
HAL Id: hal-01566393
https://hal.science/hal-01566393v1

Submitted on 21 Jul 2017 (v1), last revised 17 Oct 2018 (v14)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strong Types for Direct Logic
Carl Hewitt

To cite this version:
Carl Hewitt. Strong Types for Direct Logic. Symposium on Logic and Collaboration for Intelligent
Applications, Mar 2017, Stanford, United States. �hal-01566393v1�

https://hal.science/hal-01566393v1
https://hal.archives-ouvertes.fr

1

Strong Types for Direct Logic

Carl Hewitt

http://plus.google.com/+CarlHewitt-StandardIoT

This article is dedicated to Alonzo Church, Richard

Dedekind, Bertrand Russell, and Ernst Zermelo.

Abstract

This article follows on the introductory article “Direct Logic for Intelligent

Applications” [Hewitt 2017a]. Strong Types enable new mathematical theorems

to be proved including the Formal Consistency of Mathematics. Also, Strong

Types are extremely important in Direct Logic because they block all known

paradoxes[Cantini and Bruni 2017]. Blocking known paradoxes makes Direct

Logic safer for use in Intelligent Applications by preventing security holes.

Inconsistency Robustness is performance of information systems with pervasively

inconsistent information. Inconsistency Robustness of the community of

professional mathematicians is their performance repeatedly repairing

contradictions over the centuries. In the Inconsistency Robustness paradigm,

deriving contradictions has been a progressive development and not “game

stoppers.” Contradictions can be helpful instead of being something to be “swept

under the rug” by denying their existence, which has been repeatedly attempted

by authoritarian theoreticians (beginning with some Pythagoreans). Such denial

has delayed mathematical development. This article reports how considerations

of Inconsistency Robustness have recently influenced the foundations of

mathematics for Computer Science continuing a tradition developing the

sociological basis for foundations.1

Mathematics here means the common foundation of all classical mathematical

theories from Euclid to the mathematics used to prove Fermat's Last [McLarty

2010]. Good evidence for the consistency Classical Direct Logic derives from

how it blocks the known paradoxes of classical mathematics. Humans have spent

millennia devising paradoxes for classical mathematics.

Having a powerful system like Direct Logic is important in computer science

because computers must be able to formalize all logical inferences (including

inferences about their own inference processes) without requiring recourse to

https://plus.google.com/+CarlHewitt-StandardIoT

2

human intervention. Any inconsistency in Classical Direct Logic would be a

potential security hole because it could be used to cause computer systems to

adopt invalid conclusions.

Mathematical Foundation for Computer Science

Computer Science brought different concerns and a new perspective to

mathematical foundations including the following requirements:2 [Arabic numeral

superscripts refer to endnotes at the end of this article]

 provide powerful inference machinery so that arguments (proofs) can be short

and understandable and all logical inferences can be formalized

 establish standard foundations so people can join forces and develop common

techniques and technology

 incorporate axioms thought to be consistent by the overwhelming consensus

of working professional mathematicians, e.g., natural numbers [Dedekind

1888], real numbers [Dedekind 1888], ordinals, sets of integers, reals, etc.

 facilitate inferences about the mathematical foundations used by computer

systems.

Classical Direct Logic is a foundation of mathematics for Computer Science,

which has a foundational theory (for convenience called “Mathematics”) that can

be used in any other theory. A bare turnstile is used for Mathematics so that ├Ψ

means that Ψ is a mathematical proposition that is a theorem of Mathematics and

Φ├Ψ means that Ψ can be inferred from Φ.

3

Formalism of Direct Logic

The aims of logic should be the creation of “a unified conceptual apparatus

which would supply a common basis for the whole of human knowledge.”

[Tarski 1940]

In Direct Logic, unrestricted recursion is allowed in programs. For example,
 There are uncountably many Actors.3 For example, Real∎[] can output

any real numberi between 0 and 1 where
 Real∎[] ≡ [(0 either 1), ⩛Postpone Real∎[]]
 where

o (0 either 1) is the nondeterministic choice of 0 or 1,
o [first, ⩛rest] is the list that begins with first and whose

remainder is rest, and
o Postpone expression delays execution of expression until

the value is needed.

 There are uncountably many propositions (because there is a

different proposition for every real number). Consequently,

there are propositions that are not the abstraction of any element

of a denumerable set of sentences. For example,

 p ≡ λ[x:ℝ] (λ[y:ℝ] (y=x))

defines a different predicate p[x] for each real number x, which holds for

only one real number, namely x.ii

Sentencesiii can be abstracted into propositions that can be asserted. Furthermore,

expressionsiv can be abstracted into Actors (e.g., objects in Mathematics).

Abstraction and parsing are becoming increasingly important in software

engineering. e.g.,

 The execution of code can be dynamically checked against its

documentation. Also Web Services can be dynamically searched for and

invoked on the basis of their documentation.

 Use cases can be inferred by specialization of documentation and from
 Code can be generated by inference from documentation and by generalization

from use cases.

i using binary representation.
ii For example (p[3])[y] holds if and only if y=3.
iii which are grammar tree structures
iv which are grammar tree structures

4

Abstraction and parsing are needed for large software systems so that that

documentation, use cases, and code can mutually speak about what has been said and

their relationships.

For example:

In Direct Logic, a sentence is a grammar tree (analogous to the ones used by linguists).

Such a grammar tree has terminals that can be constants. And there are uncountably many

constants, e.g., the real numbers:

Note: types in Direct Logic are much stronger than constructive types with

constructive logic because Classical Direct Logic has all of the power of

Classical Mathematics.

Propositions
 e.g. ∀[n:ℕ] ∃[m:ℕ] m>n
 i.e., proposition that for every ℕ there is a larger ℕ

intuitively : For every number, there is a larger number. Sentences
 e.g. ⦅∀[n:ℕ] ⦅∃[m:ℕ] ⦅m>n⦆⦆⦆
 i.e., sentence for proposition that f

 for every ℕ there is a larger ℕ

Strings
 e.g. “⦅∀[n:ℕ] ⦅∃[m:ℕ] ⦅m>n⦆⦆⦆”
 i.e., string for sentence for proposition that

 for every ℕ there is a larger ℕ

5

Mathematics Self Proves that it is Open

Mathematics here means the common foundation of all classical mathematical

theories from Euclid to the mathematics used to prove Fermat's Last [McLarty

2010].i Mathematics proves that it is open in the sense that it can prove that its

theorems cannot be provably computationally enumerated:

 Theorem ⊢Mathematics is Open, i.e.,

 ⊢TheoremsComputationalyEnumerable
Proof.ii

Suppose to obtain a contradiction that it is possible to prove closure, i.e.,

⊢TheoremsComputationalyEnumerable. Then there is a provably

computable total procedure TheoremsEnumerator:[ℕ]→Theorem

such that it is provable that the following holds:

∀[p:Theorem] (⊢p) ⇒ ∃[i:ℕ] TheoremsEnumerator∎[i]= p

A subset of the theorems of order n are those proving that certain procedures

[ℕ]→ℕ are total. Consequently, there is a

ProvedTotalsEnumerator:[ℕ]→([ℕ]→ℕ) that computationally enumerates

the provably total computable procedures [ℕ]→ℕ that can be used in the

implementation of the following procedure:

 Diagonal∎[i:ℕ]:ℕ ≡ 1+ (ProvedTotalsEnumerator∎[i]) ∎[i]
Consequently:
• Diagonal is a proved total procedure because it is implemented using

computable proved total procedures.
• Diagonal is not a proved total procedure because it differs from every

other computable proved total procedure.
The above contradiction completes the proof.

[Franzén 2004] argued that Mathematics is inexhaustible because of inferential

undecidabilityiii of mathematical theories. The above theorem that Mathematics is

open provides another independent argument for the inexhaustibility of

Mathematics.

i Consequently, Mathematics evolves and is not fixed.
ii This argument appeared in [Church 1934] expressing concern that the argument meant

that there is “no sound basis for supposing that there is such a thing as logic.”
iii See section immediately below.

6

Mathematics self proves its own consistency (contra Gödel et. al.)

The following rules are fundamental to Mathematics4:

 Derivation by Contradiction, i.e. (¬Φ⇒(Θ¬Θ))├ Φ, which says that a

proposition can be proved showing that its negation implies a

contradiction.

 A theorem can be used in a proof, i.e. (├ Φ)⇒Φ

Theorem: Mathematics self proves its own consistency.

Formal Derivation. Suppose to obtain a contradiction, that mathematics is

formally inconsistent, i.e., ¬Consistent. By definition of formal

consistency, there is some mathematical proposition Ψ such that ├(Ψ¬Ψ).

By the rule of Existential Elimination, there is some proposition Ψ0 such

that├ (Ψ0 ¬Ψ0) which by the rule of Theorem Use means Ψ0¬Ψ0 ,

which is a contradiction. Thus,├ Consistent by the rule of Proof by

Contradiction.

1) Consistent // hypothesis to derive a contradiction just in this subargument

├ Consistent // rule of Proof by Contradiction using 1) and 4)

2) ∃[Ψ:Proposition]→├(ΨΨ) // definition of inconsistency using 1)

3)├(Ψ0Ψ0) // rule of Existential Elimination using 2)

4) Ψ0Ψ0 // rule of Soundness using 3)

Natural Deduction
i Derivation of Consistency of Mathematics

i [Jaśkowski 1934] developed Natural Deduction

7

Please note the following points:

 The above argument formally mathematically proves that Mathematics is

consistent and that it is not a premise of the theorem that Mathematics

is consistent.
 Mathematics was designed for consistent axioms and consequently the

rules of Mathematics can be used to prove consistency regardless of other

axioms.5

The above derivation means that “Mathematics is consistent” is a theorem in

Classical Direct Logic. This means that the usefulness of Classical Direct Logic

depends crucially on the consistency of Mathematics. Good evidence for the

consistency of Mathematics comes from the way that Classical Direct Logic

avoids the known paradoxes. Humans have spent millennia devising paradoxes.

The above recently developed self-proof of consistency shows that the current

common understanding that Gödel proved “Mathematics cannot prove its

own consistency, if it is consistent” is inaccurate.6

Foundations with strong parameterized types

“Everyone is free to elaborate [their] own foundations. All that is required of

[a] Foundation of Mathematics is that its discussion embody absolute rigor,

transparency, philosophical coherence, and addresses fundamental

methodological issues.”7

Direct Logic develops foundations for Mathematics by deriving sets from types

and categorical axioms for the natural numbers and ordinals.

8

Categoricity

“If the mathematical community at some stage in the development of

mathematics has succeeded in becoming (informally) clear about a

particular mathematical structure, this clarity can be made

mathematically exact ... Why must there be such a characterization?

Answer: if the clarity is genuine, there must be a way to articulate it

precisely. If there is no such way, the seeming clarity must be illusory ...

for every particular structure developed in the practice of mathematics,

there is [a] categorical characterization of it.”8

Classical Direct Logic is much stronger than first-order axiomatizations of set

theory in that it provides categoricity for natural numbers ℕ, reals ℝ, and ordinals

O. Categoricity is very important in Computer Science so that there are no

nonstandard elements in models of computational systems, e.g., infinite integers

and infinitesimal reals. For example, nonstandard models cause problems in

model checking if a model has specified properties.

Proof by Natural Number Induction

The mathematical theory Nat categorically axiomatises using the following

induction axiom:

 ∀[P:Proposition1ℕ] (P[0]] ∀[i:ℕ] P[i]⇨P[i+1]) ⇨ ∀[i:ℕ] P[i]

The above proposition is of type Proposition2. However, ∀[i:ℕ] P[i] in the
above proposition is of type Proposition1. Quine famously criticized 2nd-
order logic as nothing more than “set theory in sheep’s clothing” [Quine 1970,
pg. 66]. However, the induction axiom above does simply formalizes more a
more natural form the induction schema than used in the infinitely large
number of axioms used to axiomatized the Natural Numbers in 1st order logic.9

The other axioms of Nat are as follows:

• 0:ℕ
• ∀[i:ℕ] +1[i]:ℕ
• ∄[i:ℕ] +1[i]=0
• ∀[i,j:ℕ] +1[i]=+1[j] ⇨ i=j

9

Theorem ProofsComputationalyEnumerableNat is unprovable in Nat.

