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Abstract—Some areas in computer science are characterized
by a shared base structure for data artifacts (e.g., list, table,
tree, graph, model), and dedicated languages for transforming
this structure. We observe that in several of these languages
it is possible to identify a clear correspondence between some
elements in the transformation code and the output they generate.
Conversely given an element in an output artifact it is often
possible to immediately trace the transformation parts that are
responsible for its creation.

In this paper we formalize this intuitive concept by defining
a property that characterizes several transformation languages
in different domains. We name this property additivity: for a
given fixed input, the addition or removal of program elements
results in a corresponding addition or removal of parts of
the output. We provide a formal definition for additivity and
argue that additivity enhances modularity and incrementality
of transformation engineering activities, by enumerating a set
of tasks that this property enables or facilitates. Then we
describe how it is instantiated in some well-known transformation
languages. We expect that the development of new formal results
on languages with additivity will benefit from our definitions.

I. INTRODUCTION

Different areas in computer science study the representation
of information by a shared base data structure. Example
of well-known structures are trees in program transforma-
tion, tables in databases, models in model-driven engineer-
ing. Academia and industry have proposed, for each one
of such structures, dedicated transformation languages, with
the promise of facilitating development and maintenance of
transformation code.

Since the main objective of transformation programs is the
construction of the target artifact, the relation between program
elements and produced target elements has primary impor-
tance. In some cases (e.g., in template-based transformation
languages [1]) the language fosters an explicit correspondence
between the structure of the code and the structure of the
resulting target artifact. In other cases the transformation code
organization mirrors the structure of the output schema. For
instance some rule-based model transformation languages are
characterized by target-oriented rule organization [1], with one
rule for each target element type and rules nested according
to the containment hierarchy in the target artifact (e.g., if the
target metamodel has an A element in which B elements can
be nested, then the rule for creating As will contain the rule for
creating Bs). Finally, rule-based languages like ATL [2] exhibit
a fine-grained correspondence between output elements and

program expressions: given a property of the target model it
is always possible to identify the source code expression (i.e.,
in an ATL binding) that is responsible for its computation.

While some correspondence between transformation ele-
ments and output elements can be observed across several
other kinds of transformation languages, the exact meaning
and granularity of this correspondence can greatly vary from
one language to another. In this paper we provide the formal
definition of a cross-language property, which we name addi-
tivity, that aims to give a formal underpinning to this intuitive
correspondence. This forms a base which should simplify the
development of some new formal results on languages with
additivity. In defining additivity for a language we abstract
from the full semantics of its constructs but we focus on
the relation between code elements and output elements.
The underlying idea is that if a program construct is fully
responsible for the creation of an output element, then the
program obtained by removing that construct will not produce
that element.

In the following we first provide a formal and abstract
definition of additivity (Sec. II), and we give an overview of
its possible uses in practice (Sec. III). We exemplify additivity
on a first model transformation language (Sec. IV). Then
we elaborate the details and implications of our definition
(Sec. V). We provide a full formal instantiation of these
concepts on a second example (Sec. VI). In Sec. VII we briefly
discuss examples of additivity in other languages. We conclude
the paper by comparing with related work (Sec. VIII) and
drawing final conclusions (Sec. IX).

Note that an application of additivity, that we illustrate in the
paragraph entitled ”Partial Translation” in Sec. III, is described
in detail in Hidaka and Tisi [3] (currently under review). In [3]
the additivity of a language is just assumed and not thoroughly
reasoned about as we do in the present paper. The focus in [3]
is on showing how to interoperate unidirectional transforma-
tion languages with bidirectional transformation languages in
two different technical spaces and to formally show well-
behavedness of the integrated system.

II. ADDITIVITY IN A NUTSHELL

Intuitively, we talk of additivity when, by “cutting-out”
a certain part of a program, we obtain a subprogram that
generates a suboutput of the original program. Of course the
removed part cannot be arbitrary. In this section we introduce



the basic formal definitions for additivity, and delay to the rest
of the paper a more detailed formal treatment.

We limit our discussion to programs that take an input
of type S and produce values of type T . We call this class
of programs transformations and denote with t ∈ L that a
transformation t is written in a language L. Then we denote
the interpretation of a transformation as [[t]] : S → T , and
application of the transformation as [[t]]x ∈ T for the input
x ∈ S. For simplicity in this paper we consider only well-
formed transformations and disregard the possibility of run-
time exceptions (i.e., any execution error) that would make
the result undefined.

We need also a formal definition of what suboutput means,
but we keep it abstract to allow for wide applicability to
different domains: we define the suboutput relation as a partial
order between data of type T , denoted by ⪯T . Depending on
the domain, ⪯T would typically correspond to sublist, subtree,
subgraph, etc.

Then we define a semantic containment partial order ⪯Sem
L

between transformations, analogous to the concept of query
containment in the database community (see, e.g., Abiteboul
et al. [4]). Formally, we state that a transformation t′ se-
mantically contains a transformation t if t always produces
a suboutput of t′ when applied to the same input:

t ⪯Sem
L t′ ⇔ ∀x ∈ S, [[t]]x ⪯T [[t′]]x (SC)

Note that the study on query containment in the database
community shows that it is generally undecidable whether an
arbitrary given pair of transformations have this relationship.
However in this paper, instead of such arbitrary pairs, we are
interested in particular pairs of transformations, that have a
clear syntactic relation: one transformation is obtained from
the other, by adding or removing a syntactic element (e.g.,
statement, rule, expression) in a particular position. Formally,
we assume to have a purely syntactic partial order between
transformation programs that we name syntactic containment
⪯Syn

L . This syntactic relationship helps us reason about the
semantic containment.

Finally, we can provide the first key definition of additive
containment. A transformation is additively contained in an-
other, if it is both syntactically and semantically contained in
it. Formally:

Definition 1 (Additive containment). A transformation t is
additively contained ⪯Add

L in a transformation t′ if t ⪯Sem
L t′

and t ⪯Syn
L t′.

In the rest of the paper we will extensively reason about the
position in the program where we manipulate transformations.
We will use the standard notion of context C that appears in
popular texts of programming language semantics like Winskel
[5, Chapter 11]. Each context is associated to a corresponding
hole □ in the program on which the manipulation takes place.
C[e] denotes a context with its hole filled with a program
fragment e. We denote with C[ ] : U that the context C
has type U , meaning that only elements of type U can fill
the corresponding hole. The position of context holes in the

program is inductively defined according to the syntax of the
language.

We will be interested only in additive contexts, i.e. posi-
tions in the transformation code where manipulations produce
additively contained programs:

Property 1 (Additive context). A context C is additive with
respect to program fragments (e.g., expressions) of type U
syntactically related by ⪯Syn

L if for any program fragments
e1, e2 of type U , e1 ⪯Syn

L e2 ⇒ C[e1] ⪯Sem
L C[e2]

1.

