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Abstract—Many applications nowadays use HTTP. HTTP/2,
standardised in February 2015, is an improvment of HTTP/1.1.
However it is still running on top of TCP/TLS and can thus suffer
from performance issues, such as the number of RTTs for the
handshake phase and the Head of Line blocking. Google proposed
the QUIC (Quick UDP Internet Connection) protocol, an user
level protocol, running on top of UDP, to solve those issues.
Google argues that the response time (Page Load Time) is shorter
and thus the end-user experience better. First papers evaluated
the intrinsic performances of QUIC, but none compared QUIC
with the network, the website structure and the involved actors
in mind. In this paper, we present the results of our evaluation,
performed on a local testbed as well as on Internet, and our
analysis to identify in which conditions QUIC is of interest, which
actors can benefit from having QUIC deployed in the network
and what impacts QUIC can lead to.

I. INTRODUCTION

HTTP represents a huge portion of the Internet traffic.
HTTP/1.1 is still used by many applications, but HTTP/2
standardised in February 2015 at the IETF [1] [2], is
increasingly implemented by web servers and all current
browsers now support it. Compared to HTTP/1.1, HTTP/2
has many advantages. One of them is the multiplexing of
streams which optimises the delivery. However, still relying
on TCP like HTTP/1.1, HTTP/2 suffers from the problem of
Head-of-Line (HoL) blocking, which can affect the end-users
experience in case of packet losses. Furthermore, TCP encrypts
the data via the TLS protocol, which needs a handshake phase
of 2 Round Trip Time (RTT) duration, in addition to the
necessary 1-RTT TCP handshake. Setting up a first connection
from a client to the server thus requires 3 RTT messages.

QUIC (Quick UDP Internet Connections) is a new network
transport protocol by Google [3], which runs on top of
UDP, instead of TCP, thus removing the need for the initial
TCP handshake mechanism. It implements its own encryption
system, comparable to TLS, which combines connection es-
tablishment and key agreement into only 1 RTT. However,
most of the time, QUIC can start a connection in 0 RTT,
immediately sending encrypted application data to the server,
when it already has in its cache the server certificate (from
a previous connection). Furthermore, running on top of UDP,
QUIC avoids the HoL issue we can have with TCP in case of
packet loss.

The performance evaluation of QUIC has been studied by
a few research papers in the literature, mainly focusing on
the use case of QUIC as a transport for HTTP. In [4], the
authors use the QUIC toy server proposed by Google in the

Chromium codebase to evaluate the CUBIC congestion control
algorithm implemented in QUIC with the one implemented
in TCP [5], and they also analyze the load times of a web
page when using QUIC, HTTP/1.1, SPDY (a now-deprecated
protocol by Google, which has served as a basis for HTTP/2
specifications). Paper [6] also proposes a similar evaluation of
QUIC compared to HTTP/1.1 and SPDY, but they use Google
servers to serve web pages over QUIC. Paper [7] presents a
security evaluation of QUIC and analyzes how specific replay
attacks could disrupt the cryptography handshake in QUIC,
falling back to the default TCP transport as if the client does
not support QUIC.

However, these evaluations are specific and limited in their
scope and do not take into consideration the ecosystem. QUIC
is currently only deployed on Google servers through its
services (Search, Gmail, YouTube, etc.) and only Chrome
and Chromium browsers natively support the QUIC protocol.
But since Google is an important player, it represents a non
negligible portion of the network traffic. For instance, for the
past months, QUIC traffic has exceeded 5% of the total traffic
in the Orange French backbone. It is then important to analyse
the real behaviour of QUIC, compare it to other solutions, but
also to identify which actors can be most impacted or who
can benefit from a wide deployment of QUIC.

This paper presents our analysis of QUIC potential-
ity, mainly with regards to end-users, network and service
providers based on our evaluation of the QUIC protocol. We
compare QUIC (or more exactly HTTP/2 over QUIC [8]) to
HTTP/1.1 and HTTP/2 (over TCP+TLS) on a local testbed,
where we can easily change the network conditions (packet
loss, delay) and website structure, and on the real Internet,
where our client accesses the Youtube web servers. We first
present in Section II an overview of the QUIC protocol and
its main features. Then, we present in Section III the testbed
we set up as well as the tools we use. In Section IV, we detail
the main results of our performance evaluation of the protocols
and their impacts on the actors involved in the delivery chain.
We finally conclude this paper in section V.

