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Static A+B—0 annihilation process in arbitrary dimension

B. Bonnief*
Centre de Physique Thaque et de Modésation, ESA 5468 du CNRS, UniversBerdeaux |, 351 Cours de la Liberation,
33405 Talence Cedex, France
(Received 7 April 1999

The pair annihilatiolA+B—0 of static particles distributed at random ird-@imensional space is studied
in the large time regime for a tunneling law. The consequences of a superposition approximation used to close
the hierarchy of equations describing the process are analytically explored. It is shown that the density and pair
correlations of surviving particles have scaling expressions which display the ordering and clustering effects.

PACS numbd(s): 05.40—a, 05.70.Ln

[. INTRODUCTION lation of the process, indicates that the Kirkwood approxima-
tion works extremely well. In one dimension, the Kirkwood
In the static annihilation model[1] and references approximation can be implemented into the annihilation re-
therein, particles are initially distributed at random, remain &ction through a particular model which can be solved. In
immobile and are removed by a fusion reactiaf A—0 that way analytic results have been obtained for the exponent
(type I) or A+B—0 (type Il), with isotropic reaction rate & and the prefacto€ of the density for type [10] and type

¢ i of particl ted by distanc@h Il [11] reactions. This model also shows that the asymptotic
w(r), for any pair of particies separated by distamce he expression of the two-particle correlations is given by a uni-
rate is usually chosen as a tunneling law(r)=

\ versal function of the scaled variabte=r/R(t).
Woexp(—r/r) [2] or a power-laww(r)=wor ~° whith & On the other hand, we have recently obtained all these
>1 [3]. In the following, we study the type Il model in a results, for the type | reactiofi2], from a rigorous resolu-
d-dimensional space, for a tunneling law and in case of equalon at large time of the hierarchical equations within the
concentration ofA and B particles. Kirkwood approximation. The derivation is thus more tran-
An interesting aspect of these reactions at large time igarent than with the model used for the one-dimensional case
their tendency to self-organizatioisee[4] and references and valid in any dimension. We therefore consider in this
therein, which is well described in terms of the reaction work the type Il reaction and, with our method of REf2],
radius[5] R(t), defined bytw(R(t))=1. In practice, at time rigorously explore some consequences of the Kirkwood clo-
t, all interactive pairs whose separations less thanR(t)  sure relation. We are just doing here analytically the analysis
have disappeared, and on the raRfe) <r <2R(t) the fluc-  numerically performed in Ref$4,7].
tuations of their number dominate the reaction. To be more Our starting point are the evolution equations for the den-
definite, one considers the density of surviving particles angity and for the two-particle correlation functions.When the
the two-particle correlation functions. There is only one denthree-particle correlation function appearing in these coupled
sity p(t) [p(t)=pa for type | andp(t) =pa=pg for type Il],  equations is expressed in term of the previous functions
one correlationX(r,t) = Xa for type | and two correlations through a Kirkwood superposition approximation, they re-
for type IlI, X;(r,t)=Xag and X,(r,t)=Xaa =Xgg- It then  duce to a closed system. Our main result is to show that the
appears that the density vanishespét) = C/R“(t), where density and the correlations have, at large time, scaling ex-
the exponentr is given bya=d (type |) or a=d/2 (type Il)  pressions which involve two functiorig(x), wherex is de-
and that the correlations, which are initially normalized tofined asx=r/R(t). In fact, one finds for the density expo-
unity, X;(r,t=0)=1, tend towards nontrivial functions. nent «=d/2, for the density factoC=h; (x=x*)=h, (x
These results have been firstly derived from heuristic con= ) and for the correlationX;[ r =xR(t),t]= h;(x)/h;().
siderationg 6] or on the basis of numerical evidenigg7]. In The functionsh;(x) are solution of an integral system of
particular, in the work of Refd4,7], the hierarchical system coupled equations explicitly soluble in one dimension, and
[8] which describes the reaction as an infinite set of evoluwe recover some of our previous results , the other cases
tion equations for the correlation functions has been investibeing tractable by a numerical iteration. Our plan is the fol-
gated within a Kirkwood approximatiof®]. This approxi- lowing.
mation is to express the three-particle correlations in terms of In Sec. Il we recall the derivation of the evolution equa-
the two-particle ones, in such a way that the hierarchical setions for the density and for the correlations. Using the su-
reduces to a closed system for the density and the twgperposition approximation we give their leading expression
particle correlation functions, which have been numericallyin the large time regime. At this point we introduce the func-
obtained. A comparison made for various dimensions of theitions y;(r,t) defined byy,(r,t)=p(t)X;(r,t), since we ob-
values with the physical ones, given by a Monte Carlo simuserve that the previous system implies simple evolution
equations fory,(r,t) and that these functions suffice to fix
the density and the correlations through the relatip(iy
*Electronic address: bonnier @ pth.u-bordeaux.fr = y1(%0,t) = y,(o0,t) and X;(r,t)=y;(r,t)/y,(,t) which
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follow from the normalization conditionX;(«,t)=1. More-  greater tharr. On the other hand, in the half-spaEe the
over, as we show in Sec. lll, the solutions of these equationdistancer” is greater tham and Eq.(3) can be written

