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Identification of bifurcation transitions 
in biological regulatory networks using 
Answer‑Set Programming
Louis Fippo Fitime1,3, Olivier Roux1, Carito Guziolowski1* and Loïc Paulevé2 

Abstract 

Background:  Numerous cellular differentiation processes can be captured using discrete qualitative models of 
biological regulatory networks. These models describe the temporal evolution of the state of the network subject 
to different competing transitions, potentially leading the system to different attractors. This paper focusses on the 
formal identification of states and transitions that are crucial for preserving or pre-empting the reachability of a given 
behaviour.

Methods:  In the context of non-deterministic automata networks, we propose a static identification of so-called 
bifurcations, i.e., transitions after which a given goal is no longer reachable. Such transitions are naturally good can-
didates for controlling the occurrence of the goal, notably by modulating their propensity. Our method combines 
Answer-Set Programming with static analysis of reachability properties to provide an under-approximation of all the 
existing bifurcations.

Results:  We illustrate our discrete bifurcation analysis on several models of biological systems, for which we identify 
transitions which impact the reachability of given long-term behaviour. In particular, we apply our implementation on 
a regulatory network among hundreds of biological species, supporting the scalability of our approach.

Conclusions:  Our method allows a formal and scalable identification of transitions which are responsible for the 
lost of capability to reach a given state. It can be applied to any asynchronous automata networks, which encompass 
Boolean and multi-valued models. An implementation is provided as part of the Pint software, available at http://loic-
pauleve.name/pint.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
The emerging complexity of dynamics of biological net-
works, and in particular of signalling and gene regulatory 
networks, is mainly driven by the interactions between 
the species, and the numerous feedback circuits they 
generate [1–4]. One of the prominent and fascinating 
features of cells is their capability to differentiate: starting 
from a multi-potent state (for instance, a stem cell), cellu-
lar processes progressively confine the cell dynamics in a 
narrow state space, an attractor. Deciphering those deci-
sion processes is a tremendous challenge, with important 

applications in cell reprogramming and regenerative 
medicine.

Qualitative discrete models of network dynamics, 
such as Boolean and multi-valued networks [5, 6], have 
been designed with such an ambition. These frameworks 
model nodes of the network by variables with small dis-
crete domains, typically Boolean. Their value changes 
over time according to the state of their parent nodes. 
Exploring the dynamical properties of those compu-
tational models, such as reachability, i.e., the ability to 
evolve to a particular state, or attractors, i.e., the long-run 
behaviours, allows understanding part of important cel-
lular processes [7–9].

Differentiation processes can be seen as processes 
making irreversible choices between nodes (genes) 
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activations/inhibitions impacting the long term capa-
bilities of the cell. For example, from a muti-potent state 
S, if a cell can later differentiate in two different types A 
and B, once in a type B, it can no longer change to type A 
without external perturbations. From a discrete dynam-
ics perspective, those choices are modelled by transitions 
which make the system evolve from a multi-potent state 
where both A and B are possible in the future to a state 
where A is no longer reachable. Such decisive transitions, 
that we refer to as bifurcation transitions, are highly rel-
evant to understand which entities and interactions play 
a key role during the cellular dynamics. Following this 
perspective, it is worth remarking that in the state where 
such a transition can occur, another transition exists 
which preserves the capability to reach A. Otherwise the 
decision that A is not reachable must have already been 
made previously.

Besides extracting precise knowledge on differentiation 
mechanisms in the discrete dynamics of the network, 
bifurcation transitions can in fine suggest drug targets for 
controlling cellular differentiation and/or counteracting 
pathological behaviours. Indeed, if it is ensured that the 
bifurcation is triggered in the appropriate state, then the 
reachability of a state of interest would be certainly pre-
vented. On the other hand, blocking all bifurcation tran-
sitions in the appropriate states would ensure that the 
state of interest is inevitably reached.

In this article, we formally introduce the notion of 
bifurcation transitions in discrete dynamics of automata 
networks (ANs) and we provide a scalable method for 
their identification that relies on declarative program-
ming with Answer-Set Programming (ASP) [10]. ANs 
allow encoding exactly the dynamics of asynchronous 
Boolean and multi-valued networks which are also 
known as Thomas networks [11]. We first show that 
bifurcation transitions can be completely identified 
using computation-tree temporal logic (CTL). However, 
this characterization relies extensively on the reach-
ability problem, which is PSPACE-complete in ANs and 
similar frameworks [12], which limits its tractability. 
The main contribution of this paper is the introduction 
of an approximation of the bifurcation identification 
which is NP. In order to obtain an approach tracta-
ble on large biological networks, we show a combina-
tion of methods of static analysis of ANs dynamics [13, 
14], concurrency theory, and constraint program-
ming for relaxing efficiently the bifurcation problem. 
Our method identifies correct bifurcations only (no 
false positives) but, due to the embedded approxima-
tions, is incomplete (false negatives may exist). To our 
knowledge, this is the first integrated method to extract 
bifurcation transitions from discrete models of large 
interaction networks.

The output of our method is a set of transitions, for 
instance “activation of gene x by active genes y and z”, 
and optionally the set of states in which their occur-
rence removes the capability to reach the goal. It is worth 
noticing that bifurcation transitions are transitions of the 
input model which play a crucial role for the goal reach-
ability. They do not directly provide targets for control-
ling the system. Therefore, bifurcation transitions are 
different from intervention sets [15, 16] or cut sets [17, 
18] which propose perturbations to apply on a system in 
order to enforce/prevent the occurrence of a state/reac-
tion of interest. Whereas these predictions can help to 
control the reachability of an attractor, they do not allow 
to directly understand the structure of the original model 
dynamics, notably how the different attraction basins 
are connected. Bifurcation transitions precisely indicate 
when and how the system exits a state where a capability 
was reachable.

Background
Automata networks
An AN is a finite set of finite-state machines that have 
transitions between their local states determined by the 
state of other automata in the network. The global state 
space of the network is the product of the local states of 
the individual automata. The local transitions specify the 
current and successor local state of an automaton, possi-
bly constrained by the state of other automata.

Definition 1  An AN is defined by a tuple (�, S,T ) 
where

• • � is the finite set of automata identifiers;
• • For each a ∈ �, S(a) = {ai, . . . , aj} is the finite set 

of local states of automaton a; S �
=
∏

a∈� S(a) is the 
finite set of global states; L �

=
⋃

a∈� S(a) denotes the 
set of all the local states.

