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ABSTRACT — With about 10,000 described species and densities reaching 400,000 ind/m2, the Oribatida (without Astig-
mata) represent the most prevalent group of soil mites. However, with the exception of their taxonomy, many aspects
of the biology of oribatid mites have been poorly studied. This might be explained in part by the previous lack of a
model species. However, in the last 20 years, more and more non-taxonomic studies regarding development, genet-
ics, morphology, chemical ecology and ecotoxicology have become available, with a significant number focused on the
trhypochthoniid oribatid mite Archegozetes longisetosus. A well-defined laboratory strain of this pantropical partheno-
genetic species was established in 1993 by one of us (RAN), and has since spread through numerous laboratories world-
wide. In this review, we summarize the scientific achievements this lineage has enabled while becoming a model system
for general zoology, ecology and evolution.
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WHAT MAKES A MODEL ORGANISM ?

Several major leaps in understanding life on earth
can be attributed to the adoption of model organ-
isms. Species like the rockcress Arabidopsis thaliana
(L.) Heynh 1842, the fruit fly Drosophila melanogaster
Meigen 1830, the zebrafish Danio rerio (Hamilton,
1822) and the rat Rattus norvegicus (Berkenhout,
1769) provided starting points for examining the
complexity of life in detail. Comparisons of in-
dividual studies with results from model species
have yielded insights into phylogeny, physiology,
genetics, evolution and several other fields of life

sciences. However, research fostered by the estab-
lishment of model organisms also demonstrated the
difficulties of generalizing results, especially when
the model organism was only distantly related to
the taxa to which researchers wished to apply the
results. Expanding the number of model taxa cover-
ing traditionally recognized major metazoan clades
could help solve this problem.

The Chelicerata represent a major subgroup of
the Arthropoda and have a long evolutionary his-
tory, dating at least to the Ordovician era (Weygoldt,
1998). Despite its diversity, only a few species of
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chelicerates have been investigated thoroughly: e.g.
the horseshoe crab Limulus polyphemus L., the spider
Cupiennius salei (Keyserling 1877), the ticks Ixodes
ricinus (Linnaeus, 1758) and I. scapularis Ray, 1821,
or the spider mite Tetranychus urticae Koch 1836.
Since the phylogeny of Chelicerata is still controver-
sial, further chelicerate model species are needed
for comparative analyses. This is particularly true
of the highly diverse Acari, which are found in
almost any habitat from subarctic glacial springs
to tropical rainforests, and have become increas-
ingly recognized as important model systems (Wal-
ter and Proctor, 2010). While Acari is a tradition-
ally recognized taxon consisting of Actinotrichida
(= Acariformes) and Anactinotrichida (= Parasiti-
formes+Opilioacarida), doubt has repeatedly been
cast concerning whether these two groups really
form a monophyletic clade or whether ’Acari’ is di-
phyletic and therefore an artificial systematic entity
(Dabert et al. 2010 and references therein). Within
the Actinotrichida, the Sarcoptiformes are consid-
ered to comprise Astigmata and Oribatida, al-
though the phylogenetic relationship between these
two taxa remains controversial. Some authors pro-
pose the origin of Astigmata to be nested within
Oribatida, rendering the traditional concept of ’Ori-
batida’ paraphyletic (Norton 1994, 1998; Dabert et
al., 2010). When following the arguments of Norton
(1994), one candidate as sister-group of Astigmata
is the oribatid family Trhypochthoniidae, which
consists of about 65 obligatorily parthenogenetic
species (Maraun et al., 2004; Heethoff et al., 2011a).
Hence, thorough knowledge of a model species in
this family will help us to understand: (i) the evolu-
tionary origin of the Astigmata, (ii) the phylogenetic
relationship of Anactinotrichida and Actinotrichida
and (iii) their position within the Chelicerata.