Proof:10

Suppose to obtain a contradiction that

 ⊢
Nat

 ProofsComputationalyEnumerable[Nat]

Then there is a provable in Nat computable total procedure

TheoremsEnumeratorNat :[ℕ]→TheoremNat such that it is

provable in Nat

that

 ∀[p:TheoremNat
] ∃[i:ℕ] TheoremsEnumeratorNat ∎[i]= p

A subset of the proofs in Nat

are those proving that certain procedures [ℕ]→ℕ

are total. Consequently, there is a procedure

 ProvedTotalsEnumeratorNat :[ℕ]→([ℕ]→ℕ)
that enumerates the provable in Nat

total computable procedures [ℕ]→ℕ that

can be used in the implementation of the following procedure:

 Diagonal∎[i:ℕ]:ℕ ≡ 1+ (ProvedTotalsEnumeratorNat ∎[i]) ∎[i]
Consequently:

• Diagonal is a provable in Nat

total procedure because it is

implemented using computable provable in Nat

total procedures.

• Diagonal is not a provable in Nat

total procedure because it differs

from every other computable provable in Nat

total procedure.

The above contradiction completes the proof.11

Theorem ⊢
Nat

 Consistent[Nat]

Proof: Suppose to derive an inconsistency that Consistent[Nat] . By the

definition of inconsistency for Nat, there is some proposition Ψ such that

⊢
Nat

 (ΨΨ). By Existential Elimination, there is some proposition Ψ0

such that ⊢
Nat

 (Ψ0Ψ0) which can be used to infer in Nat

that Ψ0Ψ0.

The above contradiction completes the proof.

10

Theorem (Categoricity of Natural Numbers ℕ):12
If X be a type satisfying the categorical axioms for the
natural numbers Nat, then X is isomorphic to ℕ13, which
is strictly more powerful than a 1st order theory of Natural
Numbers.14

Theorem (Categoricity of Real Numbers ℝ):15
If X is a type satisfying the categorical axioms for the real

numbers Real, then X is (uniquely) isomorphic to ℝ, which

is strictly more powerful than the first-order theory of real

closed fields.16

Theorem (Model Soundness of Nat): (⊢
Nat

) ⇨ ⊨

Proof: Suppose ⊢
Nat

 . The conclusion immediately follows because the axioms

for the theory Nat

hold in the type ℕ .

Theory of Ordinals

A theory of the ordinals can be axiomatized17 using a 2nd order ordinal induction

axiom as follows: For each order:ℕ+ and P:PropositionorderO
:

 (∀[α:O] ∀[β<α:O] P[β]⇨P[α]) ⇨ ∀[α:O] P[α]

In order to fill out the ordinals, the following limit axioms are included:

• ∀[α:O,f:OO] ⊍α f:O

• ∀[α,β:O,f:OO] β<⊍αf ⇔ ∃[δ<α] β≦f[δ]

• ∀[α,β:O,f:OO] (∀[δ<α] f[δ]≦β) ⇨ ⊍αf≦β

In order to guarantee that there are uncountable ordinals, the following axioms are

included:

• ω0 = ℕ

• ∀[α:O] α>0O ⇨ |ω α| = |𝐁𝐨𝐨𝐥𝐞𝐚𝐧
⊍β<αωβ|

• ∀[α,β:O] |β|=|ωα| ⇨ ωα≦β

where |τ1| = |τ2| ⇔ ∃[f:τ2
τ1] OneToOneOntoτ1,τ2[f]

o OneToOneτ1 ,τ2[f:τ2
τ1] ⇔ ∀[x1,x2:τ1] f[x1]=f[x2] ⇨ x1=x2

o OneToOneOntoτ1 ,τ2[f:τ2
τ1]

 ⇔ OneToOneτ1 ,τ2[f:τ2
τ1] ∀[y:τ2] ∃[x:τ1] f[x]=y

Richard Dedekind

11

Theorem (Categoricity of Ordinals O):

If X be a type satisfying the axioms the theory of the ordinals Ord

, then X

is (uniquely) isomorphic to O.18

Theorem (Model Soundness of Ord): (⊢
Ord

) ⇨ ⊨

Proof: Suppose ⊢
Nat

 . The conclusion immediately follows because the axioms

for the theory Ord

hold in the type O .

Type Choice

 ∀[f:(𝐁𝐨𝐨𝐥𝐞𝐚𝐧𝛔)𝛕] ∃[choice:στ] ∀[x:τ] f[x]≠{} ⇨ choice[x]∈f[x]

Sets τ defined using strong parameterized types

The type Setτ can be defined as follows:

Setτ ≡ Booleanτ

Of course set membership is defined as follows:

∀[x:τ:, S:Setτ] xS ⇔ S[x]=True

Inductive definition:

1. Set0
τ ≡ Booleanτ

2. Setα+1
τ ≡ SetSetατ

3. α:LimitO ⇒ (S:Setατ ⇔ ∀[X∈S] ∃[β<α:O,Y:Setβτ] X∈Y)

S:Setsτ ⇔ ∃[α:O] S:Setατ

12

The properties below mean that Setsτ is a "universe" of mathematical

discourse.19

 Foundation: There are no downward infinite membership chains.20

 Transitivity of ∈21: ∀[S:Setsτ] ∀[X∈S] X?:Setsτ

 Powerset:22 ∀[S:Setsτ] Booleans:Setsτ

 Union:23

 ∀[S:Setsτ] ⋃S:Setsτ

 ∀[S:Setsτ] ∀[X:Setsτ] X∈⋃S ⇔ ∃[Y∈S] X∈Y
 Replacement:24 The function image of any set is also a set, i.e.:

 Imageτ:𝐒𝐞𝐭𝐬τ[𝐒𝐞𝐭𝐬τ𝐒𝐞𝐭𝐬τ,𝐒𝐞𝐭𝐬τ]

 ∀[f:𝐒𝐞𝐭𝐬τ𝐒𝐞𝐭𝐬τ, S:Setsτ]

 ∀[y:Setsτ] yImageτ[f, S] ⇔ ∃[x∈S] f[x]=y

Setsτ is much stronger than first-order ZFC.25

Theorem. Sets τ is categorical via a (unique) isomorphism.

Proof:26 Suppose that X satisfies the axioms for Sets τ.

 By ordinal induction, the isomorphism I:XSetsτ as follows:

1. S:Set0
τ

I[S] ≡ S

2. S:Setα+1
τ

Z∈XI[S] ⇔ ∃[Y:Setατ] I[Y]∈XZ

3. S:Setα
τ and α:LimitO

Z∈XI[S] ⇔ ∃[β<α:O,Y:Setβ
τ] I[Y]∈XZ

13

I is a unique isomorphism:

 I is one to one

 The range of I is X

 I is a homomorphism:

o I[{ }Setsτ] = { }X

o ∀[S1,S2:Setsτ] I [S1 ∪ S2] = I[S1] ∪X I [S2]

o ∀[S1 S2:Setsτ] I[S1 ∩ S2] = I[S1] ∩X I[S2]

o ∀[S1,S2:Setsτ] I[S1 - S2] = I[S1] -X I[S2]

o ∀[S:Setsτ] I[⋃S] = ⋃X {I[x] | x∈S}

 I-1:SetsτX is a homomorphism

 I is a unique isomorphism: If g:XSetτ is an isomorphism, then g= I

Theorem (Model Soundness of Sets τ): (⊢𝑆𝑒𝑡𝑠τ
) ⇨ ⊨

Proof: Suppose ⊢𝑆𝑒𝑡𝑠τ
. The conclusion immediately follows because the

axioms for the theory Sets τ hold in the type Setsτ.

Lambda Induction

The axiom is of Lambda Induction is as follows:i

∀[P:Proposition1Λτ]

 (P[Iτ1] P[Kτ1, τ2] P[Sτ1, τ2, τ3] P[Fixτ1]
 ∀[f1:τ1, f2:τ2] P[f1]P[f2] ⇨ P[Kτ1, τ2∎[f1, f2]]

 ∀[f1:τ1,f2:τ2,f3:τ3] P[f1]P[f2]P[f3]⇨P[Sτ1,τ2,τ3∎[f1,f2,f3]]

 ∀[f1:τ1] P[f1] ⇨ P[Fixτ1∎[f1]])

 ⇨ ∀[f:Λτ] P[f]

TypeΛτ defined using strong parameterized types

The type Λτ can be defined by Induction as follows:

1. ([τ]→τ):TypeΛτ

2. τ1,τ2:TypeΛτ ⇨ ([τ1]→τ2),[τ1, τ2],τ1⦶τ2:TypeΛτ

Functional Definition: Functionalτ1,τ2 ≡ [([τ1]→τ2)]→([τ1]→τ2)

i τ1,τ2,τ3:TypeΛτ

14

Theory Lam τ
In addition to Lambda Induction (above), the theory Lam τ has the following

axioms:i
1. Iτ1:([τ1]→τ1)

Iτ1∎[f:τ1] = f

2. Kτ1,τ2:([τ1, τ2]→τ1)
Kτ1, τ2∎[f1:τ1, f2:τ2] = f1

3. Sτ1, τ2, τ3:([[τ1]→ ([τ2]→τ3), [[τ1]→τ2)]→τ3, τ3]→τ3)
Sτ1, τ2, τ3∎[f1:([τ1]→ ([τ2]→τ3)), f2:([τ1]→τ2), f3:τ1] = (f1∎[f3])∎[f2∎[f3]]

4. Fixτ1,τ1:([Functionalτ1,τ1]→Functionalτ1,τ1)27
Fixτ1,τ1∎[F:Functionalτ1,τ1] = F∎[Fixτ1,τ1∎[F]]

Equivalence for Lam τ:ii ∀[f:([τ1]→τ2)] f = λ[x:τ1] f∎[x]

Convergence: ∀[f:([τ1]→τ2),x:τ1] f∎[x]↓ ⇔ ∃[y:τ2] f∎[x]=y

Approximation: ∀[f1,f2:([τ1]→τ2)] f1≦f2 ⇔ ∀[x:τ1] f1∎[x]↓⇒f1∎[x]=f2∎[x]

Bottom: ⊥τ1,τ2 ∎[x:τ1]:τ2 ≡ x

 Note that ∀[x:τ1] ⊥[τ1,τ2∎[x]↓ and ∀[f:([τ1]→τ2)] ⊥τ1,τ2≦f

Monotone Definition:

 F:Monotoneτ1,τ2 ⇔ F:Functionalτ1,τ2 ∀[g:([τ1]→τ2)] g≦F∎[g]

Limit Theorem: ∀[F:Monotoneτ1,τ2] F=limit𝑖:𝐍+
Fi

∎[⊥τ1,τ2]28

Adequacy Theorem: Every Direct Logic procedure in over τ can be implemented

in Lam τ.

i τ1,τ2,τ3:TypeΛτ
ii Because of Equivalence for Lam τ, the domain of [Scott 2015] is not a valid model of

Lam τ.

15

Theorem. Lam
 τ is categorical via a (unique) isomorphism.

Proof: Suppose that X satisfies the axioms for Lam τ.

 By lambda induction, the isomorphism I:XΛτ is defined as follows:i

1. I[Iτ1] ≡ IXτ1

2. I[Kτ1, τ2] ≡ KXτ1, τ2

3. I[Sτ1, τ2, τ3] ≡ SXτ1, τ2, τ3

4. I[Fixτ1] ≡ FixXτ1

5. ∀[f1:τ1, f2:[τ1]→τ2] I[f2∎[f1]] ≡ I[f2]∎X[I[f1]]

I is a unique isomorphism:

 I is one to one

 The range of I is X

 I is a homomorphism:

 I-1:ΛτX is a homomorphism

 I is a unique isomorphism: If g:XΛτ is an isomorphism, then g= I

Theorem (Model Soundness of Lam τ): (⊢𝐿𝑎𝑚τ
) ⇨ ⊨

Proof: Suppose ⊢𝐿𝑎𝑚τ
. The conclusion immediately follows because the

axioms for the theory Lam τ hold in the type Λτ.

i τ1,τ2,τ3:TypeΛτ

16

Sociology of Foundations

“Faced with the choice between changing one’s mind and proving that

there is no need to do so, almost everyone gets busy on the proof.” John

Kenneth Galbraith [1971 pg. 50]

“Max Planck, surveying his own career in his Scientific Autobiography

[Planck 1949], sadly remarked that ‘a new scientific truth does not

triumph by convincing its opponents and making them see the light, but

rather because its opponents eventually die, and a new generation grows

up that is familiar with it.’ ”

 [Kuhn 1962]

The inherently social nature of the processes by which principles and propositions

in logic are produced, disseminated, and established is illustrated by the following

issues with examples:29

 The formal presentation of a demonstration (proof) has not lead

automatically to consensus. Formal presentation in print and at several

different professional meetings of the extraordinarily simple proof in this

paper have not lead automatically to consensus about the theorem that

“Mathematics is Consistent”. New results can sound crazy to those steeped

in conventional thinking. Paradigm shifts often happen because conventional

thought is making assumptions taken as dogma. As computer science

continues to advance, such assumptions can get in the way and have to be

discarded.