• • T = {a �→ Ta | a ∈ �}, where ∀a ∈ �,Ta ⊆ S(a)

×2L\S(a) × S(a) with (ai, ℓ, aj) ∈ Ta ⇒ ai �= aj and 
∀b ∈ �, |ℓ ∩ S(b)| ≤ 1 , is the mapping from autom-
ata to their finite set of local transitions.

We write t = ai
ℓ
−→ aj ∈ T

�
⇔(ai, ℓ, aj) ∈ T (a), and ℓ is 

referred to as the enabling condition of the transition t.
At any time, each automaton is in one and only one 

local state, which forms the global state of the network. 
Assuming an arbitrary ordering between automata iden-
tifiers, the set of global states of the network is referred 
to as S as a shortcut for 

∏

a∈� S(a). Given a global state 
s ∈ S, s(a) is the local state of automaton a in s, i.e., the 
ath coordinate of s.

A local transition t = ai
ℓ
−→ aj ∈ T  is applicable in a 

global state s ∈ S when ai and all the local states in ℓ are 
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in s. The application of the local transition, noted s · t, 
replaces the local state of a with aj (Definition 2).

Definition 2  (Transition, reachability) Given a state 
s ∈ S and a local transition t = ai

ℓ
−→ aj ∈ T  such that 

s(a) = ai and ∀bk ∈ ℓ, s(b) = bk, s · t is the state s where 
ai has been replaced by aj:

We then write s t
−→ s′ where s′ = s · t. The reachability 

binary relation →∗ ⊆ S × S satisfies

In this paper, we consider the asynchronous semantics 
of ANs: only one local transition can be applied at a time. 
In this asynchronous semantics, different local transi-
tions may be applicable to the same state, each of them 
leading to different behaviours. The choice of the tran-
sition is non-deterministic. A global state s′ is reachable 
from s, noted s →∗ s′, if and only if there exists a (pos-
sibly empty) sequence of transitions leading from s to s′. 
Finally, an attractor is a smallest set of states from which 
no transition can exit. They correspond to the long-term 
dynamics of the network:

Definition 3  (Attractor) An attractor of the AN 
(�, S,T ) is a set of states A ⊆ S such that

• • A is strongly connected w.r.t. →∗: ∀s, s′ ∈ A, s →∗ s′; 
and

• • A is terminal w.r.t. →∗: ∀s ∈ A, ∃s′ ∈ S :

s →∗
s
′ ⇒ s

′ ∈ A.

∀b ∈ �, (s · t)(b) =

{

aj if b = a
s(b) otherwise

s →∗ s′
�
⇔ s = s′ ∨ ∃t ∈ T : s

t
−→ s′′ ∧ s′′ →∗ s′

Figure  1 represents an AN (�, S,T ) of 3 automata 
(� = {a, b, c}), with S(a) = {a0, a1, a2}, S(b) = {b0, b1} , 
S(c) = {c0, c1, c2}, and 8 local transitions defined as 
follows:

From the given initial state s0 = �a0, b0, c0�, 3 transitions 
can be applied: t2, t3, and t4; the application of the latter 
results in s0 · t4 = �a0, b1, c0� (automaton b is now in state 
b1).

Encoding Boolean and Thomas networks with automata 
networks
The asynchronous semantics of any Boolean network or 
Thomas (multi-valued) network can be encoded equiva-
lently with ANs [11]. Note that, according to Thomas net-
works semantics, the transitions increment or decrement 
by one the level of node. Hence, ANs encoding Thomas 
networks have only transitions of the form ai

ℓ
−→ aj with 

|i − j| = 1.
Tools such as BioLQM1 provide automatic translations 

from standard model formats for Boolean/Thomas net-
works to ANs.

Reachability and formal approximations
In this section, we give a brief overview of the basics of 
reachability checking, stressing the methods we use in 
this paper.

State graph and partial order reductions
Given two states s, s′ of an AN (or an equivalent Petri 
net), verifying s →∗ s′ is a PSPACE-complete problem 
[12].

The common approach for reachability checking is 
to build the (finite) set of all the states reachable from s 
until finding s′, by exploring all the possible transitions. 
However, such a set can be rapidly intractable with large 
models. Techniques relying on symbolic representations, 
notably using binary decision diagrams (BDDs) and vari-
ants [19] can improve the scalability of this approach by 
several orders of magnitude [20].

Typically, numerous transitions in ANs are concurrent: 
their application is independent from each other. For 
instance, if t1 and t2 are concurrent in a state s, one can 
apply indifferently s · t1 · t2 and s · t2 · t1. Such features 
can be exploited to provide compact representations 

T (a) = {t1 = a1
∅
−→ a0, t2 = a0

b0
−→ a1, t3 = a0

b0,c0
−−→ a2}

T (b) = {t4 = b0
∅
−→ b1, t5 = b1

a0
−→ b0}

T (c) = {t6 = c0
a1
−→ c1, t7 = c1

b1
−→ c0, t8 = c1

b0
−→ c2}

1  https://github.com/colomoto/bioLQM.

a

b

c

b0

b0, c0

a1

b0

b1a0

Fig. 1  An example of automata network (AN). Automata are 
represented by labelled boxes, and local states by circles where ticks 
are their identifier within the automaton—for instance, the local 
state a0 is the circle ticked 0 in the box a. A transition is a directed 
edge between two local states within the same automaton. It can 
be labelled with a set of local states of other automata. Grayed local 
states stand for the global state 〈a0, b0, c0〉

https://github.com/colomoto/bioLQM
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of the reachable states in a concurrent system, taking 
into account the partial order of transition applications. 
Unfoldings, and more precisely their complete finite 
prefixes [21], allow computing efficiently such compact 
representations.

In this paper, one of our methods uses complete finite 
prefixes of unfoldings to compute the states that are 
reachable from a given initial state. Indeed, because 
biological networks are typically very large, but also 
very sparse (each node/automaton interacts with a 
few others, compared to the size of the network), they 
exhibit a high degree of concurrency for their transi-
tions, making unfolding approaches very effective in 
practice.