One member of Trhypochthoniidae, Archegozetes
longisetosus Aoki, 1965 (Fig. 1), has already been re-
ferred to as a model mite (Thomas, 2000; Heethoff
et al., 2007a; Barnett and Thomas, 2011) and is
the oribatid mite most studied under laboratory
conditions (Smrž and Norton, 2004; Heethoff and
Cloetens, 2008). Since A. longisetosus meets the re-
quirements stated for model organisms (e.g. rapid
development, easy rearing under laboratory condi-

tions; see Thomas, 2000 and Grbic et al., 2007), a lab-
oratory strain was named Archegozetes longisetosus
ran (Heethoff et al., 2007a) in reference to its founder
(R. A. Norton). The parthenogenetic lineage was
raised from one single gravid female taken from a
population sampled in 1993 from coconut debris in
Puerto Rico (Smrž and Norton, 2004) and since then
its offspring have been spread through numerous
laboratories worldwide. In this review, we sum-
marize the more than 70 existing scientific papers
dealing with taxonomy, ecology, phylogeny, mor-
phology and development of A. longisetosus, many
of which were based on this strain.

TAXONOMY AND DISTRIBUTION

The genus Archegozetes was proposed by Grand-
jean (1931) with the Sumatran species Epilohmannia
magna Sellnick, 1925 as type by original designa-
tion. It was proposed without a diagnosis or refer-
ence to a family, and its first classification appears
to be that of Vitzthum (1942) who included it in
Epilohmanniidae. This assignment was made ap-
parently with the same level of doubt with which
Sellnick (1925) assigned the type species (accompa-
nied by a question-mark) to the genus Epilohman-
nia. In his seminal paper on oribatid mite clas-
sification, Grandjean (1954) included Archegozetes
in Trhypochthoniidae Willmann 1931, though also
with unexplained doubt, and it has remained there.
Beck’s (1967) analysis of this family placement is
the most complete. Trhypochthoniidae currently
comprises 65 species in nine genera in the middle-
derivative oribatid mite hyporder Nothrina, of the
infraorder Desmonomata (Subías, 2004; Norton and
Behan-Pelletier, 2009; Schatz et al., 2011).

Only seven species-group names have been pro-
posed, but despite this low diversity there has
been much confusion in the literature. Archegozetes
longisetosus, originally collected in Thailand, was
the second species proposed, and Aoki (1965) pro-
vided a table of character states that seemed to
clearly distinguish it from A. magnus. Most of these
related to relative length and shape of various se-
tae, but also leg setal counts, solenidial shape and
cuticular structure were included. Beck’s (1967)
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FIGURE 1: SEM-micrograph of a group of adult Archegozetes longisetosus on unicellular alga (Chlorella). Scale bar: 100 µm.

thorough study of Brazilian and Thai specimens
of A. longisetosus concluded that it was indeed
distinct from A. magnus, but distinguishable only
by the longer and more barbed notogastral setae,
plus a differently shaped supracoxal seta (a minute
character that is rarely described in the literature);
he considered the other differences cited by Aoki
(1965) too variable to distinguish the two species.

The concept of A. magnus used by both Aoki
(1965) and Beck (1967) was clearly based on van der
Hammen’s (1955a, b) detailed redescription, which
was based on specimens from New Guinea. How-
ever, Sellnick’s (1925) figure shows clearly that the
Sumatran population had setae with length inter-
mediate between that studied by Aoki (A. longise-
tosus) and that studied by van der Hammen (pur-
portedly A. magnus). As setal length has been a
primary distinguishing trait among species in the
genus, and as van der Hammen’s work is usually

accepted as representing A. magnus, this was prob-
ably the first point of confusion regarding species
concepts in Archegozetes.

Since that time, three other species have been
proposed: A. tuberculatus Sarkar, 1985 from India
and two species from Mexico, viz. A. veracruzen-
sis Palacios-Vargas and Iglesias, 1997 and A. chame-
lensis Palacios-Vargas and Iglesias, 1997. Two sub-
species of A. magnus were also proposed: A. mag-
nus indicus Bhaduri and Raychaudhuri, 1968, from
India, and A. magnus mediosetosus Mahunka, 1978
from the Seychelles. A series of taxonomic actions
have affected these names and species concepts: (1)
Mahunka (1978) treated A. longisetosus as a sub-
species of A. magnus; (2) Archegozetes magnus indi-
cus was noted to be a junior synonym of A. longise-
tosus by Sarkar (1985, citing an unpublished 1971
thesis by A. K. Bhaduri); (3) Archegozetes chame-
lensis was found to have been described from a
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tritonymph and considered a synonym of A. longise-
tosus (Estrada-Venegas et al., 1999); (4) Archegozetes
tuberculatus has been considered a junior synonym
of A. magnus (Subías, 2004); (5) Archegozetes magnus
mediosetosus has been considered a junior synonym
of A. magnus by Badejo et al. (2002). Adding to
this confusion, the latter authors considered A. ve-
racruzensis to be a junior synonym of A. magnus in
their text, but of A. longisetosus (considered a mor-
photype they did not study directly) in their ab-
stract. In essence, Badejo et al. challenged anyone
to provide good evidence that all Archegozetes are
not conspecific.

