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Diffusional relaxation in a random sequential adsorption model

B. Bonnier*
Centre de Physique The´orique et de Mode´lisation, URA 1537 CNRS, Universite´ Bordeaux I, 19 Rue du Solarium,

33175 Gradignan Cedex, France
~Received 7 July 1997!

The one-dimensional random sequential adsorption dimer model with diffusional relaxation is revisited
using the numerical and perturbative results recently obtained by C. K. Gan and J. S. Wang@Phys. Rev. E55,
107 ~1997!#. These results are shown to support the analytic expression that we derive for the large time
behavior of the coverage and allow us to propose its modelization for any time and diffusion rate.
@S1063-651X~97!00412-1#

PACS number~s!: 05.70.Ln, 82.20.Mj, 05.50.1q
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Random sequential adsorption~RSA! is a model in which
objects are deposited on a given substrate one at a time,
random positions, such that new objects cannot overlap
viously adsorbed ones@1#. A variety of large molecules ad
sorbs in an essentially irreversible manner, and the R
model may be appropriate@2# to describe this process. It
asymptotic behavior at large time is then dominated by
formation of vacancies resulting in the jamming of the ava
able area. When the deposited particles are subject to d
sion, as is required in some experimental situations@3#, the
coverageU is expected to reach its closest-packing lim
through a diffusive power-law approach. In one dimensi
this readsU.12C/At, as proven in the context of the dif
fusive monomer model@4#, or supported by analytical argu
ments@5,6# and Monte Carlo~MC! simulations@5,7# for the
diffusive dimer model that is unsolved and that we stu
here.

This model, introduced by Privman and Nielaba@5#, is
defined as follows. One starts with an empty infinite on
dimensional lattice. The dynamics involve picking tw
neighboring sites randomly and then deciding either to m
a deposition with probabilityp or to make a diffusion to the
left or right with equal probabilities (12p)/2. If the chosen
attempt is impossible, one starts over, picking two new si
We have already@6# studied this model and proposed th
asymptotic expressionU.12Ap/16p(12p)t on the basis
of the MC data of Ref.@5#. Our approach is motivated by th
results recently obtained@7# for the density of empty sites
r(g,t)512U at time t, g being the relative rateg5(1
2p)/2p. Its series expansion in powers oft, where each
term is a function ofg, has been derived up to order 31 a
extensive MC simulations have been performed up to la
time (t.106) for 8 values ofg ranging from 0.05 to 6.4.
From these results, it is concluded in the work of Ref.@7#
that the MC data confirm the asymptotic behaviorr(g,t)
.C(g)/At but that it appears impossible to derive it fro
the series analysis, whose range of applicability seems
ited to 0<t&10, i.e., one or two orders of magnitude belo
the diffusive asymptotic regime. In addition, the MC da
indicate a scaling lawr(g,t)5F(t/g)/g, but the function
F(z) is not specified.
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This situation can be improved, as shown here: we p
pose an analytic expression for the scaling function an
parametrization of the density from its series expansi
which appears to be quite accurate for any values ofg andt.

As for the derivation ofF(z), we repeat the arguments o
our previous work@6#, which are expected to hold in case
rapid deposition~smallg!, and show that the result agrees f
all the values of the rateg with the MC data.~This kind of
argument has been recently applied to the diffusive mono
model@8#.! At long times, there remains only isolated vaca
sitesA, their disappearance being limited by the necessity
form pairsAA, which can be filled by a dimer deposition.
the deposition is rapid, the system thus behaves like
diffusion-limited reactionA1A→ inert. In this model the
density of surviving particlesA, which asymptotically ap-
proachesr(g,t), can be exactly solved@9# and becomes
r(g,t)52r(g,t0)*L