II. Quick OVERVIEW OF THE QUIC PROTOCOL

Starting from 2012, Google has actively developed its ex-
perimental QUIC protocol, and a Working Group has recently
been created at IETF [9] to push it as a standard for web
content delivery. QUIC is a general-purpose transport protocol
run over UDP, but built into the user space (Fig. 1), limiting
the protocol deployment to endpoints only, without changing
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Fig. 1. QUIC Overview

network middleboxes. For the moment, Google mainly high-
lights the use case of QUIC as a transport for HTTP/2.

Relying on UDP, QUIC multiplexes streams without the
head of line blocking downside inherent to TCP. Requests
from a same client are processed in QUIC as streams that
are multiplexed over a single UDP connection (identified by
a unique 64-bit ID) between the client and the server, and
any lost packet in a stream will not prevent the client from
processing packets from other streams.

QUIC natively (and not optionally) enforces security
through authenticated and encrypted packet header and pay-
load. While providing all security guarantees similar to TLS,
QUIC can start a connection and negotiate all the certificate
logic in at most one network round-trip time (RTT), depending
if it is your first connection to a new server or a repeated
connection to an already visited server.

Low-latency connectivity of QUIC is mainly due to the use
of UDP, and the price to pay is that QUIC has to build new
mechanisms on top of UDP to make connections at least as
reliable as in TCP. To this end, Google introduces mechanisms
to make QUIC more resilient to congestion, packet reordering
or loss than pure UDP. For example, in addition to using packet
pacing to reduce packet loss and a Forward Error Correction
(FEC) to reduce retransmission latency, TCP Cubic [5] has
been reimplemented as the default congestion control in QUIC,
but Google also gives users the freedom to plug their own con-
gestion control algorithms. Regarding the flow control, QUIC
provides a stream and connection-level mechanism equivalent
to the HTTP/2 credit-based flow control. This means a QUIC
receiver also uses WINDOW _UPDATE frames, first for
stream-level flow control to advertise how many bytes it is
willing to receive on a stream, and secondly, for connection-
level flow control to limit the buffer used by the receiver to
aggregate all streams on a same connection.

III. TESTBED AND TOOLS

To evaluate the different transport protocols, we set up a
testbed allowing us to make reproducible tests in a controlled
environment (local testbed) and realistic tests, as any end-user
at home, with a homebox and ADSL connectivity (remote
testbed) (Fig. 2). We also developed a specific configurable
and scriptable tool (perfy) to send HTTP requests to retrieve

any web page using the desired protocol (HTTP/1.1, HTTP/2
or HTTP/2 over QUIC).

A. Testbed

Our main goal is to evaluate the performance, especially
the Page Load Time (PLT) [10], of websites using the three
aforementioned protocols (HTTP/1.1, HTTP/2, HTTP/2 over
QUIC) under various network conditions. To this effect we set
up a two-sided testbed offering both a local and a real world
Internet connectivity.

1) Local Testbed: In the local testbed, we installed a ma-
chine, with Docker as a virtualisation system. This enables us
to deploy several web servers on the same host, each one being
isolated and running independently in its container. The QUIC
web servers are based on the Go-Quic implementation [11],
and the HTTP servers use the HTTP Golang libraries. For
the contents, the web servers we used are replicas of public
websites (Youtube, Orange, Doctor ANR project). For each of
them, their contents can be hosted on a single web server (one
Docker container) or distributed amongst several web servers
(several Docker containers). This allows us to evaluate if the
protocol is better when contents are co-localised or distributed
on several servers.

To evaluate the behaviour of the protocols when network
conditions change, a network emulator is set up by using the
netem functionality of the traffic control (tc) Linux command,
to introduce delay and packet losses on the link between
the client and the servers. This network emulator is fully
configurable (delay, percentage of packet loss, and the related
IP sessions if desired). By setting different values of loss
and/or delay on the link to the separate docker containers,
each with its own IP address, it is possible to simulate web
servers in different geographical locations.

