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Solution of the static pair annihilation process in arbitrary dimension

B. Bonnier*
Centre de Physique The´orique et de Mode´lisation, ESA 5468 du CNRS, Universite´ Bordeaux I, 19 Rue du Solarium,

33174 Gradignan Cedex, France
~Received 11 June 1998!

The pair annihilation of identical static particles distributed at random in ad-dimensional space is studied in
the large time regime for a tunneling law. A superposition approximation is used to close the hierarchy of
equations describing the process, and it is shown that the density and pair correlation of surviving particles
have universal scaling expressions that are exactly calculated. These results are in close agreement with Monte
Carlo simulations in one, two, and three dimensions.@S1063-651X~98!11010-3#

PACS number~s!: 05.40.1j, 05.70.Ln
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I. INTRODUCTION

In the static annihilation model~see @1# and references
therein!, a set ofA particles are randomly distributed in
d-dimensional space and removed by a fusion reactionA
1A→0, with isotropic reaction ratew(r ), for any pair of
particles separated by distancer. It must be stressed that th
particlesA are immobile, theA1A→0 reaction correspond
ing, for example@2#, to fusion in triplet states through
tunneling laww(r )5w0exp(2r/r0). An interesting aspect o
this process at large time is its tendency to self-organizat
which is also observed@3,4# for its two species analogA
1B→0. This property manifests itself through a nontrivi
time evolution of the density of surviving particlesr(t) and
of the two-particle correlation functionX(r ,t). Their behav-
ior is phenomenologically well described in terms of the
action radius@5# R(t), defined bytw„R(t)….1, and which is
in practice the minimal separation between surviving p
ticles at time t. Starting from the initial valueX(r ,t50)
51, as time increases the correlation vanishes forr ,R(t),
and when the separationr lies roughly betweenR(t) and
2R(t), it tends towards a limiting functionX`(r ) quite dif-
ferent from unity, this value being recovered only at larger.
The process is thus dominated by fluctuations in the num
of particles in a volume of size determined by the react
radius. It also appears that the density decays asr(t)
5C/Ra(t), where the exponenta is expected@6# to be equal
to the space dimensionalityd. An exact determination in ar
bitrary dimension of the limiting correlationX`(r ), which
fixes the constantC, is the purpose of this work since, to th
best of our knowledge, this has not been done, although v
ous numerical or empirical advances have been made.

We achieve this goal by a generalization of the meth
we have recently applied@7# to solve theA1A→0 annihi-
lation process on a one-dimensional lattice for a large c
of reaction ratesw(r ). Our starting point is to consider th
evolution equations for the density and for the two-parti
correlation function. When the three-particle correlati
function appearing in these coupled equations@8# is ex-
pressed in terms of the previous functions through a K
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wood superposition approximation, they reduce to a clo
system. Some years ago, such a system was solved nu
cally, and a comparison of the solutions with the results
Monte Carlo~MC! simulations in various dimensions ind
cates that the Kirkwood approximation works extremely w
@3,9#. In one dimension, this approximation is a shieldi
one, and appears sufficiently accurate to describe the an
lation process at any time, as we have shown in previ
work @10#. We thus take this approximation for granted, a
we analytically explore its consequences. Our main resu
to show that the density and the correlation have, at la
time, scaling expressions that involve a unique funct
h(x), wherex is defined asx5r /R(t). In fact, one finds for
the density exponenta5d, for the density factorC5h(x
5`) and for the correlationX„r 5xR(t),t…5h(x)/h(`).
The functionh(x) is solution of an integral equation explic
itly soluble in one dimension, and we recover some of o
previous results@7#, the other cases being easily solved by
numerical iteration.

