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Eigenvalue bounds of the Robin Laplacian with magnetic field

 for the magnetic Laplacian and to integrate it over M (see Theorem 1.2). In the last part, we compare the eigenvalues λ k (τ, α) with the first eigenvalue λ 1 (τ ) = λ 1 (τ, 0) (i.e. without magnetic field) and the Neumann eigenvalues λ k (0, α) (see Theorem 1.6) using the min-max principle.

Introduction and Results

Let (M, g) be a Riemannian manifold of dimension n and let α be a smooth real differential 1-form on M. Given two vector fields X, Y in the complexified tangent bundle T M ⊗C, the magnetic covariant derivative is defined as ∇ α Y X = ∇ M Y X + iα(Y )X, where ∇ M denotes the Levi-Civita connection on M. It is shown in [START_REF] Egidi | Ricci curvature and eigenvalue estimates for the magentic Laplacian on manifolds[END_REF]Lemma 3.2] that ∇ α satisfies the Leibniz rule and the compatibility property with respect to the Riemannian metric g, and is also used to define the magnetic Hessian by Hess α f (X, Y ) = ∇ α X d α f, Y . Here and in all the paper, the product •, • will denote the Hermitian inner product extended from the metric g to the tangent bundle T M ⊗ C or to the cotangent bundle T * M ⊗ C. We will also use the natural one-to-one isomorphism between T * M ⊗ C and T M ⊗ C by w(X) = X, w # for any X ∈ T M ⊗ C and w ∈ T * M ⊗ C. Given any complex-valued function f on M, the magnetic Laplacian is defined as being the trace of the magnetic Hessian ∆ α f := -trace(Hess α f ) = -div α (d α f ) # , where d α f := d M f + if α and div α is the magnetic divergence given for any vector field X ∈ T M ⊗ C by div α X := div M X + i X, α # .

The study of the spectrum of the magnetic Laplacian has interested many researchers [START_REF] Colbois | Eigenvalue bounds for the magnetic Laplacian[END_REF][START_REF] Erdös | Rayleigh-type isoperimetric inequality with a homogeneous magnetic field[END_REF][START_REF] Frank | Eigenvalue estimates for magnetic Schrödinger operators in domains[END_REF][START_REF] Shigekawa | Eigenvalue problems for the Schrödinger operator with the magnetic field on a compact Riemannian manifold[END_REF][START_REF] Shubin | Discrete magnetic Laplacian[END_REF][START_REF] Shubin | Essential self-adjointness for semi-bounded magnetic Schrödinger operators on non-compact manifolds[END_REF] during the last years. For example, the authors in [START_REF] Egidi | Ricci curvature and eigenvalue estimates for the magentic Laplacian on manifolds[END_REF] gave an estimate à la Lichnerowicz for the first eigenvalue in terms of a lower bound of the Ricci curvature (assumed to be positive) and the infinity norm of the magnetic field d M α. In particular, they deduce a spectral gap between the first eigenvalue (which is not necessarily zero) and the second one. The main technique used in the paper is a Bochner type formula for the magnetic Laplacian ∆ α , which they integrate it over the manifold M and they control all the integral terms involving d M α. Indeed, they prove

Theorem 1.1. [2, Thm. 4.1] Let (M, g) be a complete Riemannian manifold of dimension n. Then for all f ∈ C ∞ (M, C), we have - 1 2 ∆ M (|d α f | 2 ) = |Hess α f | 2 -ℜ d α f, d α (∆ α f ) + Ric M (d α f, d α f ) + i(d M α(d α f, d α f ) -d M α(d α f , d α f )) + i 2 ( f d α f, δ M d M α -f d α f , δ M d M α ), (1.1) 
where δ M denotes the formal adjoint of d M on (M, g).

