “p[x]" ” means that the Y fixed point construction cannot be used to 

construct strings for “self-referential” propositions in Direct Logic.  
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 String for expressions, i.e., a string for an expression is a discrimination of the 
following: 
o “⦅x⦆”:StringExpressionτ where x:StringConstantτ and τ:: 
o “⦅x⦆”: StringExpressionτ where x:StringVariableτ and τ:: 

o “⦅(f1[x1:𝛕𝟏]:𝛔𝟏≡d1, ... , fn[xn:𝛕𝐧]:𝛔𝐧≡dn
55,y)⦆”:StringExpressionτ where 

for i in 1 to n,  fi:StringVariable𝛔𝐢
𝛕𝒊 in di and y, 

xi:StringVariable𝛕𝐢 in di,di:StringExpression𝛔𝐢, 

y:StringExpressionτ, and 𝛕𝐢:: 

o “⦅( x1:𝛕𝟏≡d1, ... , xn≡dn
56y)⦆”:StringExpressionτ where for i in 1 to n, 

xi:StringVariable𝛕𝐢 in di and y, di:StringExpression𝛔𝐢, 

y:StringExpressionτ, and 𝛕𝐢:: 
o “⦅e1⦶e2⦆”:StringExpressionτ1⦶τ2, 

“⦅[e1, e2]⦆”:StringExpression[τ1,τ2], 
“⦅[e1]→e2⦆”:StringExpression[τ1]→τ2, and 

⦅𝐞𝟐
𝐞𝟏⦆:StringExpression𝛕2

𝛕1
 where e1:StringExpressionτ1, 

e2:StringExpressionτ2, and τ1:: and τ2:: 
o “⦅e1 � True⦂ e2 , False⦂ e3⦆”:StringExpressionτi where 

e1:StringExpressionBoolean, e2,e3:StringExpressionτ and τ:: 
o “⦅λ[x:τ1]  e⦆”:StringExpression𝛕𝟐

𝛕𝟏 where e:StringExpressionτ2, 
x:StringVariableτ1 in e, and τ1,τ2:: 

o “⦅e[x]⦆”:StringExpressionτ2 where e:StringExpression𝛕𝟐
𝛕𝟏, 

x:StringExpressionτ1, τ1:: and τ2:: 
o “⦅e∎[x]⦆”:Expressionτ2 where e:Expression[τ1]→τ2, x:Expressionτ1, 

τ1:: and τ2:: 
o StringSentenceorder⊑StringExpressionSentenceorder 

where order:ℕ+ 
o e:Expressionτ, where e:StringExpressionτ and τ::  

  

                                                           
i “if e1 then e2  else e3” 
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Appendix 2. Historical Background 
“The powerful (try to) insist that their statements are literal depictions of a single 

reality. ‘It really is that way’, they tell us. ‘There is no alternative.’ But those on 

the receiving end of such homilies learn to read them allegorically, these are 

techniques used by subordinates to read through the words of the powerful to the 

concealed realities that have produced them.” [Law 2004] 

 
Gödel was certain 

“ ‛Certainty’ is far from being a sign of success; it is only a symptom of lack of 

imagination and conceptual poverty. It produces smug satisfaction and prevents 

the growth of knowledge.” [Lakatos 1976] 

 

Paul Cohen [2006] wrote as follows of his interaction with Gödel:57  

“His [Gödel's] main interest seemed to lie in 

discussing the ‛truth’ or ‛falsity’ of these 

[mathematical] questions, not merely in their 

undecidability. He struck me as having an almost 

unshakable belief in this “realist” position, which I 

found difficult to share. His ideas were grounded in 

a deep philosophical belief as to what the human 

mind could achieve. I greatly admired this faith in 

the power and beauty of Western Culture, as he put 

it, and would have liked to understand more deeply 

what were the sources of his strongly held beliefs. 

Through our discussions, I came closer to his point 

of view, although I never shared completely his ‛realist’ point of 

view, that all questions of Set Theory were in the final analysis, 

either true or false.”  

 

According to John von Neumann, Gödel was “the 

greatest logician since Aristotle.”58 However, [von 

Neumann 1961] expressed a very different 

mathematical philosophy than Gödel: 

  

“It is not necessarily true that the mathematical 

method is something absolute, which was 

revealed from on high, or which somehow, after 

we got hold of it, was evidently right and has 

stayed evidently right ever since.” 

 

Kurt Gödel 
 

John von Neumann 

http://knol.google.com/k/-/-/pcxtp4rx7g1t/mdzs7d/goedel.png
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Gödel based his incompleteness results on the thesis that mathematics necessarily 

has the proposition I'mUnprovable in Principia Mathematica [Russell 1902].  

 

Wittgenstein correctly noted that Gödel's I'mUnprovable infers inconsistency in 

mathematics:59  
“Let us suppose [Gödel's writings are correct and therefore] I provei the 

improvability (in Russell’s system) of [Gödel's I'mUnprovable] P; [i.e., ⊢⊬P where 

P⇔⊬P] then by this proof I have proved P [i.e., ⊢P]. Now if this proof were one in 

Russell’s system [i.e., ⊢⊢P] — I should in this case have proved at once that it 

belonged [i.e., ⊢P] and did not belong [i.e., ⊢ P because P⇔⊢P] to Russell’s 

system. 

    But there is a contradiction here! [i.e., ⊢P and ⊢ P] ...       

[This] is what comes of making up such sentences.” [emphasis added] 

 
According to [Gödel 1972]: 

“Wittgenstein did not understand it [Gödel's 1931 article on Principia 

Mathematica] (or pretended not to understand it). He interpreted it as a kind 

of logical paradox, while in fact it is just the opposite, namely a mathematical 

theorem within an absolutely uncontroversial part of mathematics (finitary 

number theory or combinatorics).”  
 

In the above passage, Gödel retreated from Principia Mathematic to the First-

Order Logic theory FirstOrderNatualNumbers  to defend his 

I'mUnprovableInFirstOrderNatualNumbers. However, the following 

incompleteness result is not very impressive because 

FirstOrderNatualNumbers  is a very weak theory: 

 ⊨ℕ I'mUnprovableInFirstOrderNatualNumbers 

 ⊬
FirstOrderNatualNumbers

 I'mUnprovableInFirstOrderNatualNumbers 

 

                                                           
i Wittgenstein was granting the supposition that Gödel had proved inferential 

undecidability (sometimes called “incompleteness”) of Russell’s system, that is.,  
⊢⊬

 
P. However, inferential undecidability is easy to prove using the proposition P 

where P⇔⊬P:  

Proof. Suppose to obtain a contradiction that ⊢
 
P. Both of the following can be 

inferred:  

1) ⊢
 
⊬

 
P from the hypothesis because P⇔⊬P 

2) ⊢
 
⊢

 
P from the hypothesis by Adequacy. 

