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Abstract

: We consider the minimization of an objective function given access to unbiased
estimates of its gradient through stochastic gradient descent (SGD) with constant step-
size. While the detailed analysis was only performed for quadratic functions, we provide
an explicit asymptotic expansion of the moments of the averaged SGD iterates that
outlines the dependence on initial conditions, the effect of noise and the step-size, as
well as the lack of convergence in the general (non-quadratic) case. For this analysis,
we bring tools from Markov chain theory into the analysis of stochastic gradient. We
then show that Richardson-Romberg extrapolation may be used to get closer to the
global optimum and we show empirical improvements of the new extrapolation scheme.

1 Introduction

We consider the minimization of an objective function given access to unbiased estimates
of the function gradients. This key methodological problem has raised interest in different
communities: in large-scale machine learning [9, 51, 52], optimization [41, 44], and stochas-
tic approximation [27, 46, 50]. The most widely used algorithms are stochastic gradient
descent (SGD), a.k.a. Robbins-Monro algorithm [49], and some of its modifications based
on averaging of the iterates [46, 48, 53].

While the choice of the step-size may be done robustly in the deterministic case (see
e.g. [8]), this remains a traditional theoretical and practical issue in the stochastic case.
Indeed, early work suggested to use step-size decaying with the number k of iterations
as O(1/k) [49], but it appeared to be non-robust to ill-conditioning and slower decays
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such as O(1/
√
k) together with averaging lead to both good practical and theoretical

performance [3].
We consider in this paper constant step-size SGD, which is often used in practice.

Although the algorithm is not converging in general to the global optimum of the objective
function, constant step-sizes come with benefits: (a) there is a single parameter value to
set as opposed to the several choices of parameters to deal with decaying step-sizes, e.g. as
1/(�k + △)◦; the initial conditions are forgotten exponentially fast for well-conditioned
(e.g. strongly convex) problems [39, 40], and the performance, although not optimal, is
sufficient in practice (in a machine learning set-up, being only 0.1% away from the optimal
prediction often does not matter).

The main goals of this paper are (a) to gain a complete understanding of the properties
of constant-step-size SGD in the strongly convex case, and (b) to propose provable improve-
ments to get closer to the optimum when precision matters or in high-dimensional settings.
We consider the iterates of the SGD recursion on R

d defined starting from θ0 ∈ R
d, for

k ≥ 0, and a step-size γ > 0 by

θ
(γ)
k+1 = θ

(γ)
k − γ

[

f ′(θ
(γ)
k ) + εk+1(θ

(γ)
k )
]

, (1)

where f is the objective function to minimize (in machine learning the generalization

performance), εk+1(θ
(γ)
k ) the zero-mean statistically independent noise (in machine learning,

obtained from a single observation). Following [5], we leverage the property that the

sequence of iterates (θ
(γ)
k )k≥0 is an homogeneous Markov chain.

This interpretation allows us to capture the general behavior of the algorithm. In the
strongly convex case, this Markov chain converges exponentially fast to a unique stationary
distribution πγ (see Proposition 2) highlighting the facts that (a) initial conditions of the
algorithms are forgotten quickly and (b) the algorithm does not converge to a point but
oscillates around the mean of πγ . See an illustration in Figure 1 (left). It is known that
the oscillations of the non-averaged iterates have an average magnitude of γ1/2 [45].

Consider the process (θ̄
(γ)
k )k≥0 given for all k ≥ 0 by

θ̄
(γ)
k =

1

k + 1

k
∑

j=0

θ
(γ)
j . (2)

Then under appropriate conditions on the Markov chain (θ
(γ)
k )k≥0, a central limit theorem

on (θ̄
(γ)
k )k≥0 holds which implies that θ̄

(γ)
k converges at rate O(1/

√
k) to

θ̄γ =

∫

Rd

ϑ dπγ(ϑ) . (3)

The deviation between θ̄
(γ)
k and the global optimum θ∗ is thus composed of a stochastic

part θ̄
(γ)
k − θ̄γ and a deterministic part θ̄γ − θ∗.
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θ̄γ
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θ∗ − θ̄γ = O(γ)
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θ∗+γ∆
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Figure 1: (Left) Convergence of iterates θ
(γ)
k and averaged iterates θ̄

(γ)
k to the mean θ̄γ under

the stationary distribution πγ . (Right) Richardson-Romberg extrapolation, the disks are
of radius O(γ2).