Formal approximations
When facing a large AN, it may turn out that the reach-
able state space is too large for the aforementioned exact 
verification of reachability. Moreover, the complexity of 
the reachability problem can be prohibitive when numer-
ous verifications have to be done, for instance when enu-
merating candidate initial states.

In this paper, we rely on the reachability approxi-
mations for ANs introduced in [13, 14]. We use both 
over-approximations (OA) and under-approximations 
(UA) of the reachability problem: s →∗ s′ is true only if 
OA(s →∗ s′) is true and s →∗ s′ is true if UA(s →∗ s′) is 
true; but the converses do not hold in general:

The approximations rely on static analysis by abstract 
interpretation of AN dynamics. We give here the basic 
explanations for the over- and under-approximations. 
The analyses rely on the causal decomposition of the 
transitions in compositing automata, and result in neces-
sary or sufficient conditions for a reachability property of 
the form s →∗ s′.

The core objects are the objectives and their local paths 
within two local states ai, aj of a same automaton a. We 
call ai�aj an objective and define local-paths(ai�aj) 
the set of the acyclic paths of local transitions between ai 
and aj. Definition 4 gives the formalization of local-paths 
where we use the following notations. Given a local 
transition t = ai

ℓ
−→ aj ∈ T , orig(t)

�
= ai, dest(t)

�
= aj , 

enab(t)
�
= ℓ. Given z ∈ N, τ = (τn)n=1,...,z is a sequence 

of local transitions indexed by n ∈ {1, . . . , z}; |τ | = z is 
the length of the sequence τ; and ε denotes the empty 
sequence (|ε| = 0).

Definition 4  (Local-paths) Given an objective ai�aj,

• • If i = j, local-paths(ai�ai)
�
={ε};

UA(s →∗ s′) ⇒ s →∗ s′ ⇒ OA(s →∗ s′)

• • If i �= j, a sequence τ of transitions in T(a) is in 
local-paths(ai�aj) if and only if it satisfies the fol-
lowing properties:

–– orig(τ 1) = ai, dest(τ |τ |) = aj,
–  – ∀n, 1 ≤ n < |τ |, dest(τn) = orig(τn+1),
–– ∀n,m, |τ | ≥ n > m ≥ 1, dest(τn) �= orig(τm).

We write t ∈ τ
�
⇔∃n, 1 ≤ n ≤ |τ | : τn = t. Given a local 

path τ, enab(τ ) denotes the union of the conditions of all 
the local transitions composing it:

In the AN of Fig.  1, local-paths(a0�a2) =  
{(a0

b0,c0
−−→ a2)} ; local-paths(c0�c2) = {(c0

a1
−→ c1, c1

b0
−→

c2)}; local-paths(c2�c1) = ∅.
Focusing on the reachability of a single local state g1 

from a state s where s(g) = g0, the analyses essentially 
start with the local paths in local-paths(g0�g1): if g1 is 
reachable, then at least one of the local paths τ has to 
be realizable, meaning that all the local states of its con-
ditions (enab(τ )) should be reachable. This leads to a 
recursive reasoning by repeating the procedure with the 
objectives from s to the local states in enab(τ ).

The dependence relationships between the local paths 
of the different automata can be represented as a graph, 
where the nodes are all the local states, all the possible 
objectives, and all their local paths. Such a graph is called 
a Local Causality Graph (LCG), and abstracts all the exe-
cutions of the AN.

Definition 5  The Local Causality Graph of an AN 
(�, S,T ) is a tripartite digraph (L,O,P,E) where L, O, P 
are the vertices and E the edges such that:

From a complexity point of view, local paths are 
computed for each pair of local states within every 
automata. Since the length of a local path is at most the 
number of local states within the automaton, the num-
ber of local paths is at most polynomial in the number 

enab(τ )
�
=
⋃|τ |

n=1 enab(τ
n)

L
�
=

⋃

a∈�

S(a)

O
�
={ai�aj | a ∈ �, ai ∈ S(a), aj ∈ S(a)}

P
�
=

⋃

ai�aj∈O

local-paths(ai�aj)

E
�
={(aj , ai�aj) | ai�aj ∈ O}

∪ {(ai�aj , τ ) | ai�aj ∈ O, τ ∈ local-paths(ai�aj)}

∪ {(τ , bk) | τ ∈ P, bk ∈ enab(τ )}
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of local transitions and exponential in the size of the 
single automaton. In practice, the automata are small, 
typically between 2 and 4 states for biological models. 
Therefore, LCGs turn out to be very small compared to 
the reachable state space of biological networks. They 
have been successfully applied for analysing dynam-
ics of ANs with hundreds or thousands of automata, 
which were intractable with standard model checking 
approaches [13, 17].

The over-approximation and under-approximation 
reduce to finding sub-graphs of LCGs that satisfy some 
particular structural properties, which have been proven 
to be necessary or sufficient for the reachability prop-
erty, respectively. The over-approximation reduces here 
to finding an acyclic sub-graph that contains the main 
objective g0�g1 where leaves are empty local paths, and 
initial states match with the given initial state. This con-
dition can be verified in a time linear with the LCG size 
[13]. The under-approximation we consider in the paper 
requires to find an acyclic sub-graph where all leaves 
are empty local states, where conditions of local paths 
(enab(τ )) are independent, and which contain all possi-
ble objectives that can be involved for the goal reachabil-
ity [14]. This requires enumerating over many possible 
sub-LCGs, but checking if a sub-LCG satisfies the suf-
ficient condition is linear in its size, leading to an NP 
formulation.

Theorem 1  (Reachability over-approximation [13]) Given 
a state s ∈ S, g1 ∈ L is reachable from s, i.e., there exists s′ ∈ S 
such that s →∗ s′, only if s(g)�g1 ∈ �, where � ⊆ O is the 
least fixpoint of the monotonic function F : 2O → 2O with 
F(�)

�
={ai�aj ∈ O | ∃τ ∈ local-paths(ai�aj) : ∀bk ∈

enab(τ ), s(b)�bk ∈ �}.