But 1) and 2) are a contradiction. Consequently, ⊢⊬
 
P follows from proof by 

contradiction. 
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Trying to retain I’mUnprovable forced Gödel into a very narrow and constricted 

place of reducing propositions to strings for sentences and then to Gödel numbers 

axiomatized in a first-order theory in order to avoid Wittgenstein's devastating 

criticism. This narrow constricted place is intolerable for computer science, which 

needs to reason about propositions in a more natural and flexible way using Strong 

Types. 

 

Let T be a theory capable of representing all computable functions on Strings and 

Natural Numbers with GödelNumber[aWellFormedString] being the Gödel 

number of aWellFormedString, where a well-formed string is here considered to 

be a proposition. A Diagonal Lemma is: 

     If F is a well-formed string in the language with one free variable, then  

         there is a well-formed string S such that the following is provable in T: 

                    S  ⇔ F[GödelNumber[S]]  

 

Letting GödelNumberToWellFormedString[n] be the well-formed string with 

Gödel number n, define Eubulides as follows (where  

“GödelNumberToWellFormedString[n]” is the string formed by prefixing the 

character  to the well-formed string with Gödel number n): 

        Eubulides[n] ≡ “GödelNumberToWellFormedString[n]”  

 

By the above Diagonal Lemma, there is a well-formed string I’mFalse such that 

the following is provable in T (where 

“GödelNumberToWellFormedString[GödelNumber[I’mFalse]]” is the result 

of prefixing the well-formed string 

GödelNumberToWellFormedString[GödelNumber[I’mFalse]] with ):60 

    I’mFalse  ⇔ Eubulides[GödelNumber[I’mFalse]]  

                     ⇔ “GödelNumberToWellFormedString[GödelNumber[I’mFalse]]” 

                     ⇔ I’mFalse  

 

[Chaitin 2007] complained about basing something as important as 

incompleteness something so trivial as I'mUnprovable:  

“[Gödel’s proof] was too superficial. It didn't get at the real heart of what was 

going on. It was more tantalizing than anything else. It was not a good reason 

for something so devastating and fundamental. It was too clever by half. It was 

too superficial. [It was based on the clever construction] I'mUnprovable So 

what? This doesn't give any insight how serious the problem is.” 
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Chaitin's criticism is partially supported by the fact that even Gödel himself agreed 

that the subsequent proof of incompleteness by Church/Turing based on 

computational undecidability was fundamental in proving that there is no total 

recursive procedure that can decide provability of a proposition of the categorical 

theory Nat of natural numbers. There must be an inferentially undecidable 

proposition for Nat  because otherwise provability of any proposition could be 

computationally decided by enumerating all theorems until the proposition or its 

negation is found. However, Gödel, Church, Turing, and many other logicians 

continued for a long time to believe in the importance of Gödel’s proof based on 

his I'mUnprovable.61   
 

According to [Monk 2007]:62 

“Wittgenstein hoped that his work on mathematics 

would have a cultural impact, that it would 

threaten the attitudes that prevail in logic, 

mathematics and the philosophies of them. On this 

measure it has been a spectacular failure.”  

 

Unfortunately, recognition of the worth of 

Wittgenstein’s work on mathematics came long after 

his death. For decades, many theoreticians mistakenly 

believed that they had been completely victorious over 

Wittgenstein. 

 

  

Ludwig Wittgenstein 
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Church's Paradox 
[Church 1932, 1933] attempted basing foundations entirely on untyped higher-
order functions, but foundered because 
contradictions emerged because  
1. His system allowed the use of the Y 

fixed point operator for untyped 
propositions to construct “self-
referential” propositions [Kleene and 
Rosser 1935]  

2. Theorems in his system were 
computationally enumerable. 

 

[Church 1934] expounded on the following 
profound issues, which is designated 
“Church's Paradox”: 

“in the case of any system of symbolic 

logic, the set of all provable theorems is 

[computationally] enumerable...  any 

system of symbolic logic not hopelessly 

inadequate ... would contain the formal 

theorem that this same system ... was either insufficient [theorems are not 

computationally enumerable] or over-sufficient [that theorems are 

computationally enumerable means that the system is inconsistent]...  

       This, of course, is a deplorable state of affairs... 

       Indeed, if there is no formalization of logic as a whole, then there is no 

exact description of what logic is, for it in the very nature of an exact 

description that it implies a formalization. And if there no exact description 

of logic, then there is no sound basis for supposing that there is such a thing 

as logic.” 
 
The mathematical theory Nat

1
 (1st order theory of Natural Numbers) non-

categorically63 formalizes the Natural Numbers using the following schema:i 

        ∀[P:StringExpressionProposition1ℕ
]  

                                          (  P [0]  ∀[i:ℕ]   P [i]⇨ P [i+1]) ⇨ ∀[i:ℕ]  P [i]    

Nat
1
 has countably many instances of the above schema because there are only 

countably many strings.
 
 

 

  

                                                           
i instead of using the categorical induction axiom of Nat 

Alonzo Church 
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Church’s Paradox:64 

1. ⊢𝑁𝑎𝑡1
TheoremsComputationallyEnumerable[Nat

1
] 

2. ⊬𝑁𝑎𝑡1
TheoremsComputationallyEnumerable[Nat

1
] 

Proof:   

1. ⊢𝑁𝑎𝑡1
TheoremsComputationallyEnumerable[Nat

1
] because all of 

the instances of the induction axiom can be computationally 
enumerated and then used to computationally enumerate the 

theorems of Nat
1
. 