Since we also assume e1 ⪯Syn
L e2 ⇒ C[e1] ⪯Syn

L C[e2], we
also have, as a corollary, additive containment C[e1] ⪯Add

L
C[e2] for such a context.

A context C[ ] : U ′ can be additive with respect to U ′ (i.e.,
any program fragment that can fill that context hole) or only to
a subtype U of U ′ (i.e., a subset of the possible hole contents).
When possible, removing the content of an additive context
(i.e., filling it with the minimum element ZU of ⪯Syn

L for
that context) will always produce a program that is additively
contained in the original one.

Note that most contexts are not additive, since adding
syntactic elements to a program has generally complex effects
on the output (i.e., not simply additions). Moreover, while
additivity is a form of covariance of code and output, some
contexts may even exhibit contravariance, i.e., e1 ⪯Syn

L e2 ⇒
C[e1] ⪰Sem

L C[e2]. We show an example of such contexts in
Sec. VI.

III. MAKING USE OF ADDITIVITY

Some model transformation languages already have one or
several constructs that generate additive contexts. In the next
sections we will show that this is the case for declarative
ATL and UnQL [7]. These languages have been designed
without relying on the additivity concept, which had not
been defined yet. The reason why they nonetheless exhibit
some level of additivity seems to be that this concept is
linked to other desirable properties such as modularity. This
section presents some possible advantages and applications for
additivity. Of course, all of these could be (or have already
been) achieved with good engineering, and without relying on
an explicit definition of additivity. However, having a precise
formal framework describing this property should make them
easier to achieve, to generalize, and to explain. We expect
new applications to be discovered as additivity is further
studied, and as new transformation languages are designed to
be additive.
Link to Modularity. Modularity is a desirable property of
transformation languages. It makes it easier to reuse parts of
transformations. Modularity is increased when coupling be-
tween transformation modules (e.g., rules) is decreased. Addi-
tivity has a strong requirement on coupling between modules:
any module may be removed while keeping the transformation
executable. Such a low coupling implies that a given module

1It can be considered as a congruence (see, e.g., Pierce [6] for the definition
of congruence rules).



(e.g., rule, pattern element, binding) of a transformation can be
removed, added, or replaced without requiring changes to the
rest of the transformation. Therefore, having additivity implies
having a relatively high level of modularity. Modules may
still depend on each other implicitly, but may not explicitly
reference each other. In rule-based transformation languages,
this is related to the notion of implicit rule call [8]. Such a level
of modularity notably enables mechanisms like transformation
superimposition [9, 10].
Transformation Change Impact Analysis. Additivity goes
beyond low coupling: each module must be linked to a specific
part of the target model. Thus, programmers can know what
part of a target model are created (or connected) because of the
presence of a given module. This makes it easier for them to
understand the impact of transformation changes. Ultimately,
tools that analyze the impact of transformation changes could
rely on additivity. Such tools could create and use fine-grained
traces between transformation constructs and target model
elements.
Transformation-level Incrementality. Once the impact of
a change to a transformation can be precisely identified, it
becomes possible to act on it. For instance, given a model
transformation change, a tool relying on additivity could derive
a corresponding target model change. Leveraging the notation
in Sec. II, let t ∈ L be a transformation, x ∈ S a source
model, and y ∈ T the corresponding target model. Instead of
denoting transformation interpretation with [[t]], let us further
consider an explicit interpretation function f : L → S → T
that takes a transformation, and a source model as input, and
returns a target model as output. We can write: y = ftx to
denote the application of f to both the transformation, and the
source model. Typically, incremental transformation engines
react to source model changes by performing corresponding
target model changes. With explicit interpretation function
f the transformation becomes just another input on which
incrementality can be performed.
Partial Translation. One of our main applications of addi-
tivity is partial translation of ATL to UnQL, to achieve a
partial bidirectionalization of ATL [3]. ATL’s additive contexts
are leveraged to remove corresponding rules, output pattern
elements and bindings that include language constructs for
which no rule for compilation to UnQL is available. Additivity
ensures that the rest of the ATL transformation produces sub-
models of the output of the original ATL transformation, and
so does the UnQL transformation that is translated from the
projected ATL transformation, so that the updates to that target
submodel are reflected to the source model through backward
UnQL transformation. Partiality allows users to make use of
the unidirectional language with full expressive power in the
forward direction of the transformation, while updates on part
of the target model are automatically backpropagable.
Language Alignment. In Sec. V we will describe the lattice
induced by additive containment on a transformation language.
Given two transformation languages with appropriate additiv-
ity contexts, we can design a translator between them as a
homomorphism between their additive containment lattices.

This has the benefit of enhancing the modularity of the
translator. E.g., the translator can be developed incrementally,
by concentrating at each step on translating different additivity
modules.

In the previous example of ATL-to-UnQL translation, al-
though additivity of UnQL is not strictly required for this
bidirectionalization, we can build a translator that actually
preserves the partial order of the two languages. This means
that we can further project the ATL transformation to reduce
the part of the target model for which the updates are subject
to backward propagation. This may open the opportunity for
fine-grained write access control of target models.
Divide and Conquer. The level of modularity achievable with
language constructs exhibiting additivity should also be useful
in any divide and conquer execution strategy. For instance,
parallelization or distribution of model transformation could
leverage the fact that additivity links specific parts of a trans-
formation to specific parts of a target model. In a map-reduce
context, this would correspond to the first step: map. Additivity
does not explicitly help with the reduce phase, but this should
be achievable with appropriate trace information. Additionally,
such a divide and conquer strategy could possibly be applied
to transformation verification.

IV. EXAMPLE 1: ATL

In this section we show how the concept of additivity
can be instantiated on rule-based transformation languages,
by applying the previous definitions to the ATL language.
Language constructs in which additivity is not instantiated are
also exemplified.

We refer to a simple example inspired from the
Class2Relational case study [11]2, the de-facto standard exam-
ple for model transformations, but simplified and adapted for
illustrative purpose3. The transformation expresses the relation
between the UML classes of the application’s data model and
corresponding relational tables. Figures 1a and 1b show the
source and target metamodels of the transformation. The ATL
transformation in Listing 1 transforms the Class model from
Fig. 2a into the Relational model from Fig. 2b.