The resolution of such controversies requires
more types of information than are currently avail-
able for the nominal species of Archegozetes, pop-
ulations of which all are probably clonal in na-
ture. The integration of molecular and morpho-
metric approaches, applied in a modern context of
species concepts, will be essential (see below). At
this point, it seems most reasonable to follow the
moderate approach of Subías (2004; see also Beck,
1967) in recognizing Archegozetes longisetosus as be-
ing distinct from A. magnus (and its subspecies A.
magnus mediosetosus). The current advantages are
that (1) with its long notogastral setae, which seem
quite consistent within and among populations, A.
longisetosus is the most recognizable of all described
morphotypes, and (2) during periods of taxonomic
uncertainty, maintaining a more finely split tax-
onomy is preferable to premature lumping, which
would result in the loss of information, should opin-
ions change.

Collectively, Archegozetes is found throughout
the tropical regions of the world, on both conti-
nents and islands, and also extends into subtropi-
cal latitudes. We will not list locations in detail, but
Archegozetes longisetosus is widely distributed across
the Oriental, Australian and Neotropical regions;
we know of no reports from the Ethiopian region,
though A. magnus occurs there (Subías et al., 2012).
As many Archegozetes records are from oceanic is-
lands, in coastal regions of continents, or near ma-
jor freshwater bodies, Badejo et al. (2002) suggested
that water-borne movement might be important for
dispersal in these parthenogenetic, colonizing mites

(see below), but they are by no means restricted to
such locations.

PHYLOGENY

Data relating to the phylogenetic relationships of
A. longisetosus or its family Trhypochthoniidae have
come from both traditional and molecular stud-
ies. Knülle (1957) used morphological data to per-
form the first phylogenetic analyses (sensu Hen-
nig, 1950) of oribatid mites and he grouped Mala-
conothridae and Trhypochthoniidae (including his
Trhypochthoniellidae) as Trhypochthonioidea (now
Malaconothroiodea), although he did not study
Archegozetes per se. Haumann (1991) broadened the
taxonomic range of this ’cladistic’ work and consid-
ered this superfamily to be the sister-group of Holo-
somata (’Nothroidea’, Nanhermanniidae, Herman-
niidae and Circumdehiscentiae (= Brachypylina));
in other words, he viewed them as the earliest
derivative of what authors have referred to as
’Desmonomata’, in its restricted sense. By con-
trast, Norton (1994, 2007) viewed Trhypochthoni-
idae and Malaconothridae as being rather derived
mites, with an evolutionary history of paedomor-
phosis that continued most strongly in their hy-
pothesized relatives, the Astigmata.

The first relevant molecular phylogeny (based
on the nuclear ribosomal D3-region) including
Trhypochthonioidea was published by Maraun et al.
(2004). Three trhypochthoniid species/genera were
represented: A. longisetosus, Trhypochthonius tecto-
rum (Berlese, 1896) and Mucronothrus nasalis (Will-
mann, 1929). Trhypochthoniidae appeared to be
paraphyletic in this study, with T. tectorum and M.
nasalis being sister groups, but with A. longisetosus
grouping equivocally with a wide range of different
taxa – depending on the kind of phylogenetic anal-
yses applied. Laumann et al. (2007) demonstrated
that the D3-region is probably already highly sat-
urated in oribatid mites at this level of related-
ness, and hence might generate misleading results.
Using the much more conserved 18S rDNA gene,
Domes et al. (2007) and Maraun et al. (2009) con-
firmed that A. longisetosus, T. tectorum, T. ameri-
canus (Ewing, 1908) and Mainothrus badius (Berlese,
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1905) form a well-supported cluster, indicating that
Trhypochthoniidae is indeed monophyletic.