Finally, the client is a PC where the Perfy tool we developed
is installed (see section III-B).

2) Remote Testbed: For the remote testbed, we used the
same client PC and tool, but connected directly to our home-
box (Orange Livebox), via ethernet or wifi, in order to access
the public Youtube and Orange websites using an ADSL line.
Thus can we perform realistic tests, totally representative of
the page loadtimes a customer may experience at home.

We also have one PC equiped with a 4G card, enabling
access to the public web sites with the 4G network, for
evaluating the three protocols in a wireless environment (and
its intrinsic and non controllable fluctuant network conditions).
This shows the experience mobile end-users can have with
their smartphone.

B. Perfy

The Perfy tool was developed in our team and allows to
script tests, automatically start them, analyse network traffic
generated during the page loading and compare the results of
the performance metrics supplied by the Navigation Timing
API [10] integrated in the Chrome/Chromium browser. This
API supplies timing information related to the chained process
of page loading.
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Fig. 2. The testbed

The tool is developed with the Python language, includes the
Selenium Webdriver library [12] and launches the Chromium
browser (v53) with the defined configuration.

1) Page load time statistics: Perfy is used to launch a
browser session and access the website requested. After the
page is loaded, it accesses the Navigation Timings and stores
the performance metrics in a database. This process is repeated
for the number of test iterations requested.

2) Traffic analysis: Perfy also enables the capture of net-
work traffic during the page loading. The resulting captures
are then processed and dissected to extract and analyse the
different flows (TCP, UDP) and protocols : total number of
connections, connections per domain, waterfall charts, etc.

C. Test methodology

In this paper, we mainly focus on the Page Load Time
(PLT) [10], which is a metric defined by the W3C as the value
for loadEventEnd minus NavigationStart. The two types of
client-server connections in terms of handshake were tested:
first ever connection and repeat connection.

1) First ever connection: The webpage is loaded directly
in the browser after starting the incognito session. The client
connects for the first time to the server and therefore needs
to acquire the certificate necessary to pursue a communication
between the two. This therefore requires 2 or 1 RTT.

2) Repeat connection: The website is loaded once after
starting the browser session. The page is refreshed afterwards
in the same session. Between the 2 loadings of the website, the
networking service is disabled in order to close the connections
still active, and then re-enabled before refreshing. The returned
performance metric corresponds to the second page loading
(refresh). In this case the client assumes that the server uses the
same certificate as the one acquired after the first connection
and will directly use this certificate. This therefore requires 1
or 0 RTT.

To provide statistically relevant results for the Page Load
Time, each test consisted in 100 iterations for each protocol.

IV. EVALUATION & ANALYSIS

This section describes the main results of the tests per-
formed on our local and remote testbeds which are used to
identify where the QUIC protocols is the most efficient, when
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Fig. 3. PLT for QUIC repeat connections for Youtube in case of delay
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Fig. 4. PLT for HTTP/2 repeat connections for Youtube in case of delay

it can be of interest and how to use it optimally. The figures
show the values of the PLTs measured, presented as Plotly
boxplots. The lower edge of each box indicates the lower
quartile Q1, the upper edge the upper quartile Q3 and the
middle line is the median. Here the ends of the whiskers
are those of a Tukey boxplot (lowest datum within 1.5 IQR
(interquartile range) of Q1 and highest datum within 1.5 IQR
of Q3).

A. QUIC wrt Network

In this section, we analyse the QUIC performance, depend-
ing on the type of access network and with packet loss and
delay generation in the path. The tests were performed on the
Youtube website (the public one or the Youtube replica for the
local testbed).

