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Diffusional relaxation in a random sequential adsorption model

B. Bonniel
Centre de Physique Theque et de Modiésation, URA 1537 CNRS, UniversiBordeaux |, 19 Rue du Solarium,
33175 Gradignan Cedex, France
(Received 7 July 1997

The one-dimensional random sequential adsorption dimer model with diffusional relaxation is revisited
using the numerical and perturbative results recently obtained by C. K. Gan and J. S[RigagRev. 55,
107 (1997]. These results are shown to support the analytic expression that we derive for the large time
behavior of the coverage and allow us to propose its modelization for any time and diffusion rate.
[S1063-651%97)00412-1
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Random sequential adsorptiRSA) is a model in which This situation can be improved, as shown here: we pro-
objects are deposited on a given substrate one at a time, wiffbse an analytic expression for the scaling function and a
random positions, such that new objects cannot overlap preyarametrization of the density from its series expansion,
viously adsorbed ondd]. A variety of large molecules ad- \hich appears to be quite accurate for any values adt.
sorbs in an essentially' irreversible manner, and the RSA g for the derivation of (z), we repeat the arguments of
model may be appropriat®] to describe this process. Its o yrevious work6], which are expected to hold in case of
asymptotic behavior at large time is then dominated by th‘?‘apid depositiorismall y), and show that the result agrees for

formation of vacancies resulting in the jamming of the avall—aII the values of the rate with the MC data.(This kind of

able area. When the deposited particles are subject to diffu- . e
X . . . . L argument has been recently applied to the diffusive monomer
sion, as is required in some experimental situati8ijsthe

coverageO is expected to reach its closest-packing limit model[8].) At long times, there remains only isolated vacant

through a diffusive power-law approach. In one dimension,SitESA' their disappearance being limited by the necessity to

this readsD=1—C/\/t, as proven in the context of the dif- I(r)]rmdpairs.At.A, V\.'hiCh 93” t?]e fiIIedt by at[r(]jimebr dhepositilc.)E. h;h
fusive monomer moddH], or supported by analytical argu- € deposition 1S rapid, the system thus behaves fike the

ments[5,6] and Monte CarldMC) simulations[5,7] for the giffus_ion-lfimiteq .reactionAlJrQHinhgrtr.] In this ”?Odfl" the
diffusive dimer model that is unsolved and that we study ensity of surviving particles\, which asymptotically ap-
proachesp(v,t), can be exactly solvedi9] and becomes