1 module Class2Relational ;
2 c r e a t e OUT : Relational from IN : ClassDiagram ;
3

4 uses helperLib ;
5

6 r u l e DataType2Type {
7 from d :ClassDiagram !DataType
8 (ClassDiagram !Class .allInstances ( )
9 −>select (c | c .name = d .name )−>isEmpty ( ) )
10 to t :Relational !Type
11 (name<−d .name ) }
12

13 r u l e Class2Table {
14 from c :ClassDiagram !Class
15 to t :Relational !Table
16 (name<−c .name , col<−c .attr ,
17 key<−c .attr−>select (a | a .name .endsWith (’Id’ ) ) )}
18

19 r u l e SingleValuedAttribute2Column {

2http://web.archive.org/web/20100824053242/http://sosym.dcs.kcl.ac.uk/
events/mtip05/

3Notably this version of the transformation does not support multivalued
attributes.

http://web.archive.org/web/20100824053242/http://sosym.dcs.kcl.ac.uk/events/mtip05/
http://web.archive.org/web/20100824053242/http://sosym.dcs.kcl.ac.uk/events/mtip05/


Attribute
+name : String
+multivalued : Boolean

Classifier
+name : String

Datatype Class

     type   
     1   

     owner   

attr        0..*

(a) Class diagram metamodel

Table
+name : String

Column
+name : String

Type
+name : String

     col   
     0..*   

     type   
     0..1   

     key   
     0..1   

(b) Relational metamodel

Fig. 1: Metamodels of the case study

: Class

name = ’Family’

: Attribute

name = ’family’
multivalued = false

: Class

name = ’Person’

: Attribute

name = ’name’
multivalued = false

: Attribute

name = ’members’
multivalued = true

: Attribute

name = ’personId’
multivalued = false

: DataType

name = String

attr attr attr

attr

type type

type

type

(a) Sample ClassDiagram model

: Table

name = ’Family’

: Column

name = ’Person_family’

: Table

name = ’Person’

: Column

name = ’Family_name’

: Column

name = ’Person_personId’

: Type

name = String

col col

col

key

type
typetype

(b) Sample Relational model

Fig. 2: Sample models (corresponding elements have the same position)

20 from a :ClassDiagram !Attribute (not a .multivalued )
21 to c :Relational !Column
22 (name<−a .owner .name+’_’+a .name ,
23 owner<−a .owner ,
24 type<−i f a .type .oclIsTypeOf (ClassDiagram !DataType )
25 then a .type e l s e thisModule .stringType e n d i f ) }

Listing 1: Class2Relational in ATL

An ATL transformation (called a module) consists of a set
of rules that describe how elements of the target model are
generated when patterns in the source model are matched.
A flavor of the Object Constraint Language OCL [12] is
used as expression language in the transformation rules. Rules
are composed of an input pattern and an output pattern.
Input patterns are associated with OCL guards that impose
matching conditions on the input elements. Output patterns are
associated with bindings: OCL expressions that define how to
initialize properties of the elements created by the matched
rule.

E.g., the rule SingleValuedAttribute2Column (lines 19–25)
selects input model elements of type Attribute (line 20)
and transforms them into output elements of type Column
(line 21). A guard (line 20) imposes to match only attributes
that are not multivalued (multivalued attributes would have
a more complex representation in the relational schema). A
first binding (line 22) computes the column name as the
concatenation of class and attribute name; a second one
(line 23) imposes that the owner of the Column corresponds
to the owner of the Attribute; a third one (lines 24–25) states
that if the attribute has a primitive type (DataType) then the
type of the column should correspond to the type of the
attribute (String otherwise). Note that the stringType helper

is not defined here, but assumed to be imported (line 4) from
a library of helpers.

Rule Class2Table (lines 13–17) creates a table for each
class, initialises the list of columns with the respectively
transformed attributes (line 16), and selects as table key the
attribute whose name ends by the string Id, if any (line 17).
Rule DataType2Type (lines 6–11) copies into relational types
the class diagram types, but only if no class exists with the
same name of the type, to avoid conflicts.

Note that ATL rules implicitly interact for generating cross-
references among target model elements. E.g., at line 16 the
binding col<-c.attr states that the columns (col) of
the table to generate correspond to the attributes (attr) of
the matched class (c). In practice, it is the result of the
transformation of these attributes, by any rule (SingleValue-
dAttribute2Column here), which will be added as a column of
the table.

Because of space constraints, in this article we discuss
only the main features of the ATL language, exemplified in
Listing 1. For an illustration of the complete language we refer
the reader to [2].

Additivity in ATL. In ATL there is a clear correspondence
between language elements and the part of the output they are
responsible for. For instance the binding in line 17 is respon-
sible for the creation of the key link in Fig. 2b: if we remove
the binding and execute the resulting subtransformation, we
obtain the same model in Fig. 2b, without the key link. This
reasoning applies to all bindings, but also to elements in output
patterns or to full rules. For instance the DataType2Type rule



(lines 6-11) is fully responsible for the generation of the Type
element in Fig. 2b.

We formalize this concept by instantiating the definitions
from Sec. II. Executing the transformation in Listing 1 without
the grey part (Class2Relational′ ⪯Syn

L Class2Relational)
generates the submodel in Fig. 2b without the dotted part
(sampleRelational′ ⪯T sampleRelational). For every
input class diagram, Class2Relational′ generates a sub-
model of the Class2Relational output, without key refer-
ences and Type elements. Thus, Class2Relational′ ⪯Sem

L
Class2Relational and, according to Def. 1:

Class2Relational′ ⪯Add
L Class2Relational

We obtained an additive containment because all the syn-
tactic elements we removed from Class2Relational were
contained in additive contexts.

In general, in ATL we identify three additive contexts:

• a module constitutes an additive context for rules,
• a rule is an additive context for output pattern elements,
• an output pattern element is an additive context for

bindings.

Prop. 1 can be easily verified for each one of these three
contexts. For instance a rule is an additive context for output
pattern elements because if we replace its output pattern
e2 with a subpattern e1 (i.e., e1 ⪯Syn

L e2), we obtain a
transformation C[e1] that produces the same output of the
original one C[e2], without the omitted output elements (i.e.,
C[e1] ⪯Sem

L C[e2]).
We inductively define the position of additive contexts in the

ATL syntax by representing them as squares in the following
rules:

module id; create id:id from id:id;□:RuleContext

C:RuleContext
C[rule □]:RuleContext

C:RuleContext
C[rule id{ from id:id!id(expression) to□}]:OutPatternElementContext

C:OutPatternElementContext
C[outPatternElement,□]:OutPatternElementContext

C:OutPatternElementContext
C[id:id!id(□)]:BindingContext

C:BindingContext
C[binding,□]:BindingContext

The first rule states that there is always a top-level additive
context of type RuleContext . The second states that in an
additive context of type RuleContext it is possible to add a
rule and maintain an additive context of type RuleContext .
The following four rules similarly define contexts of type
OutPatternElementContext and BindingContext .