Since all known members of Trhypochthoniidae
are parthenogenetic, one is confronted with the
methodological, technical and philosophical prob-
lem of species delimitation and delineation. Hence,
cryptic diversity (i.e. a hidden number of addi-
tional species validated by one species concept, but
not by another) can be expected in such partheno-
genetic clusters and this has been demonstrated for
other oribatid mite genera: Platynothrus (Heethoff et
al., 2007b) and Tectocepheus (Laumann et al., 2007).
Heethoff et al. (2011a) proposed an integrative
taxonomical framework including morphological,
molecular and chemical data for a reproducible
delineation of parthenogenetic Trhypochthonius lin-
eages. Using such a framework, future studies
might provide more reliable species concepts within
Archegozetes, as well as in other Trhypochthoniidae
and indeed all other parthenogenetic oribatid mites.

LIFE HISTORY AND DEVELOPMENT

Life history and development of a parthenogenetic
organism can be seen in part as circular pro-
cesses since no ’new’ genetic material is incorpo-
rated in the next generation. We briefly summa-
rize the development of A. longisetosus here by re-
viewing development and morphology of the post-
embryonic free-living instars (larva, proto-, deuto-,
tritonymph, adult) and life history, development of
the germline, mechanism of parthenogenesis, struc-
ture of the adult ovary, cleavage patterns and em-
bryonic development.

Almost 30 years ago, Aeschliman and Hess
(1984) answered the question ’What do we know
about the embryology of acarines today?’ with
’Nothing really new during the past 25 years’. This
remained mostly unchanged for another 15-20 years
(Walzl, 2004) and embryology is still one of the least
studied fields in acarology (Laumann et al., 2010a).
The first application of ’modern’ techniques to un-
ravel developmental processes in oribatid mites us-
ing gene expression studies of homeobox genes was
performed with A. longisetosus. It showed that,
in contrast to common opinion, chelicerates retain

their deutocerebral segment, which renders the che-
licerae homologous to the first instead of the sec-
ond antennae / intercalary segment of Mandibu-
lata (Telford and Thomas 1998a). Following this
first expression study, further studies in a devel-
opmental genetic context have examined expres-
sion patterns of zen (Telford and Thomas, 1998b),
distal-less (Thomas and Telford, 1999), engrailed and
hedgehog (Barnett and Thomas, 2012), further limb
gap gene expression patterns (Barnett and Thomas,
2013a) and Ultrabithorax and Abdominal-B (Barnett
and Thomas, 2013b). Dachshund expression, for ex-
ample, provided evidence that A. longisetosus has a
three- rather than a two-segmented chelicera (Bar-
nett and Thomas, 2013a; see also Alberti et al.,
2011 for morphological evidence of the cheliceral
trochanter in A. longisetosus). As of July 2013,
GeneBank (NCBI) provides the sequences of 16 dif-
ferent developmental genes for A. longisetosus, and
RNA interference (RNAi) protocols will soon be de-
veloped (Barnett and Schmidt-Ott, 2013). These will
provide further opportunities to understand the de-
velopmental genetics of mites.

A number of laboratory studies dealt with life
history traits of this species (Haq, 1978; Haq
and Adolph, 1981; Honciuc, 1996; Seniczak, 1998;
Estrada-Venegas et al., 1999; Heethoff et al., 2007a).
Observed life cycles ranged from 28 to 88 days,
with each juvenile instar occupying 10 to 12 days
under typical culture conditions. Eggs are laid in
clutch sizes of 2 – 42, at an average of 1.3 eggs/day
(Heethoff et al., 2007) and with the total num-
ber of offspring produced by individual females
ranging from 31 to 238. Seniczak (1998) showed
that food significantly influences fecundity and de-
velopment, with unicellular algae (Protococcus sp.)
leading to higher reproduction than lichens (Clado-
nia sp.) or tree bark (Prunus padus). Furthermore, fe-
cundity seems to be density-dependent with lower
densities leading to higher reproductive output and
larger offspring (Seniczak, 2006). Regardless of cul-
ture density, A. longisetosus commonly builds large
aggregations of up to several hundred individuals
of mixed instars (Fig. 2), in which they spend the
quiescent period prior to molting (Haq, 1982).