at large time have the scaling form(r,t)=h;(x)/R(t), L 5 ) )
provided thath;(x) and « fulfill some conditions that we ~ P2.a(F".1,r")=p()X1(r,)Xe(r",t)=y1(r,t)pya(r’,t),
investigate in Sec. IV. We summarize our findings in Sec. V. (4)

where fori=1,2 we definey,(r,t) according to

yi(r,t)=p(H)X(r,t). ®)

Il. PAIR CORRELATION EVOLUTION EQUATION

Let na(r,t) andng(r,t) be the microscopic particle con-
centrations ofA andB particles at time and positionr, r
being here al-dimensional vector. The ensemble averaged
products of these concentrations define the many-center den-
sities pmn=(ILZnA(r; ,)TH - ng(r;,t)). In particular
<nA(r,t))=<n23(r,t))|=p(t),|p1'1=p2(t)X1(|r1—r2|,t), and
P2 .0=pPo2=p (t)Xa(|ry—ry|,t) where p(t) is the global ) o ) )
density andX;(r,t) the pair correlation functions normalized Which from Eq. (1) is just —yy(r,t)dp(t)/ét. Finally in
according toX;(r—w,t)=1. The A—B symmetry comes E(r), asr is large, in Eq(3) the correlationX;(r,t) is unity
from the initial conditions that we consider, i.e., equal num-at the leading order and one can use the approximation
ber of A and B particles. As their positions are chosen at vy 3 , "
random X;(r,t=0)=1 for any separation. In the following P21 1) =p (DX, HX(r", 1)
we have also to consider the three-center density =p(t)y1(r', ) yo(r" t).

The evolution equation Eq2) then becomes

2[ g p2a(r",r,r )w(r)Dr’

=y1(r,t)fpra(r’,Hw(r")D%’

p2a(r,r’,r") for a triplet A;A,B (or B;B,A) wherer is the
distanceA;A,, r’ andr” being the distance&;B andA,B,

respectively. 5 q

Taking into account the annihilation process one can write P11 _ B ap
an infinite system of equatiori§] coupling the many-center ot (D=WNPp1A1D =y (r D) G (O Fp(01a(r.Y),
densities. For the densify(t) one finds (6)

d where the integral(r,t) is restricted to regioiE(r

- S 0= [ wrpy D% & Ay SO
— ’ ’ " dpr

and considering the decays of a set of two particlasB( h(rt ZJE(r)W(r )7 Dy (OB @)
separated by a distanceone obtains the evolution equation
of py4(r,t). The pair itself can annihilate with a probability Expressed in the term ofy(r,t), Eq. (6) has the following
w(r)pa4(r,t), or either member of the pair can annihilate simpler form where the density has been eliminated:
with a third particle. The particlé\; annihilates with some
particle B,, which happens with a probability
w(r')po«r”,r,r’) wherer’ andr” are the distances from
B, to A; and toB, respectively. The particl8 annihilates
with some particleA,, which happens with a probability
wW(r')po(r”,r,r’) wherer’ andr” are the distances from
A, to B and toA,, respectively. One gets

