1	Supplement for: Computation and characterization of local sub-filter-scale
2	energy transfers in atmospheric flows
3	Davide Faranda ^{1,2} , Valerio Lembo ³ , Manasa Iyer ⁴ , Denis Kuzzay ⁵ ,
4	Sergio Chibbaro ⁴ , Francois Daviaud ⁶ & Berengere Dubrulle ⁶
5	¹ Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ,
6	Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
7	² London Mathematical Laboratory, 14 Buckingham Street, London, WC2N 6DF, UK
8	davide.faranda@lsce.ipsl.fr
9	³ Meteorological Institute, University of Hamburg, Grindelberg 5, 20146 Hamburg, Germany
10	⁴ Sorbonne Université, UPMC Univ Paris 06, CNRS UMR 7190, Institut Jean le Rond
11	d'Alembert, Paris, France
12	⁵ Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon,
13	France
14	⁶ SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif sur Yvette cedex, France

1

ABSTRACT

In the supplementary material, we present additional information on the thermodynamic \mathscr{D}_{ℓ}^{T} and dynamical components $\mathscr{D}_{\ell}(\vec{u})$ of the DR indicator. We also present the evolution of DR indicator and its components during Jolina and Katrina hurricanes. We include two supplementary tables with the values of statistical quantities of $\mathscr{D}_{\ell}(\vec{u}, b)$ distributions by arranged by height.

21 LIST OF TABLES

22 23	Table 1.	Statistics of Interim rean	$\mathscr{D}_{\ell}(\vec{u}, b)$ alysis.) dis	tribut	ions	as a	funct	ion (of the	heig	ht f	or 1	the	ERA	-		4
24	Table 2.	Statistics of	$\mathscr{D}_{\ell}(ec{u},b)$) dis	tribut	ions	as a	funct	ion o	of the	heigl	nt fo	or tł	ne N	JCA	R		5

height	$\operatorname{mean}(\mathscr{D}_{\ell}(\vec{u},b))$	$\operatorname{std}(\mathscr{D}_{\ell}(\vec{u},b))$	skew($\mathscr{D}_{\ell}(\vec{u},b)$)	kurt($\mathscr{D}_{\ell}(\vec{u}, b)$)
1000 hPa	0.0000	0.0003	-12.5696	276.9933
950 hPa	0.0002	0.0003	1.8389	14.4944
850 hPa	0.0004	0.0006	2.6106	14.7987
700 hPa	0.0005	0.0008	2.5612	13.7117
600 hPa	0.0008	0.0012	2.7417	14.9112
500 hPa	0.0011	0.0017	2.8925	15.3062
400 hPa	0.0011	0.0018	2.8953	15.0074
300 hPa	0.0011	0.0018	2.9440	15.3355
250 hPa	0.0005	0.0011	3.0691	17.6553
200 hPa	-0.0003	0.0010	-3.2327	20.4761
150 hPa	-0.0003	0.0009	-2.2594	19.2577
100 hPa	-0.0004	0.0010	-3.4291	20.3697

TABLE 1. Statistics of $\mathscr{D}_{\ell}(\vec{u},b)$ distributions as a function of the height for the ERA-Interim reanalysis.

height	$\operatorname{mean}(\mathscr{D}_{\ell}(\vec{u},b))$	$\operatorname{std}(\mathscr{D}_{\ell}(\vec{u},b))$	skew($\mathscr{D}_{\ell}(\vec{u},b)$)	kurt($\mathscr{D}_{\ell}(\vec{u}, b)$)
1000 hPa	-0.0000	0.0006	-7.6942	101.0839
950 hPa	0.0003	0.0006	2.4538	26.8792
850 hPa	0.0005	0.0008	2.3793	13.9458
700 hPa	0.0007	0.0010	1.9269	7.7386
600 hPa	0.0011	0.0015	1.9876	7.9285
500 hPa	0.0015	0.0021	2.1588	8.9876
400 hPa	0.0016	0.0024	2.3421	10.0828
300 hPa	0.0016	0.0026	2.5646	11.6123
250 hPa	0.0010	0.0019	2.7246	14.4601
200 hPa	-0.0000	0.0012	-1.9678	14.2280
150 hPa	-0.0003	0.0011	-2.5738	12.7600
100 hPa	-0.0004	0.0010	-2.7603	12.9706

TABLE 2. Statistics of $\mathscr{D}_{\ell}(\vec{u}, b)$ distributions as a function of the height for the NCAR reanalysis.