Theorem  2  (Reachability under-approximation [14]) 
Given a state s ∈ S, g1 ∈ L is reachable from s, i.e., there 
exists s′ ∈ S such that s →∗ s′, if there exists a sub-LCG 
(L′,O′,P′,E′) with L′ ⊆ L, O′ ⊆ O, P′ ⊆ P, E′ ⊆ E, such 
that

• • g1 ∈ L′;
• • ∀aj ∈ L′, (aj , s(a)�aj) ∈ E′ and ∀ai ∈ L′, ai �= aj, 
(aj , ai�aj) ∈ E′;

• • ∀ai�aj ∈ O′ , 
∃τ ∈ local-paths(ai�aj) : (ai�aj , τ ) ∈ E′,

• • ∀τ ∈ P′, {(τ , bk) ∈ E} ⊆ E′;

and which verifies the following properties:

• • (L′,O′,P′,E′) is acyclic

• • ∀τ ∈ P′, ∀n ∈ {1, . . . , |τ |}, there exists at most one 
ai ∈ enab(τn) such that ∀bj ∈ enab(τn), bj �= ai, 
S(a) ∩ connE′(bj) � {ai}.

where connE′(v) is the set of vertices connected to v.
Figure  2 gives examples of sub-LCGs which approxi-

mate the reachability of a2 in the AN of Fig.  1. The left 
LCG does not satisfy the necessary condition (no local 
paths from c2 to c0), hence a2 is not reachable from the 
given initial state 〈a1, b0, c2〉. The middle LCG does satisfy 
the necessary condition. Finally, the right LCG is a valid 
sub-LCG for the sufficient condition for a2 reachability. 
Whereas these examples show only acyclic LCGs, in gen-
eral, cycles can exist in the causality analysis, revealing 
cyclic (non-solvable) dependencies between transitions.

ASP syntax and semantics
Answer-Set Programming allows for automatic logical 
deductions thanks to an ASP model which declares vari-
ables, domains, and constraints, and to a solver which 
computes the solutions, possibly accounting for optimi-
sation criteria. It is close to SAT (propositional satisfi-
ability) [22] and known to be efficient for enumerating 
solutions of NP problems while providing a convenient 
language for specifying the model.

We give a very brief overview of ASP syntax and 
semantics that we use in the next section. Please refer to 
[10, 23, 24] for an in-depth introduction to ASP.

An ASP program is a Logic Program (LP) formed by a 
set of logical rules, composed of first order logic predi-

cates, of the form: where ai are (variable-free) atoms, i.e., 
elements of the Herbrand base, which is composed of all 
the possible predicates of the LP. The Herbrand base is 
built by instantiating the LP predicates with the LP terms 
(constants or elements of the Herbrand universe).

Essentially, such a logical rule states that when all 
a1, . . . , an are true and all an+1, . . . , an+k cannot be 
proven to be true, then a0 has to be true as well. In 
the case where a0 can be ⊥ (and is omitted), the rule 
becomes: 

 Such a rule is satisfied only if the right hand side of the 
rule is false (at least one of a1, . . . , an is false or at least 
one of an+1, . . . , an+k is true). On the other hand, a0 ← T 
(a0 is always true) is abbreviated as a0. A solution (answer 
set) is a stable Herbrand model, that is, a minimal set of 
true atoms without variables (grounded atoms) where all 
the logical rules are satisfied.
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ASP allows using variables (starting with an upper-
case) instead of terms/predicates: these pattern 
declarations will be expanded to the corresponding prop-
ositional logic rules prior to the solving. For instance, the 
following ASP program has as unique (minimal) solution 
b(1) b(2) c(1) c(2).

  

In the following, we also use the notation n {a(X):b(X)} 
m which is satisfied when at least n and at most m a(X) 
are true where X ranges over the true b(X). This type of 
rule is usually used to generate solution candidates.

Results
Bifurcations
Given an initial state s0 and a goal local state, a bifurca-
tion transition is a transition from a state where the goal 

a2

b0�b0 c2�c0

c0

a1�a2

b0

c1�c0

a2

b0�b1

b0�b0

c0

a1�a2

b0

b1

a2

a0

c0

b1�b0 c1�c0

b0

b1

b0�b1

b0�b0

a0�a0 b1�b1

c0�c0

a0�a2

Fig. 2  Examples of local causality graphs. (Left) over-approximation of a2 reachability from 〈a1, b0, c2〉 (middle) over-approximation of a2 reachability 
from 〈a1, b0, c1〉 (right) under-approximation of a2 reachability from 〈a0, b1, c1〉. The small circles represent the local paths
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is reachable to a state where the goal is not reachable, 
i.e., there exists no sequence of transitions that leads to 
a state containing the goal local state. This implies that 
there exists at least one reachable attractor which does 
not contain a goal state.

Let us consider the AN of Fig. 1, with s0 = �a0, b0, c0� 
and the goal a2. Figure 3 shows all the possible transitions 
from s0.

The states with a grey background are connected to 
a state containing a2 (in thick-blue). The transitions in 

thick-red are bifurcations: once in a white state, there 
exist no sequence of transitions leading to a2. The white 
states constitute an attractor of the state graph from 
which it is not possible to reach a state containing a2. In 
other words, bifurcations are the transitions from a grey 
state to a white state. Note that each transition between 
two global states is generated by one (and only one) local 
transition in the AN. In this example, t8 is the (unique) 
local transition responsible for bifurcations from s0 to a2.

Given an AN (�, S,T ), we search to identify the local 
transitions tb ∈ T  which trigger a bifurcation from a state 
reached from s0 ∈ S for a given goal, which describes a 
set of states Sg ⊆ S. We call sb a global state where a 
bifurcation occurs, and su the global state after the bifur-
cation: su = sb · tb. The goal is reachable from sb but not 
from su. This is illustrated by Fig.  4. Note that, as illus-
trated, sb is not inevitably reached: we allow the existence 
of alternative paths of transitions to the goal.

Definition 6 formalizes the notion of bifurcation, 
where the goal is specified by a local state g1 (hence 
Sg = {s ∈ S | s(g) = g1}). Note that this goal specification 
does not loose generality, as one can build an automaton 
g with local states g0 and g1, and with a local transitions 
from g0 to g1 conditioned by each desired goal state.