For quadratic functions, it turns out that the deterministic part vanishes [5], that is,
θ̄γ = θ∗ and thus averaged SGD with a constant step-size does converge. However, it is
not true for general objective functions where we can only show that θ̄γ − θ∗ = O(γ), and
this deviation is the reason why constant step-size SGD is not convergent.

The first main contribution of the paper is to provide an explicit asymptotic expansion
in the step-size γ of θ̄γ − θ∗. Second, a quantitative version of a central limit theorem

is established which gives a bound on E[‖θ̄γ − θ̄
(γ)
k ‖2] that highlights all dependencies on

initial conditions and noise variance, as achieved for least-squares by [14], with an explicit
decomposition into “bias” and “variance” terms: the bias term characterizes how fast initial
conditions are forgotten and is proportional to N(θ0−θ∗), for a suitable norm N : Rd → R+;
while the variance term characterizes the effect of the noise in the gradient, independently
of the starting point, and increases with the covariance of the noise.

Moreover, akin to weak error results for ergodic diffusions, we achieve a non-asymptotic
weak error expansion in the step-size between πγ and the Dirac measure on R

d concentrated
at θ∗. Namely, we prove that for all functions g : Rd → R, regular enough,

∫

Rd g(θ)dπγ(θ) =
g(θ∗)+ γCg1 + rgγ , r

g
γ ∈ R

d, ‖rgγ‖ ≤ Cg2γ
2, for some Cg1 , C

g
2 ≥ 0 independent of γ. Given this

expansion, we can now use a very simple trick from numerical analysis, namely Richardson-

Romberg extrapolation [54]: if we run two SGD recursions (θ
(γ)
k )k≥0 and (θ

(2γ)
k )k≥0 with the

two different step-sizes γ and 2γ, then the average processes (θ̄
(γ)
k )k≥0 and (θ̄

(2γ)
k )k≥0 will

converge to θ̄γ and θ̄2γ respectively. Since θ̄γ = θ∗+ γ∆Id
1 + rIdγ and θ̄2γ = θ∗+2γ∆Id

1 + rId2γ ,

for rIdγ , r
Id
2γ ∈ R

d, max(
∥

∥2rIdγ
∥

∥ ,
∥

∥rId2γ
∥

∥) ≤ 2Cγ2, for C ≥ 0 and ∆ ∈ R
d independent of γ,

the combined iterates 2θ̄
(γ)
k − θ̄

(2γ)
k will converge to θ∗ + 2rIdγ − rId2γ which is closer to θ∗ by

a factor γ. See illustration in Figure 1(right).
In summary, we make the following contributions:
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• We provide in Section 2 an asymptotic expansion in γ of θ̄γ−θ∗ and an explicit version

of a central limit theorem is given which bounds E[‖θ̄γ − θ̄
(γ)
k ‖2]. These two results

outlines the dependence on initial conditions, the effect of noise and the step-size.

• We show in Section 2 that Richardson-Romberg extrapolation may be used to get
closer to the global optimum.

• We bring and adapt in Section 3 tools from analysis of discretization of diffusion
processes into the one of SGD and create new ones. We believe that this analogy and
the associated ideas are interesting in their own right.

• We show in Section 4 empirical improvements of the extrapolation schemes.

Notations We first introduce several notations. We consider the finite dimensional eu-
clidean space R

d embedded with its canonical inner product 〈·, ·〉. Denote by {e1, . . . , ed}
the canonical basis of Rd. Let E and F be two real vector spaces, denote by E ⊗ F the
tensor product of E and F . For all x ∈ E and y ∈ F denote by x⊗ y ∈ E ⊗ F the tensor
product of x and y. Denote by E⊗k the kth tensor power of E and x⊗k ∈ E⊗k the kth

tensor power of x. We let L((Rd)⊗k,Rℓ) stand for the set of linear maps from (Rn)⊗k to
R
ℓ and for L ∈ L((Rd)⊗k,Rℓ), we denote by ‖L‖ the operator norm of L.
Let n ∈ N