In Sec. II we recall the derivation of the evolution equ
tions for the density and for the correlation. Using the sup
position approximation we give their leading expression
the large time regime. At this point we introduce a functi
g(r ,t) defined byg(r ,t)5r(t)X(r ,t), since we observe tha
the previous system implies a simple evolution equation
g(r ,t) and that this function suffices to fix the density a
the correlation through the relationsr(t)5g(`,t) and
X(r ,t)5g(r ,t)/g(`,t), which follow from the normaliza-
tion conditionX(`,t)51. Moreover, as we show in Sec. II
the solution of this equation at large time has the scal
form g(r ,t)5h(x)/Rd(t), provided thath(x) fulfills some
conditions. These conditions imply thath(x) vanishes forx
,1, in agreement with the definition of the reaction radiu
that its first nontrivial value atx51 is fixed by the dimen-
sionality, and that its values forx.1 obey an integral equa
tion. This equation is solved in Sec. IV for the physical cas
d51,2,3 and we check that the solutions are in agreem
with the MC data for the density and the correlation functio
We summarize our findings in Sec. V.

II. THE PAIR CORRELATION EVOLUTION EQUATION

Let n(r ,t) be the microscopic particle concentration
time t and positionr, r being here ad-dimensional vector.
5424 © 1998 The American Physical Society



s

rit

n
y
te

-

t

e
f

tia

n

,

PRE 58 5425SOLUTION OF THE STATIC PAIR ANNIHILATION . . .
The ensemble averaged products of these concentration
fine the many-center densitiesrm5^P i 51

i 5mn(r i ,t)&. In par-
ticular ^n(r ,t)&5r(t) and r25r2(t)X(ur 12r 2u,t) where
r(t) is the global density andX(r ,t) the pair correlation
function normalized according toX(r→`,t)51.

Taking into account the annihilation process one can w
an infinite system of equations@8# coupling rm and rm11 .
For the density one finds

2
dr

dt
~ t !5E w~r !r2~r ,t !Ddr ~1!

and considering the decays of a set of two particles (A1A2)
separated by a distancer one obtains the evolution equatio
of r2(r ,t). The pair itself can annihilate with a probabilit
w(r )r2(r ,t), or either member of the pair can annihila
with a third particleA3 , which happens with a probability
„w(r 8)1w(r 9)…r3(r ,r 8,r 9) where r 8 and r 9 are the dis-
tances fromA3 to A1 and to A2 , respectively. Using the
symmetry ofr3 one gets

2
]r2

]t
~r ,t !5w~r !r2~r ,t !12E w~r 8!r3~r ,r 8,r 9!Ddr 8,

~2!

which becomes an equation forr2 when one uses the Kirk
wood @11# approximation

r3~r ,r 8,r 9!5r3~ t !X~r ,t !X~r 8,t !X~r 9,t !. ~3!

It is also convenient in Eq.~2! to decompose ther 8 integra-
tion region into 3 subdomainsE1 , E2 , and E(r ) that we
describe here in the three-dimensional case, its generaliza
to other dimensionalities being straightforward. LetP1 and
P2 be those planes perpendicular to the lineA1A2 and con-
taining the pointsA1 and A2 , respectively. ThenE(r ) de-
notes the region betweenP1 and P2 , E1 the half-space
bounded byP1 and wherer 8,r 9, and finally the remaining
space isE2 , wherer 8.r 9. We are now prepared to deriv
from Eqs. ~2! and ~3! the leading order expression o
]r2(r ,t)/]t in the larger and t regime. First of all, the inte-
gration domainE2 can be neglected due to the exponen
decay of the ratew(r 8), r 8 being inE2 greater thanr. In one
dimension, this is a shielding approximation where the an
hilation of the pair of particlesA3 andA2 is neglected com-
pared to the annihilation of the pairA3A1 when the three
particles are aligned in the orderA3A1A2 . On the other hand
in the half-spaceE1 the distancer 9 is greater thanr and Eq.
~3! can be written as

r3~r ,r 8,r 9!.r3~ t !X~r ,t !X~r 8,t !5g~r ,t !r2~r 8,t !, ~4!

where we defineg(r ,t) according to

g~r ,t !5r~ t !X~r ,t !5r2~r ,t !/r~ t !. ~5!