〈a2, b1, c0〉

〈a2, b0, c0〉 〈a1, b0, c0〉

〈a0, b0, c1〉

s0 = 〈a0,b0, c0〉

〈a1, b1, c0〉

〈a0, b1, c0〉

〈a1, b1, c1〉

〈a0, b1, c1〉

〈a1, b0, c1〉

〈a1, b0, c2〉

〈a0, b0, c2〉

〈a1, b1, c2〉

〈a0, b1, c2〉

t8

t8

Fig. 3  Transition graph of the AN in Fig. 1 from the initial state s0 = �a0, b0, c0� in bold. The goal a2 is in bold and blue; the states connected to the 
goal are in grey; the bifurcations for the goal are in thick/red and are labelled with the name of the local transitions in the AN definition

s0

sb

Sg

su
tb

Fig. 4  General illustration of a bifurcation. s0 is the initial state, Sg is a 
set of states in which the goal local state is present. The dashed arrows 
represent a sequence (possibly empty) of transitions. The plain red 
arrow is a bifurcation from a global state sb to su, and tb is the associ-
ated local transition



Page 8 of 14Fitime et al. Algorithms Mol Biol  (2017) 12:19 

Definition 6  (Bifurcation transition) Given an AN 
(�, S,T ), a global state s0 ∈ S and a goal local state g1 
with g ∈ � and g1 ∈ S(g), a bifurcation transition is a 
transition sb

tb
−→ su of the AN with sb, su ∈ S and tb ∈ T  , 

such that (1) s0 →∗ sb; (2) ∃s ∈ S where s(g) = g1 with 
sb →∗ s; and (3) ∀s′ ∈ S where su →∗ s′, s′(g) �= g1.

Alongside the enumeration of candidate sb and tb , 
reachability checking is at the core of the bifurcation 
identification.

Given a local transition t ∈ T  of an AN, the property 
of bifurcation transition for g1 from initial state s0 can be 
formulated in CTL [25] as:

where E is the path existence operator, F the eventually 
operator, and X the next operator.

As explained in the introduction, verifying such a CTL 
property is a PSPACE-complete problem. In the rest of 
this paper, we introduce NP approximations of the bifur-
cation property that can be verified by a SAT/ASP solver.

Identification of bifurcations using ASP
Among the states reachable from s0, we want to find a 
state sb from which (1) the goal is reachable and (2) there 
exists a transition to a state from which the goal is not 
reachable. Putting aside the complexity of reachabilities 
checking, the enumeration of candidate states sb is a clear 
bottleneck for the identification of bifurcations in an AN.

Our approach combines the formal approximations 
and (optionally) unfoldings introduced in the previous 
section with a constraint programming approach to effi-
ciently identify bifurcations. As discussed in the previous 
section, checking the over-/under-approximations from 
candidate states and sub-LCGs is easy. For the case of 
unfolding, checking if a state s belongs to the state space 
represented by a complete finite prefix is NP-complete 
[26]. Therefore, a declarative approach such as ASP [10] 
is very well suited for specifying admissible sb and tb, and 
obtaining efficient enumerations of solutions by a solver.

We first present the general scheme of our method, and 
then given details on its implementation with ASP.

General scheme
A sound and complete characterization of the local tran-
sitions tb ∈ T  triggering a bifurcation from state s0 to the 
goal g1 would be the following: tb is a bifurcation transi-
tion if and only if there exists a state sb ∈ S such that

(1)
s0 ⇒ EF

(

orig(t) ∧ enab(t) ∧ EF (g1)

∧EX(dest(t) ∧ ¬EF (g1))
)

(C1)su �→∗ g1 (C2)sb →∗ g1 (C3)s0 →
∗ sb

where su = sb · tb, su �→∗
g1

�
⇔∀s′ ∈ S, su →∗

s
′ ⇒ s

′(g)

�= g1 and sb →∗ g1
�
⇔∃sg ∈ S : sg (g) = g1 ∧ sb →∗ sg.

However, in an enumeration scheme for sb candidates, 
checking reachability and non-reachability of the goal 
from each sb candidate ((C1) and (C2)) is prohibitive. 
Instead, we relax the above constraints as follows:

where unf-prefix(s0) is the set of all reachable states 
from s0 represented as the prefix ofcomputed (see “Back-
ground” and “State graph and partial order reductions”). 
Either (I3) or (I3#) can be used, at discretion. Recall that 
UA(s →∗ s′) ⇒ s →∗ s′ ⇒ OA(s →∗ s′) [13, 14] (see 
“Background”/“Formal approximations”), thus we obtain 
the following implications:

Therefore, our characterization is sound (no false posi-
tive) but incomplete: some tb might be missed (false 
negatives). Using (I3) instead of (I3#) potentially reduces 
the false negatives, at the condition that the prefix of 
the unfolding is tractable. When facing a model too 
large for the unfolding approach, we should rely on (I3#) 
which is much more scalable but may lead to more false 
negatives.

Relying on the unfolding from sb (unf-prefix(sb)) is not 
considered here, as it would require to compute a prefix 
from each sb candidate, whereas unf-prefix(s0) is com-
puted only once before the bifurcation identification.

Complexity
The decision of (I1#), (I2#), and (I3#) can be formulated as 
NP problems in the size of the LCG. Recall that the size 
of the LCG is polynomial with the number of local states 
and local transitions in the AN, and exponential with the 
number of local states within a single automaton.

The decision of (I3) is NP-complete with respect to the 
size of the prefix of the unfolding, which computation is 
PSPACE [12]. Nevertheless, checking if (I1#), (I2#), and 
(I3) are satisfied can remain more tractable than check-
ing the exact CTL property: (I3) uses the (complete) set 
of reachable states, but does not require the transitions.

ASP implementation
We present here the main rules for implementing the 
identification of bifurcation transitions with ASP. A sig-
nificant part of ASP declarations used by (I1#), (I2#), 

(I1#)¬OA(su →∗ g1)

(I2#)UA(sb →∗ g1)

(I3) sb ∈ unf-prefix(s0)

(I3#) UA(s0 →
∗ sb)

(I1#) ⇒ (C1) (I2#) ⇒ (C2)
(I3) ⇔ (C3)

(I3#) ⇒ (C3)
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(I3) , and (I3#) are generated from the prior computation 
of local-paths and, in the case of (I3), of the prefix of the 
unfolding. Applied on Fig.  1, our implementation cor-
rectly uncovers t8 as a bifurcation for a2.

