
Additional file 1 — Details on ASP implementation

Louis Fippo Fitime, Olivier Roux, Carito Guziolowski, and Loïc Paulevé

Supplementary material for the article

A Over- and Under-approximation of Reachability

A.1 OA(s→∗ s′): necessary condition for reachability
We propose here a possible encoding of the necessary condition for reachability in ANs outlined in the
article and introduced in [1]. Starting from su(g) = g0, the analysis starts with the local paths of the
objective g0 g1: g1 is reachable only if all the conditions of the transitions of at least one local path
η ∈ local-paths(g0 g1) are reachable. This recursive reasoning can be modelled with a graph relating
dependencies between objectives, local paths, and local states.

The local paths computed a priori are used to generate the template declaration of the directed edges
of the LCG oa_lcg(G,Parent,Child) from each possible objective ai aj . If local-paths(ai aj) = ∅, the
objective ai aj is linked to a node bottom:

1 oa_lcg(G,obj(a,i,j),bottom) ← oa_lcg(G,_,obj(a,i,j)).

otherwise, for local-paths(ai aj) = {η1, . . . , ηn}, we declare a node lpath for each different local path
m ∈ {1, . . . , n} as a child of ai aj :

2 oa_lcg(G,obj(a,i,j),lpath(obj(a,i,j),m)) ← oa_lcg(G,_,obj(a,i,j)).

then, for each different local state bk ∈ η̃m in the conditions of the local transitions of ηm, we add an
edge from the lpath node to ls(b,k):

3 oa_lcg(G,lpath(obj(a,i,j),m),ls(b,k)) ← oa_lcg(G,_,obj(a,i,j)).

In the case when the local path requires no condition (η̃m = ∅, this can happen when the objective is
trivial, i.e., ai ai, or when the local transitions do not dependent on the other automata), we link the
lpath to a node top:

4 oa_lcg(G,lpath(obj(a,i,j),m),top) ← oa_lcg(G,_,obj(a,i,j)).

A LCG G for over-approximation is parameterized with a state sG: if a local path has a local state
aj in its transition conditions, the node ls(a,j) is linked, in G, to the node for the objective ai aj
(line 5), with ai = sG(a). It is therefore required that state sG defines a (single) local state for each
automaton referenced in G (line 6).

5 oa_lcg(G,ls(A,I),obj(A,J,I)) ← oa_lcg(G,_,ls(A,I)), s(G,A,J).
6 1 { s(G,A,J) : ls(A,J) } 1 ← oa_lcg(G, _, ls(A, _)).

The necessary condition for reachability is then declared using the predicate oa_valid(G,N) which is
true if the node N satisfies the following condition: it is not bottom (line 7); and, in the case of a local
state or objective node, one of its children is oa_valid (lines 8 and 9; or in the case of a local path, either
top is its child, or all its children (local states) are oa_valid (lines 10 and 11).

7← oa_valid(G,bottom).
8 oa_valid(G,ls(A,I)) ← oa_lcg(G,ls(A,I),X),oa_valid(G,X).
9 oa_valid(G,obj(A,I,J)) ← oa_lcg(G,obj(A,I,J),X),oa_valid(G,X).

10 oa_valid(G,N) ← oa_lcg(G,N,top).
11 oa_valid(G,lpath(obj(a,i,j),m)) ←

∧
bk∈η̃m

oa_valid(G,ls(b,k)).

1

A.2 UA(s→∗ s′): sufficient condition for reachability
We give here a declarative implementation of the sufficient condition for reachability in ANs outlined in
the paper and introduced in [2]. The under-approximation consists in building a graph relating objectives,
local paths, and local states which satisfies several constraints. If such a graph exists, then the related
reachability property is true. Similarly to (I1#), we give template declarations for the edges with the
predicate ua_lcg(G,Parent,Child). We assume that the reachability property is specified by adding an
edge from root to ls(a,i) for each local state to reach.

The graph ua_lcg is parameterized with a context which is a set of local states, declared with the
predicate ctx(G,A,J). Every local states ai of the graph that are not part of the reachability specification
belong to that context (line 12); and are linked to the objective aj ai for each aj in the context (line 13).

12 ctx(G,A,I) ← ua_lcg(G,N,ls(A,I)), N != root.
13 ua_lcg(G,ls(A,I),obj(A,J,I)) ← ua_lcg(G,_,ls(A,I)), ctx(G,A,J).

A first constraint is that each objective in the graph is linked to one and only one of its local path.
Therefore, objectives without local paths (local-paths(ai aj) = ∅) cannot be included (line 14), for the
others, a choice has to be made among local-paths(ai aj) = {η1, . . . , ηn} (line 15).

14← ua_lcg(G,_,obj(a,i,j)).
15 1 { ua_lcg(G,obj(a,i,j),lpath(obj(a,i,j),1..n)) } 1 ← ua_lcg(G,_,obj(a,i,j)).

As for oa_lcg, each local path is linked to all the local states composing its transition conditions: for
each m ∈ {1, . . . , n}, for each bk ∈ η̃m,

16 ua_lcg(G,lpath(obj(a,i,j),m),ls(b,k)) ← ua_lcg(G,_,obj(a,i,j)).