2. Suppose to obtain a contradiction that  

                     ⊢𝑁𝑎𝑡1
TheoremsComputationallyEnumerable[Nat

1
] 

Then there is a provable in Nat
1 

computable total procedure 

     TheoremsEnumeratorNat
1
:[ℕ]→TheoremNat

1
 

 such that it is provable in Nat
1 

that 

  ∀[p:TheoremNat
1
] ∃[i:ℕ] TheoremsEnumeratorNat

1
 ∎[i]= p 

A subset of the proofs in Nat
1
 are those proving that certain procedures 

[ℕ]→ℕ are total. Consequently, there is a procedure 

                                 ProvedTotalsEnumeratorNat
1
:[ℕ]→([ℕ]→ℕ) 

that enumerates the provable in Nat
1
 total computable procedures [ℕ]→ℕ 

that can be used in the implementation of the following procedure: 

      Diagonal∎[i:ℕ]:ℕ ≡ 1+ (ProvedTotalsEnumeratorNat
1
∎[i]) ∎[i] 

Consequently: 
• Diagonal is a provable in Nat

1
 total procedure because it is 

implemented using computable provable in Nat
1
 total procedures. 

• Diagonal is not a provable in Nat
1
 total procedure because it differs 

from every other computable provable in Nat
1
 total procedure. 

The above contradiction completes the proof 
 
Church’s Paradox is that Nat

1
 (1st order theory of Natural Numbers) is 

inconsistent. [Church 1934] pointed out that there is no obvious way to remove 
the inconsistency concluding if Nat

1 
is taken to be an exact description of logici 

then, 
“Indeed, if there is no formalization of logic as a whole, then there is no exact 
description of what logic is, for it in the very nature of an exact description that 

                                                           
i (in accord with the opinion of a large fraction of contemporary philosophers of logic) 
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it implies a formalization. And if there no exact description of logic, then there 
is no sound basis for supposing that there is such a thing as logic.” 

 
The above issues can be addressed as follows: 
1. Requiring Mathematics to be strongly typed using 2nd order logic so that 

 Mathematics self proves that it is “open” in the sense that proofs are 
not computationally enumerable.65 

 Mathematics self proves that it is formally consistent.66 
2. It was initially thought that mathematics could be based just on character 

strings. Then diagonalization was discovered and things haven’t been the same 
since. The string for the 1st order Nat

1
 non-categorical induction schema is as 

follows:i 

        "∀[P:StringExpressionProposition1ℕ
] 

                                 (  P [0]  ∀[i:ℕ]   P [i]⇨ P [i+1]) ⇨ ∀[i:ℕ]  P [i]" 
which has countably many 1st order propositions as instances that are abstracted 

from the countably many character strings of type 

StringExpressionProposition1ℕ
 and which differs fundamentally 

from the character string for the more general 2nd order categorical induction 

axiom, which is  as follows: 

    "∀[P:Proposition1ℕ]  (P[0]]  ∀[i:ℕ] P[i]⇨P[i+1]) ⇨ ∀[i:ℕ] P[i]" 
Although the theory Nat  has only finitely many axioms, the above string 

abstracted as a proposition has uncountably many 1st order propositions as 

instances.ii In this way, Nat differs fundamentally from the 1st order theory Nat
1
 

because, being uncountable, not all instances of the Nat induction axiom can 

be obtained by abstraction from character strings. Proofs abstracted from 

character strings for the axioms of Nat
1 
can be computationally enumerated and 

are valid proofs in Nat, but this does not enumerate all of the proofs of Nat ! 

What is to be made of the uncountable number of theorems of Nat  whose 

proofs cannot be written down in text? 

   

Gödel, Curry, and Löb Paradoxes 

Allowing use of the Y untyped fixed point operator for propositions results in 

contradictions.  

 

                                                           
i with the unfortunate consequence that the argument in Church’s Paradox shows that 

Nat
1
 is inconsistent because it can provably computationally enumerate its theorems 

ii with the consequence that the argument in Church’s Paradox is blocked in Nat
 
because 

it has uncountably many theorems 



 

 

 

 

 

 

 

 

 

37 

The fixed point construction of the Diagonal Lemma cannot be used to construct 

Gödel's I'mUnprovable with the following definition of F because a fixed point 

does not exist: 67 

Fn>[p:Propositionn]:Propositionn+1 ≡  ⊬ p 

 

By the following argument, Wittgenstein derived a contradiction in Mathematics 

from Gödel’s result:68
 

Gödel thought that he demonstrated ⊢⊬I'mUnprovable. Therefore 

⊢I'mUnprovable using I'mUnprovable⇔⊬I'mUnprovable. ⊢⊢I'mUnprovable 

follows using adequacy. But the contradiction ⊢I'mUnprovable follows 

using I'mUnprovable⇔⊬I'mUnprovable.  

 

The following paradoxes cannot prove every proposition because the Y untyped 

fixed point operator for propositions cannot be used  in a strongly typed logic:69 

 Curry’s Paradox [Curry 1941] Suppose Ψ:PropositionanOrder:ℕ+. 

      Fn:ℕ+[p:Propositionn]:PropositionMax[n+1, anOrder]  ≡  p⇒Ψ 

        // above definition has no fixed point because p├ Ψ has 

             // order greater than p 

The following argument derives any proposition Ψ assuming the existence 

of a fixed point for F:     
1) CurryΨ ⇔ (CurryΨ ⇒ Ψ)     // nonexistent fixed point of F  
2) CurryΨ ⇒ CurryΨ                       // idempotency 

3) CurryΨ ⇒ (CurryΨ ⇒ Ψ)     // substituting 1) into 2) 

4) CurryΨ ⇒ Ψ                          // contraction 

5) CurryΨ                                            // from 4) using 1) 

6) Ψ                                                                           // transitivity 4) and 5) 

 Löb’s Paradox [Löb 1955]70  Suppose Ψ:PropositionanOrder:ℕ+. 