`exp(L22x2)dx/Ap, for large time t
>t0 , where in the normalization of Ref.@7# L
54r(g,t0)A2g(t2t0). Taking the leading term in the
asymptotic expansion of this expression, which is indep
dent of r(g,t0), one obtainsr(g,t).1/A32pgt, i.e., F(z)
51/A32pz. In order to check this behavior, we take the M
data of Ref.@7# for the largest valuet`5106 where the
asymptotic regime is reached and compute the quantityC`

defined asC`52 ln@r(g,t`)Agt`#, that we expect to beC`

. ln(A32p)52.305. The results of this analysis for all th
available values of the rateg are depicted in the first lines o
Table I where it appears that, within the experimental pre
sion,C` has its predicted value, even for the largest rate

We now consider the determination ofr(g,t) on the
whole time range from its series expansion. This is diffic
when the density becomes significantly smaller than
asymptotic valuee22 reached in a pure RSA proces
(g50), i.e., for t*10 according to Ref.@7#. We thus take
into account, in addition to our knowledge@1# of the density
in the RSA processr(g50,t)5exp$2@exp(2t)21#%, its be-
havior in the fast diffusive regime as solved in Ref.@10#. The
density cannot be expressed as a simple function of time
one can show that if for any value of the rate one defin
d(g,t) as d(g,t)5r(g,t)$114t1 ln@r(g,t)#% it fulfills the
relation d(g5`,t)51. We finally consider the function
S(g,t)5$@d(g,t)21#(11A112gt)%/2@d(0,t)21# whose
series expansion is known from the series ofr(g,t)51
7304 © 1997 The American Physical Society
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TABLE I. For the values ofg given on top of each column, the MC values of2 ln r(g,t) taken from Ref.@7# are given line 2 (t5t`

5106) and line 4 (t5t15100). The data of line 2 are used to compute the quantityC` defined asC`52 ln@r(g,t`)Agt`# given line 3 and
whose theoretically expected value is 2.305. The data of line 4 have to be compared to our results given line 5~line Pade´!, obtained from
the series analysis described in the text and which gives forS(g,t5`) the values given line 6, its theoretically expected value being 0.5

g 0.05 0.1 0.2 0.4 0.8 1.6 3.2 6.4
2 ln@r(g,t`)# 7.71 8.06 8.41 8.76 9.11 9.45 9.79 10.13
C` 2.30 2.30 2.31 2.31 2.31 2.31 2.30 2.30
2 ln@r(g,t1)# 3.21 3.49 3.80 4.10 4.40 4.75 4.95 5.15
Padé 3.21 3.51 3.81 4.07 4.27 4.65 4.78 5.28
S(g,t5`) 0.58 0.55 0.53 0.54 0.55 0.51 0.58 0.35
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120(45418g)t51••• given in Ref.@7#
at order 31. It readsS(g,t)511 1

10gt1••• , i.e., a simpler
and shorter one~its order is 27!. Our aim is to reconstruc
S(g,t) from this expansion and for its resummation we si
ply construct its@N,N# diagonal Pade´ approximantsPN(g,t)
up to N513. This is motivated by the observation th
S(g,t5`) must be finite due to the asymptotic behavior
the density previously described. In fact, inserting in t
definition of S(g,t) the asymptotic behavior of the densit
one getsS(g,t5`)5e2/8Ap.0.521 for any positive rate
In the last line of the Table I, we give the asymptotic val
of the@12,12# approximant for various rates~the@13,13# is in
general comparable, but does not improve the results!, which
in general compare well with this prediction. For any fin
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value t1 of the time, we obtain the numerical value of th
densityr(g,t1) as follows. The value ofS(g,t1) is provided
by its approximantsPN(g,t1) and it thus givesd(g,t1) as we
take for d(0,t1) its exact value. Finally,d(g,t1) gives the
density. We give our results~obtained withN512! in Table
I for the valuet15100, as an example of a large but prea
ymptotic value, and one can check their general agreem
with the MC data. Whent1 decreases, the agreement i
creases.

In conclusion, we want to point out that it is possibl
from the results of Ref.@7#, to derive a reasonably goo
phenomenological description of the diffusive monom
model in the general case.
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