Note that guards are not generally included in an additive
context, e.g., removing the guard from a rule does not reduce
the transformation output. Of course an additive context (e.g.
for rules) may normally include non-additive contexts (e.g. for
guards). However, there is no harm in the existence of such
non-additive contexts, since they are kept unchanged when
the surrounding additive contexts are manipulated. Moreover
a deeper analysis of the OCL functional language may reveal
other additive contexts within the guard expression (e.g. parts
of the guard that can be removed guaranteeing the generation

of a submodel4). While we limit the discussion of this section
to the transformational part of the ATL language, we will
present a full example of additivity in functional languages
in Sec. VI.

Moreover, ATL includes a type of rules that are activated
only if explicitly called (i.e. lazy rules). Lazy rules can not
be simply removed from the transformation, since this would
leave an incorrect program with dangling rule invocations.
However lazy rules are additive as they can be replaced with
empty rules (the minimum element ZU of ⪯Syn

L for their
context), and the resulting transformation will be semantically
contained in the original one. Finally, additivity requires that
the imperative part of ATL is not used, but this does not reduce
the expressive power of ATL because its declarative part is
already computationally universal [13].

V. ADDITIVITY AND COMPOSITIONALITY

In this section we highlight mathematical structures in the
semantics of transformation languages, related to additivity.
Our main purpose is giving some insight into the relation
between additivity and compositionality in the semantics.
Moreover, detecting such structures in the transformation lan-
guage semantics may practically help in the task of identifying
additivity in existing languages.

In particular: 1) we discuss the special case of additivity
at the top level of the transformation and its relation to
transformation composition, 2) we describe the structure of
additive contexts with some guidelines for their identification,
3) we introduce the notion of lattice of transformations as
the global picture of the complete set of additively contained
transformations.

Additivity and Transformation Composition: Our underly-
ing general intuition behind additivity is that the interpretation
of a composite transformation can be divided into those of
component transformations followed by the combination of
their results, i.e.,

∀x ∈ S, [[t1 ⊕ t2]]x = [[t1]]x⊗ [[t2]]x (DC)

or analog, where ⊕ is the union-like language construct
that combines two transformations, while ⊗ is an operator
of the target data model to combine the results. Then, if
v1 ⪯T v1 ⊗ v2 for any values v1, v2 of type T , as we
can expect in many data types like sets with set union, we
can conclude that t1 ⪯Sem

L (t1 ⊕ t2). Even without this
rather strict “divide and conquer” property, if the “conquer”
phase still “adds” to the results of individual transformations
rather than having possibilities to “remove”, then we still
have [[t1]]x ⪯T [[t1 ⊕ t2]]x for all x ∈ S, to conclude
t1 ⪯Sem

L (t1 ⊕ t2), even if we allow the “conquer” phase to
access beyond the individual results [[t1]]x and [[t2]]x.

If a type T constitutes a monoid (M,⊗), then, according
to the order between the elements of the monoid, i.e., v ⪯
v′′ ⇔ ∃v̂.v ⊗ v̂ = v′′ (see, for example Gondran and Minoux

4E.g., every ej in e1∨e2∨. . .∨en in a guard is in an additive context, since
removing any ej increases the chance of evaluating the guarded expression.



[14]), we indeed have Z⊗ ⪯T v ⪯T v⊗ v′ (and v′ ⪯T v⊗ v′

for commutative ⊗) for any two elements v, v′ ∈ M , where
Z⊗ is the identity element (Z⊗ ⊗ v = v ⊗ Z⊗ = v for all
v ∈ M ) of the monoid. Therefore, [[Z⊕]]x ⪯T [[t1]]x ⪯T

[[t1]]x ⊗ [[t2]]x = [[t1 ⊕ t2]]x, where [[Z⊕]]x = Z⊗, for all
x ∈ S, which means Z⊕ ⪯Sem

L t1 ⪯Sem
L t1 ⊕ t2, for any

component transformations t1, t2 of type T , where Z⊕ is
the syntactic representation of Z⊗. Since t1, t2 and ⊕ are
also syntactic entities, we have Z⊕ ⪯Add

L t1 ⪯Add
L t1 ⊕ t2.

Therefore, we can replace any composite transformation t1⊕t2
of monoid type by its component transformation t1 (and t2 if
⊗ is commutative) to produce suboutput, and further replace
it by the unit (empty) transformation to produce empty output.
In this way, property (DC) with monoid structure derives the
additive containment relation ⪯Add

L .
Order-Preserving Contexts: We have conducted this reason-

ing on the components at the top level, i.e., ⊕ is at the top level
of the transformation. If compositionality of the semantics
allows such reasoning on deeper subexpressions, i.e., within
contexts, we can obtain ⪯Add

L in a bottom-up fashion. To do
this, interpretation of subexpressions in the context should be
possible, and the context should preserve the partial order, as
in the following property.

Property 2 (Order preserving context). A context C pre-
serves partial order ⪯Sem

L if, for every program element (e.g.,
subexpresssion) e1, e2 of type U in the context, there is an
interpretation [[ ]]U of such elements, and [[e1]]U ⪯U [[e2]]U
(i.e., e1 ⪯Sem

L e2) implies C[e1] ⪯Sem
L C[e2].

When the interpretation of a language is defined in terms of
interpretations of the subexpressions, like in property (DC) but
in a deeper context, we can identify order preserving contexts
to induce the additive containment from that in such subex-
pressions. It is not so uncommon to find such compositional
semantics (e.g., UnCAL has such compositionality as we see
in Sec. VI). Then this compositionality can be combined with
monoid structures to build the relation ⪯Add

L from those in
the subexpressions, since, as a corollary, for a partial order
preserving context C of type U which constitutes monoid
(M,⊕), we have C[Z⊕] ⪯Add

L C[e] ⪯Add
L C[e ⊕ e′] for any

expression e, e′ of type U .
The remaining task is then to identify such contexts. Sup-

pose a transformation language L is compositional in the sense
that a transformation can be composed of two consecutive
transformations t1 and t2 where the output of t1 is the input
of t2, i.e., ∀x ∈ S, [[t2◦t1]]x = [[t2]]([[t1]]x), with [[t2]] : U → T
and [[t1]] : S → U for some type U . Then, to make t2 ◦ t1
additive at the context t2 ◦□, it is sufficient to let the context
satisfy Prop. 2. This is equivalent to making t2 monotonically
increasing, i.e., ∀y1, y2 ∈ U, y1 ⪯U y2 ⇒ [[t2]]y1 ⪯T [[t2]]y2.
We reason about such property for UnCAL in Sec. VI.