 Fn:ℕ+[p:Propositionn]:PropositionMax[n+1,anOrder] ≡ (├ p)⇒Ψ  

        // above definition has no fixed point because ≡  (├ p) has 

             // order greater than p 

The following argument derives any proposition Ψ assuming the existence 

of a fixed point for F:     
1)   LöbΨ ⇔  ((├  LöbΨ) ⇒ Ψ)           // nonexistent fixed point of F 

2) (├ LöbΨ) ⇒ LöbΨ                             // rule of Theorem Use 

3) (├ LöbΨ) ⇒ ((├  LöbΨ) ⇒ Ψ)        // substituting 1) into 2) 

4) (├ LöbΨ) ⇒ Ψ                                  // contraction 

5) ├ LöbΨ                                                    // from 4) using 1) 

6) Ψ                                                                                             // transitivity using 4) and 5) 
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Berry Paradox 
The Berry Paradox [Russell 1906] can be formalized as follows: 

 

Characterize[s:StringExpressionPropositionωℕ
 

                          k:ℕ]:Propositionω+1 ≡   
        ∀[x:ℕ]  s  [x] ⇔ x=k 

Consider the following definition: 

  BString:StringExpressionPropositionω+1ℕ
 ≡    

         “⦅λ[n:ℕ]  ⦅∀[s:StringExpressionPropositionωℕ
] 

                                     Length[s]<100 ⇨ Characterize[s, n]⦆⦆” 

 

  BExpression:ExpressionPropositionω+1ℕ
 ≡   BString 

  Note that 
o Length[BString]<100. 

o {s:StringExpressionPropositionωℕ
 | Length[s]<100} is finite. 

o Therefore the following set is finite: 

              {n:ℕ+ |  ∃[s:StringExpressionPropositionωℕ
] 

                                                 Length[s]<100  Characterize[s, n]} 

BSet:Setℕ ≡ {n:ℕ+ |  BExpression [n]} 

BSet≠{  } because is {n:ℕ | n≧1} is infinite. 
 
1. BNumber:ℕ ≡ Least[BSet]  
2.  BExpression [BNumber]71 

3.   ⦅λ[n:ℕ] ⦅∀[s:StringExpressionPropositionωℕ
]  

                                  Length[s]<100 ⇨ Characterize[s, n]⦆ [BNumber]72  

4.  ∀[s:StringExpressionPropositionωℕ
]  

                                     Length[s]<100 ⇨ Characterize[s, BNumber]73 
5.  Length[BString]<100 ⇨ Characterize[BString, BNumber] 
           // above is invalid because of attempted substitution of 

                 // BString:StringExpressionPropositionω+1ℕ
 for 

                      //  s:StringExpressionPropositionωℕ
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End Notes 

 

 

 

 

 

 

 

1 [White 1956, Wilder 1968, Rosental 2008] 
2 Mathematical foundations of Computer Science must be general, rigorous, 

realistic, and as simple as possible. There are a large number of highly technical 

aspects with complicated interdependencies and trade-offs. Foundations will be 

used by humans and computer systems. Contradictions in the mathematical 

foundations of Computer Science cannot be allowed and if found must be 

repaired. 

     Classical mathematics is the subject of this article. In a more general context: 

 Inconsistency Robust Direct Logic is for pervasively inconsistent theories 

of practice, e.g., theories for climate modeling and for modeling the 

human brain. 

 Classical Direct Logic can be freely used in theories of Inconsistency 

Robust Direct Logic. See [Hewitt 2010] for discussion of Inconsistency 

Robust Direct Logic. Classical Direct Logic for mathematics used in 

inconsistency robust theories. 
3 By the Computational Representation Theorem [Clinger 1981; Hewitt 2006], 

which can define all the possible executions of a procedure. 

4 Again, Mathematics here means the common foundation of all classical 

mathematical theories from Euclid to the mathematics used to prove Fermat's 

Last [McLarty 2010].   
5 As shown above, there is a simple proof in Classical Direct Logic that 

Mathematics (├) is formally consistent. If Classical Direct Logic has a bug, then 

there might also be a proof that Mathematics is inconsistent. Of course, if a such 

a bug is found, then it must be repaired. The Classical Direct Logic proof that 

Mathematics (├) is consistent is very robust. One explanation is that consistency 

is built in to the very architecture of Mathematics because it was designed to be   

consistent. Consequently, it is not absurd that there is a simple proof of the 

consistency of Mathematics (├) that does not use all of the machinery of 

Classical Direct Logic. 
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       In reaction to paradoxes, philosophers developed the dogma of the necessity 

of strict separation of “object theories” (theories about basic mathematical 

entities such as numbers) and “meta theories” (theories about theories). This 

linguistic separation can be very awkward in Computer Science. Consequently, 

Direct Logic does not have the separation in order that some propositions can 

be more “directly” expressed. For example, Direct Logic can use ├├Ψ to 

express that it is provable that P is provable in Mathematics. It turns out in 

Classical Direct Logic that ├├Ψ holds if and only if ├Ψ holds. By using such 

expressions, Direct Logic contravenes the philosophical dogma that the 

proposition ├├Ψ must be expressed using Gödel numbers. 
6 Gödel based his incompleteness results on the thesis that Mathematics 

necessarily has the proposition I'mUnprovable using what was later called the 

“Diagonal Lemma” [Carnap 1934], which is equivalent to the Y untyped fixed 

point operator on propositions. Using strong parameterized types, it is 

impossible to construct I'mUnprovable because the Y untyped fixed point 

operator does not exist for strongly typed propositions. In this way, formal 

consistency of Mathematics is preserved without giving up power because there 

do not seem to be any practical uses for I'mUnprovable in Computer Science. 

        A procedure definition NotProvable could be attempted as follows: 

                   NotProvable[p] ≡ ⊬p  

         With strong types, the attempted definition becomes: 

              NotProvablen:ℕ+[p:Propositionn]:Propositionn+1 ≡ ⊬p 
   Consequently, there is no fixed point I'mUnprovable for the procedure 

NotProvablen:ℕ+ such that the following holds:  

                    NotProvablen:ℕ+[I'mUnprovable]⇔I'mUnprovable 
   Thus Gödel’s I'mUnprovable does not exist in Strongly-Typed Mathematics. 

See the discussion in this article on Provability Direct Logic for Wittgenstein's 

proof that I'mUnprovable leads to inconsistency in Mathematics. 

    In arguing against Wittgenstein’s criticism, Gödel maintained that his results 

on I'mUnprovable followed from properties of ℕ using Gödel numbers for 

strings that are well-formed. The procedure NotProvable could be attempted for 

strings as follows: NotProvable[s] ≡ “⊬ s” With strong types, the attempted 

definition becomes: 

       NotProvablen:ℕ+[s:StringPropositionn]:StringPropositionn+1 

                                                                                                                                                                                        ≡ “⊬ s” 
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Consequently, there is no fixed point I'mUnprovableString for the procedure 

NotProvablen:ℕ+ such that the following holds where   s   is the 

proposition for well-formed string s:  

      NotProvablen:ℕ+ [I'mUnprovableString]  ⇔  I'mUnprovableString  
   Thus Gödel’s I'mUnprovableString does not exist in Strongly-Typed 

Mathematics.    