Problem instance: local states, transitions, and states 
Every local state ai ∈ S(a) of each automaton a ∈ � is 
declared with the predicate 1s(a, i). We declare the local 
transitions of the AN and their associated conditions by 
the predicates tr(id, a, i, j) and trcond(id, b, k), which 
correspond to the local transition ai

{bk }∪ℓ
−−−−→ aj ∈ T . States 

are declared with the predicate s(ID, A, I) where ID is 
the state identifier, and A, I, the automaton and local 
state present in that state. Finally, the goal g1 is declared 
with goal(g, 1).

For instance, the following instructions declare the 
automaton a of Fig. 1 with its local transitions, the state 
s0 = �a0, b0, c0�, and the goal being a2: 

Solution candidates tb and associated definitions for sb 
and su The bifurcation transition tb, declared as btr(b), 
is selected among the declared transitions identifiers (line 
6). If ai

ℓ
−→ aj is the selected transition, the global state su 

(recall that su = sb · tb) should satisfy su(a) = aj (line 7) 
and, ∀bk ∈ ℓ, su(b) = bk (line 8). The state sb should then 
match su, except for the automaton a, as sb(a) = ai (lines 
9, 10). 

(I1#) Integrity constraint to verify ¬OA(su →∗ g1) This 
part aims at imposing that the defined state su, for a can-
didate bifurcation transition tb (lines 7 and 8), should not 
reach g1. For that, we designed an ASP implementation of 
the reachability over-approximation presented in “Back-
ground” section (“Formal approximations”). It consists in 
building a Local Causality Graph (LCG) from pre-com-
puted local-paths oa_valid(G, 1s(A, I)). A predicate is 
then defined upon the over-approximation LCG G to be 
true when the local state ai is reachable from the initial 
state sG. The full implementation is given in Additional 
file 1. Therefore, in order to ensure that the defined state 
su does not reach the goal g1, we forbid the fact that there 

exists an LCG, built from the initial state su, that contains 
a local state g1, where g1 is the goal of the problem, asso-
ciated to the predicate goal (line 11).

(I2#) Verification of UA(sb →∗ g1) This part aims at 
imposing that the defined state sb, for a candidate bifur-
cation transition tb, (lines 7 and 8) should reach g1. Our 
designed ASP implementation of the reachability under-
approximation consists in finding a sub-LCG G with the 
satisfying properties for proving the sufficient condition. If 
such a graph exists, then the related reachability property is 
true. The edges of this sub-LCG are declared with the predi-
cate ua_1cg(G, Parent, Child). The graph is parameter-
ized by (1) a context which specifies a set of possible initial 
states for the objectives and (2) an edge from the node root 
to the local state(s) for which the simultaneous reachability 
has to be decided. The full implementation is given in Addi-
tional file 1. We instantiate the under-approximation LCG 
for building a state sb from which the goal g1 is reachable by 
imposing the following rules. First, g1 is a child of the root 
node of graph b (line 12). Second, the context is subject to 
the same constraints as sb from su (lines 13 and 14 reflect 
lines 9, and 10). Then, sb defines one local state per automa-
ton among the context from which the reachability of g1 is 
ensured (line 15), and according to lines 9, and 10. The rules 
in lines 12, 13, 14, and 15 will be the entry point for building 
an under-approximation LCG, and rules imposed in Addi-
tional file 1 will allow to further develop the LCG from these 
entry points. If the integrity constraints in Additional file 1 
reject the provided entry points, then the reachability from 
sb to g1 does not hold. Thus, the defined sb is not valid and 
the selected tb will not be an answer set of the program.

(I3) Verification of sb ∈ unf-prefix(s0) Given a prefix of 
an unfolding from s0 , checking if sb is reachable from s0 
is an NP-complete problem [26] which can be efficiently 
encoded in SAT [27] (and hence in ASP). A synthetic 
description of the ASP implementation of reachabil-
ity in unfoldings is given in Additional file 1. The inter-
ested reader should refer to [21]. Our encoding provides 
a predicate reach(a, i) which is true if a reachable state 
contains ai. Declaring sb reachable from s0 is done simply 
as follows: 
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(I3#) Verification of UA(s0 →∗ sb) An alternative to (I3) 
which does not require to compute a complete prefix of 
the unfolding is to rely on the under-approximation of 
reachability similarly to (I2#). The under-approximation 
is instantiated for the reachability of sb from s0 with the 
following statements: 

Experiments
We evaluated our method in three real biological net-
works case studies that show differentiation capabilities. 
We selected networks that show at least two attractors 
reachable from the same initial state. For each network, 
we supplied a goal state representing one attractor. Thus, 
the goal state is a state reachable from the selected ini-
tial state. Because at least one attractor is reachable from 
the same selected initial state, transitions that lead to the 
other attractors are by definition bifurcation transitions. 
We aimed at identifying transitions that cause a bifur-
cation for the reachability of the goal state. The three 
case studies used are briefly described in the following 
paragraphs.

Models, initial states, and goals
Immunity control in bacteriophage lambda (Lambda phage)
In temperate bacteriophages the choice of entering lysis 
and lysogenization cycles is controlled by bacterial and 
viral genes. In the lambda case, at least five viral genes (ref-
ered to as cI, cro, cII, N and cIII) and several bacterial genes 
were identified. We applied our method on an AN equiva-
lent to the model introduced in [28]. Based on this study 
we selected one initial state and two different goals, corre-
sponding to lysis or lysogenization phases both reachable 
from the initial state. The lysis phase is characterized by 
the attractor {�CI0,Cro2,CII0,N0�, �CI0,Cro3,CII0,N0�} , 
while the lysogenization phase, by {�CI2,Cro0,CII0,N0�,

�CI2,Cro0,CII1,N0�}. The initial state was 
〈CI0,Cro0,CII0,N0〉. The selected goals where CI2 
(lysogenization attractor) and Cro2 (lysis attractor). One 
can not access the lysogenization goal from the lysis attrac-
tor and vice versa.

Epidermal growth factor and tumor necrosis factorα
EGF/TNF is a model that combines two important mam-
malian signaling pathways induced by the epidermal 
growth factor (EGF) and tumor necrosis factor alpha 
(TNFα) [29, 30]. EGF and TNFα ligands stimulate ERK, 
JNK and p38 MAPK cascades, the PI3K/AKT pathways, 
and the NFkB cascade. This network of 28 components 

encompasses cross-talks between these pathways as well 
as two negative feedback loops. We applied our method 
from the initial state corresponding to the signal TNFα 
active and EGF inactive; the two goals refer to down-
stream proteins, namely the inactivation of NBkB and the 
activation of its inhibitor, IKB.