Lattice of Transformations: Since by (SC) the interpreta-
tion of the transformation language preserves partial orders,
we have a homomorphism from transformations to outputs.
Further, we consider the lattice of transformations and the
lattice of outputs, where edges in the former lattice represent

⪯Add
L and in the latter ⪯T . Then, due to additive contexts,

we have a homomorphism that preserves partial orders from
the lattice of transformations to the lattice of outputs, where
edges in the former lattice also represent syntactic operations
on constructs in the additive contexts. In the former lattice,
we fix a given running (correct) transformation to form the
complete (convex) lattice for it with the given transformation at
the top, and reason about removing part of the transformation
to produce a suboutput.

Figure 3 shows the lattice derived from an ATL transforma-
tion consisting of two rules, each of which has one input pat-
tern element and an output pattern element with two bindings
(the headers of the transformations are omitted for simplicity).
The top of the lattice is the complete transformation. Each
edge represents partial order ⪯Add

L between transformations
by adding/removing a rule or a binding. The bottom of the
lattice represents (syntactically) the smallest transformation
with no rule. It is an empty transformation that produces
the empty target model for any input model because of the
absence of any rule. The transformation with bold letters and
surrounded by square is an example of subtransformation,
where the bindings b11 of rule r1 and all the bindings in
rule r2 are removed. Such a subtransformation always forms a
convex sublattice represented by the transformations with bold
letters in the figure. Transformations surrounded by a square
are upper bounds of this sublattice, with the aforementioned
subtransformation being the least upper bound.

VI. EXAMPLE 2: UNQL

GRoundTram is an integrated framework for developing
well-behaved bidirectional graph transformations expressed
in the language UnQL [7]. Figure 4 shows the syntax of
UnQL. It has templates (T ) at the top level to produce rooted
graphs with labeled (L) branches ({L : T, . . . , L : T}),
union of templates (T ∪ T ), graph variable reference ($g),
conditionals, SQL-like select (select) queries with bindings
(B), and structural recursion (sfun). Bindings include graph
pattern matching (Gp in $g) and Boolean conditions (BC).
Conditions include the usual logical connectives, label equality
and emptiness check isEmpty(T ) which is false if there
is at least one edge reachable from the root of the graph
generated by T . Label expressions include label constants
and label variables ($l ) bound by the label patterns in the
graph patterns and the argument of structural recursion. Graph
patterns bind the entire subgraph $g or labels on the branches
and following subgraphs {Lp : Gp, . . . , Lp : Gp}. Label
patterns may include regular expressions of the labels (Rp)
along the path traversing multiple edges.

Listing 2 shows the UnQL transformation that corresponds
to the ATL transformation in Listing 1 except the part with
gray background. It transforms the graph encoding of the Class
model in Fig. 2a to the graph encoding of the Relational model
in 2b, without the dotted part.

The transformation consists of structural recursion func-
tions (sfuns). In the listing, the last definition (function



rule 𝑟1 from 𝑥 𝑝  
to 𝑦 (𝑏11, 𝑏12) 

𝐫𝐮𝐥𝐞 𝒓𝟏 𝐟𝐫𝐨𝐦 𝒙 𝒑  
𝐭𝐨 𝒚 (𝒃𝟏𝟐) 

𝒆𝒎𝒑𝒕𝒚 

𝐫𝐮𝐥𝐞 𝒓𝟏 𝐟𝐫𝐨𝐦 𝒙 𝒑𝟏  
𝐭𝐨 𝒚 

rule 𝑟1 from 𝑥 𝑝  
to 𝑦 (𝑏11) 

rule 𝑟2 from 𝑧 𝑞  
to 𝑤 (𝑏21, 𝑏22) 

rule 𝑟2 from 𝑧 𝑞  
to 𝑤 (𝑏22) 

𝐫𝐮𝐥𝐞 𝒓𝟐 𝐟𝐫𝐨𝐦 𝒛 𝒒  
𝐭𝐨 𝒘 

rule 𝑟2 from 𝑧 𝑞  
to 𝑤 (𝑏21) 

rule 𝑟1 from 𝑥 𝑝  
to 𝑦 (𝑏11, 𝑏12) 
rule 𝑟2 from 𝑧 𝑞  
to 𝑤 (𝑏21, 𝑏22) 

rule 𝑟1 from 𝑥 𝑝  
to 𝑦 (𝑏12) 
rule 𝑟2 from 𝑧 𝑞  
to 𝑤 (𝑏21, 𝑏22) 

rule 𝑟1 from 𝑥 𝑝  
to 𝑦 (𝑏11) 
rule 𝑟2 from 𝑧 𝑞  
to 𝑤 (𝑏21, 𝑏22) 

rule 𝑟1 from 𝑥 𝑝  
to 𝑦 (𝑏11, 𝑏12) 
rule 𝑟2 from 𝑧 𝑞  
to 𝑤 (𝑏22) 

rule  𝑟1 from 𝑥 𝑝  
to 𝑦 (𝑏11, 𝑏12) 
rule 𝑟2 from 𝑧 𝑞  
to 𝑤 (𝑏21) 

rule 𝑟1 from 𝑥 𝑝  
to 𝑦 
rule 𝑟2 from 𝑧 𝑞  
to 𝑤 (𝑏21, 𝑏22) 

rule 𝑟1 from 𝑥 𝑝  
to 𝑦 (𝑏12) 
rule 𝑟2 from 𝑧 𝑞  
to 𝑤 (𝑏22) 

rule 𝑟1 from 𝑥 𝑝  
to 𝑦 (𝑏12) 
rule 𝑟2 from 𝑧 𝑞  
to 𝑤 (𝑏21) 

rule 𝑟1 from 𝑥 𝑝  
to 𝑦 (𝑏11) 
rule 𝑟2 from 𝑧 𝑞  
to 𝑤 (𝑏22) 

rule 𝑟1 from 𝑥 𝑝  
to 𝑦 (𝑏11) 
rule 𝑟2 from 𝑧 𝑞  
to 𝑤 (𝑏21) 

rule 𝑟1 from 𝑥 𝑝  
to 𝑦 (𝑏11, 𝑏12) 
rule 𝑟2 from 𝑧 𝑞  
to 𝑤 

rule 𝑟1 from 𝑥 𝑝  
to 𝑦 
rule 𝑟2 from 𝑧 𝑞  
to 𝑤 (𝑏22) 