        Furthermore, Strong Types thwart the known paradoxes while at the same 

time facilitating proof of new theorems, such as categoricity of the set theory. 

      Although Gödel’s incompleteness results for I'mUnprovable have 

fundamental problems, the work was extremely significant.  For example, the 

following paradoxes were developed following along Gödel’s work: 

 Curry’s Paradox [Curry 1941] Suppose Ψ:Propositionorder:ℕ+. 

     Curryn:ℕ+[p:Propositionn]:PropositionMax[n,order+1] ≡ p⇒Ψ 

Curry’s Paradox is blocked because the procedure Curry does not have a 

fixed point. 

 Löb’s Paradox [Löb 1955]6  Suppose Ψ:Propositionorder:ℕ+. 

 Löbn:ℕ+[p:Propositionn]:PropositionMax[n,order+1 ≡ (├ p)⇒Ψ 

Löb’s Paradox is blocked because the procedure Löb does not have a fixed 

point.  

A key difference is that Direct Logic works directly with propositions as 

opposed to the work of Gödel, Curry, and Löb, which was based on first-order 

theories of propositions for sentences strings coded as integers. 
7 [Nielsen 2014] 
8 [Isaacson 2007] 
9 The induction axiom per se does not per se commit to sets such as those in 

Booleanℕ. Also as illustrated in this article, strong types are in fact much 

stronger that first-order set theory. 
10 This argument appeared in [Church 1934] expressing concern that the 

argument meant that there is “no sound basis for supposing that there is such 

a thing as logic.” 
11 The argument above appeared in [Church 1934] expressing concern that the 

argument meant that there is “no sound basis for supposing that there is such a 

thing as logic.” However, there are uncountably many P:Proposition1ℕ for 

which the following holds in ℕ: (P[0]  ∀[i:ℕ] P[i]⇨P[i+1]) ⇨ ∀[i:ℕ] P[i] 
Consequently, there is no way to computationaly enumerate all such P by 

abstraction from strings of the following form:  StringProposition1ℕ
. 

There are uncountably many propositions of Nat that are true in ℕ. However, 

only countably many can be abstracted from strings. And there are only 
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countably many propositions that can be proved by abstracting from strings that 

are the axioms of Nat.  See the discussion of Church’s Paradox in appendix of 

this article. 
12 [Dedekind 1888] According to [Isaacson 2007]: 

“Second-order quantification is significant for philosophy of mathematics 

since it is the means by which mathematical structures may be 

characterized. But it is also significant for mathematics itself. It is the means 

by which the significant distinction can be made between the independence 

of Euclid's Fifth postulate from the other postulates of geometry and the 

independence of Cantor's Continuum hypothesis [conjecture] from the 

axioms of set theory. The independence of the Fifth postulate rejects the 

fact, which can be expressed and established using second-order logic, that 

there are different geometries, in one of which the Fifth postulate holds (is 

true), in others of which it is false.” 
13 For each type X that satisfies the categorical axioms there is a (unique) 

isomorphism I:Xℕ and inductively defined as follows: 

1. I[0ℕ] ≡ 0X 

2. I[+1[j]] ≡ +1
𝐗[I[j]] 

Using proofs by Natural Number induction on ℕ and X, the following follow: 

1. I is defined for every ℕ 

2. I is one-to-one: ∀[k,j:ℕ] I[k]=I[j] ⇒ k=j 

     First show Lemma by induction on k: ∀[k:ℕ] I[k]=0x ⇒ k=0ℕ 

              Base : Suppose k=0ℕ. QED. 

              Induction:  Suppose I[k]=0X ⇒ k=0ℕ 
                 To show: I[+1[k]]=0X ⇒ +1[k]=0X 
                 I[+1[k]]= +1

𝐗
X[I[k]]  

               Therefore I[+1[k]]=0X ⇒0X=+1
𝐗 [I[k]]  

                       which is a contradiction 

 To show: ∀[k,j:ℕ] I[k]=I[j] ⇒ i=j 
           Proof:  Induction on P[m:ℕ]:Proposition1  ≡ 

                                                                   ∀[k,j≦m:ℕ] I[k]=I[j]⇒i=j 

              Base :  Suppose m=k=j=0ℕ. QED. 
              Induction: Suppose ∀[k,j≦m:ℕ] I[k]=I[j]⇒k=j 

                 To show: ∀[0ℕ<k,j<+1[m]] I[k]=I[j]⇒k=j 

                  ∃[k0,j0≦m:ℕ] k=+1[k0]  j=+1[j0] because  0ℕ<k,j≦m 
                  k0=j0 since k0,j0≦m,  k,j<+1[m] and  
                                                   I[k0]=I[j0]⇒k0=j0 by induction hypothesis 
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                  +1[k0]=+1[j0] and therefore k=j 
3. the range of I is all of X: ∀[y:X] ∃[k:ℕ] I[k]=y 

Proof: Induction on P[y:X]:Proposition1   ≡ ∃[k:ℕ] I[k]=y  

  Base: Suppose y=0X. To show ∃[k:ℕ] I[k]= 0X. Clearly I[0ℕ]=0X 

      Induction: Suppose y>0X:X and ∃[k:ℕ] I[k]=y. Let I[k0]=y. 

        To show ∃[k:ℕ] I[k]=+1
𝐗[y].  

          It follows from I[+1[k0]]] = +1
𝐗[I[k0]] = +1

𝐗[y] 
4. I is a homomorphism: I[0ℕ]=0X and ∀[j:ℕ] I[+1[j]] = +1

𝐗[I[j]] 
      Proof:  Induction on P[j:ℕ]:Proposition1  ≡ I[+1[j]]=+1

𝐗[I[j]]] 
              Base :  I[+1[0ℕ]]=+1

𝐗[I[0ℕ]] by definition of I 
              Induction: Suppose ∀[i:ℕ] I[+1[j]] = +1

𝐗[I[j]] 
                   To show: ∀[j:ℕ] I[+1[+1[j]]] = +1

𝐗[I[+1[j]]] 
                   I[+1[+1[j]]] = +1

𝐗[I[+1[j]]] by definition of I 
5. I-1:ℕX is a homomorphism: 
                                           I-1[0X]= 0ℕ and ∀[y:X] I-1[+1

𝐗[y]]=+1[I-1[y]] 
      Proof:  
          To show: I-1[0X]=0ℕ.   
              Let i=I-1[0X].  Therefore I[k]=0X and k=0ℕ. 
           To show: ∀[y:X] I-1[+1

𝐗[y]]=+1[I-1[y]]] 
            Induction on P[y:X]:Proposition1  ≡ I-1+1

𝐗[y]]=+1[I-1[y]]] 
                Base :  To show: I-1[+1

𝐗[0X]]=+1[I-1[0X]]]=+1[0ℕ] 
                    Let k=I-1[+1

𝐗[0X]].  Therefore I[k]=+1
𝐗 [0X] and k=+1[0ℕ].  