1) Behaviour in case of delay: On our local testbed,
different values of delay (Oms, 50ms, 100ms and 200ms) were
applied, with no loss, and the page load times measured. These
values were chosen as representative of real network values
[13]. The PLT almost doubles for QUIC first connections but
Fig. 3 shows that the impact is not as consequent for QUIC
repeat connections as it only increases by 400ms. For HTTP/2
repeat connections, it is much more consequent since the PLT
is multiplied by 5 when delay increases (Fig. 4). This showed
that QUIC connections are much less sensitive to delay than
HTTP/2 connections.
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2) Behaviour in case of loss: Different values of loss (0%,
10%, 15% and 20%), but no delay, were applied and the
page load times measured. Loss values above 10% would
mean very high loss in a network. As seen in Fig. 5 and
Fig. 6, the test showed that the PLT increased very significantly
for QUIC first connections with PLT values going from an
average of 2000ms (0% loss) to 16000ms (20% loss), whereas
PLT values for QUIC repeat connections went from around
1900ms (0% loss) to 2200ms (20%). Repeat connections are
therefore much less sensitive to loss. The PLT values for
HTTP/2 repeat connections also increased significantly, going
from an average of 800ms (0% loss) to 6500ms (20% loss).
The comparison between the two protocols should only take
into account the behaviour and not the absolute values of the
PLT because the values of PLT for the HTTP/2 protocol on
our testbed are intrinsically better than those for QUIC due to
the implementation of the server. The tests thus showed that
QUIC connections are much less sensitive to loss than HTTP/2
over TCP/TLS connections.

3) 4G vs ADSL: To check our previous conclusion that
QUIC can be of interest for wireless networks or similar
lossy networks, we performed tests using our remote testbed,
enabling us to access remote existing web sites, using public
4G and public ADSL links.Measurements were interleaved for
the three protocols (HTTP/1.1, HTTP/2 and QUIC) in order

2800

2600

2400

2200

e (ms)

< 2000

1800

oad Tim

: ]
==
> 1600 — ‘
& [
& 1400 % L ==
1200 ‘
1000 auic wrre 11 auic Hrre 11 auic HrTe 11
urterz urterz urterz
800
05:00 13:00 22:00
Hour
Fig. 7. PLT for a repeat connection on the ADSL link for Youtube

2800
2600

2400

1600 %

1400

= NN
® o N
S 9o 9o
& & o

Page Load Time (ms)

quic HTTP 1.1

1200 HTTP/2 Quic HTTP 1.1

Quic HTTP 11 HTTPI2

HTTPI2
1000

05:00 13:00 22:00

Hour

Fig. 8. PLT for a repeat 4G connection for Youtube

to take place more or less at the same time, and thus ensure
a fair comparison. Fig. 7 and Fig. 8 show the results of our
tests. For ADSL links, the performances of HTTP/2 and QUIC
were similar and better than HTTP/1.1, but for 4G links, the
performances of HTTP/2 and HTTP/1.1 were similar and this
time QUIC performed better. The most noticeable difference
was in low load hours where QUIC PLTs were about 400-
500ms better than HTTP/2 & HTTP/1.1 PLTs. The mobile
network case is the only one in which we saw QUIC largely
outperform HTTP/2.

One of our future works will be to test the 4G case in a
realistic mobility model and see how much the varying net-
work conditions and frequent IP connections/disconnections
may influence the results.

4) Impact of network load : In this test, we aim to see
if the PLT performances varied with the time of day or the
day of the tests, depending on the network load, on the real
ADSL networks (fixed network, often over dimensioned and
with a very small packet loss rate). Here again measurements
were interleaved for the three protocols (HTTP/1.1, HTTP/2
and QUIC), to ensure that all protocols experienced the same
network conditions. The tests were performed on the Youtube
website because it has quite a complex structure.



Fig. 7 shows the results for a weekday, showing better
performance on a low load hour. PLT performances measured
over a weekend were better, indicating lighter network load.
The results depended greatly on the day of the tests. Fig. 7 also
shows that the PLT performances of QUIC and HTTP/2 are
very similar and are better than those of HTTP/1.1. Our first
conclusions are that there is no real benefit of using QUIC at
given times of the day or given days of the week. But neither is
there obvious evidence to rather use HTTP/2 over TSL+TCP,
since results are quite similar.