17

 There has been an absence of universally recognized central logical

principles. Disputes over the validity of the Principle of Excluded Middle

led to the development of Intuitionistic Logic.

 There are many ways of doing logic. One view of logic is that it is about

truth; another view is that it is about argumentation (i.e. proofs).30

 Argumentation and propositions have be variously (re-)connected and

both have been re-used. Church's paradox is that assuming theorems of

mathematics are computationally enumerable leads to contradiction. In this

papers, the paradox is transformed into the fundamental principle that

“Mathematics is Open” (i.e. it is a theorem of mathematics that the proofs of

mathematics are not computationally enumerable) using the argument used

in [Church 1934].

 New technological developments have cast doubts on traditional logical

principles. The pervasive inconsistency of modern large-scale information

systems has cast doubt on some logical principles, e.g., Excluded Middle.31

 Political actions have been taken against views differing from the

establishment theoreticians. According to [Kline 1990, p. 32], Hippasus

was literally thrown overboard by his fellow Pythagoreans “…for having

produced an element in the universe which denied the…doctrine that all

phenomena in the universe can be reduced to whole numbers and their

ratios.” Fearing that he was dying and the influence that Brouwer might have

after his death, Hilbert fired32 Brouwer as an associate editor of

Mathematische Annalen because of “incompatibility of our views on

fundamental matters”33 e.g., Hilbert ridiculed Brouwer for challenging the

validity of the Principle of Excluded Middle. Gödel's original results were

for Principia Mathematica (and not first-order logic) as the foundation for

the mathematics of its time including the categorical axiomatization of the

natural numbers. In face of Wittgenstein's devastating criticism, Gödel

insinuated34 that he was crazy and retreated to first-order logic in an attempt

to salvage his results. Some theoreticians turned first-order logic into a

philosophical dogma in part it facilitated their careers. Since theoreticians

couldn't prove anything significant about practical mathematical theories,

they cut them down to unrealistic first-order theories where results could be

proved (e.g. compactness) that did not hold for practical mathematical

theories. In the famous words of Upton Sinclair:

“It is difficult to get a man to understand something,

when his salary depends on his not understanding it.”

Some theoreticians have ridiculed dissenting views and attempted to limit

their distribution by political means.35

18

Conclusion

Strong Types enable new mathematical theorems to be proved including the

Formal Consistency of Mathematics. Also, Strong Types enable proofs of the

Categoricity of axiomatizations of the ordinals and the cumulative hierarchy of

sets of a type.

Furthermore, Strong Types are extremely important in Direct Logic because they

block all know paradoxes[Cantini and Bruni 2017]. Blocking known paradoxes

makes Direct Logic safer for use in Intelligent Applications by preventing security

holes. For example, Strong Types block the following paradoxes: Berry [Russell

1906], Burali-Forti [Burali-Forti 1897], Church [Church 1934], Curry [Curry

1941], Girard[Coquand 1986], and Liar [Eubulides of Miletus], and Löb [Löb

1955].

Information Invariance is a fundamental technical goal of logic consisting of the

following:

1. Soundness of inference: information is not increased by inference

2. Completeness of inference: all information that necessarily holds can be

inferred.

Computer Science needs a rigorous foundation for all of mathematics that enables

computers to carry out all reasoning without human intervention.36 [Frege 1879]

was a good start, but it foundered on the issue of consistency. [Russell 1925]

attempted basing foundations entirely on types, but foundered on the issue of

being expressive enough to carry to some common mathematical reasoning.

[Church 1932, 1933] attempted basing foundations entirely on untyped higher-

order functions, but foundered because it was shown to be inconsistent [Kleene

and Rosser 1935]. Presently, Isabelle [Paulson 1989] and Coq [Coquand and Huet

1986] are founded on types and do not allow theories to reason about themselves.

Classical Direct Logic is a foundation for all of mathematical reasoning based on

strong types (to provide grounding for concepts) that allows general inference

about reasoning.

[Gödel 1931] claimed inferential undecidabilityi results for mathematics using the

proposition I'mUnprovable In opposition to Wittgenstein's correct argument his

proposition leads to contradictions in mathematics, Gödel later claimed that his

i sometimes called “incompleteness”

19

results were for a cut-down first-order theory of natural numbers. However, first-

order logic is not a suitable foundation for Computer Science because of the

requirement that computer systems be able to carry out all reasoning without

requiring human intervention (including reasoning about their own inference

systems).

Following [Frege 1879, Russell 1925, and Church 1932-1933], Direct Logic was

developed and then investigated propositions with the following results.

 Formalization of Wittgenstein's proof that Gödel's proposition I'mUnprovable

leads to contradiction in mathematics. So the consistency of mathematics had

to be rescued against Gödel's proposition constructed using what [Carnap

1934] later called the “Diagonal Lemma” which is equivalent to the Y

untyped fixed point operator on propositions. Use of the Y untyped fixed

point operator on propositions in results of [Curry 1941] and [Löb 1955] also

lead to inconsistency in mathematics. Consequently, mathematics had to be

rescued against these uses of the Y untyped fixed point operator for

propositions.

 Self-proof of the formal consistency of mathematics. Consequently,

mathematics had to be rescued against the claim [Gödel 1931] that

mathematics cannot prove its own consistency. Also, it became an open

problem whether mathematics proves its own formal consistency, which was

resolved by the author discovering an amazing simple proof.37 A solution is

to require strongly typed mathematics to bar use of the Y untyped fixed point

operator for propositions.38 However, some theoreticians have very reluctant

to accept the solution.

 According to [Dawson 2006]:39

 Gödel’s results altered the mathematical landscape, but they did not

“produce a debacle”.

 There is less controversy today over mathematical foundations than

there was before Gödel’s work.

However, Gödel’s writings have produced a controversy of a very different

kind from the one discussed by Dawson:

 Gödel's claim that mathematics cannot prove its own consistencyi has

been disproved.

 Consequently, Gödel's writings have led to increased controversy over

mathematical foundations.

i Gödel's writing was accepted doctrine by some theoreticians for over eight decades.

20

The development of Direct Logic has strengthened the position of working

mathematicians as follows:i

 Allowing freedom from the philosophical dogma of the First-Order Thesis

 Providing usable strong types for all of Mathematics that provides theories

that have categorical models

 Allowing theories to freely reason about theories

 Providing Inconsistency Robust Direct Logic for safely reasoning about

theories of practice that are (of necessity) pervasively inconsistent.

Acknowledgements

Tom Costello, Eric Martin, Per Stenstrom, and Johan van Benthem made

very helpful comments and suggestions. Interactions with John Woods

were very helpful in developing a resolution to Church’s Paradox. A

suggestion by Gordon Plotkin led to the introduction of the fixed point

operator in the categorical theory of the lambda calculus.

i Of course, Direct Logic must preserve as much previous learning as possible.

21

Bibliography

A. I. Arruda. “Aspects of the historical development of paraconsistent logic” In

Paraconsistent Logic: Essays on the Inconsistent Philosophia Verlag. 1989

Andrea Asperti, Herman Geuvers, Raja Natarajan. Social processes, program

verification and all that “Mathematical Structures in Computer Science”

Cambridge University Press. 2009.

Jean-Yves Bėziau, Walter Carnielli, and Dov Gabbay. Ed. Handbook of

Paraconsistency College Publications Kings College London. 2007

Cristian Calude and Giuseppe Longo. “The Deluge of Spurious Correlations in

Big Data” Foundations of Science Springer. March 2016.

Carlo Cellucci “Gödel's Incompleteness Theorem and the Philosophy of Open

Systems” Kurt Gödel: Actes du Colloque, Neuchâtel 13-14 juin 1991, Travaux

de logique N. 7, Centre de Recherches Sémiologiques, University de Neuchâtel.

http://w3.uniroma1.it/cellucci/documents/Goedel.pdf
Gregory Chaitin Interview in Dangerous Knowledge BBC4 documentary. 2007.

Alan Chalmers. “What is this thing called science?” Open University Press.

1999.Haskell Curry. “Some Aspects of the Problem of Mathematical Rigor”

Bulletin of the American Mathematical Society Vol. 4. 1941.
Alonzo Church. The Richard Paradox. Proceedings of American Mathematical

Society. 1934.
Alonzo Church. An unsolvable problem of elementary number theory Bulletin of

the American Mathematical Society 19, May, 1935. American Journal of
Mathematics, 58. 1936,

Alonzo Church: A Formulation of the Simple Theory of Types, Journal of
Symbolic Logic. vol. 5. 1940.

Will Clinger. Foundations of Actor Semantics MIT Mathematics Doctoral

Dissertation. June 1981.

Richard Dedekind (1888) “What are and what should the numbers be?”

(Translation in From Kant to Hilbert: A Source Book in the Foundations of

Mathematics. Oxford University Press. 1996) Braunschweig.

Michael Dunn and Greg Restall. “Relevance Logic” in The Handbook of

Philosophical Logic, second edition. Dov Gabbay and Franz Guenther

(editors), Kluwer. 2002.

Freeman Dyson. Heretical Thoughts about Science and Society Boston

University. November 1, 2005.

T. S. Eliot. Four Quartets. Harcourt. 1943.

Solomon Feferman “Axioms for determinateness and truth” Review of Symbolic

Logic. 2008.

http://w3.uniroma1.it/cellucci/documents/Goedel.pdf

22

A. C. W. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh,

“Inconsistency Handling in Multi-Perspective Specifications” Transactions on

Software Engineering, August 1994.

Dov Gabbay and Anthony Hunter. “Making inconsistency respectable: A logical

framework for inconsistency in reasoning (Part 1). Fundamentals of Artificial

Intelligence Research '91, Springer-Verlag.. 1991.

Dov Gabbay and Anthony Hunter. “Making inconsistency respectable: A logical

framework of inconsistency in reasoning (Part 2). Symbolic and Quantitative

Approaches to Reasoning and Uncertainty LNCS, Springer-Verlag, 1992.

Kurt Gödel (1931) “On formally undecidable propositions of Principia

Mathematica” in A Source Book in Mathematical Logic, 1879-1931.

Translated by Jean van Heijenoort. Harvard Univ. Press. 1967.

Louis Hansen. Another approach to autonomous vehicles – slow and steady

SiliconValley.com. Jan. 27, 2017.

Carl Hewitt. Planner: A Language for Proving Theorems in Robots IJCAI. 1969.

Carl Hewitt. “Procedural Embedding of Knowledge In Planner” IJCAI 1971.

Carl Hewitt and John Woods assisted by Jane Spurr, editors. Inconsistency

Robustness. College Publications. 2015.

Carl Hewitt. 2015a. Actor Model of Computation for Scalable Robust Information

Systems in “Inconsistency Robustness” College Publications. 2015.

Carl Hewitt. 2015b. ActorScript™ extension of C#®, Java®, Objective C®, C++,

JavaScript®, and SystemVerilog using iAdaptive™ concurrency in

Inconsistency Robustness. College Publications. 2015.

Carl Hewitt. 2015c. Inconsistency Robustness in Logic Programs in

“Inconsistency Robustness” College Publications. 2015.

Carl Hewitt. 2015d. Formalizing common sense reasoning for scalable

inconsistency-robust information coordination using Direct LogicTM

Reasoning and the Actor Model in “Inconsistency Robustness” College

Publications. 2015.

Carl Hewitt. 2015e. Inconsistency Robustness in Logic Programs in

“Inconsistency Robustness” College Publications. 2015.

Carl Hewitt. 2015f. Actors for CyberThings. Erlang Keynote. YouTube. March

23, 2015.

Carl Hewitt. 2016b. Future Cyberdefenses Will Defeat Cyberattacks CACM.