𝐫𝐮𝐥𝐞 𝒓𝟏 𝐟𝐫𝐨𝐦 𝒙 𝒑  
𝐭𝐨 𝒚 (𝒃𝟏𝟐) 
𝐫𝐮𝐥𝐞 𝒓𝟐 𝐟𝐫𝐨𝐦 𝒛 𝒒  
𝒕𝒐 𝒘 

rule 𝑟1 from 𝑥 𝑝  
to 𝑦 
rule 𝑟2 from 𝑧 𝑞  
to 𝑤 (𝑏21) 

rule 𝑟1 from 𝑥 𝑝  
to 𝑦 (𝑏11) 
rule 𝑟2 from 𝑧 𝑞  
to 𝑤 

𝐫𝐮𝐥𝐞 𝒓𝟏 𝐟𝐫𝐨𝐦 𝒙 𝒑  
𝐭𝐨 𝒚 
𝐫𝐮𝐥𝐞 𝒓𝟐 𝒇𝒓𝒐𝒎 𝒛 𝒒  
𝒕𝒐 𝒘 

Fig. 3: An example of lattice for ⪯Add
L in ATL (for space reasons we just consider additivity in RuleContext and BindingContext)

(template) T ::= {L : T, . . . , L : T} | T ∪ T | fname($g) | $g | if BC thenT elseT
| select T where B, . . . , B
| letrec sfun fname({L : $g}) = T | . . . | fname({L : $g}) = T

and sfun fname({L : $g}) = T | . . . | fname({L : $g}) = T in fname(T )
(binding) B ::= Gp in T | BC
(condition) BC ::= notBC | BC and BC | BC or BC | L = L | isEmpty(T )
(label&its pattern) L ::= $l | a Lp ::= $l | Rp
(graph pattern) Gp ::= $g | {Lp : Gp, . . . , Lp : Gp}
(regular path pat.) Rp ::= a | | Rp.Rp | (Rp|Rp) | Rp? | Rp∗ | Rp+

Fig. 4: Syntax of UnQL

Class2Relational at lines 8–21) is the main function that corre-
sponds to the ATL module Class2Relational. Its clauses gener-
ate elements according to different ATL rules — Class2Table
(lines 17–19), while explanation for the clause for Single-
ValuedAttribute2Column is omitted here. References between
target elements are represented by definition and call of sibling
mutually-recursive functions: col Class2Table called at line 19
for col in the rule Class2Table (lines 2–4). The SQL-like
select expression (line 18) performs shallow copy of primitive
data type values by capturing the subgraph under label name
and creating the new edge with the same label and the same
subgraph.

Graphs in UnQL are essentially trees with references (finite
representation of infinite regular trees obtained by unfolding

e ::= {} | {l : e} | e ∪ e | &x := e | &y | ()
| e⊕ e | e@ e | cycle(e) { constructor }
| $g { graph variable }
| if b then e else e { conditional }
| rec(λ($l , $g).e)(e) { structural recursion application }

l ::= a | $l { label (a ∈ Label ) and label variable }

Fig. 5: Syntax of UnCAL

cycles), and UnQL queries and constructs tree structures. So
intuitively, more template means bigger outputs. Since UnQL
is translated into its core language UnCAL, identification of
additive contexts requires reasoning about those of UnCAL,
so we do this in the following.



1 select
2 letrec sfun col_Class2Table({attr:$g})
3 = {col:Class2Relational($g )}
4 | col_Class2Table({$l :$g}) = {}
5 and sfun owner_SingleAttribute2Column({owner:$g})
6 = {owner:Class2Relational($g )}
7 | owner_SingleAttribute2Column({$l :$g}) = {}
8 and sfun (* main function *)
9 Class2Relational({Attribute:$g}) =

10 i f isEmpty( select {dummy:{}}
11 where {multivalued.Boolean:$g ′} in $g ,
12 {true:$d} in $g ′ ) then
13 {Column : ( ( select {name:{String:{$on ˆ $n}}}
14 where {owner ._name .String:{$on :$d}} in $g ,
15 {name .String:{$n :$d}} in $g )
16 ∪ owner_SingleAttribute2Column($g ))} else {}
17 | Class2Relational({Class:$g}) =
18 {Table : ( ( select {name:$g} where {name:$g} in $g )
19 ∪ col_Class2Table($g ))}
20 | Class2Relational({$l :$g}) = {}
21 in Class2Relational($db )

Listing 2: Class2Relational(Class2Table part) transformation
in UnQL

Additivity of UnCAL: UnCAL is functional and compo-
sitional, having compositional semantics with direct inter-
pretation of subexpressions. Therefore, as we discussed in
Sec. V, we reason about Prop. 2 to identify additive contexts
in UnCAL, through its monotonically increasing fragment.

We first introduce the syntax (Fig. 5) and its semantics.
In the following, DBX

Y denotes graphs with the set X and
Y of input and output markers, respectively, where input
markers label roots and X is omitted if it is a singleton of
unique default & while output markers label nodes that are to
be connected with other identically labeled roots, and Y is
omitted when empty.

There are nine constructors, three of which are nullary: ()
constructs a graph without any nodes or edges ([[()]] ∈ DB∅),
{} constructs a node with default input marker (&) and no
edges ([[{}]] ∈ DB ). &y is similar to {} with additional output
marker &y associated with the node ([[&y ]] ∈ DB{&y}). The
edge constructor { : } takes a label l and a graph g ∈ DBY ,
constructs a new root with the default input marker with
an edge labeled l from the new root to the root of g; thus
{l : g} ∈ DBY . The union g1 ∪ g2 of graphs g1, g2 ∈ DBX

Y

with the identical set of input markers X = {&x 1, . . . , &xm},
constructs m new input nodes for each &x i ∈ X , where
each node has two ε-edges to the root of g1 labeled &x i

and the root of g2 labeled &x i. Here, ε-edges are similar to
ε-transitions in automata and used to connect nodes during
the graph construction. Clearly, g1 ∪ g2 ∈ DBX

Y . The input
node renaming operator := takes a marker &x and a graph
g ∈ DBY and relabels the root of g, i.e., (&x := g) ∈ DB

{&x}
Y .

The disjoint union g1 ⊕ g2 of two graphs g1 ∈ DBX
X′ and

g2 ∈ DBY
X′ with X ∩ Y = ∅, the resultant graph inherits

all the markers, edges and nodes from the operands, thus
g1 ⊕ g2 ∈ DBX∪Y

X′ . The remaining two constructors connect
output and input nodes with matching markers by ε-edges.
g1 @ g2 appends g1 ∈ DBX

X′∪Z and g2 ∈ DBX′∪Z′

Y by
connecting the output and input nodes with the matching

subset of markers X ′, and discards the rest of the markers,
thus g1 @ g2 ∈ DBX

Y . The cycle construction cycle(g)
for g ∈ DBX

X∪Y with X ∩ Y = ∅ connects output and
input nodes of g with matching markers X , and constructs
copies of input nodes of g, each connected with the original
input node. The output markers in Y are left as is. The
semantics of conditionals is standard, with the syntax and
semantics of b identical to BC of UnQL. Label and graph
variables are introduced by the structural recursion operator
rec. For example, the following replaces every label a by d

and contracts edges labeled c.

rec(λ($l , $g). if $l = a then {d : &}
else if $l = c then {ε : &}
else {$l : &})($db)

We call the first and second operand of rec body and argu-
ment, respectively. We use $db as a special global variable to
represent the input of the graph transformation.