Y1
—W(r,t)zw(l’)yl(l’,t)-l-|1(I’,t). (8)

We now compute explicitlyl 1(r,t) for the dimensionsd
=1, 2, and 3. In one dimensioRk(r) is the interval A;B],
andr=r’+r". This gives a convolution integral

&pl,l ’ " Ay
—T(r,t)=w(r)p1,1(r,t)+2 w(r")poa(r”,r,r")D".

2
In this equation one uses the Kirkwood approximation
p2(r",1, 1) =p ()X (r, )Xy (r',HX(r", ) (3)

and investigates its expression for large valuesaridt. We
thus decompose in E(R) ther ' integration region into three

Il(r,t)zzforw(r’)yl(r’,t)yz(r—r’,t)dr’. 9

In two dimensions, using the coordinatéds =(0,0), B
=(r,0), A,=(r'cosér’'sing) the domainE(r) is the
strip[ — w/2< < =/2, O<r'<r/cosfd] and

w2 r/cosé
Il(r,t)=4f daf w(r")y(r’,t)y(r”,t)yr'dr’
0 0

subdomains;, E,, andE(r) that we describe here in the (10
three dimensional case, its generalization to other dimension o e

alities being straightforward. Lé®; and P, be those planes

perpendicular to the lind;B and containing the pointa, r"=[r2+r'2—2rr' cosf]*? (12)

and B, respectively. TheriE(r) denotes the region between

P, andP,, E; the half-space bounded B, and wherer’
<r”, and finally the remaining space k,, wherer’>r".

First of all, the integration domai&, can be neglected due

to the exponential decay of the ratgr’), r’ being inE,

In three dimensions, using the frame whérg=(0,0,0),B
=(0,0r), and A,=(r’ sinfcose,r’ sinésing,r' cos) the
region E(r) is given by [0<¢<27, 0<6O<m/2, O<r’
<r/cosd] and finally
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/2 r/cosé
Il(r,t)=477f sin@dﬁf
0 0

XW(r' ) ya(r' Hy(r',r'2dr’, (12
wherer” is again given by Eq(11). We thus shall use the
representation

2 r/cosé
'1(f't>=f0 Mw)dﬁfo w(r)y(r' D yo(1",0)

xr'd=Dgr’, (13
where \;=268(6) (the Dirac function, \,=4, A3
=4 siné, andr” given by Eq.(11).

The evolution equation of,(r,t) is given by the evolu-
tion of p, ((r,t) which is

J
—%(nt)ﬂfw(r'>pz,1<r,r',r">Ddr'. (14

Applying to this equation the same arguments than previ

ously, one obtains

d
—%(r,t)=l2(r,t), (15)

where

w2 r/cosé
Iz(rvt):J’O )\d(e)dafo W(r,)fyl(r’,t),yl(r/!,t)

xr/@=bgr’, (16)
Explicit solutions y;(r,t) of the system of Eqs(8)—(15)
wherel;(r,t) has the form given in Eq$13)—(16) are stud-
ied in the next section.

Ill. SCALING FORM OF THE EVOLUTION EQUATIONS

The reaction radiufR(t), defined bytw(R(t))=1, i.e.,
R(t)=r,logt whenw(r)=e""""o, is such that at large time
no interacting particles survive if their separatiois smaller
thanR(t). (In the following we assume that=1.) In this
regime it is thus convenient to use a scaled variable
=r/R(t) and to see if Eqs(8)—(15) admit asymptotic solu-
tions of the form

Yi(r,H)=p()Xi(r,H) =hi(x)/R*(1), 17
where, according to previous results, the exponerns ex-
pected to be equal ta/2. Imposing the conditionX;(r
—oo,t)=1 in the definition(17) gives the density and the
pair correlation functions in term df;(x) according to

p()= lim hy(x)/R%(t) = lim h,(x)/R(t),

X—00

(18)

X;(r=xR(t),t)=h;(x)/h(c°). (19

These expressions evidently imply that(x) are non-
negative functions with the same asymptotic litm{te).