August 2016.

Carl Hewitt 2016c. IsletsTM Protect Sensitive IoT Information: Verifiably ending

use of sensitive IoT information for mass surveillance fosters (international)

commerce SSRN WP 2836282. 2016.

Carl Hewitt 2017a. Direct Logic for Intelligent Applications Logic and

Collaboration for Intelligent Applications. Stanford. March 30-31, 2017.

http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness
http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness
http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness
http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness
http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness
http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness
http://www.amazon.com/Inconsistency-Robustness-Carl-Hewitt/dp/1848901593/ref=sr_1_1?s=books&ie=UTF8&qid=1439401505&sr=1-1&keywords=inconsistency+robustness

23

Carl Hewitt 2017b. Axiomatics for Inconsistency Robust Direct Logic Logic and

Collaboration for Intelligent Applications. Stanford. March 30-31, 2017.

John Ioannidis. 2005a “Why Most Published Research Findings Are False” PLoS

Medicine. 2(8): e124.

John Ioannidis. 2005b “Contradicted and Initially Stronger Effects in Highly Cited

Clinical Research” JAMA. 294.2.218.

John Ioannidis. “Why Most Published Research Findings Are False: Author's

Reply to Goodman and Greenland” PLoS Medicine. 4(6): e215. 2007

Stanisław Jaśkowski “On the Rules of Suppositions in Formal Logic” Studia

Logica 1, 1934. (reprinted in: Polish logic 1920-1939, Oxford University

Press, 1967.

Stanisław Jaśkowski. “Propositional calculus for contradictory deductive

systems” Studia Logica. 24 (1969) Rachunek zdań dla systemów dedukcyjnych

sprzecznych in: Studia Societatis Scientiarum Torunensis, Sectio A, Vol. I, No.

5, Toruń 1948.

Eric Kao. “Proof by self-refutation and excluded middle lead to explosion”

Inconsistency Robustness 2011 Stanford. August 16-18, 2011.

Marsi Kendall. Uber pulls self-driving cars from San Francisco streets, bowing

to regulators’ demands Mercury News. December 21, 2016.

Morris Kline. Mathematical thought from ancient to modern times Oxford

University Press. 1972.
Thomas Kuhn. The Structure of Scientific Revolutions University of Chicago

Press. 1962.
Imre Lakatos. Proofs and Refutations Cambridge University Press. 1976

John Law. After Method: mess in social science research Routledge. 2004.

Martin Löb. “Solution of a problem of Leon Henkin.” Journal of Symbolic Logic.

Vol. 20. 1955.

John McCarthy. Programs with common sense Symposium on Mechanization of

Thought Processes. National Physical Laboratory. Teddington, England. 1958.

Lorenzo Magnani. The eco-cognitive model of abduction II: Irrelevance and

implausibility exculpated Journal of Applied Logic. February 2, 2016.

David Malone. Dangerous Knowledge BBC4 documentary. 2007.

http://www.dailymotion.com/playlist/x1cbyd_xSilverPhinx_bbc-dangerous-

knowledge/1

Colin McLarty. What Does it Take to Prove Fermat's Last Theorem?

Grothendieck and the Logic of Number Theory Journal of Symbolic Logic.

September 2010.

John-Jules Meyer. Review of Inconsistency Robustness Amazon. January, 2016.

Annemarie Mol and Marc Berg. “Principles and Practices of Medicine: the

Coexistence of various Anaemias” Culture, Medicine, and Psychiatry 1994.

http://www.dailymotion.com/playlist/x1cbyd_xSilverPhinx_bbc-dangerous-knowledge/1
http://www.dailymotion.com/playlist/x1cbyd_xSilverPhinx_bbc-dangerous-knowledge/1

24

Annemarie Mol. The Body Multiple: ontology in medical practice Duke

University Press. 2002.
Nick Nielsen Alternative Foundations/philosophical February 28, 2014.

http://www.cs.nyu.edu/pipermail/fom/2014-February/017861.htmlBashar

Graham Priest, and Richard Routley “The History of Paraconsistent Logic” in

Paraconsistent Logic: Essays on the Inconsistent Philosophia Verlag. 1989.

William Quine. Philosophy of Logic. Prentice Hall. 1970.

J. Rimland, M. Ballora, and W. Shumaker. Beyond visualization of big data: a

multi-stage data exploration approach using visualization, sonification, and

storification in SPIE Defense, Security, and Sensing. 2013.

Scott Rosenberg. Dreaming in Code. Crown Publishers. 2007.

Bertrand Russell. Principles of Mathematics Norton. 1903.

Bertrand Russell. “Les paradoxes de la logique” Revue de métaphysique et de

morale. 1906.

Bertrand Russell and Alfred Whitehead, Principia Mathematica (3 volumes).

Cambridge University Press. 1910-1913.

Dana Scott. Setoids/Modest Sets/PERs: Adding and Using Types with a Type-free

λ-Calculus Domains XII. August 2015.

Alfred Tarski Introduction to Logic Oxford University Press. 1940 (and many

subsequent editions).

Rineke Verbrugge “Provability Logic” The Stanford Encyclopedia of Philosophy

2010.

Ludwig Wittgenstein. 1956. Bemerkungen ¨uber die Grundlagen der

Mathematik/Remarks on the Foundations of Mathematics, Revised Edition

Basil Blackwell. 1978

John Woods. “Inconsistency: Its present impacts and future

prospects”Inconsistency Robustness 2015.

25

Appendix 1: Notation of Direct Logic

 Type i.e., a type is a discrimination 40 of the following:41

o Boolean::42, ℕ::43, O::44 and Typeτ:: where τ::45

o Propositionorder:: and Sentenceorder:: where order:ℕ+

o τ1⦶τ2::46, [τ1,τ2]::47, [τ1]→τ2::i and 𝛕𝟐
𝛕𝟏::ii where τ1:: and τ2::

o Setτ::iii and Expressionτ::48 where τ::

 Propositions, i.e., a Proposition is a discrimination of the following:

o :Propositionorder where :Propositionorderiv and order:ℕ+

o ,,⇨,⇔:Propositionorder where

,:Propositionorder and order:ℕ+
o (p � True⦂ 1, False⦂ 2):Propositionorder where p:Boolean,

,:Propositionorder49 and order:ℕ+
o x1=x2:Proposition1 where x1,x2:τ and τ::
o s1s2:Proposition1 where s1,s2:Setτ and τ::
o xs:Proposition1 where x:τ, s:Setτ and τ::

o τ1⊑τ2:Proposition150
 where τ1:: and τ2::

o (x::):Proposition151
o (x:τ):Proposition1 where τ::

o p[x]:Propositionorder+1v where x:τ, p:Propositionorderτ and

order:ℕ+ If τ is nonpropositional then p[x] is also of type

Propositionorder.

o (1, …, n-1├
𝐩

𝐓
 n):Propositionorder52 where p:Proof, T:Theory,

1 to n:Propositionorder and order:ℕ+
o s:Propositionorder where s:Sentenceorder with no free variables

and order:ℕ+

i Type of computable procedures from τ1 into τ2.

If f:([τ1]→τ2) and x:τ1, then f ∎[x]:τ2.

ii Type of functions from τ1 into τ2.

If f:τ2
𝛔1 and x:τ1, then f[x]:τ2.

iii Setτ is a type parametrized by the type τ. In Java and C++,

parametrized types are called “generics”, “<” is used for , and “>” is used

for . The following axiom holds: ∀[τ::,s:Setτ,x∈s] x:τ
iv Propositionorder is the parametrized type consisting of type Proposition

parametrized by order.
v The type of p[x] means that the Y fixed point construction cannot be used to

construct propositions in Direct Logic.

26

Grammar (syntax) trees (i.e. expressions and sentences) are defined as follows:

 Expressions, i.e., an Expressionτ is a discrimination of the following:
o ⦅x⦆:Constantτ where x:τ and τ::
o x:Expressionτ where x:Constantτ and τ::
o x:Expressionτ where x:Variableτ and τ::

o ⦅f1[x1:𝛕𝟏]:𝛔𝟏≡d1, ... , fn[xn:𝛕𝐧]:𝛔𝐧≡dn
53, y⦆:Expressionτ where for i in 1 to n,

fi:Variable𝛔𝐢
𝛕𝒊 in di and y, xi:Variable𝛕𝐢 in di,di:Expression𝛔𝐢,

y:Expressionτ, and 𝛕𝐢::

o ⦅x1:𝛕𝟏≡d1, ... , xn≡dn
54, y⦆:Expressionτ where for i in 1 to n, xi:Variable𝛕𝐢

in di and y, di:Expression𝛔𝐢, y:Expressionτ, and 𝛕𝐢::
o ⦅e1⦶e2⦆:Expressionτ1⦶τ2, ⦅[e1, e2]⦆:Expression[τ1, τ2],

⦅[e1]→e2⦆:Expression[τ1]→τ2 and ⦅𝐞𝟐
𝐞𝟏⦆:Expression𝛕2

𝛕1
 where

e1:Expressionτ1, e2:Expressionτ2, τ1:: and τ2::
o ⦅e1 � True⦂ e2 , False⦂ e3⦆:Expressionτi where e1:ExpressionBoolean,

e2,e3:Expressionτ and τ::
o ⦅λ[x:τ1] e⦆:Expression𝛕𝟐

𝛕𝟏 where e:Expressionτ2, x:Variableτ1 in e,
and τ1,τ2::

o ⦅e[x]⦆:Expressionτ2 where e:Expression𝛕𝟐
𝛕𝟏, x:Expressionτ1, τ1::

and τ2::
o ⦅e∎[x]⦆:Expressionτ2 where e:Expression[τ1]→τ2, x:Expressionτ1,

τ1:: and τ2::
o Sentenceorder⊑ExpressionSentenceorder where order:ℕ+
o e:τ where e:Expressionτ with no free variables and τ::

i ⦅if e1 then e2 else e3⦆

27

 Sentences, i.e., a Sentence is a discrimination of the following:

o ⦅x⦆:Sentenceorder+1i where x:VariableSentenceorder and

order:ℕ+
o ⦅s⦆:Sentenceorder where s:Sentenceorder and order:ℕ+
o ⦅s1s2⦆,⦅s1s2⦆,⦅s1⇨s2⦆,⦅s1⇔s2⦆:Sentenceorder where

s1,s2:Sentenceorder and order:ℕ+
o ⦅e � True⦂ s1, False⦂ s2⦆ii:Sentenceorder where e:ExpressionBoolean,

s1,s2:Sentenceorder and order:ℕ+
o ⦅e1=e2⦆:Sentence1 where e1,e2:Expressionτ and τ::
o ⦅e1⊑e2⦆:Sentence1 where e1,e2:Expressionτ1, τ1:τ2 and τ2::
o ⦅e1e2⦆:Sentence1 where e1,e2:ExpressionSetτ and τ::
o ⦅e1e2⦆:Sentence1 where e1:Expressionτ, e2:ExpressionSetτ

and τ::
o ⦅e1:e2⦆:Sentence1 where e1:Expressionτ1, e2:Expressionτ2 τ1:τ3,

τ2:τ4 and τ3,τ4::
o ⦅e::⦆:Sentence1 where e:Expressionτ and τ::
o ⦅∀[x:τ1] s⦆,⦅∃[x:τ1] s⦆:Sentenceorder where x:Variableτ1 in s,

s:Sentenceorder and order:ℕ+
o ⦅p[x]⦆:Sentenceorder+1iii where x:Expressionτ,

p:ExpressionSentenceorderτ
, τ:: and order:ℕ+ If τ is

nonpropositional then ⦅p[x]⦆ is also of type Sentenceorder.

o ⦅s1,…,sn-1├
𝐩

𝐓
 sn⦆:Sentenceorder where T:ExpressionTheory,

s1 to n:Sentenceorder, p:ExpressionProof and order:ℕ+
o s:Propositionorder where s:Sentenceorder, order:ℕ+ and there

are no free variables in s.iv

i The type of ⦅x⦆ means that the Y fixed point construction cannot be used to construct

sentences for “self-referential” propositions in Direct Logic.
ii if t then s1 else s1
iii The type of ⦅p[x]⦆ means that the Y fixed point construction cannot be used to

construct sentences for “self-referential” propositions in Direct Logic.
iv The type binding achieves much of what Russel sought to achieve in the ramified

theory of types. [Russell and Whitehead 1910-1913]