here. g _
This model, introduced by Privman and Nielafs, is p(V’t):ZP(%tO_)fAEXp(AZ_Xz)d)_‘/\/;_' for large time t
defined as follows. One starts with an empty infinite one-=to, Wwhere in the normalization of Ref[7] A
dimensional lattice. The dynamics involve picking two =4p(7:t0) V2¥(t—to). Taking the leading term in the
neighboring sites randomly and then deciding either to mak@symptotic expansion of this expression, which is indepen-
a deposition with probabilityp or to make a diffusion to the dent of p(y.to), one obtains(y,t)=1/y32mt, i.e., F(2)
left or right with equal probabilities (£ p)/2. If the chosen = 1/{32mz. In order to check this behavior, we take the MC
attempt is impossible, one starts over, picking two new sitesdata of Ref.[7] for the largest value.,,=10° where the
We have already6] studied this model and proposed the asymptotic regime is reached and compute the qua@tty
asymptotic expressiofd =1— /p/16m(1— p)t on the basis defined asC..= —In[p(y.t.) Vyt.], that we expect to bE.,
of the MC data of Ref[5]. Our approach is motivated by the =~In(\/327r) =2.305. The results of this analysis for all the
results recently obtainef] for the density of empty sites available values of the ratgare depicted in the first lines of
p(v,t)=1—-06 at timet, vy being the relative ratey=(1  Table | where it appears that, within the experimental preci-
—p)/2p. Its series expansion in powers bf where each sion,C., has its predicted value, even for the largest rates.
term is a function ofy, has been derived up to order 31 and We now consider the determination ¢fy,t) on the
extensive MC simulations have been performed up to larg&vhole time range from its series expansion. This is difficult
time (t=10°) for 8 values ofy ranging from 0.05 to 6.4. when the density becomes significantly smaller than its
From these results, it is concluded in the work of R&fi  asymptotic valuee 2 reached in a pure RSA process
that the MC data confirm the asymptotic behavjdry,t) (y=0), i.e., fort=10 according to Ref{7]. We thus take
=C(y)/+/t but that it appears impossible to derive it from into account, in addition to our knowledd] of the density
the series analysis, whose range of applicability seems lim the RSA procesg(y=0,)=exp2[exp(—t)—1]}, its be-
ited to 0<t=<10, i.e., one or two orders of magnitude below havior in the fast diffusive regime as solved in Réf0]. The
the diffusive asymptotic regime. In addition, the MC datadensity cannot be expressed as a simple function of time but
indicate a scaling law(y,t)=F(t/y)/y, but the function one can show that if for any value of the rate one defines
F(2) is not specified. 8(y,t) as 8(y,t)=p(y,t){1+4t+In[p(yt)]} it fulfills the
relation §(y==,t)=1. We finally consider the function
S(y,t)={[(y,t)—1](1+ 1+ 24t)}2[ 5(0t)—1] whose
*Electronic address: Bonnier@bortibm1.in2p3.fr series expansion is known from the series pdfy,t)=1
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TABLE I. For the values ofy given on top of each column, the MC values-efn p(y,t) taken from Ref[7] are given line 2 {=t.,
=10° and line 4 ¢(=t,=100). The data of line 2 are used to compute the quagtitylefined a<C..= — In[p(y,t..)\yt..] given line 3 and

whose theoretically expected value is 2.305. The data of line 4 have to be compared to our results givéinknBasle, obtained from
the series analysis described in the text and which giveX (g1t =c0) the values given line 6, its theoretically expected value being 0.521.

y 0.05 0.1 0.2 0.4 0.8 1.6 3.2 6.4

—In[p(yt)] 7.71 8.06 8.41 8.76 9.11 9.45 9.79 10.13
C.. 2.30 2.30 2.31 2.31 2.31 2.31 2.30 2.30
—In[p(y,t)] 3.21 3.49 3.80 4.10 4.40 475 4.95 5.15
Pade 3.21 3.51 3.81 4.07 4.27 4.65 478 5.28
S (y,t=) 0.58 0.55 0.53 0.54 0.55 0.51 0.58 0.35

—2t+3t2— Y3+ 44— 2,(454+ 8y)t°+ - -+ given in Ref.[7]  valuet; of the time, we obtain the numerical value of the
at order 31. It read¥ (y,t)=1+f5yt+--- , i.e., a simpler densityp(y,t,) as follows. The value oF (y,t,) is provided

and shorter ongits order is 27. Our aim is to reconstruct by its approximant®(y,t;) and it thus gives(y,t;) as we

> (y,t) from this expansion and fo’r its resummation we sim-take for §(0t,) its exact value. Finallys(y,t,) gives the

ply construct it§ N,N] diagonal Padepproximant$y(y,t)  density. We give our resuli®btained withN=12) in Table

up to N=13. This is motivated by the observation that | fgr the valuet; =100, as an example of a large but preas-
3 (7y,t=) must be finite due to the asymptotic behavior of ymptotic value, and one can check their general agreement

the density previously described. In fact, inserting in theyiih the MC data. Whert, decreases, the agreement in-
definition of 2 (y,t) the asymptotic behavior of the density, creases ’

o) — a2 ~ iti '
one getsX(y,t=x)=e /8\/;—0-521. for any positive rate. In conclusion, we want to point out that it is possible,
In the last line of the Table I, we give the asymptotic valuetqn the results of Ref[7], to derive a reasonably good

ofthe[}z,lz app{)c;xirga?tjforvari;)gs rate(ﬂw&[l&lﬂd;i?] phenomenological description of the diffusive monomer
general comparable, but does not improve the resuitsic model in the general case.

in general compare well with this prediction. For any finite
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