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The optimal decay for the solution of the Monotone Inclusion associated to FISTA for b 3 is 2b 3

It was recently proved that the decay of the solution of the ODE associated to the Nesterov Fast Gradient Algorithm with a parameter b 3 was 0(

). In this note we prove that this decay is achieved for the solution of the associated monotone inclusion for a specific function.

Setting

We study the following inclusion ẍ(t) + b t ẋ(t) + ∂F (x(t)) 0 [START_REF] Apidopoulos | On a second order differential inclusion modeling the FISTA algorithm[END_REF] for t t 0 > 0, where F is the absolute value defined by F (x) = |x| and b ∈ (0, 3). This monotone inclusion for a general convex function F is associated to the optimization Algorithm FISTA of Beck et al. [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] and the Fast Gradient Descend Method of Nesterov [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate o (1/k2)[END_REF] as it was remarked by Su et al in [START_REF] Su | A differential equation for modeling nesterov's accelerated gradient method: theory and insights[END_REF]. It was proved in [START_REF] Attouch | Rate of convergence of the Nesterov accelerated gradient method in the subcritical case α ≤ 3[END_REF] and [START_REF] Aujol | rate of convergence of an ode associated to the fast gradient descent schemes for b > 0[END_REF] that for

ẍ(t) + b t ẋ(t) + ∇F (x(t)) = 0 ( 2 
)
where F is a differentiable convex function and b ∈ (0, 3) that if x * is a minimizer of F ,

F (x(t)) -F (x * ) = O 1 t 2b 3 (3) 
In this note, the main result is the following: we prove that this decay is actually optimal in the sense that it is achieved for (1) with F (x) = |x|. More precisely Proposition 1. Let b 3, if x(t 0 ) = 0, for any solution x of (1)

1. it exists K 1 such that for any t t 0 ,

|x(t)| K 1 t 2b 3 , (4) 
2. it exists K 2 > 0 such that for any T > 0, there exists t > T such that

|x(t)| K 2 t 2b 3 (5) 
Notice that for the case of the ODE (2), it was proved in [START_REF] Aujol | rate of convergence of an ode associated to the fast gradient descent schemes for b > 0[END_REF] that the rate of (3) is asymptotically optimal by considering F (x) = |x| (1+β) with β > 0. The ideas presented in this note are an adaptation to the differential inclusion case of the results presented in [START_REF] Aujol | rate of convergence of an ode associated to the fast gradient descent schemes for b > 0[END_REF]. In the first part, preliminaries results are given and in a second part the Propostion 1 is proved.

Preliminaries

We consider the inclusion

ẍ(t) + b t ẋ(t) + ∂F (x(t)) 0 (6) 
with F (x) = |x|, and with initial condition x(t 0 ) = x 0 , ẋ(t 0 ) = v 0 . Notice that F admits a unique minimizer x * = 0. Let I = [t 0 , +∞). In [START_REF] Apidopoulos | On a second order differential inclusion modeling the FISTA algorithm[END_REF], it is proven that there exists a weak solution x of (1), with x in W 2,∞ (I; R) ∩ C 1,λ (K; R), where λ ∈ (0, 1) and K is a compact subset of I, such that x(t 0 ) = x 0 and ẋ(t 0 ) = v 0 . In particular, ẋ is continuous and ẍ is bounded.

We recall that if F is a convex one homogeneous function, then we have F (x) = zx for any z in ∂F (x).

We also give the following lemma that will prove useful. If F is a proper lower semi continuous convex function, then there exists z(t) in ∂F (x(t)) such that for almost every t (see Lemma 3.3 in [START_REF] Brezis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF]) for more details).

d dt F (x(t)) = z(t) ẋ(t) (7) 
Moreover, t → F (x(t)) is an absolutely continuous function. We recall here that an absolutely continuous function is differentiable almost everywhere. Notice that in particular, if the derivative of an absolutely continuous function is non positive, then this function is non decreasing. See Lemma 4.1 in [START_REF] Apidopoulos | On a second order differential inclusion modeling the FISTA algorithm[END_REF] for more details. These properties will be used intensively in the rest of this note.

Notations If λ ∈ R and x a solution of (1) we denote :

u(t) := t|x(t)| + 1 2t |λ(x(t)) + t ẋ(t)| 2 (8) and v(t) := 1 2t |x(t)| 2 (9) 
The analysis is based on Lyapunov functions. Following Su, Boyd and Candès [START_REF] Su | A differential equation for modeling nesterov's accelerated gradient method: theory and insights[END_REF], for any (λ, ξ) ∈ R 2 we define

E λ,ξ (t) = t 2 |x(t)| + 1 2 |λ(x(t)) + t ẋ(t)| 2 + ξ 2 |x(t)| 2 . (10) 
One can observe that this energy can be defined using the functions u and v

E(t) = tu(t) + ξtv(t). (11) 
As usual, we need to compute the derivative E λ,ξ . We will need two different expressions of the derivative.

Lemma 1. E λ,ξ (t) =(2 -λ)t|x(t)| + t(λ + 1 -b)| ẋ(t)| 2 (12) + (λ(λ + 1 -b) + ξ) ẋ(t)x(t) (13) 
for almost every t.