T‑helper cell plasticity
T-helper cell has been studied in [8] in order to investi-
gate switches between attractors subsequent to changes 
of input conditions. It is a cellular network regulating 
the differentiation of T-helper (Th) cells, which orches-
trate many physiological and pathological immune 
responses. T-helper (CD4+) lymphocytes play a key 
role in the regulation of the immune response. By APC 
activation, native CD4 T cells differentiate into specific 
Th subtypes producing different cytokines which influ-
ence the activity of immune effector cell types. Differen-
tiation in one subtype rather than another depends on 
the presence of specific polarizing cytokine combina-
tions. These different lineages are characterized by a set 
of cytokines they express under the control of a master 
regulator transcriptional factor. Each master regulator 
is critically involved in the driving of the differentiation 
of the Th lineage they specify. The network is composed 
of 101 nodes and 221 interactions; the corresponding 
AN has in total 381 local transitions. Note that due to 
the very high number of reachable states from some 
particular initial states of the network, the authors in [8] 
had to analyse a reduced version of this network, which 
does not preserve all the reachability properties. In this 
work, we analyse the full model. We selected initial 
states and goals for this model according to the attrac-
tors identified in [8].

We applied our method for three different initial states, 
namely th1, th2, and pluri. The two formers are arbitrary 
initial states from which particular subtypes (Th1 and 
Th2, respectively) are reachable. The “pluri” initial state 
corresponds to a potential cell environment which can 
trigger a differentiation among different cell subtypes 
(the differentiation is non-deterministic in the Boolean 
model): the initial states specify that APC, IL1Be, IL25e , 
IL27e, IL29e, IL2e, IL33e, IL36e, IL4e, and TGFBe (e 
stands for environment) are active, and only them.

In all cases, the goals correspond to the activation of 
master regulators and cytokines which are specific mark-
ers for differentiated Th subtypes.

Methods
Given an AN, an initial state, and a goal, we performed 
the bifurcation identification with three different 
methods:
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1.	 Exact model checking using NuSMV [20]: for each 
local transition in the AN specification, we verify if it 
is a bifurcation transition according to the CTL for-
mula given in Eq.  1. This identification is exact and 
complete, but has a high theoretical complexity.

2.	 ASP solving of (I1#), (I2#), and (I3) (computation of 
the reachable states set from s0). We use clingo 4.5.3 
[31] as ASP solver, and Mole [32] for the computa-
tion of the complete finite prefix for (I3). This iden-
tification is exact but incomplete: some bifurcation 
transitions can be missed.

3.	 ASP solving of (I1#), (I2#), and (I3#) (reachability 
under-approximation). We use clingo 4.5.3 [31] as 
ASP solver. This identification is exact but incom-
plete: some bifurcation transitions can be missed. 
Due to the additional approximations brought by 
(I3#) compared to (I3), it is expected that less bifur-
cation transitions can be identified with this latter 
approach, but with a higher scalability.

The computation times correspond to the total toolchain 
duration, and includes the local-paths computation, 
unfolding, ASP program generation, ASP program load-
ing and grounding, and solving. Note that the LCG (see 
above “Background” and “Results” sections) computation 
(and ASP program generation) is almost instantaneous 
for each case. We implemented the three methods in the 
Pint software.2 Models and instructions are provided in 
Additional file 2.

Results
Table  1 summarizes the results of the identification of 
bifurcation transition for the models, initial states and 
goals described above. In the remainder of this section, 
we discuss two aspects of these results: the scalability 
of our approach and the biological interpretation of the 
identified bifurcations.

Scalability
For the analysed models, exact model checking and 
approximation using (I3) give comparable execution 
times, with nevertheless an advantage for (I3) in most 
cases. Because the model checking approach is exact, the 
identified bifurcation transitions is complete, whereas, 
due to (I1#) and (I2#) approximations, the second 
approach generally identifies less bifurcation transitions. 
As supported by the experiments on Th_th2, the compu-
tation of (I3) should be, in practice, more tractable than 
the verification of the CTL expression of Eq.  1. Indeed, 
(I3) requires only to compute the set of reachable states, 

2  http://loicpauleve.name/pint.

where CTL verification requires, in addition, to store the 
transitions between these states.

Importantly, both methods fail on the Th_pluri model 
(no result after 2  h). This can be explained by the very 
large reachable dynamics. In the case of model check-
ing, we emphasize that NuSMV fails due to the size of the 
model, and it has been able to verify none of the supplied 
CTL properties. In the case of (I3), the failure is due to 
the complete finite prefix computation which does not 
terminate in due time; this suggests that the reduction 
relying on concurrent transitions is not sufficient for this 
particular model to achieve a tractable representation 
of the reachable state space. Future work may consider 
other symbolic representations of the reachable state 
space, notably using BDDs and variants [19].

The third approach, using the additional approximation 
(I3#) is tractable on the large model, supporting a higher 
scalability of this latter approach. Indeed, the computa-
tion of the finite complete prefix for (I3) is PSPACE-com-
plete, solving (I3#) is NP (with LCG size). Whereas, the 
difference between PSPACE and NP complexity classes is 
not known, it is a common observation in practice that 
NP solving (notably using SAT) is more tractable than 
PSPACE solving. As expected, in the smaller models, 
less bifurcation transitions than the former approaches 
are returned. Concerning the ASP grounding and solv-
ing computation times (data not shown) the grounding 
time depends on the model size and is independent of the 
choice of the initial state and goal; whereas in the case of 
the solving time, the choice of the initial state may have 
an important impact. This effect appears much more visi-
ble in the larger T-helper model. Grounding time has very 
small and similar values (≈0.05s) for the small and mid-
dle size models (4–22 automata and 11–55 transitions). 
However in the larger model (six times more transitions) 
the grounding time raises to 2 orders of magnitude. Solv-
ing time behaves differently, while it remains small and 
similar for small and middle size models. It raises to 
4 orders of magnitude in the case of the larger model. 
Across all studied models the proportion of grounding 
and solving time against total computation time var-
ies from 14–61% for grounding and 19–71% for solving. 
We observe that in the small and middle size models the 
grounding and solving proportion remains quite similar, 
while the grounding time proportion is much smaller 
than the solving one in the large-scale model.