The graph has to be acyclic. This is declared using a predicate conn(G,X,Y) which is true if the node X
is connected (there is a directed path) to Y (line 17). A graph is cyclic when conn(G,X,X) (line 18).

17 conn(G,X,Y) ← ua_lcg(G,X,Y). conn(G,X,Y) ← ua_lcg(G,X,Z), conn(G,Z,Y).
18← conn(G,X,X).

Then, if the node for an objective ai aj is connected to a local state ak, the under-approximation
requires ai aj to be connected with ak aj (assuming that a has at least 3 local states, definition not
shown):

19 ua_lcg(G,obj(A,I,J),obj(A,K,J)) ← not boolean(A), conn(G,obj(A,I,J),ls(A,K)).

When a local transition is conditioned by at least two other automata (for instance c◦
ai,bj−−−→ c•), the

under-approximation requests that reaching bj does not involve other local states from a others that ai.
This is stated by the indep(G,Y,a,i,ls(b,j)) which cannot be true if bj is connected to a local state ak
with k 6= i line 20. Then, the under-approximation requires that at most one indep predicate is false, for
a given LCG G and a given local path Y (line 21). Such an independence should also hold between the
local states of the reachability specification (line 22).

20 indepfailure(Y,ls(A,I)) ← indep(G,Y,A,I,N), conn(G,N,ls(A,K)), K!=I.
21← indepfailure(Y,N),indepfailure(Y,M),M!=N.
22 indep(G,root,A,I,ls(B,J)) ← ua_lcg(G,root,ls(A,I)),ua_lcg(G,root,ls(B,J)),B != A.

For ηm ∈ local-paths(ai aj), for each local transition a◦
`−→ a• ∈ ηm, for each couple of different local

states in its condition bk, cl ∈ `, bk 6= cl:

23 indep(G,lpath(obj(a,i,j),m),b,k,ls(c,l)) ← ua_lcg(G,_,lpath(obj(a,i,j),m)).

B Reachability in unfoldings
A (prefix of an) unfolding is an acyclic bipartite digraph where nodes are either events (application of a
transition) or conditions (change of local state) [3]. We use the predicate post(X,Y) to denote an edge
from X to Y ; and h(C,ls(A,I)) to denote that the condition C corresponds to the local state ai. Figure 1
shows an example of unfolding.

2

A state s belongs to the prefix if it is possible to build a configuration such that all the local states
in s have a unique corresponding condition on the cut of the configuration (line 1).

A configuration is a set of events, and we use e(E) to denote that the event E belongs to the
configuration. By definition, if E is in a configuration, all its parent events are in the configuration
(line 2). There should be no conflicts between two events of a configuration: two events are in conflict
if they share a common parent condition (line 3).

A condition is on the cut if its parent event is in the configuration (line 4), and none of its children
event is in the configuration (line 5).

1 1 { cut(C) : h(C,ls(A,I)) } 1 ← reach(A,I).
2 e(F) ← post(F,C),post(C,E),e(E).
3← post(C,E),post(C,F),e(E),e(F),E != F.
4 e(E) ← cut(C),post(E,C).
5← cut(C),post(C,E),e(E).

References
[1] Paulevé, L., Magnin, M., Roux, O.: Static analysis of biological regulatory networks dynamics using

abstract interpretation. Mathematical Structures in Computer Science 22(04), 651–685 (2012)

[2] Folschette, M., Paulevé, L., Magnin, M., Roux, O.: Sufficient conditions for reachability in automata
networks with priorities. Theoretical Computer Science 608 Part 1, 66–83 (2015). From Computer
Science to Biology and Back

[3] Esparza, J., Heljanko, K.: Unfoldings – A Partial-Order Approach to Model Checking. Springer,
Berlin, Heidelberg (2008)

3

e5

c=0 (c2) d=0 (c1)

e19 e18

e11

c=0 (c7)

e13

e12

e15 e14e17 e16

b=0 (c19)

b=1 (c18)

e3

a=0 (c35)b=0 (c34)

b=1 (c11)

b=1 (c10)

b=0 (c17) c=2 (c16)

a=1 (c33)b=0 (c32)

b=1 (c21)

a=1 (c13)

a=2 (c9)b=0 (c8)

e9

e8

c=1 (c12)

b=0 (c3)

e4e7

e6

e1

a=1 (c6)

b=0 (c5)

a=0 (c4)

b=0 (c22) a=0 (c23)

a=0 (c20)

a=0 (c36)

b=0 (c26) a=0 (c27)

b=0 (c24)a=1 (c25)

b=1 (c31)b=0 (c28) a=1 (c29) c=0 (c30)

a=0 (c15)

e10

b=1 (c14)

e2

Figure 1: Unfolding of the AN of Figure 1 from the main article. Events are boxed nodes, conditions
have no borders and indicate both the automata local state and the condition identifier.

4

	Over- and Under-approximation of Reachability
	OA(s*s'): necessary condition for reachability
	UA(s*s'): sufficient condition for reachability

	Reachability in unfoldings