Thus

2E
E1

r3~r ,r 8,r 9!w~r 8!Ddr 8

.g~r ,t !*r2~r 8,t !w~r 8!Ddr 8,
de-

e

ion

l

i-

which from Eq.~1! is just2g(r ,t)]r(t)/]t. Finally in E(r ),
as r is large, in Eq.~3! the correlationX(r ,t) is unity at the
leading order and one can use the approximation

r3~r ,r 8,r 9!.r3~ t !X~r 8,t !X~r 9,t !5r~ t !g~r 8,t !g~r 9,t !.

The evolution equation Eq.~2! then becomes

2
]r2

]t
~r ,t !5w~r !r2~r ,t !2g~r ,t !

dr

dt
~ t !1r~ t !I d~r ,t !,

~6!

where the integralI d(r ,t) is restricted to regionE(r )

I d~r ,t !52E
E~r !

w~r 8!g~r 8,t !g~r 9,t !Ddr 8. ~7!

Expressed in terms ofg(r ,t), Eq. ~6! has the following sim-
pler form where the density has been eliminated:

2
]g

]t
~r ,t !5w~r !g~r ,t !1I d~r ,t !. ~8!

To end this section we compute explicitlyI d(r ,t) for the
dimensionsd51, 2, and 3. In one dimension,E(r ) is the
interval @A1 ,A2#, andA3 is betweenA1 andA2 , i.e., r 5r 8
1r 9. This gives a convolution integral

I 1~r ,t !52E
0

r

w~r 8!g~r 8,t !g~r 2r 8,t !dr8. ~9!

In two dimensions, using the coordinatesA15(0,0), A2
5(r ,0), A35(r 8cosu,r8sinu) the domainE(r ) is the strip
@2p/2<u<p/2, 0<r 8<r /cosu# and

I 2~r ,t !54E
0

p/2

duE
0

r /cosu

w~r 8!g~r 8,t !g~r 9,t !r 8dr8,

~10!

where

r 95@r 21r 8222rr 8cosu#1/2. ~11!

In three dimensions, using the frame whereA15(0,0,0),
A25(0,0,r ), and A35(r 8sinu cosw,r8sinu sinw,r8cosu)
the regionE(r ) is given by@0<w<2p, 0<u<p/2, 0<r 8
<r /cosu# and finally

I 3~r ,t !

54pE
0

p/2

sin uduE
0

r /cosu

w~r 8!g~r 8,t !g~r 9,t !r 82dr8,

~12!

wherer 9 is again given by the Eq.~11!. We thus shall use
the representation

I d~r ,t !

5E
0

p/2

ld~u!duE
0

r /cosu

w~r 8!g~r 8,t !g~r 9,t !r 8~d21!dr8,

~13!
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where l152d(u) ~the Dirac function!, l254, l3
54p sinu, and r 9 given by Eq. ~11!. Explicit solutions
g(r ,t) of Eq. ~8! where I d(r ,t) has the form given in Eq
~13! are studied in the next section.

III. SCALING FORM OF THE EVOLUTION EQUATION

The reaction radiusR(t), defined bytw„R(t)…51, i.e.,
R(t)5r 0 ln t when w(r )5e2r /r 0, is such that at large time
no particles survive if their separationr is smaller thanR(t).
In this regime it is thus convenient to use a scaled varia
x5r /R(t) and to see if Eq.~8! admits asymptotic solution
of the form

g~r ,t !5r~ t !X~r ,t !5h~x!/Ra~ t !. ~14!

Imposing the conditionX(r→`,t)51 in the previous defi-
nition gives the density and the pair correlation function
term of h(x) according to

r~ t !5 lim
x→`

h~x!/Ra~ t !, ~15!

X„r 5xR~ t !,t…5h~x!/h~`!. ~16!