B. BONNIER
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To studyh;(x), we begin by inserting Eq17) into Eq.
(8) and Eq.(15). Sincedx/dt=—x/tlogt, one easily finds

- @(r t)=x1*“i(x“h-(x))/tR“(t)lo t (20
ot dx = gt

To express the integralg(r,t) appearing in Eq(13) and Eq.
(16) we change the variables according rte=xR(t), r’
=yR(t), andr”=zR(t) where from Eq(11) zis defined by

z=[x?+y?—2xy cosd]*2 (21)

Thusy;(r’,t) y;(r",t) =hi(y)h;(2) R~2%(t) and the integrals
becomel(r,t)=RI~22(t) f T2\ 4(6)d 63;(6,x,t) with

x/cos 6
300 = fo O yhd(2y iy, (22

where here and in the following the indéohas the value 2
fori=1 and the value 1 for=2. We have used the relation
w(yR(t))=t™Y, which also gives w(r)v;(r,t)
=t *h;(x)R™“(t). If we multiply both sides of Eq98) and
(15) by tR%(t)logt, we obtain

d
xl‘“&(x“hl(x))ztl‘xhl(x)logt

2

+th’“(t)Iogtj Ag(6)d6I1(6,x,1),

0
(23)

/2
Ng(0)d03,(0,%,1).

(29)

xl“%(x“hz(x))=th“(t)logtfo

The left-hand side of Eq23) is time-independent, and this
has to be the case for each member of the right-hand side,
since they are non-negative. The first term implies that

hy(x)=0 for 0O=x=<l1. (25

For the second term, we have to evaluate the leading term at
large time of the integral,(6,x,t). Equation(25) indicates

that the range of thg integration in Eq.(22) starts aty=1

and that this value dominates the integral due to the factor
t Y. We thus change variables in E§2) and useu defined

by y=1+ul/logt, in such a way that t™Ydy

=e Ydu/(tlogt). Assuming that in the vicinity of=1 the
functionh4(y) has the behavior

hy(y)~u(y—1)%,

where u and B are constants to be fixed latter on, one ob-
tains that at large time

(26)

Ji(0,x,1)=ul'(1+ B)h([x?+1—2x cos#]?)/t log* A t
(27)

Inserting this relation in the right-hand sides of EB3)
(second termand Eq.(24), their time independence implies
that

a+ B=d. (28
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Forx>1, we thus obtain the following equation to determine It is moreover possible to explicitly solve the system

the functionh(x): through a Laplace transform. Led. (X)="h,(x)=xh4(x)
which from Eq.(33) are solutions of
B d 2
X R MO =pl (1+5) fo MalO)h; @ (X)+XgL(X)= * ag(x—1). (35
X ([1+x%—2x cos]Y3de, (29) For their Laplace transform we choos&. (p)

= [7e"P*g.(x)dx to avoid the singularity at=0. Then
the functionh,(x) being determined fox=0 by Eq. (24)
. 0 1
which becomes e PXg.(x—1)dx= e*pGi(p)Jre*pf e PXCx “dx,
1 0

d w2
K a00) = 1T (14 B) | (o145 (39
° where we have used that on the rangeXG=1, g+(X)

—2x cosf]Y?)d . (300 =h,(x)=Cx* In the same way, an integration by parts
gives
Among the solutions of these equations we have to select

those which have the same asymptotic behavigf>) TNV _
=h,()=h(e0). This constraint determines, since equat- L e gL (x)dx=pG.(p)—Ce™P. (37)
ing the two members of Eq29) or Eq. (30) in the limit x

—o0, one obtains ah(oc)=,ul“(1+,8)h(oo)fg’2)\d(0)d0. Taking thep derivative of the two members of the previ-
These values are ous relation and using E@36) we finally obtain the equa-

tions defining the function& - (p):
d=1, u=al2l'(1+B); d=2,

31 d -
pn=al27l'(1+B); d=3, ,u=a/47TF(1+ﬁ).( : pd_pG:(p)"'(Biae P)G.(p)=D.(p), (38)