Population densities of A. longisetosus in India
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FIGURE 2: Molting aggregation of individuals from all active instars (larvae, proto-, deuto-, tritonymphs and adults) of Archegozetes
longisetosus ran in a laboratory culture.
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were shown to depend on vegetational conditions,
with highest relative abundances found in grass-
lands and paddy fields, intermediate abundances in
banana plantations and lowest relative abundance
in an Acacia auriculiformes forest (Bhattacharya et al.,
1981). Frequencies were also strongly influenced by
human activities such as agriculture, and can drop
about 15-fold from 30 % in newly established to 2 %
in permanent rice fields, with an analogous drop in
abundance (Bhattacharya et al. 1980). On the other
hand, A. longisetosus seems to be a good colonizing
species: after burning of fields in Brazil they were
the most abundant oribatid mite species in refugial
(unburned) areas after 40 – 60 days and reached
highest abundances also in the burned areas after 10
– 12 months (de Oliveira and Franklin, 1993). Dur-
ing sampling for A. magnus and A. longisetosus in
the Caribbean region, it was clear that they occurred
primarily in disturbed habitats, such as raked piles
of organic trash, litter under roadside bushes and
similar substrates, and were rather rare in natural
forest soils (R.A.N., unpublished). The apparently
good colonizing abilities of Archegozetes might in
part be explained by passive abiotic dispersal com-
bined with parthenogenesis, but perhaps also by ac-
tive or passive phoresy on other arthropods (e.g.
harvestmen; Townsend et al., 2008) or vertebrates
(e.g. amphibians; Beaty et al., 2013). While cur-
rent reports of phoresy relate to A. magnus (sensu
van der Hammen, 1955a), A. longisetosus can gener-
ate very high holding forces ( 1200 times their body
weight) with their legs and claws (Heethoff and Ko-
erner, 2007) and hence this species seems physically
able to cling to larger animals for transport pur-
poses.

The external morphological development of the
free-living instars of Archegozetes was first described
by Hammen (1955b) for A. magnus (as A. magna, in
his sense) and by Seniczak and Seniczak (2009) for
A. longisetosus. Using scanning electron microscopy
(SEM), Thomas and Telford (1999) and Heethoff et
al. (2007a) provided the first micrographs of A.
longisetosus embryos, prelarvae and larvae. As is the
rule in Acari, the larva is hexapod and the fourth
pair of walking legs first develops at the molt to
the protonymph. However, the bud of the fourth

pair of legs is already visible in mid-stage embryos
preceding the regressive prelarva and hind-leg de-
velopment seems to be linked to opisthosomal seg-
mentation (Barnett and Thomas, 2012).

ECOTOXICOLOGY

Its relatively high reproductive output and defined
series of molts makes Archegozetes longisetosus a
suitable candidate species for ecotoxicological stud-
ies that analyze influences of environmental pollu-
tion on development, fecundity and survival. Since
the first ecotoxicological studies investigating the
influence of copper (Seniczak et al. 1996, 1997,
1999a), A. longisetosus has been used as a model
for studying the influence of lead (Senizcak and
Seniczak, 1998; Senizcak et al., 1999a, b; Köhler et
al., 2005), cadmium (Senizcak and Seniczak, 2002;
Senizcak et al., 2006, 2009) and zinc (Senizcak et al.,
2005) on development and life history parameters.
It was generally shown that high concentrations of
heavy metals decrease fecundity and induce devel-
opmental malformations, most visibly those of the
fourth pair of walking legs during the development
from larva to protonymph (Köhler et al., 2005). In a
study of insecticide residue toxicity to nontarget mi-
croarthropods in Indian soils, Pramanik et al. (1998)
found A. longisetosus to be the most sensitive of the
three tested oribatid species, and the second-most
sensitive of all six microarthropod species tested.