These expressions evidently imply thath(x), which is ex-
pected to vanish on some interval 0<x,x1 , is elsewhere
positive and bounded. To studyh(x), we begin by inserting
Eq. ~14! into Eq. ~8!. Since ]x/]t52x/t ln t, one easily
finds

2
]g

]t
~r ,t !5x12a

d

dx
@xah~x!#/tRa~ t !ln t. ~17!

To express the integralI d(r ,t) we change the variables ac
cording tor 5xR(t), r 85yR(t), andr 95zR(t) where from
Eq. ~11! z is defined by

z5@x21y222xy cosu#1/2. ~18!

Thus g(r 8,t)g(r 9,t)5h(y)h(z)R22a(t) and I d(r ,t)
5Rd22a(t)Jd(x,t) with

Jd~x,t !5E
0

p/2

ld~u!duE
0

x/cosu

t2yh~y!h~z!yd21dy,

~19!

where we have used the relationw„yR(t)…5t2y, which also
gives w(r )g(r ,t)5t2xh(x)R2a(t). If we multiply both
sides of Eq.~8! by tRa(t)ln t, we obtain

x12a
d

dx
@xah~x!#5t12xh~x!ln t1tRd2a~ t !Jd~x,t !ln t.

~20!

The left-hand side of the previous equation is time indep
dent, and this has to be the case for each member of
right-hand side, since they are non-negative. The first t
implies that

h~x!50 for 0<x<1. ~21!
le

-
he
m

For the second term, one can observe that for any func
H(y) that vanishes for 0<y,y1,y2 , and such thatH(y1)
Þ0, then at large time

E
0

y2
t2yH~y!dy5t2y1ln21t@H~y1!1O~ ln21t !#. ~22!

Applying this relation to they-integration appearing in Eq
~19! gives for the leading behavior ofJd(x,t), Jd(x,t)
.C(x)t2y1ln21 t and thus the second term of the right-ha
side of Eq.~20! behaves according tot12y1Rd2a(t)C(x),
C(x) being a positive time-independent function andy1 the
smallest value for whichh(y) is strictly positive. Time inde-
pendence of this term thus requires thaty151, in agreement
with Eq. ~21! and the physical interpretation of the reactio
radius, and we deduce

a5d. ~23!

For x>1, we finally obtain the following equation to dete
mine the functionh(x):

x12d
d

dx
@xdh~x!#5h~1!E

0

p/2

ld~u!h

3~@11x222x cosu#1/2!du.

~24!

Among the solutions of Eq.~24! we have to select the
bounded ones which can fulfill Eq.~15! and ~16!. This con-
straint determinesh(1), since equating the two members
Eq. ~24! in the limit x→` one obtains for a bounded solu
tion dh(`)5h(1)h(`)*0

p/2ld(u)du. These values are

d51, h~1!51/2, d52, h~1!51/p,

d53, h~1!53/4p. ~25!

Finally, Eq. ~24! becomes forx.1

x12d
d

dx
@xdh~x!#5E

0

p/2

md~u!h~@11x222x cosu#1/2!du,

~26!

with m1(u)5d(u), m2(u)54/p, and m3(u)53 sinu. We
obtain the solution of this equation in the next section.

IV. DETERMINATION OF THE SCALING SOLUTIONS

In one dimension, we have to solve

d

dx
@xh~x!#5h~x21!, h~1!51/2. ~27!

Sinceh(x) vanishes for 0<x,1, this equation determine
h(x) on intervals of unit length and at each step we requ
continuity at integer values ofx. For example, on the firs
few intervals one gets
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1<x<2, h~x!51/2x,

2<x<3, h~x!5@11 ln~x21!#/2x ~28!

and one observes thath(x) is close to its asymptotic value a
soon asx*2.5. For example one obtainsh(2.5)50.281,
h(3)50.282, the exact value being

h~`!5e2g/2.0.2807, ~29!

whereg.0.577 21 . . . is theEuler constant. This result ca
be obtained in the following way. LetH(p) be the Laplace
transform ofh(x), H(p)5*1

`e2pxh(x)dx. From Eq.~27!, it
fulfills

p
d

dp
H~p!1e2pH~p!1e2p/250, ~30!

whose solution isH(p)5$exp@E1(p)#21%/2, whereE1(p) is
the exponential integral

E1~p!5E
p

`

e2ydy/y.2g2 ln p as p→0. ~31!