Based on our evaluation, we can say that the benefits of
QUIC for end-users are not so obvious, compared to HTTP/2,
regarding the PLT metric. Indeed, HTTP/2 already implements
the multiplexing, which largely improves the response time.
The main difference is the time to establish the connection (0
or 1 RTT vs 2 or 3 RTTs in case of TCP/TLS handshake).
But this time is very small, and not critical for end-users.
Furthermore, in our tests, we do not take into consideration the
PUSH mechanism offered by HTTP/2, which can reduce even
more the PLT, sending necessary data before being requested
by the browser. This can lead to a more reduced time.

However, we can observe a real benefit of using QUIC
in very lossy links. Indeed our tests showed that QUIC
outperformed HTTP/2. This is mainly because using UDP
instead of TCP avoids the Head-Of-Line blocking issue. QUIC
could then be a good candidate for lossy links (Satellite, 4G,
5G).

B. QUIC wrt website structure

1) Website internal structure: For this test, two structures
of websites were used on our local testbed :

o Complex Website (Youtube)
This complex website is a replica of the current youtube
web site, with many components composing the web
page and several of them being fetched from various
distributed servers and aggregated on the end-user side.
« Simple Website (Doctor)
This simple website is a replica of the current website of
the ANR project named Doctor [14], and has a simple
structure since all the files are stored on the same server.

Fig. 3, Fig. 9, Fig. 5 and Fig. 10 show the PLT performances
for both the Youtube and Doctor websites when there is delay
in the network or packet loss. We can see that page load
time performances are better for a less complex site, but the
behaviour in case of delay is the same. This means that website
developers should optimise (simplify) their web site structure,
so as to deliver contents more quickly.

2) Website distributed architecture: In this test, we aim
to compare the PLT from a website having all the contents
located on the same server, or the content distributed on several
web servers.

On Fig. 11, we can see that the PLT performances are
relatively similar for 1, 2 and 4 servers, but decrease for 8
servers. We can thus say that there is no real advantage of
distributing the contents on several web servers. The end-user
gets the contents more rapidly when they are located on a small
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number of servers: in this way, we take better advantage of
the multiplexing of streams over a single QUIC connection.
We observe the same performance result for the first ever
connection to the website, as shown in Fig. 12 and Fig. 13.
Note that the PLT performances are greatly increased with the
—origin-to-force-quic-on flag set in Chromium. When this flag
is set, the browser will immediately try to connect to servers
by using the QUIC protocol, instead of HTTP/2 over TCP.
To conclude this section, we can say that the design of
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QUIC and the preliminary tests we performed show that the
adoption of QUIC can lead to a different content placement
strategy than today.

Being encrypted, including the headers, QUIC prevents any
processing in the network between the end-user and the server.
This is then a major concern for middlebox providers (e.g.
TCP optimizers, proxy, firewall or parent control boxes, etc.).
All actors in the middle of the delivery chain will then have no
influence over the QUIC traffic and then lose their activity. It is
a critical move for them. Finally, with QUIC, only the browser
providers and the server providers will have full knowledge
of the end-users browsing, and thus will be able to fully
monetize it: e.g. with more ads added in the page, ads under
their control, or having knowledge of end-users habits and
preferences, etc. Intermediate entities (not acting as QUIC
servers) will have no further role.

V. CONCLUSION

In this paper, we have presented our analysis about QUIC,
especially in which conditions QUIC presents interesting
performances. We have clearly seen that QUIC outperforms
HTTP/2 over TCP/TLS in unstable networks such as wireless
mobile networks but in case of stable and reliable networks,
the benefits of QUIC are not so obvious. In our future work,

we plan to evaluate the QUIC performance with regards to
user mobility (when IP connections are torn down and set
up very frequently). We also discussed in this paper the
possible impact of QUIC on the involved actors, and the
evolution its deployment can drive. We have seen that the
website developers might make some changes in the way to
design the website structure and the way to distribute their
contents onto several web servers. Regarding the actors located
between the end-users and the servers, their role will change
because of the encrypted communications and the need to have
certificates. Up to now, only Google uses QUIC for its own
services and browsers, but more actors will be needed to have
QUIC deployed everywhere. Since the performance gain is not
so obvious, some discussions may be needed before a wide
adoption. This should happen in the recently created IETF
working group [9] where Google pushes QUIC.
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