PARTHENOGENESIS

Parthenogenesis (more precisely in this case: thely-
toky) is widespread in oribatid mites and has been
demonstrated for A. longisetosus by rearing and by
the absence or extreme rarity of males in field pop-
ulations and culture (Palmer and Norton, 1990,
1991). The cytological mechanism involved is still
not completely understood (Heethoff et al., 2009).
Based on theoretical considerations and a small
amount of allozyme data, Wrensch et al. (1994)
proposed an automictic mechanism with inverted
meiosis and terminal fusion of second-division nu-
clei. One prerequisite for this mechanism is that
chromosomes are holokinetic, and Heethoff et al.
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(2006) have shown that this is true of Archegozetes,
which is diploid with 2n = 18. Following meio-
sis I, the first polar body seems to degenerate, and
meiosis II seems incomplete (Laumann et al., 2008).
With a ’normal’ meiotic sequence (first reductional,
then equational) all offspring would inevitably be
homozygous. Palmer and Norton (1992) instead
found that some allozyme loci of A. longisetosus
were heterozygous and do not recombine. Hence,
all experimental evidence – holokinetic chromo-
somes, degeneration of the first polar body, het-
erozygosity and absence of recombination – are in
perfect accordance with the hypothesis of Wrensch
et al. (1994).

GERMLINE

The development of gametes (oocytes) and the
linked development of reproductive organs have
been studied in A. longisetosus. The ovary devel-
ops from an unpaired ventral mass of mesoder-
mal tissue in the larva and grows continuously.
In the deutonymph, the ovary increases and con-
tains a growing number of germcells, indicating
proliferation of oogonia at this stage (Bergmann
and Heethoff, 2012b). The oviducts start to de-
velop in the protonymphal instar as lateral exten-
sions from somatic precursors (Bergmann et al.,
2008; Bergmann and Heethoff, 2012b). Oviducts
are discernible as tubular structures connecting
the ovary with the unpaired genital duct during
the deutonymph/tritonymph transition. Differing
from the general model of chelicerate oviductal
growth (Goodrich, 1945; Anderson, 1973), devel-
opmental data so far suggests retrograde growth
and a secondary contact with the ovary (Bergmann
and Heethoff 2012b). Secondary contact of ovary
and oviducts was previously described for an ori-
batid mite from the infraorder Brachypylina, Xenil-
lus tegeocranus (Hermann, 1804) (Warren, 1947). In
this study, oviducts were described as ectodermal
structures originating from the invagination of the
genital porus. The interpretation of oviducts be-
ing ectodermal tissue might be due to their appar-
ent retrograde elongation (Figure 3, right column).
The oviducts of A. longisetosus were interpreted as
mesodermal due to the fact that they never exhibit

a cuticular lining, whereas the vagina does. They
furthermore originate from a tissue that is sepa-
rated from the ventral body wall by an epithelial
layer identified as the epidermis in early nymphal
instars (Bergmann and Heethoff 2012b). In the
adult the ovary develops two protrusions in which
oocytes move towards the oviducts (Bergmann et
al., 2008). Here, meiosis continues until the diploid
oocyte is restored by terminal fusion (Laumann et
al., 2008), and vitellogenesis takes place (Bergmann
et al., 2010). The very different development and
function of the central unpaired part of the ovary
and the paired protrusions toward the oviducts led
Bergmann et al. (2008) to a new nomenclature
for these structures: the central part was termed
’rhodoid’ and the lateral protrusions ’meroi’ (singu-
lar: ’meros’). These terms were chosen because the
anatomical subdivisions of the adult ovary do not fit
the traditional definitions of germarium and vitel-
larium as ovarian subdivisions: premeiotic mitoses
cease no later than in early tritonymphal instar in
the rhodoid, and vitellogenesis starts after oocytes
enter the distal part of the meroi after metaphase
I. The trophic type of the ovary was described as
panoistic (Bergmann et al. 2010). Anatomically, the
meroi can be understood as a derivation of the cen-
trifugally developing oocytes typical for the che-
licerate type of arthropod ovaries (Makioka, 1988).

When the zygote (i.e. diploid one-cell stage)
passes from the ovarial meros into the oviduct via
the oviductal bulb, the egg-shell immediately com-
pacts and becomes impermeable. Because this inter-
rupts the direct connection to the mother, Bergmann
and Heethoff (2012a) defined the generational bor-
der to occur at this ovary/oviduct-transition and
described the oviducts as functional brood cham-
bers. Cleavage is then initiated in the proximal part
of the oviducts (Laumann et al., 2010a).