26 LIST OF FIGURES

27 28 29 30	Fig. 1.	Distribution of the dynamical component of the DR indicator $\mathscr{D}_{\ell}(\vec{u})$ for $\ell = 220$ Km and the ERA-Interim reanalysis. (a-c) longitudinal averages, (d-e-f) maps at three different fixed height: 1000 hPa, 500 hPa and 100hPa. (a,d) yearly averages, (b,e) winter averages, (c,f) summer averages.		7
31 32 33 34	Fig. 2.	Distribution of the thermodynamic component of the DR indicator \mathscr{D}_{ℓ}^{T} for $\ell = 220$ Km and the ERA-Interim reanalysis. (a-c) longitudinal averages, (d-e-f) maps at three different fixed height: 1000 hPa, 500 hPa and 100hPa. (a,d) yearly averages, (b,e) winter averages, (c,f) summer averages.		8
35 36 37 38	Fig. 3.	Distribution of the dynamical component of the DR indicator $\mathscr{D}_{\ell}(\vec{u})$ for $\ell = 220$ Km and the NCAR reanalysis . (a-c) longitudinal averages, (d-e-f) maps at three different fixed height: 1000 hPa, 500 hPa and 100hPa. (a,d) yearly averages, (b,e) winter averages, (c,f) summer averages.		9
39 40 41 42	Fig. 4.	Distribution of the thermodynamic component of the DR indicator \mathscr{D}_{ℓ}^{T} for $\ell = 220$ Km and the NCAR reanalysis (Thermodynamic component only). (a-c) longitudinal averages, (d-e-f) maps at three different fixed height: 1000 hPa, 500 hPa and 100hPa. (a,d) yearly averages, (b,e) winter averages, (c,f) summer averages.]	10
43 44 45 46 47	Fig. 5.	3D structure of the wind field (green cones) and DR indicator for the Hurricane Jolina. (a,d,g,j) Dynamic component $\mathscr{D}_{\ell}(\vec{u})$ only. (b,e,h,k) Thermodynamic component \mathscr{D}_{ℓ}^{T} only. (c,f,i,l) Total $\mathscr{D}_{\ell}(\vec{u},b)$ contribution. Results for ERA-Interim reanalysis, for $\ell = 220$ km. Red: isosurfaces at $\mathscr{D}_{\ell}(\vec{u},b) = 0.001$. Dark Blue: isosurfaces at $\mathscr{D}_{\ell}(\vec{u},b) = -0.001$. The colorscale indicates values $\mathscr{D}_{\ell}(\vec{u},b) > 0.001$. Time from top to bottom.	1	11
48 49 50 51 52	Fig. 6.	3D structure of the wind field (green cones) and DR indicator for the Hurricane Katrina. (a,d,g,j) Dynamic component $\mathscr{D}_{\ell}(\vec{u})$ only. (b,e,h,k) Thermodynamic component \mathscr{D}_{ℓ}^{T} only. (c,f,i,l) Total $\mathscr{D}_{\ell}(\vec{u},b)$ contribution. Results for ERA-Interim reanalysis, for $\ell = 220$ km. Red: isosurfaces at $\mathscr{D}_{\ell}(\vec{u},b) = 0.001$. Dark Blue: isosurfaces at $\mathscr{D}_{\ell}(\vec{u},b) = -0.001$. The colorscale indicates values $\mathscr{D}_{\ell}(\vec{u},b) > 0.001$. Time from top to bottom.	1	12

FIG. 1. Distribution of the dynamical component of the DR indicator $\mathscr{D}_{\ell}(\vec{u})$ for $\ell = 220$ Km and the ERA-Interim reanalysis. (a-c) longitudinal averages, (d-e-f) maps at three different fixed height: 1000 hPa, 500 hPa and 100hPa. (a,d) yearly averages, (b,e) winter averages, (c,f) summer averages.

⁵⁶ FIG. 2. Distribution of the thermodynamic component of the DR indicator \mathscr{D}_{ℓ}^{T} for $\ell = 220$ Km and the ERA-⁵⁷ Interim reanalysis. (a-c) longitudinal averages, (d-e-f) maps at three different fixed height: 1000 hPa, 500 hPa ⁵⁸ and 100hPa. (a,d) yearly averages, (b,e) winter averages, (c,f) summer averages.

FIG. 3. Distribution of the dynamical component of the DR indicator $\mathscr{D}_{\ell}(\vec{u})$ for $\ell = 220$ Km and the NCAR reanalysis . (a-c) longitudinal averages, (d-e-f) maps at three different fixed height: 1000 hPa, 500 hPa and 100hPa. (a,d) yearly averages, (b,e) winter averages, (c,f) summer averages.

FIG. 4. Distribution of the thermodynamic component of the DR indicator \mathscr{D}_{ℓ}^{T} for $\ell = 220$ Km and the NCAR reanalysis (Thermodynamic component only). (a-c) longitudinal averages, (d-e-f) maps at three different fixed height: 1000 hPa, 500 hPa and 100hPa. (a,d) yearly averages, (b,e) winter averages, (c,f) summer averages.

FIG. 5. 3D structure of the wind field (green cones) and DR indicator for the Hurricane Jolina. (a,d,g,j) Dynamic component $\mathscr{D}_{\ell}(\vec{u})$ only. (b,e,h,k) Thermodynamic component \mathscr{D}_{ℓ}^{T} only. (c,f,i,l) Total $\mathscr{D}_{\ell}(\vec{u},b)$ contribution. Results for ERA-Interim reanalysis, for $\ell = 220$ km. Red: isosurfaces at $\mathscr{D}_{\ell}(\vec{u},b) = 0.001$. Dark Blue: isosurfaces at $\mathscr{D}_{\ell}(\vec{u},b) = -0.001$. The colorscale indicates values $\mathscr{D}_{\ell}(\vec{u},b) > 0.001$. Time from top to bottom.

FIG. 6. 3D structure of the wind field (green cones) and DR indicator for the Hurricane Katrina. (a,d,g,j) Dynamic component $\mathscr{D}_{\ell}(\vec{u})$ only. (b,e,h,k) Thermodynamic component \mathscr{D}_{ℓ}^{T} only. (c,f,i,l) Total $\mathscr{D}_{\ell}(\vec{u},b)$ contribution. Results for ERA-Interim reanalysis, for $\ell = 220$ km. Red: isosurfaces at $\mathscr{D}_{\ell}(\vec{u},b) = 0.001$. Dark Blue: isosurfaces at $\mathscr{D}_{\ell}(\vec{u},b) = -0.001$. The colorscale indicates values $\mathscr{D}_{\ell}(\vec{u},b) > 0.001$. Time from top to bottom.