The asymptotic value given in Eq.~29! then follows from the
usual relation h(`)5 lim@pH(p),p→0# These results,
which we have already derived@7# in a slightly different
way, imply a density and a pair correlation function in pe
fect agreement with the MC simulations of the annihilati
process, as shown in Ref.@10#.

In higher dimensions, forx.1 we have to solve the equa
tion

h~x!5x2dFh~1!1E
1

x

yd21E
0

p/2

md~u!h~@11y2

22y cosu#1/2!Gdu dy ~32!

and we are unable to find an analytic expression forh(x).
However, the basic features of the one-dimensional solu
persist: it varies significantly only on the range 1,x,2, its
asymptotic valueh(`) being practically reached forx
.2.5. These facts appear easily when Eq.~32! is solved
numerically by iterations. We obtain

d52, h~`!>0.188, d53, h~`!>0.144, ~33!

which through Eq.~15! give the asymptotic density. Thes
values are in agreement with the MC results already repo
in @10# from the work of@12#, which correspond to

d52, 0.18&h~`!&0.21, d53, 0.14&h~`!&0.17.
~34!

Our values~33! are close to the lower limits in Eq.~34!,
but this is expected since in the simulations the density
-

n

d

is

overestimated from the finite size effects~free boundary con-
ditions are used and some particles artificially survive!. The
values given in Eq.~33!, together with our findings for 1
<x<3, are used to predict the asymptotic correlati
X`(x)5h(x)/h(`) given in Table I. Its values ford51
have been already compared with the MC results in@10#, and
we add in this table thed52 MC data taken from the Ref
@12#. These data, corresponding toR(t)514, are in good
agreement with our predictions, except in the vicinity of t
discontinuity for x511, where the full jump is truly
asymptotic.

V. CONCLUSION

The agreement of the MC data with our results indica
as expected, that the Kirkwood superposition approximat
gives a precise description of the static annihilation proce
We have shown in this work the particular scaling form
the large time limit of the density and the correlation impli
by this assumption. It must be stressed, as it is clear from
derivation, that the asymptotic regime is independent of
initial density. The self-organized effects that we find d
crease smoothly as the dimensionality of the system
creases, thed5` limit being mean-field-like, withX`(r )
5u„r 2R(t)….

To conclude, we want to mention that the analysis
have performed here can be easily extended to the anni
tion A1B→0, with a5d/2, and also extended to othe
forms of the annihilation.
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TABLE I. Values of the asymptotic correlationX`(x) for x in
the range@1,3#. The columns corresponding tod51 andd53 are
the predicted values. The two columns ford52 are the theoretica
predictions~first column! and the measured values~second column!
in MC simulations.

x d51 d52 d53

1.0 1.78 1.69 1.40~4! 1.66
1.1 1.62 1.48 1.42~3! 1.39
1.2 1.48 1.32 1.32~3! 1.24
1.3 1.37 1.21 1.22~3! 1.15
1.4 1.27 1.12 1.15~3! 1.06
1.5 1.19 1.05 1.05~3! 1.02
1.6 1.11 1.01 1.03~3! 0.99
1.7 1.05 0.97 1.00~3! 0.98
1.8 0.99 0.95 0.95~3! 0.97
1.9 0.94 0.94 0.92~3! 0.98
2.0 0.89 0.96 0.95~3! 0.99
2.2 0.96 0.99 1.00~3! 1.00
2.4 0.99 1.00 1.00~3! 1.00
2.6 1.01 1.00 1.00~3! 1.00
2.8 1.01 1.00 1.00~3! 1.00
3.0 1.00 1.00 1.00~3! 1.00
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