              Induction: Suppose ∀[j:ℕ] I[+1[j]]=+1
𝐗 [I[j]] 

                   To show: ∀[i:ℕ] I[+1[+1[j]]]=+1
𝐗[I[+1[j]]] 

                   I[+1[+1[j]]]= +1
𝐗[I[+1[j]]] by definition of I 

6. I is the unique isomorphism:  If g:Xℕ is an isomorphism then g=I 
      Proof: Induction on P[j:ℕ]:Proposition1  ≡ I[j]=g[j] 
              Base :  I[0ℕ]=0X. g[0ℕ]=0X  because g is an isomorphism.  
                          Therefore I[0ℕ]=g[0ℕ] 
              Induction: Suppose I[j]=g[j].  
                                   To show: I[+1[j]]=g[+1[j]] 
                                    I[+1[j]]= +1

𝐗[I[j]]= +1
𝐗[g[j]]= g[+1[j]] 

14 For example, there are nondeterministic Turing machines that the theory Nat 

proves always halt that cannot be proved to halt in a first-order theory. 
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15 [Dedekind 1888] 

The following can be used to characterize the real numbers (ℝ15) up to 
isomorphism with a unique isomorphism: 
     ∀[S:Setℝ]  S≠{ }ℝ  Bounded[S] ⇨ HasLeastUpperBound[S] 
 where   
    Bounded[S:Setℝ] ⇔ ∃[b:ℝ] UpperBound[b, S]  
    UpperBound[b:ℝ, S:Setℝ] ⇔  bS  ∀[xS] x≦b 
    HasLeastUpperBound[S:Setℝ]]  ⇔ ∃[b:ℝ] LeastUpperBound[b, S] 
    LeastUpperBound[b:ℝ, S:Setℝ] 
                    ⇔  UpperBound[b,S]  ∀[xS] UpperBound[x,S] ⇨ x≦b 

16 Robinson [1961] 
17 The theory of the ordinals Ord  is axiomatised as follows: 

 0O:O 

 Successor ordinals 
o ∀[α:O]  +1[α]:O  +1[α]>α 

o ∀[α:O]  ∄[β:O]  α<β<+1[α] 

 Replacement for ordinals: 

o ∀[α:O,f:OO] ⊍αf:O 

o ∀[α,β:O,f:OO] β∈⊍αf ⇔ ∃[δ<α] β≦f[δ] 

o ∀[α,β:O,f:OO] (∀[δ<α] f[δ]≦β) ⇨ ⊍αf≦β 

 Cardinal ordinals 

ω0 = ℕ 

∀[α:O] α>0O ⇨ |ω α| = |𝐁𝐨𝐨𝐥𝐞𝐚𝐧
⊍β<αωβ| 

∀[α,β:O] |β|=|ωα| ⇨ ωα=β  ωα∈β 

where |τ1| = |τ2| ⇔ ∃[f:τ2
τ1] OneToOneOntoτ1,τ2[f] 

                 OneToOneτ1 ,τ2[f:τ2
τ1]  

                                                             ⇔  ∀[x1,x2:τ1] f[x1]=f[x2] ⇨ x1=x2 
            OneToOneOntoτ1 ,τ2[f:τ2

τ1]  
               ⇔ OneToOneτ1 ,τ2[f:τ2

τ1]   ∀[y:τ2] ∃[x:τ1]  f[x]=y 

 Tansitivity of < 
∀[α,β<α,δ<β:O]  α<δ 

 ∀[α,β:O]  α<β  α=β  β<α 

 ∀[α,β:O]  α<β ⇨ β<α 
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 For each order:ℕ+ and P:PropositionorderO
: 

the following ordinal induction axiom holds: 

                   (∀[α:O] ∀[β<α:O] P[β]⇨P[α]) ⇨ ∀[α:O] P[α] 

Ordinals have the following properties: 

 Ordinals are well-ordered: 

Least:𝐎𝐁𝐨𝐨𝐥𝐞𝐚𝐧𝐎
 

Least[{ }] = 0O 

∀[S:BooleanO] S≠{ } ⇨ Least[S]∈S 

∀[S:BooleanO] S≠{ } ⇨ ∀[α:O] α∈S ⇨ Least[S]≦α 

 Reals can be well-ordered 

|ω1|= |ℝ| 

 ∀[α:O]  ∃[β:O]  α<ωβ 

 The set of all ordinals Ω is BooleanO so that:  

             ∀[α:O] α∈Ω ⇔ α:O 

Note that it is not the case that Ω is of type O, thereby thwarting the 

Burali-Forti paradox 
18 For each type X that satisfies the theory Ord  there is a (unique) isomorphism 

I:X 

O
 inductively defined as follows: 

             I[0O] ≡ 0X 

             ∀[α:O] I[+1[α]] ≡ +1
𝐗[I[α]] 

          ∀[α:LimitO] I[α] ≡ y 

              where y:X  ∀[β<α] y≦XI[β] 

                                    ∀[z:X] (∀[β<α] z≦XI[β]) ⇒ y≦Xz 

Using proofs by ordinal induction on O and X, the following follow: 

1. I is defined for every O 

2. I is one-to-one: ∀[α,β:O] I[α] = I[β] ⇒ α=β 

3. The range of I is all of X: ∀[y:X] ∃[α:O] I[α] = y 

4. I is a homomorphism:  
 I[0O] = 0X 

 ∀[α:O] I[+1[α]] = +1
𝐗[I[α]] 

 ∀[α:LimitO,f:OO] I[⊍α f] =  ⊍f[α]
x

I⚬f⚬I-1 

5. I-1:OX is a homomorphism 
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6. I is the unique isomorphism:  If g:X 

O
 is an isomorphism then g=I 

19 [Bourbaki 1972; Fantechi, et. al. 2005] 
20 This implies, for example, that no set is an element of itself. 