Proof. We differentiate and we use the recalls of the preliminary section to get the following computations that hold for almost every t :

E λ,ξ (t) =2t|x(t)| + t 2 z(t) ẋ(t) (14) + λ ẋ(t) + tẍ(t) + ẋ(t)λ(x(t)) + t ẋ(t) + ξ ẋ(t)x(t) (15) 
with z(t) ∈ ∂F (x(t)). We make use of the differential inclusion:

E λ,ξ (t) =2t|x(t)| + t 2 z(t) ẋ(t) (16) + λ ẋ(t) + t -z - b t ẋ(t) + ẋ(t)λ(x(t)) + t ẋ(t) + ξ ẋ(t)x(t) (17) E λ,ξ (t) =2t|x(t)| + t 2 z(t) ẋ(t) (18) 
+ (λ + 1 -b) ẋ(t) -tzλ(x(t)) + t ẋ(t) + ξ ẋ(t)x(t) (19) 
E λ,ξ (t) =2t|x(t)| + x(t)(λ + 1 -b) ẋ(t) (20) 
-

λx(t)z + (λ + 1 -b)t| ẋ(t)| 2 + ξ ẋ(t)x(t) (21) 
E λ,ξ (t) =(2 -λ)t|x(t)| + t(λ + 1 -b)| ẋ(t)| 2 (22) 
+ (λ(λ + 1 -b) + ξ) ẋ(t)x(t) (23) (24) 
Lemma 2.

E λ,ξ (t) =(2 -λ)t|x(t)| + (ξ -λ(λ + 1 -b)) ẋ(t)x(t) (25) 
- λ 2 (λ + 1 -b) t |x(t)| 2 (26) 
+ λ + 1 -b t |λ(x(t)) + t ẋ(t)| 2 (27) (28) 
Proof. We start from the result of Lemma 1. Observing that

1 t |λ(x(t)) + t ẋ(t)| 2 = t| ẋ(t)| 2 + 2λ ẋ(t)x(t) + λ 2 t |x(t)| 2 (29) 
we can write for almost every t Notice that c > 0. We introduce the new Lyapunov energy:

E λ,ξ (t) =(2 -λ)t|x(t)| + (λ(λ + 1 -b) + ξ) ẋ(t)x(t) (30) 
-2λ(λ + 1 -b) ẋ(t)x(t) -(λ + 1 -b) λ 2 t |x(t)| 2 (31) 
+ (λ + 1 -b) 1 t |λ(x(t)) + t ẋ(t)| 2 (32) 
H(t) := t -c E(t). (35) 
Lemma 3. We have for almost every t:

E (t) = cu(t) -dv(t). ( 36 
)
where d > 0 is defined as:

d := 2b 3 2 1 - b 3 (37) 
Proof.

E (t) =(2 - 2b 3 )t|x(t)| + (1 - b 3 ) 1 t | 2b 3 (x(t)) + t ẋ(t)| 2 (38) - 2b 3 2 (1 - b 3 ) 1 t |x(t)| 2 (39) 
Using 

u(t) = t|x(t)| + 1 2t | 2b 3 (x(t) -x * ) + t ẋ(t)| 2 , (40) 
) 41 
and H is an absolutely continuous function.

We can observe that for b = 3, we have, c = 0, ξ = 0, E = H and H is constant.

Proof. H is an absolutely continuous function as a sum of absolutely continuous functions.

We have for almost every t

H (t) = t -c-1 (tE (t) -cE(t)). ( 42 
)
Using Lemma 3, we deduce that for almost every t:

H (t) = -2ξt -c v(t) 0. ( 43) 

3 0

 3 choose λ = 2b 3 and ξ = λ(λ + 1 -b) and we denote E λ,ξ = E. For these parameters one can observe that λ + 1 -b = 1 -b

Proposition 2 .

 2 the definition of v(t), c and d, we get the result. If b ∈ (0, 3), if λ = 2b 3 and ξ = 2b 9 (3 -b), then for almost every t it holds H (t) = -2ξt -c v(t) 0. (

Lemma 4. If x(t 0 ) 0 then lim t→+∞ H(t) = > 0.

Proof. The function H is non-negative and from Proposition 2, H is non-increasing, thus H(t) converges to a limit 0. Moreover for all t t 0 we have

which implies that

We recall that c := 2 -2b 3 and then c ∈ [0, 2) when b ∈ (0, 3]. From ( 43)

and from the definition of H we have H(t) t 2-c |x(t)| which implies that

Unsing the decay of H we have H(t 0 ) t 2-c |x(t)| and thus

If we denote ϕ the function defined from [t 0 , +∞] to R by

we have

and defining G by

which is an absolutely continuous function as a product of an absolutely continuous function by a continuous and bounded function, we have

which is non negative from (48).

It follows that G is a non-decreasing function and thus that for all t t 0 H(t) H(t 0 )e ϕ(t 0 )-ϕ(t) H(t 0 )e ϕ(t 0 ) > 0 (53) which ends the proof of the lemma.

Proof of Proposition 1

The first point of the Proposition was proved in (45). To prove the second point of Proposition 1 we observe that

Let K 1 = H(t 0 )e ϕ(t 0 ) , from (53), ∀t t 0 , E(t) K 1 t 2-2b 3 . We can notice here that 2 -2b 3 0. There are some cases where the conclusion holds directly.

and thus we can conclude.

2. If there exists t > T such that ẋ(t) = 0, using the fact that

and the fact that lim t→∞ λ 2 +ξ 2 |x(t)| 2 = 0, we can conclude using the previous point.

3. If there exists t > T such that x(t) = 0, since lim u→∞ |x(u)| = 0, there exists t 1 t such that ẋ(t 1 ) = 0 and we can use the previous point.

We now suppose that x(T ) > 0 and the sign of ẋ is constant on [T, +∞). Since lim t→∞ x(t) = 0 we deduce that ∀t ∈ (T, +∞), ẋ(t) < 0. For any t 1 > T we have

Since x(t 1 ) converges to 0, we deduce that for any ε > 0, there exists t 2 > T such that |t 2 ẋ(t 2 )| ε . Hence for any ε > 0, there exists t 2 > T such that