∗, denote by Cn(Rd,Rm) the set of n times continuously differentiable func-
tions from R

d to R
m. Let F ∈ Cn(Rd,Rm), denote by F (n) or DnF , the nth differential of

f . Let f ∈ Cn(Rd,R). For any x ∈ R
d, f (n)(x) is a tensor of order n. For example, for

all x ∈ R
d, f (3)(x) is a third order tensor. In addition, for any x ∈ R

d and any matrix,
M ∈ R

d×d, we define f (3)(x)M as the vector in R
d given by: for any l ∈ {1, . . . , d}, the lth

coordinate is given by (f (3)(x)M)l =
∑d

i,j=1Mi,j
∂3f

∂xi∂xj∂xl
(x). By abuse of notations, for

f ∈ C1(Rd), we identify f ′ with the gradient of f and if f ∈ C2(Rd), we identify f ′′ with the
Hessian matrix of f . A function f : Rd → R

q is said to be locally Lipschitz if there exists
α ≥ 0 such that for all x, y ∈ R

d, ‖f(x)− f(y)‖ ≤ (1 + ‖x‖α + ‖y‖α) ‖x− y‖. For ease of
notations and depending on the context, we consider M ∈ R

d×d either as a matrix or a sec-
ond order tensor. More generally, anyM ∈ L((Rd)⊗k,R) will be also consider as an element
of L((Rd)⊗(k−1),Rd) by the canonical bijection. Besides, For any matrices M,N ∈ R

d×d,
M ⊗N is defined as the endomorphism of Rd×d such that M ⊗N : P 7→ MPN . For any
matrix M ∈ R

d×d, tr(M) is the trace of M , i.e. the sum of diagonal elements of the matrix
M .

For a, b ∈ R, denote by a ∨ b and a ∧ b the maximum and the minimum of a and b
respectively. Denote by ⌊·⌋ and ⌈·⌉ the floor and ceiling function respectively.

Denote by B(Rd) the Borel σ-field of Rd. For all x ∈ R
d, δx stands for the Dirac measure

at x.
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2 Main results

In this section, we describe the assumptions underlying our analysis, describe our main
results and their implications.

2.1 Setting

Let f : Rd → R be an objective function, satisfying the following assumptions:

A1. The function f is strongly convex with convexity constant µ > 0, i.e. for all θ1, θ2 ∈ R
d

and t ∈ [0, 1],

f(tθ1 + (1− t)θ2) ≤ tf(θ1) + (1− t)f(θ2)− (µ/2)t(1 − t) ‖θ1 − θ2‖2 .

A2. The function f is five times continuously differentiable with second to fifth uniformly
bounded derivatives: for all k ∈ {2, . . . , 5}, supθ∈Rd

∥

∥f (k)(θ)
∥

∥ < +∞. Especially f is L-
smooth with L ≥ 0: for all θ1, θ2 ∈ R

d

∥

∥f ′(θ1)− f ′(θ2)
∥

∥ ≤ L ‖θ1 − θ2‖ .

If there exists a positive definite matrix Σ ∈ R
d×d, such that the function f is the

quadratic function θ 7→ ‖Σ1/2(θ − θ∗)‖2/2, then Assumptions A1, A2 are satisfied.
In the definition of SGD given by (1), (εk)k≥1 is a sequence of random functions from

R
d to R

d satisfying the following properties.

A3. There exists a filtration (Fk)k≥0 (i.e. for all k ∈ N, Fk ⊂ Fk+1) on some probability
space (Ω,F ,P) such that for any k ∈ N and θ ∈ R

d, εk+1(θ) is a Fk+1-measurable random
variable and E [εk+1(θ)|Fk] = 0. In addition, (εk)k∈N∗ are independent and identically
distributed (i.i.d.) random fields. Moreover, we assume that θ0 is F0-measurable.

A3 expresses that we have access to an i.i.d. sequence (f ′k)k∈N∗ of unbiased estimator
of f ′, i.e. for all k ∈ N and θ ∈ R

d,

f ′k+1(θ) = f ′(θ) + εk+1(θ) . (4)

Note that we do not assume random vectors (εk+1(θ
(γ)
k ))k∈N to be i.i.d., a stronger assump-

tion generally referred to as the semi-stochastic setting. Moreover, as θ0 is F0-measurable,
for any k ∈ N, θk is Fk-measurable.