In this paper, we are interested in estimating the eigenvalues of the magnetic Laplacian with the Robin boundary condition. That is, we assume on a given compact manifold M with boundary N there exists a complex-valued function f on M satisfying the equation ∆ α f = λf on M and the boundary condition (d α f )(ν) = τ f for some positive real number τ. Here ν denotes the inward unit normal vector field of N, which will be identified with its dual one form. It a standard fact that the spectrum of such boundary problem is purely discrete and consists of a sequence of eigenvalues (λ k (τ, α)) k arranged in increasing order counting multiplicities. In order to get the estimates for the eigenvalues, we shall first integrate the Bochner formula in Theorem 1.1 as in [START_REF] Egidi | Ricci curvature and eigenvalue estimates for the magentic Laplacian on manifolds[END_REF] by taking into account the boundary terms. First, we get Theorem 1.2. Let (M n , g) be a compact Riemannian manifold with boundary N and let α be a differential real 1-form on M. Then, we have

M |Hess α f + 1 n (∆ α f )g| 2 dv g = n -1 n M |∆ α f | 2 dv g - M Ric M (d α f, d α f )dv g + M ℑm (d M α)(d α f, d α f ) dv g + M |f | 2 |d M α| 2 dv g -(n -1) N H| d α f, ν | 2 dv g -2 N ℜ( ν, d α f ∆ α N f )dv g - N II(d α N f ), d α N f dv g . (1.2)
for all complex valued function f ∈ C ∞ (M, C).

Here II denotes the second fundamental form of the boundary and H is the mean curvature. Also ∆ α N is a Laplacian defined on functions on N which is associated to some exterior derivative d α N (see Section 2 for the definition).

The formula (1.2) can be useful for different applications in spectral theory. One of these applications is to use Theorem 1.2 for a particular solution of the magnetic Robin boundary problem. Therefore, we get the universal bound on the eigenvalues of the magnetic Robin Laplacian under some assumptions on the magnetic field d M α, the Ricci curvature Ric M and the second fundamental form II. Indeed, Theorem 1.3. Let (M n , g) be a compact Riemannian manifold with boundary ∂M = N and let α be a differential 1-form on M and τ > 0. Assume that

Ric M ≥ k (k > 0) and that II + τ ≥ 0. If α satisfies k -(n -1)τ H min ≤ ||d M α|| ∞ ≤ 1 + 2 n -1 n -1 k, (1.3) 
then any eigenvalue λ(τ, α) of the Laplacian ∆ α satisfies

λ(τ, α) ≤ a -(k, ||d M α|| ∞ , n) or λ(τ, α) ≥ a + (k, ||d M α|| ∞ , n),
where

a ± (k, ||d M α|| ∞ , n) = n (k -||d M α|| ∞ ) ± (k -||d M α|| ∞ ) 2 -4( n-1 n )||d M α|| 2 ∞ 2(n -1) ,
and

H min := min M H. Remark 1.4.
• The assumption in (1.3) on the mean curvature is valid when H min > 0, since

1 + 2 n-1 n -1
k < k. Also, when τ is very large, (1.3) becomes an upper bound on ||d M α|| ∞ , which is a growth condition on the magnetic field with respect to the Ricci curvature.

• It follows from Inequality (1.3) that (k -||d M α|| ∞ ) 2 -4( n-1 n )||d M α|| 2 ∞ > 0 and a -(k, d M α ∞ , n) > 0. This is more transparent in the proof of Theorem 1.3.
As a direct consequence of Theorem 1.3 and a standard continuity argument as in [START_REF] Egidi | Ricci curvature and eigenvalue estimates for the magentic Laplacian on manifolds[END_REF], one gets Corollary 1.5. Let (M n , g) be a compact Riemannian manifold with boundary ∂M = N and let α be a differential 1-form on M and τ > 0. Assume that

Ric M ≥ k (k > 0) and that II + τ ≥ 0. If k ≤ (n -1)τ H min and α satisfies ||d M α|| ∞ ≤ 1 + 2 n -1 n -1 k, then any eigenvalue λ(τ, α) of the Laplacian ∆ α satisfies λ(τ, α) ≥ a + (k, ||d M α|| ∞ , n),
where

a + (k, ||d M α|| ∞ , n) = n (k -||d M α|| ∞ ) + (k -||d M α|| ∞ ) 2 -4( n-1 n )||d M α|| 2 ∞ 2(n -1) .
Proof of Corollary 1.5: It is enough to prove the lower bound on the first eigenvalue λ 1 (τ, α). We apply Theorem 1.3 to the 1-form