28

 Strings for sentences, i.e., a string for a sentence is a discrimination of the
following:

o “x”:StringSentenceorder+1i where

x:VariableStringSentenceorder and order:ℕ+
o “s”:StringSentenceorder where s:StringSentenceorder and

order:ℕ+
o “s1 s2”,“s1 s2”,“s1 ⇨ s2”,“s1 ⇔ s2”:StringSentenceorder where

s1,s2:StringSentenceorder and order:ℕ+

o “e � True⦂ s1 , False⦂ s2”ii:StringSentenceorder where e:
StringExpressionBoolean, s1,s2:StringSentenceorder and

order:ℕ+
o “e1=e2”:StringSentence1 where e1,e2:StringExpressionτ and τ::
o “e1⊑e2”:StringSentence1 where e1,e2:StringExpressionτ1, τ1:τ2

and τ2::
o “e1 e2”:StringSentence1 where e1,e2:StringExpressionSetτ

and τ::
o “e1e2”:StringSentence1 where e1:StringExpressionτ,

e2:StringExpressionSetτ and τ::
o “e1:e2”:StringSentence1 where e1:StringExpressionτ1,

e2:StringExpressionτ2, τ1:τ3, τ2:τ4 and τ3,τ4::
o “e::”:StringSentenceorder where e:StringExpressionτ and τ::
o “∀[x:τ1] s”,“∃[x:τ1] s”:StringSentenceorder where x:Variableτ1 in s,

s:StringSentenceorder and order:ℕ+
o “p[x]”:StringSentenceorder+1iii where x:StringExpressionτ,

p:StringExpressionSentenceorderτ
, τ:: and order:ℕ+ If τ is

nonpropositional then “p[x]” is also of type StringSentenceorder

o “s1 , … , sn-1 ├
𝐩

𝐓
 sn”:Stringorder where T:StringExpressionTheory,

s1 to n:Stringorder, p:StringExpressionProof and order:ℕ+
o s:Sentenceorder where s:StringSentenceorder and order:ℕ+

i The type of “x” means that the Y fixed point construction cannot be used to construct

strings for “self-referential” propositions in Direct Logic.
ii if t then s1 else s1
iii The type of “p[x]" ” means that the Y fixed point construction cannot be used to

construct strings for “self-referential” propositions in Direct Logic.

29

 String for expressions, i.e., a string for an expression is a discrimination of the
following:
o “⦅x⦆”:StringExpressionτ where x:StringConstantτ and τ::
o “⦅x⦆”: StringExpressionτ where x:StringVariableτ and τ::

o “⦅(f1[x1:𝛕𝟏]:𝛔𝟏≡d1, ... , fn[xn:𝛕𝐧]:𝛔𝐧≡dn
55,y)⦆”:StringExpressionτ where

for i in 1 to n, fi:StringVariable𝛔𝐢
𝛕𝒊 in di and y,

xi:StringVariable𝛕𝐢 in di,di:StringExpression𝛔𝐢,

y:StringExpressionτ, and 𝛕𝐢::

o “⦅(x1:𝛕𝟏≡d1, ... , xn≡dn
56y)⦆”:StringExpressionτ where for i in 1 to n,

xi:StringVariable𝛕𝐢 in di and y, di:StringExpression𝛔𝐢,

y:StringExpressionτ, and 𝛕𝐢::
o “⦅e1⦶e2⦆”:StringExpressionτ1⦶τ2,

“⦅[e1, e2]⦆”:StringExpression[τ1,τ2],
“⦅[e1]→e2⦆”:StringExpression[τ1]→τ2, and

⦅𝐞𝟐
𝐞𝟏⦆:StringExpression𝛕2

𝛕1
 where e1:StringExpressionτ1,

e2:StringExpressionτ2, and τ1:: and τ2::
o “⦅e1 � True⦂ e2 , False⦂ e3⦆”:StringExpressionτi where

e1:StringExpressionBoolean, e2,e3:StringExpressionτ and τ::
o “⦅λ[x:τ1] e⦆”:StringExpression𝛕𝟐

𝛕𝟏 where e:StringExpressionτ2,
x:StringVariableτ1 in e, and τ1,τ2::

o “⦅e[x]⦆”:StringExpressionτ2 where e:StringExpression𝛕𝟐
𝛕𝟏,

x:StringExpressionτ1, τ1:: and τ2::
o “⦅e∎[x]⦆”:Expressionτ2 where e:Expression[τ1]→τ2, x:Expressionτ1,

τ1:: and τ2::
o StringSentenceorder⊑StringExpressionSentenceorder

where order:ℕ+
o e:Expressionτ, where e:StringExpressionτ and τ::

i “if e1 then e2 else e3”

30

Appendix 2. Historical Background
“The powerful (try to) insist that their statements are literal depictions of a single

reality. ‘It really is that way’, they tell us. ‘There is no alternative.’ But those on

the receiving end of such homilies learn to read them allegorically, these are

techniques used by subordinates to read through the words of the powerful to the

concealed realities that have produced them.” [Law 2004]

Gödel was certain

“ ‛Certainty’ is far from being a sign of success; it is only a symptom of lack of

imagination and conceptual poverty. It produces smug satisfaction and prevents

the growth of knowledge.” [Lakatos 1976]

Paul Cohen [2006] wrote as follows of his interaction with Gödel:57

“His [Gödel's] main interest seemed to lie in

discussing the ‛truth’ or ‛falsity’ of these

[mathematical] questions, not merely in their

undecidability. He struck me as having an almost

unshakable belief in this “realist” position, which I

found difficult to share. His ideas were grounded in

a deep philosophical belief as to what the human

mind could achieve. I greatly admired this faith in

the power and beauty of Western Culture, as he put

it, and would have liked to understand more deeply

what were the sources of his strongly held beliefs.

Through our discussions, I came closer to his point

of view, although I never shared completely his ‛realist’ point of

view, that all questions of Set Theory were in the final analysis,

either true or false.”

According to John von Neumann, Gödel was “the

greatest logician since Aristotle.”58 However, [von

Neumann 1961] expressed a very different

mathematical philosophy than Gödel:

“It is not necessarily true that the mathematical

method is something absolute, which was

revealed from on high, or which somehow, after

we got hold of it, was evidently right and has

stayed evidently right ever since.”

Kurt Gödel

John von Neumann

http://knol.google.com/k/-/-/pcxtp4rx7g1t/mdzs7d/goedel.png

31

Gödel based his incompleteness results on the thesis that mathematics necessarily

has the proposition I'mUnprovable in Principia Mathematica [Russell 1902].

Wittgenstein correctly noted that Gödel's I'mUnprovable infers inconsistency in

mathematics:59
“Let us suppose [Gödel's writings are correct and therefore] I provei the

improvability (in Russell’s system) of [Gödel's I'mUnprovable] P; [i.e., ⊢⊬P where

P⇔⊬P] then by this proof I have proved P [i.e., ⊢P]. Now if this proof were one in

Russell’s system [i.e., ⊢⊢P] — I should in this case have proved at once that it

belonged [i.e., ⊢P] and did not belong [i.e., ⊢ P because P⇔⊢P] to Russell’s

system.

 But there is a contradiction here! [i.e., ⊢P and ⊢ P] ...

[This] is what comes of making up such sentences.” [emphasis added]

According to [Gödel 1972]:

“Wittgenstein did not understand it [Gödel's 1931 article on Principia

Mathematica] (or pretended not to understand it). He interpreted it as a kind

of logical paradox, while in fact it is just the opposite, namely a mathematical

theorem within an absolutely uncontroversial part of mathematics (finitary

number theory or combinatorics).”

In the above passage, Gödel retreated from Principia Mathematic to the First-

Order Logic theory FirstOrderNatualNumbers to defend his

I'mUnprovableInFirstOrderNatualNumbers. However, the following

incompleteness result is not very impressive because

FirstOrderNatualNumbers is a very weak theory:

 ⊨ℕ I'mUnprovableInFirstOrderNatualNumbers

 ⊬
FirstOrderNatualNumbers

 I'mUnprovableInFirstOrderNatualNumbers

i Wittgenstein was granting the supposition that Gödel had proved inferential

undecidability (sometimes called “incompleteness”) of Russell’s system, that is.,
⊢⊬

P. However, inferential undecidability is easy to prove using the proposition P

where P⇔⊬P:

Proof. Suppose to obtain a contradiction that ⊢

P. Both of the following can be

inferred:

1) ⊢

⊬

P from the hypothesis because P⇔⊬P

2) ⊢

⊢

P from the hypothesis by Adequacy.

But 1) and 2) are a contradiction. Consequently, ⊢⊬

P follows from proof by

contradiction.

32

Trying to retain I’mUnprovable forced Gödel into a very narrow and constricted

place of reducing propositions to strings for sentences and then to Gödel numbers

axiomatized in a first-order theory in order to avoid Wittgenstein's devastating

criticism. This narrow constricted place is intolerable for computer science, which

needs to reason about propositions in a more natural and flexible way using Strong

Types.

Let T be a theory capable of representing all computable functions on Strings and

Natural Numbers with GödelNumber[aWellFormedString] being the Gödel

number of aWellFormedString, where a well-formed string is here considered to

be a proposition. A Diagonal Lemma is:

 If F is a well-formed string in the language with one free variable, then

 there is a well-formed string S such that the following is provable in T:

 S ⇔ F[GödelNumber[S]]

Letting GödelNumberToWellFormedString[n] be the well-formed string with

Gödel number n, define Eubulides as follows (where

“GödelNumberToWellFormedString[n]” is the string formed by prefixing the

character to the well-formed string with Gödel number n):

 Eubulides[n] ≡ “GödelNumberToWellFormedString[n]”

By the above Diagonal Lemma, there is a well-formed string I’mFalse such that

the following is provable in T (where

“GödelNumberToWellFormedString[GödelNumber[I’mFalse]]” is the result

of prefixing the well-formed string

GödelNumberToWellFormedString[GödelNumber[I’mFalse]] with):60

 I’mFalse ⇔ Eubulides[GödelNumber[I’mFalse]]

 ⇔ “GödelNumberToWellFormedString[GödelNumber[I’mFalse]]”

 ⇔ I’mFalse

[Chaitin 2007] complained about basing something as important as

incompleteness something so trivial as I'mUnprovable:

“[Gödel’s proof] was too superficial. It didn't get at the real heart of what was

going on. It was more tantalizing than anything else. It was not a good reason

for something so devastating and fundamental. It was too clever by half. It was

too superficial. [It was based on the clever construction] I'mUnprovable So

what? This doesn't give any insight how serious the problem is.”

33

Chaitin's criticism is partially supported by the fact that even Gödel himself agreed

that the subsequent proof of incompleteness by Church/Turing based on

computational undecidability was fundamental in proving that there is no total

recursive procedure that can decide provability of a proposition of the categorical

theory Nat of natural numbers. There must be an inferentially undecidable

proposition for Nat because otherwise provability of any proposition could be

computationally decided by enumerating all theorems until the proposition or its

negation is found. However, Gödel, Church, Turing, and many other logicians

continued for a long time to believe in the importance of Gödel’s proof based on

his I'mUnprovable.61

According to [Monk 2007]:62

“Wittgenstein hoped that his work on mathematics

would have a cultural impact, that it would

threaten the attitudes that prevail in logic,

mathematics and the philosophies of them. On this

measure it has been a spectacular failure.”

Unfortunately, recognition of the worth of

Wittgenstein’s work on mathematics came long after

his death. For decades, many theoreticians mistakenly

believed that they had been completely victorious over

Wittgenstein.

Ludwig Wittgenstein

34

Church's Paradox
[Church 1932, 1933] attempted basing foundations entirely on untyped higher-
order functions, but foundered because
contradictions emerged because
1. His system allowed the use of the Y

fixed point operator for untyped
propositions to construct “self-
referential” propositions [Kleene and
Rosser 1935]

2. Theorems in his system were
computationally enumerable.

[Church 1934] expounded on the following
profound issues, which is designated
“Church's Paradox”:

“in the case of any system of symbolic

logic, the set of all provable theorems is

[computationally] enumerable... any

system of symbolic logic not hopelessly

inadequate ... would contain the formal

theorem that this same system ... was either insufficient [theorems are not

computationally enumerable] or over-sufficient [that theorems are

computationally enumerable means that the system is inconsistent]...