We also consider the following conditions on the noise, for p ≥ 2:

A 4 (p). For any k ∈ N
∗, f ′k is almost surely L-co-coercive (with the same constant as

in A2): that is, for any η, θ ∈ R
d, L 〈f ′k(θ)− f ′k(η), θ − η〉 ≥ ‖f ′k(θ)− f ′k(η)‖

2. Moreover,
there exists τp ≥ 0, such that for any k ∈ N

∗, E1/p[‖εk(θ∗)‖p] ≤ τp.
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Almost sure L-co-coercivity [59] is for example satisfied if for any k ∈ N
∗, there exists

a random function fk such that f ′k = (fk)
′ and which is a.s. convex and L-smooth. Weaker

assumptions on the noise are discussed in Section 6.1. Finally we emphasize that under
A3 then to verify that A4(p) holds, p ≥ 2, it suffices to show that f ′1 is almost surely L-co-
coercive and E

1/p[‖ε1(θ∗)‖p] ≤ τp. Under A3-A4(2), consider the function C : Rd → R
d×d

defined for all θ ∈ R
d by

C(θ) = E
[

ε1(θ)
⊗2
]

. (5)

A5. The function C is three time continuously differentiable and there exist Mε, kε ≥ 0
such that for all θ ∈ R

d,

max
i∈{1,2,3}

∥

∥

∥
C(i)(θ)

∥

∥

∥
≤Mε

{

1 + ‖θ − θ∗‖kε
}

.

In other words, we assume that the covariance matrix θ 7→ C(θ) is a regular enough
function, which is satisfied in natural settings.

Example 1 (Learning from i.i.d. observations). Our main motivation comes from machine
learning; consider two sets X ,Y and a convex loss function L : X × Y × R

d → R. The
objective function is the generalization error fL(θ) = EX,Y [L(X,Y, θ)], where (X,Y ) are
some random variables. Given i.i.d. observations (Xk, Yk)k∈N∗ with the same distribution as
(X,Y ), for any k ∈ N

∗, we define fk(·) = L(Xk, Yk, ·) the loss with respect to observation k.
SGD then corresponds to following gradient of the loss on a single independent observation
(Xk, Yk) at each step; Assumption A3 is then satisfied with Fk = σ((Xj , Yj)j∈{1,...,k}).

Two classical situations are worth mentioning. On the first hand, in least-squares
regression, X = R

d, Y = R, and the loss function is L(X,Y, θ) = (〈X, θ〉 − Y )2. Then
fΣ is the quadratic function θ 7→ ‖Σ1/2(θ − θ∗)‖2/2, with Σ = E[XX⊤], which satisfies
Assumption A2. For any θ ∈ R

d,

εk(θ) = XkX
⊤
k θ −XkYk (6)

Then, for any p ≥ 2, Assumption A4(p) and A5 is satisfied as soon as observations are
a.s. bounded, while A1 is satisfied if the second moment matrix is invertible or additional
regularization is added. In this setting, εk can be decomposed as εk = ̺k + ξk where ̺k is
the multiplicative part, ξk the additive part, given for θ ∈ R

d by ̺k(θ) = (XkX
⊤
k −Σ)(θ−θ∗)

and
ξk = (X⊤

k θ
∗ − Yk)Xk . (7)

For all k ≥ 1, ξk does not depend on θ. This two parts in the noise will appear in Corollary 6.
Finally assume that there exists r ≥ 0 such that

E[‖Xk‖2XkX
⊤
k ] 4 r2Σ , (8)

then A4(4) is satisfied. This assumption is satisfied, e.g., for a.s. bounded data, or for data
with bounded kurtosis, see [17] for details.
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On the other hand, in logistic regression, where L(X,Y, θ) = log(1 + exp(−Y 〈X, θ〉)).
Assumptions A4 or A2 are similarly satisfied, while A1 needs an additional restriction to
a compact set.