Biological interpretation
We illustrate here how bifurcation transitions should be 
interpreted with the example of Th_pluri model for bifur-
cations from FOXP3 active. The four identified bifurca-
tion transitions are the following:

http://loicpauleve.name/pint
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• • STAT6 0 → 1 when IL4R=1
• • RORGT 0 → 1 when BCL6=0 and FOXP3=0 and 

STAT3=1 and TGFBR=1
• • STAT1 0 → 1 when IL27R=1
• • STAT1 0 → 1 when IFNGR=1

These transitions are local transitions of the AN which 
satisfy (I1#), (I2#), and (I3#). The first transition corre-
sponds to the activation of STAT6 by IL4R, the second 
is the joint activation of RORGT by STAT3 and TGFBR 
provided that BCL6 and FOXP3 are inactive, and the 
third and fourth are the activation of STAT1 either by 
active IL27R or by active IFNGR.

The fact that these transitions are bifurcation transi-
tions for FOXP3 means the following: starting from the 
specified initial state, there exists future states where the 
occurence of one of these transitions puts the system in 
a state where FOXP3 is no longer activable, and in par-
ticular, all future attractors have FOXP3 inactive. In that 
precise case, the active form of FOXP3 is a marker for 
the “Treg” Th subtype: hence, these 4 bifurcation tran-
sitions can prevent the differentiation of the cell in this 
type.

Conclusions
This paper presents an original combination of compu-
tational techniques to identify transitions of a dynami-
cal system that can remove its capability to reach a (set 
of ) states of interest. Our methodology combines static 
analysis of ANs dynamics, partial order representa-
tions of the state space, and constraint programming to 

efficiently enumerate those bifurcations. To our knowl-
edge, this is the first integrated approach for deriving 
bifurcation transitions from concurrent models, and ANs 
in particular.

Bifurcations are key features of biological networks, as 
they model decisive transitions which control the differ-
entiation of the cell: the bifurcations decide the portions 
of the state space (no longer) reachable in the long-run 
dynamics. Providing automatic methods for capturing 
those differentiations steps is of great interest for bio-
logical challenges such as cell reprogramming [8, 33], as 
they suggest targets for modulating undergoing cellular 
processes. Our approach is focused on non-deterministic 
discrete dynamics, in opposition to deterministic sys-
tems, such as piecewise-affine systems on which differen-
tiation is determined by the initial state in a continuous 
space [34].

Bifurcation transitions can be modelled as CTL prop-
erties and verified by exploring the reachable state and 
transition space. Our method aims at circumventing the 
state space explosion problem for large networks thanks 
to the formal approximations of reachability properties.

Given an initial state of the AN and a goal state, our 
method first computes static abstractions of the AN 
dynamics and (optionally) a symbolic representation 
of the reachable state space with so-called unfoldings. 
From those prior computations, a set of constraints is 
issued to identify bifurcation transitions. We used ASP to 
declare the admissible solutions and the solver clingo to 
obtain their efficient enumerations. For large models, the 
unfolding may be intractable: in such a case, the methods 

Table 1  Experimental results for the identification of bifurcation transitions depending if (I3) or (I3#)  is used, compared 
to a exact model checking (MC) using NuSMV [20]

Models Th_th1, Th_th2, and Th_pluri are the same AN but have different initial states. |�| is the number of automata, and |T | the number of transitions; |states| is the 
number of reachable state from the initial state; in the case of Th_pluri, it is only a lower bound as we were not able to compute the full state space.  |tb| is the number 
of identified bifurcation transitions (among T). Computation times have been obtained on an Intel® Core™ i7-4770 3.40GHz CPU with 16GiB of RAM

Automata network |States| Goal MC (NuSMV) With (I3) With (I3#)

|tb| Time (s) |tb| Time (s) |tb| Time (s)

Lambda phage
|�| = 4 |T | = 11

14 CI2 10 0.1 6 0.1 0 0.2

Cro2 3 0.1 3 0.1 2 0.3

EGF/TNF
|�| = 28 |T | = 55

3698 NFkB0 5 0.2 4 0.1 2 0.1

IKB1 5 0.2 3 0.1 2 0.1

Th_th1
|�| = 101 |T | = 381

≈3.1011
BCL61 8 13 6 16 5 23

TBET1 11 14 5 10 4 24

Th_th2
|�| = 101 |T | = 381

≈1012
GATA31 9 108 8 24 7 20

BCL61 7 570 5 25 4 25

Th_pluri
|�| = 101 |T | = 381

>5.1014 BCL61
IL211
FOXP31
TGFB1

Out-of-time Out-of-time 2 32

0 26

4 56

5 96
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relies only on reachability over- and under-approxima-
tions. By relying on those relaxations which can be effi-
ciently encoded in ASP, our approach avoids costly exact 
checking, and is tractable on large models, as supported 
by the experiments.

For applications when the initial state is not fully deter-
mined, or equivalently, a set of initial states has to be 
considered, our approach, including CTL and approxi-
mations, can be easily extended for the identification of 
universal bifurcation transitions: such transitions are 
bifurcation transitions for every candidate initial state. 
Indeed, the verification of CTL properties is universal, as 
well as the implemented under-approximation of reacha-
bility (I3#). The unfolding prefix (I3) can also be extended 
to multiple initial states [11]. The identification of exis-
tential bifurcation transitions, i.e., such that there exists 
at least one candidate initial state for which the transition 
is a bifurcation transition, could also be implemented for 
the approximation (I3#) using ASP, but with a potential 
lower scalability.

Further work will consider the complete identifica-
tion of bifurcation transitions, by allowing false posi-
tives (but no false negatives). In combination with the 
under-approximation of the bifurcations presented in 
this paper, it will provide an efficient way to delineate 
all the transitions that control the reachability of the 
goal attractor. Moreover, we will investigate the imple-
mentation of refined over- and under-approximations of 
reachability described in [13] for better capturing tran-
sition ordering constraints. Future work will also focus 
on exploiting the identified bifurcations for driving esti-
mations of the probability of reaching the goal at steady 
state, in the scope of hybrid models of biological net-
works [35, 36].
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