α ′ = εα, for ε ∈]0, 1[. The inequality (1.3) is clearly satisfied for α ′ . Hence λ 1 (τ, εα) is either less than a -(k, ε||d M α|| ∞ , n) or bigger than a + (k, ε||d M α|| ∞ , n). Note that λ 1 (τ, εα) and a -(k, ε||d M α|| ∞ , n) depend continuously on ε. Since λ 1 (τ, 0) > 0 and a -(k, ε||d M α|| ∞ , n) -→ ε→0 0, we get that the inequality λ 1 (τ, εα) ≥ a + (k, ε||d M α|| ∞ , n) is true in a neighborhood of ε = 0. De- fine ε * = sup{ε ∈ (0, 1) | λ 1 (τ, εα) ≥ a + (k, ε||d M α|| ∞ , n)}. If ε * < 1, then we get λ 1 (τ, ε * α) ≥ a + (k, ε * ||d M α|| ∞ , n) and lim δ→0 + λ 1 (τ, (ε * + δ)α) ≤ a -(k, ε * ||d M α|| ∞ , n), which
violates the continuity of λ 1 (τ, εα) with respect to ε. Therefore, ε * = 1.

As a direct application of Corollary 1.5, we find the lower bound for the eigenvalues of the Dirichlet Laplacian proved by Reilly in [START_REF] Reilly | Applications of the Hessian operator in a Riemannian manifold[END_REF]. Indeed, on a manifold M with boundary N such that Ric M ≥ k with nonnegative mean curvature H, consider any closed 1-form α on M. Take a number τ big enough so that τ ≥ k (n-1)H min and II + τ ≥ 0. Then one deduces that λ(τ, α) ≥ n n-1 k. As the spectrum of the Robin Laplacian tends to the Dirichlet one when τ → ∞, the result then follows.

In the last part of this paper, we present two-sided estimates of all the eigenvalues λ k (τ, α) in terms of λ 1 (τ ) = λ 1 (τ, 0) and the Neumann eigenvalues λ N k (α) := λ k (0, α), using a variational argument (see Theorem 1.6 below). These estimates yield a quantitative measurement of the diamagnetism (i.e. the quantity λ(τ, α)λ 1 (α)). To state this theorem, we define for a normalized eigenfunction of the Robin Laplacian (without magnetic field) f τ : M → R the constant the following constant

C(τ ) = min x∈M f 2 τ (x) max x∈M f 2 τ (x) > 0 . (1.4) Note that C(0) = 1, lim τ →+∞
C(τ ) = 0 and the function f τ can be selected in a unique manner so that f τ > 0. We have Theorem 1.6. For all τ > 0 and k ≥ 1,

λ 1 (τ ) + C(τ )λ N k (α) ≤ λ k (τ, α) ≤ λ 1 (τ ) + 1 C(τ ) λ N k (α) .
Remark 1.7.

1. Using the existing estimates on the Neumann eigenvalues λ N k (α) (see e.g. [START_REF] Colbois | Eigenvalue bounds for the magnetic Laplacian[END_REF]), we deduce immediately estimates on the Robin eigenvalues λ k (τ, α).

(Zero magnetic field)

Assume that α is closed and not exact. Combining the result in [START_REF] Shigekawa | Eigenvalue problems for the Schrödinger operator with the magnetic field on a compact Riemannian manifold[END_REF] and the estimates in Theorem 1.6, we deduce that λ 1 (τ, α) = λ 1 (τ ) if and only if the flux of α satsifies

Φ α c := c α ∈ Z for every closed curve c ⊂ M.
The rest of the paper is organized as follows. Section 2 is devoted to the lengthy proof of Theorem 1.2. In Section 3, we prove Theorem 1.3. Finally, we present the proof of Theorem 1.6 in Section 4.