 This, of course, is a deplorable state of affairs...

 Indeed, if there is no formalization of logic as a whole, then there is no

exact description of what logic is, for it in the very nature of an exact

description that it implies a formalization. And if there no exact description

of logic, then there is no sound basis for supposing that there is such a thing

as logic.”

The mathematical theory Nat

1
 (1st order theory of Natural Numbers) non-

categorically63 formalizes the Natural Numbers using the following schema:i

 ∀[P:StringExpressionProposition1ℕ
]

 (P [0] ∀[i:ℕ] P [i]⇨ P [i+1]) ⇨ ∀[i:ℕ] P [i]

Nat
1
 has countably many instances of the above schema because there are only

countably many strings.

i instead of using the categorical induction axiom of Nat

Alonzo Church

35

Church’s Paradox:64

1. ⊢𝑁𝑎𝑡1
TheoremsComputationallyEnumerable[Nat

1
]

2. ⊬𝑁𝑎𝑡1
TheoremsComputationallyEnumerable[Nat

1
]

Proof:

1. ⊢𝑁𝑎𝑡1
TheoremsComputationallyEnumerable[Nat

1
] because all of

the instances of the induction axiom can be computationally
enumerated and then used to computationally enumerate the

theorems of Nat
1
.

2. Suppose to obtain a contradiction that

 ⊢𝑁𝑎𝑡1
TheoremsComputationallyEnumerable[Nat

1
]

Then there is a provable in Nat
1

computable total procedure

 TheoremsEnumeratorNat
1
:[ℕ]→TheoremNat

1

 such that it is provable in Nat
1

that

 ∀[p:TheoremNat
1
] ∃[i:ℕ] TheoremsEnumeratorNat

1
 ∎[i]= p

A subset of the proofs in Nat
1
 are those proving that certain procedures

[ℕ]→ℕ are total. Consequently, there is a procedure

 ProvedTotalsEnumeratorNat
1
:[ℕ]→([ℕ]→ℕ)

that enumerates the provable in Nat
1
 total computable procedures [ℕ]→ℕ

that can be used in the implementation of the following procedure:

 Diagonal∎[i:ℕ]:ℕ ≡ 1+ (ProvedTotalsEnumeratorNat
1
∎[i]) ∎[i]

Consequently:
• Diagonal is a provable in Nat

1
 total procedure because it is

implemented using computable provable in Nat
1
 total procedures.

• Diagonal is not a provable in Nat
1
 total procedure because it differs

from every other computable provable in Nat
1
 total procedure.

The above contradiction completes the proof

Church’s Paradox is that Nat

1
 (1st order theory of Natural Numbers) is

inconsistent. [Church 1934] pointed out that there is no obvious way to remove
the inconsistency concluding if Nat

1
is taken to be an exact description of logici

then,
“Indeed, if there is no formalization of logic as a whole, then there is no exact
description of what logic is, for it in the very nature of an exact description that

i (in accord with the opinion of a large fraction of contemporary philosophers of logic)

36

it implies a formalization. And if there no exact description of logic, then there
is no sound basis for supposing that there is such a thing as logic.”

The above issues can be addressed as follows:
1. Requiring Mathematics to be strongly typed using 2nd order logic so that

 Mathematics self proves that it is “open” in the sense that proofs are
not computationally enumerable.65

 Mathematics self proves that it is formally consistent.66
2. It was initially thought that mathematics could be based just on character

strings. Then diagonalization was discovered and things haven’t been the same
since. The string for the 1st order Nat

1
 non-categorical induction schema is as

follows:i

 "∀[P:StringExpressionProposition1ℕ
]

 (P [0] ∀[i:ℕ] P [i]⇨ P [i+1]) ⇨ ∀[i:ℕ] P [i]"
which has countably many 1st order propositions as instances that are abstracted

from the countably many character strings of type

StringExpressionProposition1ℕ
 and which differs fundamentally

from the character string for the more general 2nd order categorical induction

axiom, which is as follows:

 "∀[P:Proposition1ℕ] (P[0]] ∀[i:ℕ] P[i]⇨P[i+1]) ⇨ ∀[i:ℕ] P[i]"
Although the theory Nat has only finitely many axioms, the above string

abstracted as a proposition has uncountably many 1st order propositions as

instances.ii In this way, Nat differs fundamentally from the 1st order theory Nat
1

because, being uncountable, not all instances of the Nat induction axiom can

be obtained by abstraction from character strings. Proofs abstracted from

character strings for the axioms of Nat
1
can be computationally enumerated and

are valid proofs in Nat, but this does not enumerate all of the proofs of Nat !

What is to be made of the uncountable number of theorems of Nat whose

proofs cannot be written down in text?

Gödel, Curry, and Löb Paradoxes

Allowing use of the Y untyped fixed point operator for propositions results in

contradictions.

i with the unfortunate consequence that the argument in Church’s Paradox shows that

Nat
1
 is inconsistent because it can provably computationally enumerate its theorems

ii with the consequence that the argument in Church’s Paradox is blocked in Nat

because

it has uncountably many theorems

37

The fixed point construction of the Diagonal Lemma cannot be used to construct

Gödel's I'mUnprovable with the following definition of F because a fixed point

does not exist: 67

Fn>[p:Propositionn]:Propositionn+1 ≡ ⊬ p

By the following argument, Wittgenstein derived a contradiction in Mathematics

from Gödel’s result:68

Gödel thought that he demonstrated ⊢⊬I'mUnprovable. Therefore

⊢I'mUnprovable using I'mUnprovable⇔⊬I'mUnprovable. ⊢⊢I'mUnprovable

follows using adequacy. But the contradiction ⊢I'mUnprovable follows

using I'mUnprovable⇔⊬I'mUnprovable.

The following paradoxes cannot prove every proposition because the Y untyped

fixed point operator for propositions cannot be used in a strongly typed logic:69

 Curry’s Paradox [Curry 1941] Suppose Ψ:PropositionanOrder:ℕ+.

 Fn:ℕ+[p:Propositionn]:PropositionMax[n+1, anOrder] ≡ p⇒Ψ

 // above definition has no fixed point because p├ Ψ has

 // order greater than p

The following argument derives any proposition Ψ assuming the existence

of a fixed point for F:
1) CurryΨ ⇔ (CurryΨ ⇒ Ψ) // nonexistent fixed point of F
2) CurryΨ ⇒ CurryΨ // idempotency

3) CurryΨ ⇒ (CurryΨ ⇒ Ψ) // substituting 1) into 2)

4) CurryΨ ⇒ Ψ // contraction

5) CurryΨ // from 4) using 1)

6) Ψ // transitivity 4) and 5)

 Löb’s Paradox [Löb 1955]70 Suppose Ψ:PropositionanOrder:ℕ+.

 Fn:ℕ+[p:Propositionn]:PropositionMax[n+1,anOrder] ≡ (├ p)⇒Ψ

 // above definition has no fixed point because ≡ (├ p) has

 // order greater than p

The following argument derives any proposition Ψ assuming the existence

of a fixed point for F:
1) LöbΨ ⇔ ((├ LöbΨ) ⇒ Ψ) // nonexistent fixed point of F

2) (├ LöbΨ) ⇒ LöbΨ // rule of Theorem Use

3) (├ LöbΨ) ⇒ ((├ LöbΨ) ⇒ Ψ) // substituting 1) into 2)

4) (├ LöbΨ) ⇒ Ψ // contraction

5) ├ LöbΨ // from 4) using 1)

6) Ψ // transitivity using 4) and 5)

38

Berry Paradox
The Berry Paradox [Russell 1906] can be formalized as follows:

Characterize[s:StringExpressionPropositionωℕ

 k:ℕ]:Propositionω+1 ≡
 ∀[x:ℕ] s [x] ⇔ x=k

Consider the following definition:

 BString:StringExpressionPropositionω+1ℕ
 ≡

 “⦅λ[n:ℕ] ⦅∀[s:StringExpressionPropositionωℕ
]

 Length[s]<100 ⇨ Characterize[s, n]⦆⦆”

 BExpression:ExpressionPropositionω+1ℕ
 ≡ BString

 Note that
o Length[BString]<100.

o {s:StringExpressionPropositionωℕ
 | Length[s]<100} is finite.

o Therefore the following set is finite:

 {n:ℕ+ | ∃[s:StringExpressionPropositionωℕ
]

 Length[s]<100 Characterize[s, n]}

BSet:Setℕ ≡ {n:ℕ+ | BExpression [n]}

BSet≠{ } because is {n:ℕ | n≧1} is infinite.

1. BNumber:ℕ ≡ Least[BSet]
2. BExpression [BNumber]71

3. ⦅λ[n:ℕ] ⦅∀[s:StringExpressionPropositionωℕ
]

 Length[s]<100 ⇨ Characterize[s, n]⦆ [BNumber]72

4. ∀[s:StringExpressionPropositionωℕ
]

 Length[s]<100 ⇨ Characterize[s, BNumber]73
5. Length[BString]<100 ⇨ Characterize[BString, BNumber]
 // above is invalid because of attempted substitution of

 // BString:StringExpressionPropositionω+1ℕ
 for

 // s:StringExpressionPropositionωℕ

39

End Notes

1 [White 1956, Wilder 1968, Rosental 2008]
2 Mathematical foundations of Computer Science must be general, rigorous,

realistic, and as simple as possible. There are a large number of highly technical

aspects with complicated interdependencies and trade-offs. Foundations will be

used by humans and computer systems. Contradictions in the mathematical

foundations of Computer Science cannot be allowed and if found must be

repaired.

 Classical mathematics is the subject of this article. In a more general context:

 Inconsistency Robust Direct Logic is for pervasively inconsistent theories

of practice, e.g., theories for climate modeling and for modeling the

human brain.

 Classical Direct Logic can be freely used in theories of Inconsistency

Robust Direct Logic. See [Hewitt 2010] for discussion of Inconsistency

Robust Direct Logic. Classical Direct Logic for mathematics used in

inconsistency robust theories.
3 By the Computational Representation Theorem [Clinger 1981; Hewitt 2006],

which can define all the possible executions of a procedure.

4 Again, Mathematics here means the common foundation of all classical

mathematical theories from Euclid to the mathematics used to prove Fermat's

Last [McLarty 2010].
5 As shown above, there is a simple proof in Classical Direct Logic that

Mathematics (├) is formally consistent. If Classical Direct Logic has a bug, then

there might also be a proof that Mathematics is inconsistent. Of course, if a such

a bug is found, then it must be repaired. The Classical Direct Logic proof that

Mathematics (├) is consistent is very robust. One explanation is that consistency

is built in to the very architecture of Mathematics because it was designed to be

consistent. Consequently, it is not absurd that there is a simple proof of the

consistency of Mathematics (├) that does not use all of the machinery of

Classical Direct Logic.

40

 In reaction to paradoxes, philosophers developed the dogma of the necessity

of strict separation of “object theories” (theories about basic mathematical

entities such as numbers) and “meta theories” (theories about theories). This

linguistic separation can be very awkward in Computer Science. Consequently,

Direct Logic does not have the separation in order that some propositions can

be more “directly” expressed. For example, Direct Logic can use ├├Ψ to

express that it is provable that P is provable in Mathematics. It turns out in

Classical Direct Logic that ├├Ψ holds if and only if ├Ψ holds. By using such

expressions, Direct Logic contravenes the philosophical dogma that the

proposition ├├Ψ must be expressed using Gödel numbers.
6 Gödel based his incompleteness results on the thesis that Mathematics

necessarily has the proposition I'mUnprovable using what was later called the

“Diagonal Lemma” [Carnap 1934], which is equivalent to the Y untyped fixed

point operator on propositions. Using strong parameterized types, it is

impossible to construct I'mUnprovable because the Y untyped fixed point

operator does not exist for strongly typed propositions. In this way, formal

consistency of Mathematics is preserved without giving up power because there

do not seem to be any practical uses for I'mUnprovable in Computer Science.

 A procedure definition NotProvable could be attempted as follows:

 NotProvable[p] ≡ ⊬p

 With strong types, the attempted definition becomes:

 NotProvablen:ℕ+[p:Propositionn]:Propositionn+1 ≡ ⊬p
 Consequently, there is no fixed point I'mUnprovable for the procedure

NotProvablen:ℕ+ such that the following holds:

 NotProvablen:ℕ+[I'mUnprovable]⇔I'mUnprovable
 Thus Gödel’s I'mUnprovable does not exist in Strongly-Typed Mathematics.