21 Proof: Suppose S:Setsτ and therefore ∃[α:O] S:Set
α
τ. 

     Proof by ordinal induction on  

           P[β:O]:Proposition1  ≡ ∀[X∈S] X:Setβ
τ 

    Assume: (∀[β<α:O] ∀[X∈S] X:Setβ
τ)  ⇨  ∀[X∈S] X:Setα

τ 

Show:  ∀[X∈S] X:Setα
τ 

Assume: X∈S 

Show X:Setα
τ 

Proof by cases on α 

1. X:Set0
τ 

X:Booleanτ 

       2.   ∀[α:O] Sets
α
τ =  SetSet

α-1
τ   

              X:Setα-1
τ QED by induction hypothesis 

       3.  ∀[α:LimitO] ∃[β<α,Y:Setβ
τ] X∈Y 

              QED by induction hypothesis 
22 Proof: Suppose S:Setsτ and therefore ∃[α:O] S:Setsα

τ 

     S:Sets
α
τ 

     Show: Booleans:Setsτ 

     Booleans:Setsα+1
τ QED 

23 Proof by ordinal induction on 

          P[α:O]:Proposition1  ≡  ∀[S:Sets
α
τ] ⋃S:Setsτ 

Assume:  ∀[β<α:O] ∀[S:Sets
β
τ] ⋃S:Setsτ     

Show:  ∀[S:Sets
α
τ] ⋃S:Setsτ 

Assume:  S:Sets
α
τ 

Show:  ⋃S:Setsτ    

∀[X:Setsτ]  X∈⋃S ⇔  ∃[Y∈S] X∈Y   

∀[X:Setsτ]  X∈⋃S ⇔  ∃[β<α:O,Y:Sets
β
τ] X∈Y  

∀[X:Setsτ]  X∈⋃S ⇒ X:Setsτ    

QED by definition of Setsτ 
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24 Suppose f:𝐒𝐞𝐭𝐬τ𝐒𝐞𝐭𝐬τ and S:Setsτ 

Show Imageτ[f, S]:Setsτ 

Proof by ordinal induction on  

   P[α:O] ⇔ S:Setα
τ ⇒ Imageτ[f, S]:Setsτ 

Suppose ∀[β<α:O] S:Setβ
τ ⇒ Imageτ[f, S]:Setsτ 

Show S:Setα
τ ⇒ Imageτ[f, S]:Sets τ 

Suppose  S:Setα
τ 

Show Imageτ[f, S]:Setsτ 

∀[y:Setsτ]  y:Imageτ[f, S] ⇔ ∃[x∈S] f[x]=y 

Show ∀[y:Setsτ]  y∈Imageτ[f, S] ⇒ y:Setsτ 

Suppose y:Setsτ   y∈Imageτ[f, S] 

Show y:Setsτ 

∃[x∈S] f[x]=y because y∈Imageτ[f, S] 

∃[β<α:O] x:Setβ
τ because x∈S and S:Setα

τ 

Imageτ[f, x]:Setsτ by induction hypothesis 

Show f[x]:Setsτ   

Suppose z∈f[x] 

Show z:Setsτ 

z∈Setsτ because z∈f[x] and Imageτ[f, x]:Setsτ 

f[x]:Setsτ   

y:Setsτ  because f[x]=y 
25 [Mizar; Matuszewski1 and Rudnicki: 2005; Naumowicz and Artur 

Korniłowicz 2009; Naumowicz 2009] 
26 Note that this proof is fundamentally different from the categoricity proof in 

[Martin 2015]. 
27 Fix implements recursion.  For example, suppose  

                F[g:[ℕ]→ℕ]:([ℕ]→ℕ) ≡ λ[i:ℕ] i=1  � True⦂ 1 , False⦂ ig∎[i-1] 
Therefore by the Fix axiom,  Fixℕ, ℕ∎[F] =F∎[Fixℕ, ℕ∎[F]] and  
F∎[Factorial] = Factorial where 

                             Factorial ≡ λ[i:ℕ] i=1  � True⦂ 1 , False⦂ iFactorial∎[i-1] 
28 where F1

∎[x] ≡ F∎[x] 

              Fn+1
∎[x]  ≡ Fn

∎[F∎[x]] 
29 cf. [Rosental 2008] 
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30 According to [Concoran 2001]: 

“after first-order  logic had been isolated and had been assimilated by the 

logic community, people emerged who could not accept the idea that first-

order logic was not comprehensive. These logicians can be viewed not as 

conservatives who want to reinstate an outmoded tradition but rather as 

radicals who want to overthrow an established tradition [of Dedekind, 

etc.].” 
31 for discussion see [Hewitt 2010] 
32 in an unlawful way (Einstein, a member of the editorial board, refused to 

support Hilbert's action) 
33 Hilbert letter to Brouwer, October 1928 
34 Gödel said “Has Wittgenstein lost his mind?” 
35 For example: 

From: Harvey Friedman 

Sent: Wednesday, April 20, 2016 10:53 

To: Carl Hewitt 

Cc: Martin Davis @cs.nyu; Dana Scott @cmu; Eric Astor @uconn; Mario Carneiro 

@osu; Dave Mcallester @ttic; Joe Shipman 

Subject: Re: Parameterized types in the foundations of mathematics 

 

Not if I have anything to say about it! 

 

Harvey 

 

On Wed, Apr 20, 2016 at 11:25 AM, Carl Hewitt wrote: 

 

> Hi Martin, 

> 

> Please post the message below to FOM [Foundations of Mathematics 

forum]. 

> 

> Thanks! 

> 

> Carl 

> 

> According to Harvey Friedman on the FOM Wiki:  "I have not yet seen any 

seriously alternative foundational setup that tries to be better than ZFC in this 

[categoricity of models] and other respects that isn't far far worse than ZFC in 

other even more important respects." 

> 

> Of course, ZFC is a trivial consequence of parameterized types with the 

following definition for set of type τ: 

> 

>        Setτ ≡ Booleanτ
 

> 
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> Also of course, classical mathematics can be naturally formalized  using 

parameterized types.  For example, see “Inconsistency 

Robustness in Foundations: Mathematics self proves its own Consistency and 

Other Matters” in HAL Archives. 