Now we introduce a type system (Fig. 6) to statically
reason about monotonicity, based on which we build additive
contexts. Our reasoning about monotonicity with respect to
graph is a generalization of Buneman et al. [7] in the sense
that we also consider (1) decreasing fragment, (2) boolean
expressions, and (3) a separate type system. The operator ϕ is
defined by the table in the figure, where +, −, 0 respectively
means monotonically increasing, decreasing and no change
with respect to the input. ? means undefined and unused in
our identification of additive context. We extend the notion of
monotonicity to the boolean expressions by setting F ≺ T.

The environment Γ stores the monotonicity of graph vari-
ables (M-VREF) and initialized with {$db 7→ 0} at the top
level, since we fix the graph while manipulating transforma-
tions. The monotonicities of the three nullary constructors
are 0 (M-EMP,M-OMRK,M-GEMP) since they are indepen-
dent from the input. The three binary constructors behave
identically (M-UNI,M-DUNI,M-APND): monotonicities are
preserved when those of the operands agree, or either of the
two is 0; unknown (?) if disagree. Structural recursion rec as
a binary expression behaves similarly (M-REC). Note that the
graph variable $g inherits the monotonicity of the argument.
For the unary operators, cycle and := preserve (M-CYC,M-
IMRK) and isEmpty negates (M-ISEMP) monotonicities. For
the conditionals (M-IF), monotonicity of the then branch is
preserved if the condition has the same monotonicity and the
else branch creates the empty graph.

Given these rules, order preserving (OP for short) contexts
are provided in Fig. 7 where C : DBX

Y denotes that C is OP
with type DBX

Y . OP contexts are systematically derived from
(M-*) rules of expressions having subexpressions as follows.
If the monotonicities of the subexpressions agree across the
whole expression, then OP context of the subexpression is
generated from the OP context of the expression. For multiple
subexpressions, since the number of context hole is one, the
monotonicities of others are 0. For example, (C-UNIR) is
created by (M-UNI) with m1 = 0. So we only show several of



{} : 0
(M-EMP)

Γ ⊢ e : m

Γ ⊢ {l : e} : m
(M-EDG)

Γ ⊢ e1 : m1 Γ ⊢ e2 : m2

Γ ⊢ e1 ∪ e2 : ϕ(m1,m2)
(M-UNI)

Γ ⊢ e : m

Γ ⊢ &x := e : m
(M-IMRK)

&y : 0
(M-OMRK)

() : 0
(M-GEMP)

Γ ⊢ e1 : m1 Γ ⊢ e2 : m2

Γ ⊢ e1 ⊕ e2 : ϕ(m1,m2)
(M-DUNI)

Γ ⊢ e1 : m1 Γ ⊢ e2 : m2

Γ ⊢ e1 @ e2 : ϕ(m1,m2)
(M-APND)

Γ ⊢ e : m

Γ ⊢ cycle(e) : m
(M-CYC)

Γ ⊢ e : m

Γ ⊢ isEmpty(e) : −m
(M-ISEMP)

Γ ⊢ e : m Γ ⊢ eT : m

Γ ⊢ if e then eT else {} : m
(M-IF)

Γ ⊢ e2 : m2 Γ ∪ {$g 7→ m2} ⊢ e1 : m1

Γ ⊢ rec(λ($l, $g).e1)(e2) : ϕ(m2,m1)
(M-REC)

Γ ⊢ $g : Γ($g)
(M-VREF)

ϕ – 0 +
– – – ?
0 – 0 +
+ ? + +

Fig. 6: Type system for the monotonicity of UnCAL

Γ ⊢ C : DBX
Y

Γ ⊢ C[e ∪□] : DBX
Y

(C-UNIR)
Γ ⊢ C : DB

{&x}
Y

Γ ⊢ C[&x := □] : DBY
(C-IMRK)

Γ ⊢ C : DBX1⊎X2
Y

Γ ⊢ C[eX1 ⊕□] : DBX2
Y

(C-DUNIR)
Γ ⊢ C : DBX

Y

Γ ⊢ C[eXZ @□] : DBZ
Y

(C-APND)

Γ ⊢ C : Bool−

Γ ⊢ C[isEmpty(□)] : DBX
Y

(C-ISEMP)
Γ ⊢ C : DBX

Y Γ ⊢ e : m m ≥ 0

Γ ⊢ C[if e then□ else {}] : DBX
Y

(C-IFT)
Γ ⊢ C : DBX

Y Γ ⊢ e : m m ≥ 0

Γ ⊢ C[if □ then e else {}] : Bool (C-IFC)

Γ ⊢ C : DBX·Z
Y ·Z

Γ ⊢ C[rec(□)(eXY )] : DBZ
Z

(C-RECB)
Γ ⊢ C : DBX·Z

Y ·Z Γ ∪ {$g 7→ +} ⊢ e : m m ≥ 0

Γ ⊢ C[rec(λ($l , $g).e)(□)] : DBX
Y

(C-RECA)

Fig. 7: Rules for order preserving contexts of UnCAL

(C-*) rules. Since ∪ constitutes a commutative monoid, with
{} as the identity, and UnCAL has compositional semantics
as mentioned in Sec. V, i.e., [[e1 ∪ e2]]ρ = [[e1]]ρ ∪ [[e2]]ρ
where ρ is the run-time variable environment ($db is bound
to the input graph), top level context is additive as the base
case. Superscript ’–’ of the context type means the context is
contravariantly OP, i.e., e1 ⪯Sem

L e2 ⇒ C[e2] ⪯Sem
L C[e1].

Such contexts can safely constitute additive contexts, like
the rule (C-ISEMP), since two consecutive contravariance
constitute covariance.

Note that for rec, we have unconditional equivalence
rec(e)(d1 ∪ d2) = rec(e)(d1) ∪ rec(e)(d2) [7] for any ex-
pression e and graphs d1, d2. So rec(e) provides unconditional
additive context in the argument position5.