See the discussion in this article on Provability Direct Logic for Wittgenstein's

proof that I'mUnprovable leads to inconsistency in Mathematics.

 In arguing against Wittgenstein’s criticism, Gödel maintained that his results

on I'mUnprovable followed from properties of ℕ using Gödel numbers for

strings that are well-formed. The procedure NotProvable could be attempted for

strings as follows: NotProvable[s] ≡ “⊬ s” With strong types, the attempted

definition becomes:

 NotProvablen:ℕ+[s:StringPropositionn]:StringPropositionn+1

 ≡ “⊬ s”

41

Consequently, there is no fixed point I'mUnprovableString for the procedure

NotProvablen:ℕ+ such that the following holds where s is the

proposition for well-formed string s:

 NotProvablen:ℕ+ [I'mUnprovableString] ⇔ I'mUnprovableString
 Thus Gödel’s I'mUnprovableString does not exist in Strongly-Typed

Mathematics.

 Furthermore, Strong Types thwart the known paradoxes while at the same

time facilitating proof of new theorems, such as categoricity of the set theory.

 Although Gödel’s incompleteness results for I'mUnprovable have

fundamental problems, the work was extremely significant. For example, the

following paradoxes were developed following along Gödel’s work:

 Curry’s Paradox [Curry 1941] Suppose Ψ:Propositionorder:ℕ+.

 Curryn:ℕ+[p:Propositionn]:PropositionMax[n,order+1] ≡ p⇒Ψ

Curry’s Paradox is blocked because the procedure Curry does not have a

fixed point.

 Löb’s Paradox [Löb 1955]6 Suppose Ψ:Propositionorder:ℕ+.

 Löbn:ℕ+[p:Propositionn]:PropositionMax[n,order+1 ≡ (├ p)⇒Ψ

Löb’s Paradox is blocked because the procedure Löb does not have a fixed

point.

A key difference is that Direct Logic works directly with propositions as

opposed to the work of Gödel, Curry, and Löb, which was based on first-order

theories of propositions for sentences strings coded as integers.
7 [Nielsen 2014]
8 [Isaacson 2007]
9 The induction axiom per se does not per se commit to sets such as those in

Booleanℕ. Also as illustrated in this article, strong types are in fact much

stronger that first-order set theory.
10 This argument appeared in [Church 1934] expressing concern that the

argument meant that there is “no sound basis for supposing that there is such

a thing as logic.”
11 The argument above appeared in [Church 1934] expressing concern that the

argument meant that there is “no sound basis for supposing that there is such a

thing as logic.” However, there are uncountably many P:Proposition1ℕ for

which the following holds in ℕ: (P[0] ∀[i:ℕ] P[i]⇨P[i+1]) ⇨ ∀[i:ℕ] P[i]
Consequently, there is no way to computationaly enumerate all such P by

abstraction from strings of the following form: StringProposition1ℕ
.

There are uncountably many propositions of Nat that are true in ℕ. However,

only countably many can be abstracted from strings. And there are only

42

countably many propositions that can be proved by abstracting from strings that

are the axioms of Nat. See the discussion of Church’s Paradox in appendix of

this article.
12 [Dedekind 1888] According to [Isaacson 2007]:

“Second-order quantification is significant for philosophy of mathematics

since it is the means by which mathematical structures may be

characterized. But it is also significant for mathematics itself. It is the means

by which the significant distinction can be made between the independence

of Euclid's Fifth postulate from the other postulates of geometry and the

independence of Cantor's Continuum hypothesis [conjecture] from the

axioms of set theory. The independence of the Fifth postulate rejects the

fact, which can be expressed and established using second-order logic, that

there are different geometries, in one of which the Fifth postulate holds (is

true), in others of which it is false.”
13 For each type X that satisfies the categorical axioms there is a (unique)

isomorphism I:Xℕ and inductively defined as follows:

1. I[0ℕ] ≡ 0X

2. I[+1[j]] ≡ +1
𝐗[I[j]]

Using proofs by Natural Number induction on ℕ and X, the following follow:

1. I is defined for every ℕ

2. I is one-to-one: ∀[k,j:ℕ] I[k]=I[j] ⇒ k=j

 First show Lemma by induction on k: ∀[k:ℕ] I[k]=0x ⇒ k=0ℕ

 Base : Suppose k=0ℕ. QED.

 Induction: Suppose I[k]=0X ⇒ k=0ℕ
 To show: I[+1[k]]=0X ⇒ +1[k]=0X
 I[+1[k]]= +1

𝐗
X[I[k]]

 Therefore I[+1[k]]=0X ⇒0X=+1
𝐗 [I[k]]

 which is a contradiction

 To show: ∀[k,j:ℕ] I[k]=I[j] ⇒ i=j
 Proof: Induction on P[m:ℕ]:Proposition1 ≡

 ∀[k,j≦m:ℕ] I[k]=I[j]⇒i=j

 Base : Suppose m=k=j=0ℕ. QED.
 Induction: Suppose ∀[k,j≦m:ℕ] I[k]=I[j]⇒k=j

 To show: ∀[0ℕ<k,j<+1[m]] I[k]=I[j]⇒k=j

 ∃[k0,j0≦m:ℕ] k=+1[k0] j=+1[j0] because 0ℕ<k,j≦m
 k0=j0 since k0,j0≦m, k,j<+1[m] and
 I[k0]=I[j0]⇒k0=j0 by induction hypothesis

43

 +1[k0]=+1[j0] and therefore k=j
3. the range of I is all of X: ∀[y:X] ∃[k:ℕ] I[k]=y

Proof: Induction on P[y:X]:Proposition1 ≡ ∃[k:ℕ] I[k]=y

 Base: Suppose y=0X. To show ∃[k:ℕ] I[k]= 0X. Clearly I[0ℕ]=0X

 Induction: Suppose y>0X:X and ∃[k:ℕ] I[k]=y. Let I[k0]=y.

 To show ∃[k:ℕ] I[k]=+1
𝐗[y].

 It follows from I[+1[k0]]] = +1
𝐗[I[k0]] = +1

𝐗[y]
4. I is a homomorphism: I[0ℕ]=0X and ∀[j:ℕ] I[+1[j]] = +1

𝐗[I[j]]
 Proof: Induction on P[j:ℕ]:Proposition1 ≡ I[+1[j]]=+1

𝐗[I[j]]]
 Base : I[+1[0ℕ]]=+1

𝐗[I[0ℕ]] by definition of I
 Induction: Suppose ∀[i:ℕ] I[+1[j]] = +1

𝐗[I[j]]
 To show: ∀[j:ℕ] I[+1[+1[j]]] = +1

𝐗[I[+1[j]]]
 I[+1[+1[j]]] = +1

𝐗[I[+1[j]]] by definition of I
5. I-1:ℕX is a homomorphism:
 I-1[0X]= 0ℕ and ∀[y:X] I-1[+1

𝐗[y]]=+1[I-1[y]]
 Proof:
 To show: I-1[0X]=0ℕ.
 Let i=I-1[0X]. Therefore I[k]=0X and k=0ℕ.
 To show: ∀[y:X] I-1[+1

𝐗[y]]=+1[I-1[y]]]
 Induction on P[y:X]:Proposition1 ≡ I-1+1

𝐗[y]]=+1[I-1[y]]]
 Base : To show: I-1[+1

𝐗[0X]]=+1[I-1[0X]]]=+1[0ℕ]
 Let k=I-1[+1

𝐗[0X]]. Therefore I[k]=+1
𝐗 [0X] and k=+1[0ℕ].

 Induction: Suppose ∀[j:ℕ] I[+1[j]]=+1
𝐗 [I[j]]

 To show: ∀[i:ℕ] I[+1[+1[j]]]=+1
𝐗[I[+1[j]]]

 I[+1[+1[j]]]= +1
𝐗[I[+1[j]]] by definition of I

6. I is the unique isomorphism: If g:Xℕ is an isomorphism then g=I
 Proof: Induction on P[j:ℕ]:Proposition1 ≡ I[j]=g[j]
 Base : I[0ℕ]=0X. g[0ℕ]=0X because g is an isomorphism.
 Therefore I[0ℕ]=g[0ℕ]
 Induction: Suppose I[j]=g[j].
 To show: I[+1[j]]=g[+1[j]]
 I[+1[j]]= +1

𝐗[I[j]]= +1
𝐗[g[j]]= g[+1[j]]

14 For example, there are nondeterministic Turing machines that the theory Nat

proves always halt that cannot be proved to halt in a first-order theory.

44

15 [Dedekind 1888]

The following can be used to characterize the real numbers (ℝ15) up to
isomorphism with a unique isomorphism:
 ∀[S:Setℝ] S≠{ }ℝ Bounded[S] ⇨ HasLeastUpperBound[S]
 where
 Bounded[S:Setℝ] ⇔ ∃[b:ℝ] UpperBound[b, S]
 UpperBound[b:ℝ, S:Setℝ] ⇔ bS ∀[xS] x≦b
 HasLeastUpperBound[S:Setℝ]] ⇔ ∃[b:ℝ] LeastUpperBound[b, S]
 LeastUpperBound[b:ℝ, S:Setℝ]
 ⇔ UpperBound[b,S] ∀[xS] UpperBound[x,S] ⇨ x≦b

16 Robinson [1961]
17 The theory of the ordinals Ord is axiomatised as follows:

 0O:O

 Successor ordinals
o ∀[α:O] +1[α]:O +1[α]>α

o ∀[α:O] ∄[β:O] α<β<+1[α]

 Replacement for ordinals:

o ∀[α:O,f:OO] ⊍αf:O

o ∀[α,β:O,f:OO] β∈⊍αf ⇔ ∃[δ<α] β≦f[δ]

o ∀[α,β:O,f:OO] (∀[δ<α] f[δ]≦β) ⇨ ⊍αf≦β

 Cardinal ordinals

ω0 = ℕ

∀[α:O] α>0O ⇨ |ω α| = |𝐁𝐨𝐨𝐥𝐞𝐚𝐧
⊍β<αωβ|

∀[α,β:O] |β|=|ωα| ⇨ ωα=β ωα∈β

where |τ1| = |τ2| ⇔ ∃[f:τ2
τ1] OneToOneOntoτ1,τ2[f]

 OneToOneτ1 ,τ2[f:τ2
τ1]

 ⇔ ∀[x1,x2:τ1] f[x1]=f[x2] ⇨ x1=x2
 OneToOneOntoτ1 ,τ2[f:τ2

τ1]
 ⇔ OneToOneτ1 ,τ2[f:τ2

τ1] ∀[y:τ2] ∃[x:τ1] f[x]=y

 Tansitivity of <
∀[α,β<α,δ<β:O] α<δ

 ∀[α,β:O] α<β α=β β<α

 ∀[α,β:O] α<β ⇨ β<α

45

 For each order:ℕ+ and P:PropositionorderO
:

the following ordinal induction axiom holds:

 (∀[α:O] ∀[β<α:O] P[β]⇨P[α]) ⇨ ∀[α:O] P[α]

Ordinals have the following properties:

 Ordinals are well-ordered:

Least:𝐎𝐁𝐨𝐨𝐥𝐞𝐚𝐧𝐎

Least[{ }] = 0O

∀[S:BooleanO] S≠{ } ⇨ Least[S]∈S

∀[S:BooleanO] S≠{ } ⇨ ∀[α:O] α∈S ⇨ Least[S]≦α

 Reals can be well-ordered

|ω1|= |ℝ|

 ∀[α:O] ∃[β:O] α<ωβ

 The set of all ordinals Ω is BooleanO so that:

 ∀[α:O] α∈Ω ⇔ α:O

Note that it is not the case that Ω is of type O, thereby thwarting the

Burali-Forti paradox
18 For each type X that satisfies the theory Ord there is a (unique) isomorphism

I:X

O
 inductively defined as follows:

 I[0O] ≡ 0X

 ∀[α:O] I[+1[α]] ≡ +1
𝐗[I[α]]

 ∀[α:LimitO] I[α] ≡ y

 where y:X ∀[β<α] y≦XI[β]

 ∀[z:X] (∀[β<α] z≦XI[β]) ⇒ y≦Xz

Using proofs by ordinal induction on O and X, the following follow:

1. I is defined for every O

2. I is one-to-one: ∀[α,β:O] I[α] = I[β] ⇒ α=β

3. The range of I is all of X: ∀[y:X] ∃[α:O] I[α] = y

4. I is a homomorphism:
 I[0O] = 0X

 ∀[α:O] I[+1[α]] = +1
𝐗[I[α]]

 ∀[α:LimitO,f:OO] I[⊍α f] = ⊍f[α]
x

I⚬f⚬I-1

5. I-1:OX is a homomorphism

46

6. I is the unique isomorphism: If g:X

O
 is an isomorphism then g=I

19 [Bourbaki 1972; Fantechi, et. al. 2005]
20 This implies, for example, that no set is an element of itself.