2 Proof of Theorem 1.2

In this section, we will prove Theorem 1.2. We will integrate all the terms in the Bochner formula. First, with the help of the Stokes formula the integral of the l.h.s. of Equation (1.1) is equal to

- 1 2 M ∆ M (|d α f | 2 )dv g = - 1 2 N g(d M (|d α f | 2 ), ν))dv g = - N ℜ ∇ M ν d α f, d α f dv g .
Now, we will compute the term ℜ ∇ M ν d α f, d α f pointwise by decomposing the vectors into the tangential and normal parts over a local orthonormal frame {e i } i=1,••• ,n-1 of T x N at some point x ∈ N. Indeed, using the definition of the operator d α , we write

∇ M ν d α f, d α f = n-1 i=1 (∇ M ν d α f )(e i ) e i , d α f + (∇ M ν d α f )(ν) ν, d α f = n-1 i=1 (∇ M ν d M f )(e i ) e i , d α f + iν(f ) n-1 i=1 α(e i ) e i , d α f + if n-1 i=1 (∇ M ν α)(e i ) e i , d α f + (∇ M ν d α f )(ν) ν, d α f = n-1 i=1 (∇ M e i d M f )(ν) e i , d α f + iν(f ) n-1 i=1 α(e i ) e i , d α f + if n-1 i=1 (d M α)(ν, e i ) e i , d α f + if n-1 i=1 (∇ M e i α)(ν) e i , d α f + (∇ M ν d α f )(ν) ν, d α f .
In the last equality, we just use the fact that the hessian of the function f is a symmetric 2-tensor. We then proceed

∇ M ν d α f, d α f = n-1 i=1 e i (ν(f )) e i , d α f - n-1 i=1 (d M f )(∇ M e i ν) e i , d α f + iν(f ) n-1 i=1 α(e i ) e i , d α f + if n-1 i=1 (d M α)(ν, e i ) e i , d α f + if n-1 i=1 e i (α(ν)) e i , d α f -if n-1 i=1 α(∇ M e i ν) e i , d α f + (∇ M ν d α f )(ν) ν, d α f = d N (ν(f )), d α f + n-1 i=1 (d M f )(II(e i )) e i , d α f + iν(f ) n-1 i=1 α(e i ) e i , d α f + if n-1 i=1 (d M α)(ν, e i ) e i , d α f + if d N (α(ν)), d α f + if n-1 i=1 α(II(e i )) e i , d α f + (∇ M ν d α f )(ν) ν, d α f .
As α is a 1-form on M, we can write it at any point of the boundary as α = α T + α(ν)ν.

We then define the operator d α N by d α N h := d N h + ihα T for any complex-valued function h ∈ C ∞ (N, C). Hence, the above equality becomes

∇ M ν d α f, d α f = d α N (ν(f )), d α f + II(d α N f ), d α f + if ν d M α, d α f + if d N (α(ν)), d α f + (∇ M ν d α f )(ν) ν, d α f
. Therefore after integrating, we deduce that

- 1 2 M ∆ M (|d α f | 2 )dv g = - N ℜ( d α N (ν(f )), d α f + II(d α N f ), d α f + if ν d M α, d α f + if d N (α(ν)), d α f + (∇ M ν d α f )(ν) ν, d α f )dv g . (2.1)
In the second step, we want to integrate the term ℜ d α f, d α (∆ α f ) in the r.h.s. of Theorem 1.1. First, recall the Stokes formula on complex functions: For all h ∈ C ∞ (M, C) and smooth complex valued 1-form β, one has

M d M h, β dv g = M hδ M βdv g - N h ν, β dv g .
Therefore according to this formula, one can easily get that

M d α h, β dv g = M hδ α βdv g - N h ν, β dv g ,
where the adjoint δ α of d α is given by δ

α = δ M -i •, α [2, Def. 2.1].
Here we mention that δ α X = -trace(∇ α X), where ∇ α is the magnetic covariant derivative defined previously. Hence, by taking h = ∆ α f and β = d α f, we deduce