2.2 Summary and discussion of main results

Under the stated assumptions, for all γ ∈ (0, 2/L) and θ0 ∈ R
d, the Markov chain (θ

(γ)
k )k≥0

converges in a certain sense specified below to a probability measure on (Rd,B(Rd)), πγ
satisfying

∫

Rd ‖ϑ‖2 πγ(dϑ) < +∞, see Proposition 2 in Section 3. In the next section, by
two different methods (Theorem 4 and Theorem 7), we show that under suitable conditions
on f and the noise (εk)k≥1, there exists ∆ ∈ R

d such that for all γ ≥ 0, small enough

θ̄γ =

∫

Rd

ϑπγ(dϑ) = θ∗ + γ∆+ r(1)γ ,

where r
(1)
γ ∈ R

d, ‖r(1)γ ‖ ≤ Cγ2 for some constant C ≥ 0 independent of γ. Using Proposi-
tion 2, we get that for all k ≥ 1,

E[θ̄
(γ)
k − θ∗] =

A(θ0, γ)

k
+ γ∆+ r(2)γ , (9)

where r
(2)
γ ∈ R

d, ‖r(2)γ ‖ ≤ C(γ2 + e−kµγ) for some constant C ≥ 0 independent of γ.
This expansion in the step-size γ shows that a Richardson-Romberg extrapolation can

be used to have better estimates of θ∗. Consider the average iterates (θ̄
(k)
2γ )k≥0 and (θ̄

(γ)
k )k≥0

associated with SGD with step size 2γ and γ respectively. Then (9) shows that (2θ̄
(γ)
k −

θ̄
(2γ)
k )k≥0 satisfies

E[2θ̄
(γ)
k − θ̄

(2γ)
k − θ∗] =

2A(θ0, γ)−A(θ0, 2γ)

k
+ 2r(2)γ − r

(2)
2γ ,

and therefore is closer to the optimum θ∗. This very simple trick improves the conver-
gence by a factor of γ (at the expense of a slight increase of the variance). In practice,

while the un-averaged gradient iterate θ
(γ)
k saturates rapidly, θ̄

(γ)
k may already perform well

enough to avoid saturation on real data-sets [5]. The Richardson-Romberg extrapolated

iterate 2θ̄
(γ)
k − θ̄

(2γ)
k very rarely reaches saturation in practice. This appears in synthetic

experiments presented in Section 4. Moreover, this procedure only requires to compute
two parallel SGD recursions, either with the same inputs, or with different ones, and is
naturally parallelizable.

In Section 3.2, we give a quantitative version of a central limit theorem for (θ̄
(γ)
k )k≥0,

for a fixed γ > 0 and k going to +∞ : under appropriate conditions, there exist constants
B1(γ) and B2(γ) such that

E

[

∥

∥

∥
θ̄
(γ)
k − θ̄γ

∥

∥

∥

2
]

= B1(γ)/k +B2(γ)/k
2 . (10)
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Combining (9) and (10) characterizes the bias/variance trade-off of SGD used to esti-
mate θ∗.

2.3 Related work

The idea to study stochastic approximation algorithms using results and techniques from
the Markov chain literature is not new. It goes back to [22], which shows under appropriate
conditions that solutions of stochastic differential equations (SDE)

dYt = −f ′(Yt)dt+ γtdBt ,

where (Bt)t≥0 is a d-dimensional Brownian motion and (γt)t≥0 is a one-dimensional positive
function, limt→+∞ γt = 0, converge in probability to some minima of f . An other example
is [47] which extends the classical Foster-Lyapunov criterion from Markov chain theory (see
[37]) to study the stability of the LMS algorithm. In [10], the authors are interested in
the convergence of the multidimensional Kohonen algorithm. They show that the Markov
chain defined by this algorithm is uniformly ergodic and derive asymptotic properties on
its limiting distribution.

The techniques we use in this paper to establish our results share a lot of similarities
with previous work. For example, our first results in Section 3.1 and Section 3.2 regarding
an asymptotic expansion in γ of θ̄γ−θ∗ and an explicit version of a central limit theorem is

given which bounds E[‖θ̄γ− θ̄(γ)k ‖2], can be seen as complementary results of [2]. Indeed, in
[2], the authors decompose the tracking error of a general algorithm in a linear regression
model. To prove their result, they develop the error using a perturbation approach, which
is quite similar to what we do.