Finally, the functionsh;(x) are fixed forx>o;; by the sys-  whered ., (p)=—Ce P(1+ap #ffe *x~“dX).

tem It then appears that the solutions can be found by the
standard techniques and are

d w2
xl’“&(x“hi(x))= f wa(Oh([1+x%—2x cosd]*?)d e,
0

(32) G.(p)= pﬁ‘ exp(+ aEy(p))
with uy(6)=ad(0), u(6)=2alm, and us(6)=asind. ) S
We study the solutions of these equations in the next section, -~ Xp) fo e X Ydx; / 2, (39)

but at this stage of our analysis, we have to point out that the
exponenta is not yet fixed. This is a major difference with whereE,(p) is the exponential integral
the A+ A—0 annihilation where imposing scaling implies

=d. *
“ El(p)=f e Ydyly=—y—logp as p—0 (40
p
IV. STUDY OF THE SCALING SOLUTIONS
] ] o ] and y=0.5772 ... is theEuler constant.The asymptotic
In one dimension, the defining system is values for x—o, which follow from the usual relation
d g+ (°)=lim[pG.(p),p—0], are
l—a___ (yap. — _
X ) =ahdx=1), g.(=)=exp—ai2, g (»)=0. (4]
33
hy(x=1%)=a(x—1)#/2I'(1+ B). 33 We have already derived these results, for the aasg3

=1/2, in our previous work11]. In the present approach all
As h;(x) vanishes for 8x=<1, this system with =2 deter-  the solutions, which fuffill the relatiom+ =1 but where

minesh,(x) for 0<x=2 according to a# B have to be rejected on physical grounds. In a true
simulation of the process, as in Reff4,7], some initial con-
h,(x)=C/x“. (39 ditions are taken into account and lead in any case to a defi-

nite valuea=d/2. Here, since only asymptotics conditions
In Eq. (34) Cis a constant which is fixed by the constraint on are used self-consistently we propose to select the physical
h,(x=1") since withi=1 Eq.(33) gives ah,(x) +xh;(x) solutions by imposing short-range order for the two-particle
=aC(x—1)"« correlation functions. A simple constraint is then provided by
At the valuex=1 it givesC=1/2'(B8). More generally G_(p=0)=[7(h,(x)—h.(x))dx which is a constant when
the functionsh;(x) can be obtained step by step by integra-the correlations saturate their common limit suffitiently
tions on intervals of unit length, the integration constantsquick, as suggested by the experimental data. Since our so-
being fixed by continuity requirements. lution behaves a6 _(p=0)=p* Pexp(ay)/2, we obtain the
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wanted resulta=B=1/2. The asymptotic valud(e)= ticular scaling form of the large time limit of the density and
exp(—y/2)/4=0.18737 ... appears then to be quickly the correlations implied by this assumption. It must be
reachedh,(3)=0.187; h,(3)=0.188. stressed, as it is clear from our derivation, that the

In higher dimensions, we cannot exactly solve the systemasymptotic regime is independent of the initial density. The
but we know from our previous workL2] that its solutions  role of the reaction radiuR(t) appears clearly: sinde; (x)
can be found by iteration. Assuming=g8 we find a=8  vanishes foix=<1, there are no interactiv&B pairs with a
=d/2 and we must recover the density and pair correlatiorpair separation smaller thaR(t). Sincehy(x) is nontrivial
functions already numerically given in the work of Refs. on the range £x<3 self-organization effects appear on the
[4,7], where the scaling properties are now apparent. rangeR(t)=<r <3R(t). The correlation function for like par-
ticles is given byh,(x) which decreases strongly from
=0 where it is singular tox<3 where it reaches its

We recall that the Kirkwood superposition approximationasymptotic value: this is the clustering effect.
has been shown to give a precise description of the static These results thus extend the properties found forAthe
annihilation process. We have shown in this work the parstatic annihilation in a way generally expected.

V. CONCLUSION
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