M d α (∆ α f ), d α f dv g = M |∆ α f | 2 dv g - N (∆ α f ) ν, d α f dv g . (2.2) 
Now we want to evaluate the term ∆ α f in the second integral of the r.h.s. of the equality above. Using the compatibility equations in [2, Lem. 3.2] and taking an orthonormal frame {e i } i=1,••• ,n-1 of T N with ∇ N e i e i = 0 at some point, we compute

∆ α f = - n-1 i=1 ∇ α e i (d α f ), e i -∇ α ν (d α f ), ν = - n-1 i=1 e i ( d α f, e i ) + n-1 i=1 d α f, ∇ α e i e i -∇ α ν (d α f ), ν = - n-1 i=1 e i ( d α f, e i ) + n-1 i=1 d α f, ∇ M e i e i + iα(e i )e i -∇ α ν (d α f ), ν = - n-1 i=1 e i ( d α f, e i ) + n-1 i=1 d α f, II(e i , e i )ν + iα(e i )e i -∇ α ν (d α f ), ν = - n-1 i=1 e i ( d α N f, e i ) + (n -1)H d α f, ν + n-1 i=1 d α N f, iα(e i )e i -∇ α ν (d α f ), ν = ∆ α N f + (n -1)H d α f, ν -∇ α ν (d α f ), ν , where ∆ α N := δ α N d α N , with δ α N = δ N -i(•, α T ). We notice that δ α N is the L 2 -adjoint of d α N on N. Plugging the expression of ∆ α f above into Equation (2.
2), we find

M d α (∆ α f ), d α f dv g = M |∆ α f | 2 dv g - N (∆ α N f ) ν, d α f dv g -(n -1) N H| d α f, ν | 2 dv g + N ∇ α ν (d α f ), ν ν, d α f dv g . = M |∆ α f | 2 dv g - N (∆ α N f ) ν, d α f dv g -(n -1) N H| d α f, ν | 2 dv g + N ∇ M ν (d α f ), ν ν, d α f dv g + N iα(ν)| ν, d α f | 2 dv g . (2.3) 
The last step is to compute the term i 2 M f d α f, δ M d M α dv g and its conjugate in Theorem 1.1. For this, we proceed as in [2, p.17] to get

i 2 M f d α f, δ M d M α dv g = i 2 M d M ( f d α f ), d M α dv g + i 2 N f d α f, ν d M α dv g = i 2 M (d M α)(d α f , d α f )dv g - 1 2 M |f | 2 |d M α| 2 dv g + i 2 N f d α f, ν d M α dv g .
(2.4)

Now, we have all the ingredients to integrate Equation (1.1) over M. In fact, using Equations (2.1), (2.3) and (2.4), we find that

- N ℜ( d α N (ν(f )), d α f + II(d α N f ), d α f + if ν d M α, d α f + if d N (α(ν)), d α f +(∇ M ν d α f )(ν) ν, d α f )dv g = M |Hess α f | 2 dv g - M |∆ α f | 2 dv g + N ℜ((∆ α N f ) ν, d α f )dv g +(n -1) N H| d α f, ν | 2 dv g - N ℜ( ∇ M ν (d α f ), ν ν, d α f )dv g + M Ric M (d α f, d α f )dv g + i 2 M    (d M α)(d α f, d α f ) -(d M α)(d α f , d α f ) 2iℑm((d M α)(d α f,d α f ))    dv g - M |f | 2 |d M α| 2 dv g + i 2 N    f d α f, ν d M α -f d α f , ν d M α =-2iℑmf ν d M α,d α f    dv g .
By writing

d α f = d α N f + (ν(f ) + if α(ν))
ν at any point of the boundary, the first integral in the l.h.s. reduces to