CLEAVAGE

Traditionally, cleavage patterns of Acari were de-
scribed as being superficial, sometimes preceded by
a holoblastic phase (Laumann et al., 2010a and ref-
erences therein). In A. longisetosus, early cleavages
are holoblastic and blastomeres give rise to yolk-
free micromeres and macromeres containing all the
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FIGURE 3: Schematic representation of different scenarios of genital system ontogenesis in Archegozetes longisetosus. Dorsal view, onto-
genetic series top to bottom. Left column shows oviducts as anterograde developing coelomoducts following the ’classical’ view of
Goodrich (1945) and Anderson (1973). Right column shows an alternative description by Warren (1945), interpreting the oviducts
as retrograde developing ectodermal invaginations. Middle column shows two scenarios derived from the information obtained in
studies of A. longisetosus (Bergmann et al. 2008, Bergmann and Heethoff 2012b). It is unclear whether the oviducts derive from a
fold at the rim of the gonocoel with a primary contact site at the ovary (a) or are retrograde developing tubular extensions with a
secondary contact site at the ovary (b), and whether their lumen is primary (coelomic cavity) or secondary.
Abbreviations: M: meros; OB: oviductal bulb; Od: oviduct; OP: ovipositor; Ov: ovary; Rh: rhodoid; U: uterus; V: vagina.
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yolk. Micromeres do not form a superficial pre-
blastoderm layer. Instead, they form an external,
monocellular layer that covers the whole surface
of the embryo. Laumann et al. (2010b) reviewed
available studies on acarine embryology and con-
cluded that most studies reporting superficial cleav-
age probably suffered from methodological (fixa-
tion and microscopy) shortcomings – hence, their
results remain questionable. Holoblastic and total
cleavage seems to be the general pattern, at least for
actinotrichid mites (Laumann et al., 2010a, b).

FEEDING BIOLOGY

Chelicerates ingest food in two fundamentally dif-
ferent ways: as fluids or as solid particles. Most
predaceous terrestrial arachnids are fluid feeders
with or without external pre-digestion. The ple-
siomorphic feeding mode of chelicerates, however,
is presumably particle feeding, as can be found in
the extant marine chelicerate classes Xiphosura and
Pycnogonida. Within terrestrial Arachnida, parti-
cle feeding is restricted to some Opiliones (Acosta
and Machado, 2007) and several groups of Acari
(Heethoff and Norton, 2009a), including oribatid
mites. Archegozetes longisetosus is one of the best-
known arachnids regarding food processing, from
the standpoint of both structure and function. The
gross organization of the digestive system was
shown by Heethoff et al. (2008; see also Betz et
al., 2007) in the form of a virtual passage through
the tract using synchrotron-X-ray-tomography. The
fine structure and functional morphology of the
gnathososma of A. longisetosus have been studied in
great detail by Alberti et al. (2004, 2011). Heethoff
and Norton (2009b) established a biomechanical
model of the chelicera, which was subsequently
used to study trophic positions of other oribatid
mites (Perdomo et al., 2012). Alberti et al. (2003)
provided a detailed study on the fine structure of
the digestive system and fat body of A. longiseto-
sus, and Heethoff and Norton (2009a) analyzed the
functional morphological basis of defecation.

At the cellular level, Smrž (2006) reported free
cells (haemocytes) ’between the internal organs in
the mesenchymal tissue in the opisthosoma’, and

noted that they were associated with (and some-
times connected to) the alimentary system. Alberti
et al. (2003) described these cells as ’fat-body cells’,
being connected to the midgut by small finger-like
processes. Both Alberti et al. (2003) and Smrž (2006)
suggested that the morphology of these cells in-
dicates they are associated with food processing.
Smrž and Norton (2004) and Smrž (2009) have also
shown that food type influences the shape of food
boluses, caecal cell-appearance, the presence of in-
ternal bacteria and enzyme (chitinase) activity in A.
longisetosus. Rémen et al. (2010) fed A. longisetosus
with the mycorrhizal fungus Laccaria laccata (Cooke)
and were able to molecularly detect the fungus in
the gut of five pooled mites. Heidemann et al. (2011)
have shown that A. longisetosus, along with other
oribatid mite species, feed also on living and dead
nematodes (i.e. they can act as predators and scav-
engers).