21 Proof: Suppose S:Setsτ and therefore ∃[α:O] S:Set
α
τ.

 Proof by ordinal induction on

 P[β:O]:Proposition1 ≡ ∀[X∈S] X:Setβ
τ

 Assume: (∀[β<α:O] ∀[X∈S] X:Setβ
τ) ⇨ ∀[X∈S] X:Setα

τ

Show: ∀[X∈S] X:Setα
τ

Assume: X∈S

Show X:Setα
τ

Proof by cases on α

1. X:Set0
τ

X:Booleanτ

 2. ∀[α:O] Sets
α
τ = SetSet

α-1
τ

 X:Setα-1
τ QED by induction hypothesis

 3. ∀[α:LimitO] ∃[β<α,Y:Setβ
τ] X∈Y

 QED by induction hypothesis
22 Proof: Suppose S:Setsτ and therefore ∃[α:O] S:Setsα

τ

 S:Sets
α
τ

 Show: Booleans:Setsτ

 Booleans:Setsα+1
τ QED

23 Proof by ordinal induction on

 P[α:O]:Proposition1 ≡ ∀[S:Sets
α
τ] ⋃S:Setsτ

Assume: ∀[β<α:O] ∀[S:Sets
β
τ] ⋃S:Setsτ

Show: ∀[S:Sets
α
τ] ⋃S:Setsτ

Assume: S:Sets
α
τ

Show: ⋃S:Setsτ

∀[X:Setsτ] X∈⋃S ⇔ ∃[Y∈S] X∈Y

∀[X:Setsτ] X∈⋃S ⇔ ∃[β<α:O,Y:Sets
β
τ] X∈Y

∀[X:Setsτ] X∈⋃S ⇒ X:Setsτ

QED by definition of Setsτ

47

24 Suppose f:𝐒𝐞𝐭𝐬τ𝐒𝐞𝐭𝐬τ and S:Setsτ

Show Imageτ[f, S]:Setsτ

Proof by ordinal induction on

 P[α:O] ⇔ S:Setα
τ ⇒ Imageτ[f, S]:Setsτ

Suppose ∀[β<α:O] S:Setβ
τ ⇒ Imageτ[f, S]:Setsτ

Show S:Setα
τ ⇒ Imageτ[f, S]:Sets τ

Suppose S:Setα
τ

Show Imageτ[f, S]:Setsτ

∀[y:Setsτ] y:Imageτ[f, S] ⇔ ∃[x∈S] f[x]=y

Show ∀[y:Setsτ] y∈Imageτ[f, S] ⇒ y:Setsτ

Suppose y:Setsτ y∈Imageτ[f, S]

Show y:Setsτ

∃[x∈S] f[x]=y because y∈Imageτ[f, S]

∃[β<α:O] x:Setβ
τ because x∈S and S:Setα

τ

Imageτ[f, x]:Setsτ by induction hypothesis

Show f[x]:Setsτ

Suppose z∈f[x]

Show z:Setsτ

z∈Setsτ because z∈f[x] and Imageτ[f, x]:Setsτ

f[x]:Setsτ

y:Setsτ because f[x]=y
25 [Mizar; Matuszewski1 and Rudnicki: 2005; Naumowicz and Artur

Korniłowicz 2009; Naumowicz 2009]
26 Note that this proof is fundamentally different from the categoricity proof in

[Martin 2015].
27 Fix implements recursion. For example, suppose

 F[g:[ℕ]→ℕ]:([ℕ]→ℕ) ≡ λ[i:ℕ] i=1 � True⦂ 1 , False⦂ ig∎[i-1]
Therefore by the Fix axiom, Fixℕ, ℕ∎[F] =F∎[Fixℕ, ℕ∎[F]] and
F∎[Factorial] = Factorial where

 Factorial ≡ λ[i:ℕ] i=1 � True⦂ 1 , False⦂ iFactorial∎[i-1]
28 where F1

∎[x] ≡ F∎[x]

 Fn+1
∎[x] ≡ Fn

∎[F∎[x]]
29 cf. [Rosental 2008]

48

30 According to [Concoran 2001]:

“after first-order logic had been isolated and had been assimilated by the

logic community, people emerged who could not accept the idea that first-

order logic was not comprehensive. These logicians can be viewed not as

conservatives who want to reinstate an outmoded tradition but rather as

radicals who want to overthrow an established tradition [of Dedekind,

etc.].”
31 for discussion see [Hewitt 2010]
32 in an unlawful way (Einstein, a member of the editorial board, refused to

support Hilbert's action)
33 Hilbert letter to Brouwer, October 1928
34 Gödel said “Has Wittgenstein lost his mind?”
35 For example:

From: Harvey Friedman

Sent: Wednesday, April 20, 2016 10:53

To: Carl Hewitt

Cc: Martin Davis @cs.nyu; Dana Scott @cmu; Eric Astor @uconn; Mario Carneiro

@osu; Dave Mcallester @ttic; Joe Shipman

Subject: Re: Parameterized types in the foundations of mathematics

Not if I have anything to say about it!

Harvey

On Wed, Apr 20, 2016 at 11:25 AM, Carl Hewitt wrote:

> Hi Martin,

>

> Please post the message below to FOM [Foundations of Mathematics

forum].

>

> Thanks!

>

> Carl

>

> According to Harvey Friedman on the FOM Wiki: "I have not yet seen any

seriously alternative foundational setup that tries to be better than ZFC in this

[categoricity of models] and other respects that isn't far far worse than ZFC in

other even more important respects."

>

> Of course, ZFC is a trivial consequence of parameterized types with the

following definition for set of type τ:

>

> Setτ ≡ Booleanτ

>

49

> Also of course, classical mathematics can be naturally formalized using

parameterized types. For example, see “Inconsistency

Robustness in Foundations: Mathematics self proves its own Consistency and

Other Matters” in HAL Archives.

>

> Regards,

> Carl
36 Consequently, there can cannot be any escape hatch into an unformalized

“meta-theory.”
37 The claim also relied on Gödel's proposition I'mUnprovable.

38 Formal syntax was invented long after [Gödel 1931].
39 emphasis in original
40 For every type there is a larger type, i.e.., ∀[τ1::] ∃[τ2::] τ1⋤τ2
41 There is no universal type. Instead, Type is parameterized, e.g.,

Boolean:TypeBoolean and ℕ:Typeℕ
42 True≠False, True:Boolean, and False:Boolean
 ∀[x:Boolean] x=True x=False
43 The theory of the natural numbers Nat is axiomatized as follows where S is

the successor function:

 0:ℕ

 +1:ℕℕ
 ∀[i:ℕ] +1[i]≠0
 ∀[i, j:ℕ] +1[i]=+1[j] ⇒ i=j

 For each order:ℕ+ and P:Propositionorderℕ:

 (P[0] ∀[i:ℕ] P[i]⇨P[+1[i]]) ⇨ ∀[i:ℕ] P[i]
44 O is the type of the Ordinals
45 ∀[τ::] τ:Typeτ
46 Discrimination of τ1 and τ2

 For i=1,2
 If x:τi, then ((τ1⦶τ2)[x]):(τ1⦶τ2) and x=((τ1⦶τ2)[x])↓τi.

 ∀[z:τ] z:τ1⦶τ2 ⇔ ∃[x:τi] z=(τ1⦶τ2)[x]
47 type of 2-element list with first element of type τ1 and with second element

of type τ2
48 expression of type τ. The following axiom holds:

 ∀[τ::,e:Expressionτ] e::τ
49 if p then 1 else 2
50 x1 is a subtype of x2, i.e., ∀[x:τ1] x:τ2
51 The proposition that τ is a type
52 1, … and n-1 infer n

50

53 mutually recursive definitions of functions f1 to n
54 mutually recursive definitions of variables x1 to n
55 mutually recursive definitions of functions f1 to n
56 mutually recursive definitions of variables x1 to n
57 According to Sol Feferman, Gödel was “the most important logician of the

20th century” and according to John Von Neumann he was “the greatest

logician since Aristotle.” [Feferman 1986, pg. 1 and 8]
58 [Feferman 1986, pg. 1 and 8]
59 Wittgenstein in 1937 published in Wittgenstein 1956, p. 50e and p. 51e]
60 The Liar Paradox [Eubulides of Miletus] is an example of using untyped

propositions to derive an inconsistency:

 Fn[p:Propositionn]:Propositionn+1 ≡ p

 // above definition has no fixed point because p has
 // order greater than p

The following argument derives a contradiction assuming the existence of a

fixed point for F:

1) I’mFalse ⇔ I’mFalse // nonexistent fixed point of F

2) I’mFalse // proof by contradiction from 1)

3) I’mFalse // from 1) and 2)
61 [Church 1935] correctly proved inferential incompleteness (sometimes called

the “First Incompleteness Theorem”) without using Gödel's I’mUnprovable.

The Church theorem and its proof are very robust.
62 Subsequent further discussion of Wittgenstein's criticism of Gödel’s writings

has unfortunately misunderstood Wittgenstein.

 For example, [Berto 2009] granted that proof theoretically if P⇔⊬P, then:

1) ⊢⊬P

However, the above has proof consequences as follows:

2) ⊢P because (⊬P)⇔P in 1) above

3) ⊢⊢P because of 2) above

4) ⊢P because (⊢P)⇔P in 3) above

Of course, 2) and 4) are a manifest contradiction in mathematics that has

been obtained without any additional “‛semantic’ story” that [Berto

2009] claimed is required for Wittgenstein's argument that contradiction

in mathematics “is what comes of making up such sentences.”

[Wittgenstein 1956, p. 51e]

51

63 Nat

1
 is not a categorical theory because there are nonstandard (different from ℕ)

countable types which satisfy the axioms of Nat
1
 that have a (nonstandard)

element that is larger than any number which can be reached by countably

iterating the successor function starting with 0. Such a model can be constructed

creating a new theory Nat
1
* by adding a new symbol ∞ and countably many

axioms of the form i<∞ for each natural number i. Since Nat
1
* is consistent,

there is a type ℕ* which satisfies the theory Nat
1
. The type ℕ also satisfies the

theory Nat
1
 because the axioms of Nat

1
 are a subset of the axioms of Nat

1
*.

64 cf. [Church 1934]
65 In other words, the paradox that concerned [Church 1934] (because it could

mean the demise of formal mathematical logic) has been transformed into

fundamental theorem of foundations!
66 Which is not the same as proving the much stronger proposition that

Mathematics is structurally consistent, i.e., that there is no proof of

contradiction from the inference rules of Direct Logic.
67

 In formalizing Gödel's proof, [Shankar 1994] and [O'Connor 2005] followed

Gödel in using integers to code sentences using the Y untyped fixed point

operator on propositions.
68 Wittgenstein in 1937 published in Wittgenstein 1956, p. 50e and p. 51e]
69 Of course, it is completely unacceptable for every proposition to be provable

and so measures must be taken to prevent this.
70 [Yanofsky 2013 page 328] expressed concern about Löb’s paradox:

we must restrict the fixed-point machine in order to avoid proving false

statements [using Löb's argument]. Such a restriction might seem

strange because the proof that the fixed-point machine works seems

applicable to all [functions on untyped statements]. But restrict we must.

Yanofsky proposed solving above problem posed by Löb’s paradox using

systems of logic that are so weak that they cannot abstract their own sentences.

Unfortunately, such weak systems are inadequate for Computer Science.

Instead of weakening logic, Direct Logic adopted the strategy of using types for

mathematics that does not allow the Y fixed point operator for propositions and

sentences.
71 using definition of BSet
72 using definition of BExpression
73 substituting BNumber for n