>  

> Regards, 

> Carl 
36 Consequently, there can cannot be any escape hatch into an unformalized 

“meta-theory.” 
37 The claim also relied on Gödel's proposition I'mUnprovable. 

 
38 Formal syntax was invented long after [Gödel 1931]. 
39 emphasis in original 
40 For every type there is a larger type, i.e.., ∀[τ1::]  ∃[τ2::]  τ1⋤τ2 
41 There is no universal type.  Instead, Type is parameterized, e.g., 

Boolean:TypeBoolean and ℕ:Typeℕ 
42 True≠False, True:Boolean, and False:Boolean 
     ∀[x:Boolean] x=True  x=False 
43 The theory of the natural numbers Nat  is axiomatized as follows where S is 

the successor function: 

 0:ℕ 

 +1:ℕℕ 
 ∀[i:ℕ]  +1[i]≠0 
 ∀[i, j:ℕ]  +1[i]=+1[j] ⇒ i=j 

 For each order:ℕ+ and P:Propositionorderℕ: 

                   (P[0]  ∀[i:ℕ] P[i]⇨P[+1[i]]) ⇨ ∀[i:ℕ] P[i] 
44 O is the type of the Ordinals 
45 ∀[τ::]  τ:Typeτ 
46 Discrimination of τ1 and τ2 

   For i=1,2  
 If x:τi, then ((τ1⦶τ2)[x]):(τ1⦶τ2) and x=((τ1⦶τ2)[x])↓τi.  

 ∀[z:τ] z:τ1⦶τ2 ⇔ ∃[x:τi] z=(τ1⦶τ2)[x] 
47 type of 2-element list with first element of type τ1 and with second element 

of type τ2 
48 expression of type τ. The following axiom holds: 

 ∀[τ::,e:Expressionτ]  e::τ 
49 if p then 1  else 2 
50 x1 is a subtype of x2, i.e.,  ∀[x:τ1] x:τ2 
51 The proposition that τ is a type 
52 1, … and n-1  infer n 
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53 mutually recursive definitions of functions f1 to n   
54 mutually recursive definitions of variables x1 to n   
55 mutually recursive definitions of functions f1 to n   
56 mutually recursive definitions of variables x1 to n   
57 According to Sol Feferman, Gödel was “the most important logician of the 

20th century” and according to John Von Neumann he was “the greatest 

logician since Aristotle.” [Feferman 1986, pg. 1 and 8] 
58 [Feferman 1986, pg. 1 and 8] 
59 Wittgenstein in 1937 published in Wittgenstein 1956, p. 50e and p. 51e] 
60 The Liar Paradox [Eubulides of Miletus] is an example of using untyped 

propositions to derive an inconsistency:  

         Fn[p:Propositionn]:Propositionn+1  ≡  p 

       // above definition has no fixed point because p has 
             // order greater than p 

The following argument derives a contradiction assuming the existence of a 

fixed point for F:   

1) I’mFalse ⇔  I’mFalse       // nonexistent fixed point of F 

2) I’mFalse                              // proof by contradiction from 1) 

3) I’mFalse                                 // from 1) and 2) 
61 [Church 1935]  correctly proved inferential incompleteness (sometimes called 

the “First Incompleteness Theorem”) without using Gödel's I’mUnprovable. 

The Church theorem and its proof are very robust. 
62 Subsequent further discussion of Wittgenstein's criticism of Gödel’s writings 

has unfortunately misunderstood Wittgenstein.  

       For example, [Berto 2009] granted that proof theoretically if P⇔⊬P, then: 

1) ⊢⊬P 

However, the above has proof consequences as follows: 

2) ⊢P because (⊬P)⇔P in 1) above 

3) ⊢⊢P because of 2) above 

4) ⊢P because (⊢P)⇔P in 3) above 

Of course, 2) and 4) are a manifest contradiction in mathematics that has 

been obtained without any additional “‛semantic’ story” that [Berto 

2009] claimed is required for Wittgenstein's argument that contradiction 

in mathematics “is what comes of making up such sentences.” 

[Wittgenstein 1956, p. 51e] 
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63 Nat

1
 is not a categorical theory because there are nonstandard (different from ℕ) 

countable types which satisfy the axioms of Nat
1
 that have a (nonstandard) 

element that is larger than any number which can be reached by countably 

iterating the successor function starting with 0. Such a model can be constructed 

creating a new theory Nat
1
*  by adding a new symbol ∞ and countably many 

axioms of the form i<∞ for each natural number i. Since Nat
1
*  is consistent, 

there is a type ℕ* which satisfies the theory Nat
1
*. The type ℕ* also satisfies the 

theory Nat
1
 because the axioms of Nat

1
 are a subset of the axioms of Nat

1
*. 

64 cf. [Church 1934] 
65 In other words, the paradox that concerned [Church 1934] (because it could 

mean the demise of formal mathematical logic) has been transformed into 

fundamental theorem of foundations! 
66 Which is not the same as proving the much stronger proposition that 

Mathematics is structurally consistent, i.e., that there is no proof of 

contradiction from the inference rules of Direct Logic. 
67

 In formalizing Gödel's proof, [Shankar 1994] and [O'Connor 2005] followed 

Gödel in using integers to code sentences using the Y untyped fixed point 

operator on propositions. 
68 Wittgenstein in 1937 published in Wittgenstein 1956, p. 50e and p. 51e] 
69 Of course, it is completely unacceptable for every proposition to be provable 

and so measures must be taken to prevent this. 
70 [Yanofsky 2013 page 328] expressed concern about Löb’s paradox: 

we must restrict the fixed-point machine in order to avoid proving false 

statements [using Löb's argument]. Such a restriction might seem 

strange because the proof that the fixed-point machine works seems 

applicable to all [functions on untyped statements]. But restrict we must. 

Yanofsky proposed solving above problem posed by Löb’s paradox using 

systems of logic that are so weak that they cannot abstract their own sentences. 

Unfortunately, such weak systems are inadequate for Computer Science. 

Instead of weakening logic, Direct Logic adopted the strategy of using types for 

mathematics that does not allow the Y fixed point operator for propositions and 

sentences. 
71 using definition of BSet 
72 using definition of BExpression 
73 substituting BNumber for n 