The natural feeding strategies of oribatid mites
remain poorly understood (Schneider et al., 2004)
and, since it accepts a wide range of food, A. longise-
tosus can be a valuable model for establishing differ-
ent molecular food detection techniques that can be
applied to field-sampled oribatid mites of this and
many other species.

DEFENSE

While it is still not clear what most oribatid mites
feed upon, their significance as a resource in soil
food webs is even less understood (Heethoff et al.,
2009). A small variety of predators (e.g. scyd-
maenid beetles, ants) feed on oribatid mites (refer-
ences in Peschel et al., 2006; Heethoff et al., 2011b;
Jaloszynski and Olszanowski, 2013), but regulation
of oribatid mite density by top-down control seems
unlikely, at least for the larger and more sclerotized
groups (Schneider and Maraun, 2009). Peschel et
al. (2006) performed the first statistically supported
feeding experiments with oribatid mites as prey
and concluded that adult oribatid mites may live in
’enemy-free’ space. Several morphological traits of
oribatid mites can be interpreted as adaptations to
predator defense: sclerotized or mineralized cuti-
cle, protective setae, hard roof- or wing-like projec-
tions (tecta), jumping capabilities, specialized body
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forms, or some combination of these (Norton, 2007).
In one specialized form, ptychoidy, animals can re-
tract their legs into a secondary body cavity and en-
capsulate by retracting the prodorsum (Schmelzle
et al., 2009). Ptychoidy evolved at least three times
independently and in each case is associated with
cuticular mineralization (Pachl et al., 2012), which
helps make the resulting spheroid unbreachable by
most small predators.

In addition to morphological traits for preda-
tor defense, most oribatid mites (the glandulate
Oribatida including Astigmata; Sakata and Nor-
ton, 2001) possess a pair of opisthonotal ex-
ocrine glands (= oil glands). These glands may
produce complex blends of aromatics, hydrocar-
bons, terpenes and alkaloids in species-specific
combinations (Raspotnig et al., 2011 and refer-
ences therein). Archegozetes longisetosus was among
the earliest oribatid mite species for which oil
gland secretions were chemically characterized
(Sakata and Norton, 2003; Raspotnig and Föttinger,
2008; Heethoff and Raspotnig, 2011), and they
consist of eleven compounds: 2,6-HMBD (= 2-
hydroxy-6-methyl-benzaldehyde), neral, geranial,
neryl formate, γ-acaridial (= 3-hydroxybenzene-1,2-
dicarbaldehyde), tridecane, pentadecene, pentade-
cane, heptadecadiene, heptadecene and heptade-
cane (Heethoff and Raspotnig, 2011). The main
solvent of the secretions is pentadecane (Heethoff,
2012).

Archegozetes longisetosus is a valuable model sys-
tem to investigate chemical ecology and the evolu-
tion of oil gland secretions for several reasons. First,
it produces the full set of the so-called ’Astigmata
compounds’, which constitutes evidence that Astig-
mata evolved from within Oribatida (Sakata and
Norton, 2001). Further, individuals can be ’chemi-
cally disarmed’ by hexane treatment (Heethoff and
Raspotnig, 2012a); evaporation dynamics of secre-
tions have been investigated (Heethoff and Raspot-
nig 2012b); the regeneration dynamics are known
(Heethoff, 2012); and it has been shown that A.
longisetosus is significantly protected from preda-
tion by chemical rather than morphological defense
(Heethoff et al., 2011b; Heethoff and Raspotnig,
2012c). Hence, this species is an ideal candidate

to investigate density-dependent dynamics of dif-
ferent generalist predator-prey-interactions with re-
spect to chemical defense.

CONCLUSIONS

Acari are the most speciose and ecologically diverse
group of chelicerates (Walter and Proctor, 2010;
Zhang, 2011). With this review, we hope to con-
vince readers that there are many highly interest-
ing questions of general biological importance that
can be addressed using mites as models — and we
believe that Archegozetes longisetosus ran is a highly
suitable candidate for such a model. Please contact
the corresponding author if you want to start your
own culture — he will be happy to provide some
specimens and a rearing protocol.
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