N ℜ d α N (ν(f )), d α f dv g = N ℜ d α N (ν(f )), d α N f dv g = N ℜ(ν(f )δ α N d α N f )dv g = N ℜ(ν(f )∆ α N f )dv g = N ℜ( d α f -iαf, ν ∆ α N f )dv g = N ℜ( ν, d α f ∆ α N f )dv g - N ℜ(iα(ν)f ∆ α N f )dv g . Using the fact that δ α N is the L 2 -adjoint of d α N and that d α N (f 1 f 2 ) = f 2 d N f 1 + f 1 d α N f 2 
for any complex valued functions f 1 and f 2 on N, the above equality becomes

N ℜ d α N (ν(f )), d α f dv g = N ℜ( ν, d α f ∆ α N f )dv g - N ℜ d α N f, d α N (iα(ν)f ) dv g = N ℜ( ν, d α f ∆ α N f )dv g + N ℜ(i d α N f, f d N (α(ν)) + α(ν)d α N f )dv g = N ℜ( ν, d α f ∆ α N f )dv g + N ℜ(i f d α N f, d N (α(ν)) )dv g + N α(ν) ℜ(i d α N f, d α N f ) =0 dv g = N ℜ( ν, d α f ∆ α N f )dv g - N ℜ(if d N (α(ν)), d α f )dv g .
Therefore, we deduce

-2 N ℜ( ν, d α f ∆ α N f )dv g - N II(d α N f ), d α N f dv g = M |Hess α f | 2 dv g - M |∆ α f | 2 dv g + (n -1) N H| d α f, ν | 2 dv g + M Ric M (d α f, d α f )dv g - M ℑm (d M α)(d α f, d α f ) dv g - M |f | 2 |d M α| 2 dv g .
The proof of the proposition then follows.

3 Proof of Theorem 1.3

In the following, we will give a proof of Theorem 1.3. For this, we consider an eigenfunction f of the Robin Laplacian associated to the eigenvalue λ(τ, α), that is ∆ α f = λ(τ, α)f with ν(f ) + if α(ν) = τ f for some positive τ. We then apply Equality (1.2) to the eigenfunction f . First, we have

N ℜ( ν, d α f ∆ α N f )dv g = τ N ℜ( f ∆ α N f )dv g = τ N ℜ(f ∆ α N f )dv g = τ N |d α N f | 2 dv g .
Also, the following inequality ∞ . Therefore, as the discriminant of this polynomial is nonnegative, we finish the proof.

M 2 M|f | 2 2 NH|f | 2 2 M

 22222 ℑm (d M α)(d α f, d α f ) dv g ≤ ||d M α|| ∞ M |d α f | 2 dv g ,holds. Therefore, as the r.h.s. of Equality (1.2) is nonnegative, we get after using the conditions Ric M ≥ k andII + τ ≥ 0 dv g -(k -||d M α|| ∞ ) M |d α f | 2 dv g + ||d M α|| 2 ∞ M |f | 2 dv g -(n -1)τ dv gτ N |d α N f | 2 dv g .Since f is an eigenfunction of the Laplacian, one hasM |d α f | 2 dv g = λ(τ, α) M |f | 2 dv gτ N |f | 2 dv g .Hence, the above inequality reduces to0 ≤ n -1 n λ(τ, α) |f | 2 dv g -(k -||d M α|| ∞ )λ(τ, α) M |f | 2 dv g + (k -||d M α|| ∞ )τ N |f | 2 dv g +||d M α|| 2 ∞ M |f | 2 dv g -(n -1)τ 2 H min N |f | 2 dv gτ N |d α N f | 2 dv g .By grouping the terms and using the fact that the last term is nonpositive, we find at the end0 ≤ n -1 n λ(τ, α) 2 -(k -||d M α|| ∞ )λ(τ, α) + ||d M α|| 2 ∞ M |f | 2 dv g +τ k -||d M α|| ∞ -(n -1)τ H min N |f | 2 dv g .Since now the sign of the term (k -||d M α|| ∞ ) -(n -1)τ H min is nonpositive, we deduce as in [2, Eq. 62] the inequality0 ≤ n -1 n λ(τ, α) 2 -(k -||d M α|| ∞ )λ(τ, α) + ||d M α|| 2
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