Additivity of UnQL: Since the data model of UnQL is the
same as UnCAL, constituting commutative monoid with ∪,
except we only have default input marker (i.e., every UnQL
function/expression has type DB ), the top level context of
UnQL is also additive. Type of the additive context is always
of this type, so we omit in the following. The additive context
is also defined inductively. The rule for the same language
constructs ((C-UNIR),(C-UNIL) and (C-EDG), (C-IF*),(C-
ISEMP)) are the same. Since {L : T, . . . , L : T} is equivalent
to {L : T} ∪ . . . ∪ {L : T}, such a template under additive

5It only applies to ⪯Add
L obtained by graph union ∪. However, as we

argue by (C-RECA), we pose monotonicity restriction on the argument.
Unconditional additive context can be formed only for ⪯Add

L by ∪ that
extends graphs horizontally, while if we consider ’:’ (@) that extends graphs
vertically ({} ⪯Add

L {l : {}} ⪯Add
L {l : {l′ : {}}} ⪯Add

L . . . or equiva-
lently, &⪯Add

L {l : &} ⪯Add
L {l : &}@{l′ : &} ⪯Add

L . . .), the condition as
stated by (C-RECA) applies. The reason is that the body expression in rec
may contain the reference to the graph variable bound by the rec. The graph
bound to the variable is not affected by the horizontal extension of the graph
in the argument position but is affected by vertical extension.

context constitutes additive contexts for each T . For composi-
tions, since select translates to rec, C[select□where . . .]
is additive for additive C, while C[select ewhereP in□]
is so if e and predicate P are monotonically increasing.
Sibling sfun definitions also constitute a partial order such
that removal of a definition and calls of an sfun generates
smaller transformation.

VII. ADDITIVITY IN OTHER LANGUAGES

Sec. IV and Sec. VI have presented detailed analyses of
additivity in (respectively) ATL and UnQL. In the present
section, we briefly discuss examples of additivity in other
transformation languages. The purpose is to show that addi-
tivity is not limited to ATL and UnQL. However, detailed
analyses of additivity in these languages is beyond the scope
of this paper.

The most natural example of additivity in common use is
provided by template-based transformation languages [1]. A
template can be thought of as the combination of two parts:
1) a static part contains excerpts of the target artifact that
are directly copied to output, 2) metacode is run at template
instantiation time to compute the variable parts. The static
part of the template is typically additive. E.g., in a model-to-
text transformation language, by removing a static excerpt we
obtain a template that always creates sub-strings of the original
template.

It is harder to find additive contexts in QVT-Relation [15]
than it is in ATL. First, QVT-Relation transformations may
be multidirectional. Therefore the notions of source and target
models only make sense once a choice of direction has been
made, or if the transformation is unidirectional. Although
QVT-Relation is declarative, it heavily relies on explicit rule



references. The only rules (called relations) that can be ex-
ecuted without an explicit reference from another rule are
top relations. However, even top relations may be explicitly
referenced from other relations. Top relations are additive but
they need to be replaced with empty rules when they are
referenced by other relations. As for property template items,
although they are similar to ATL bindings, they can actually
also appear in source patterns. Therefore, they may only be
additive if they are part of a target pattern.

VTGG, first proposed by Jakob and Schürr [16] and for-
malized later [17], is a restriction of TGG [18] for declarative
definition of updatable model views. The restrictions are:
every class rule for each view metamodel are independent and
thus can be applied in any order, and association rules are
independent of any other association rules. This suggests that
class rules are additive at the top level while they constitute
additive contexts for their corresponding association rules.

We can look for more specific additive containments in
several model transformation languages. For instance, in the
UML-RSDS language [19], a rule Rj is independent of
preceding rules R1, ..., Rj−1 in a transformation T , if the write
frame of Rj is disjoint from the read and write frames of
each Ri, i < j. Provided that the rule does not delete target
objects, there is a semantic containment of the transformation
with rules R1 to Rj−1 in the complete transformation. This
constitutes an additive containment in the sense of this paper.

In general, it is not possible to find useful additive contexts
in imperative languages since they do not impose restrictions
preventing non-monotonic side effects on the output. For
instance, a statement may undo what a previous statement
did. However, additivity may appear when some constraints
are added to the code. For instance, if the output of a program
is limited to its standard output as a monotonically growing
list of characters, then removing any print statement would
result in a reduced output. This basically corresponds to what
one can achieve in the case of template-based languages.

VIII. RELATED WORK

A recent study by Stevens [20] mentions partial transfor-
mation with a different meaning, since her partiality refers to
the idea of tolerating imperfect consistency between source
and target. Her notion of subspace is interesting; subspace
is a subset of the domain or codomain of the transformation
in which the user agreed to stay during update propagation.
The subspace also characterizes the degree of consistency in
that an element within a subspace is more/less compatible
than the others outside the subspace. In our setting, the target
subspace consists of the subset of the codomain covered by
target models that are generated by the subtransformation.

Similarly to us, Terrell [21] studies the modularization of
model transformations by a divide and conquer approach.
However he focuses on ordered model transformations, i.e. the
case in which source models and target models are ordered
by a containment hierarchy, and sub-transformations can be
defined at different levels of this hierarchy. W.r.t. his work,

we put the focus on the relation among the transformation
syntax and the output artefact.

Our notion of additivity is similar to the notion of query
containment (e.g., Abiteboul et al. [4]) in the database commu-
nity. Query q′ contains q means for every database d the set of
tuples q′(d) (result of applying q′ to d) includes q(d). Whether
two given arbitrary queries have containment relationship can
be undecidable depending on the class of the queries, while we
reason about syntactic manipulation on a given transformation
by removing part of the transformation to obtain another one
that is contained by the original one.

The notion of traceability we frequently mentioned in this
paper (e.g., correspondence between program fragments and
target model elements), has been extensively studied across
different communities as the notion of provenance [22].

Kelsen et al. [23] provided their own notion of submodel
and proposed an efficient decomposition algorithm. Their
motivation was to comprehend complex models by decomposi-
tion. Our additivity could further enhance this comprehension
at the transformation level. The major difference between
our notion of submodel and theirs is that model elements in
their submodel contain the same (collection of) non-reference
features as those in the original model, while we also allow
sub collection of features.

As we introduced in Sec. III, we leveraged the additivity
contexts of ATL to partially bidirectionalize it [3]. A generic
notion of partial order in transformation languages was pro-
posed, and was instantiated for ATL. The notion of additive
context was not defined, while the present paper makes it
explicit, and explores additivity for several different languages,
including their target language UnQL and its core language
UnCAL.

IX. CONCLUSION AND FUTURE WORK

A formal characterization of the language features that make
transformation languages effective is still missing. In this paper
we try to shed some light on the correspondence between
transformation code and resulting output, by introducing a
simple but common property in transformation languages. This
additivity property can be found in languages independently
developed within different domains, making us believe it
to be a fundamental property in transformation. In future
work we want to study the relation of additivity with several
independent results on modularization and parallelization of
ATL and UnQL. We also want to study how additivity can be
used to export such kind of results from one additive trans-
formation language to another. Finally we want to extend our
formalization to characterize not only sub-transformations but
transformation partitioning and give a clear view of the divide
and conquer approach fostered by transformation languages.
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