Another and significant point of view to study stochastic approximation relies on the
gradient flow equation associated with the vector field f ′: ẋt = −f ′(xt). This approach was
introduced by [30] and [27] and have been applied in numerous papers since then, see [35, 36,
7, 6, 55]. We use to establish our result in Section 3.3, the strong connection between SGD
and the gradient flow equation as well. The combination of the relation between stochastic
approximation algorithms with the gradient flow equation and the Markov chain theory
have been developed in [20] and [21]. In particular, [21] establishes under certain conditions
that there exists for all γ ∈ (0, γ0), with γ0 small enough, an invariant distribution πγ for

the Markov chain (θ
(γ)
k )k∈N, and (πγ)γ∈(0,γ0) is tight. In addition, they show that any

limiting distributions is invariant for the gradient flow associated with ∇f . Note that
their conditions and results are different from ours. In particular, we do not assume that

(θ
(γ)
k )k∈N is Feller but require that f is strongly convex contrary to [21].
To the authors knowledge, the use of the Richardson-Romberg method for stochastic

approximation has only been considered in [38] to recover the minimax rate for recursive
estimation of time varying autoregressive process.

Several attempts have been made to improve convergence of SGD. [5] proposed an
online Newton algorithm which converges in practice to the optimal point with constant

8



step-size but has no convergence guarantees. The quadratic case was studied by [5], for the
(uniform) average iterate: the variance term is upper bounded by σ2d/n and the squared
bias term by ‖θ∗‖2/(γn). This last term was improved to ‖Σ−1/2θ∗‖2/(γn)2 by [14, 15],
showing that asymptotically, the bias term is negligible, see also [28]. Analysis has been
extended to “tail averaging” [25], to improve the dependence on the initial conditions. Note
that this procedure can be seen as a Richardson-Romberg trick with respect to k. Other
strategies were suggested to improve the speed at which initial conditions were forgotten,
for example using acceleration when the noise is additive [17, 26]. A criterion to check
when SGD with constant step size is close to its limit distribution was recently proposed
in [11].

In the context of discretization of ergodic diffusions, weak error estimates between the
stationary distribution of the discretization and the invariant distribution of the associated
diffusion have been first shown by [56] and [34] in the case of the Euler-Maruyama scheme.
Then, [56] suggested the use of Richardson-Romberg interpolation to improve the accuracy
of estimates of integrals with respect to the invariant distribution of the diffusion. Extension
of these results have been obtained for other types of discretization by [1] and [12]. We
show in Section 3.3 that a weak error expansion in the step-size γ also holds for SGD
between πγ and δθ∗ . Interestingly as to the Euler-Maruyama discretization, SGD has a weak
error of order γ. In addition, [18] proposed and analyzed the use of Richardson-Romberg
extrapolation applied to the stochastic gradient Langevin dynamics (SGLD) algorithm.
This method introduced by [58] combines SGD and the Euler-Maruyama discretization of
the Langevin diffusion associated to a target probability measure [13, 19]. Note that this
method is however completely different from SGD, in part because Gaussian noise of order
γ1/2 (instead of γ) is injected in SGD which changes the overall dynamics.

Finally, it is worth mentioning [32, 33] which are interested in showing that the invariant
measure of constant step-size SGD for an appropriate choice of the step-size γ, can be used
as a proxy to approximate the target distribution π with density with respect to the
Lebesgue measure e−f . Note that the perspective and purpose of this paper is completely
different since we are interested in optimizing the function f and not in sampling from π.

3 Detailed analysis

In this Section, we describe in detail our approach. A first step is to describe the existence

of a unique stationary distribution πγ for the Markov chain (θ
(γ)
k )k≥0 and the convergence

of this Markov chain to πγ in the Wasserstein distance of order 2.

Limit distribution We cast in this section SGD in the Markov chain framework and
introduce basic notion related to this theory, see [37] for an introduction to this topic.

Consider the Markov kernel Rγ on (Rd,B(Rd)) associated with SGD iterates (θ
(γ)
k )k∈N,

i.e. for all k ∈ N and A ∈ B(Rd), almost surely Rγ(θk,A) = P(θk+1 ∈ A|θk), for all θ0 ∈ R
d

9



and A ∈ B(Rd), θ 7→ Rγ(θ,A) is Borel measurable and Rγ(θ0, ·) is a probability measure
on (Rd,B(Rd)). For all k ∈ N

∗, we define the Markov kernel Rkγ recursively by R1
γ = Rγ

and for k ≥ 1, for all θ0 ∈ R
d and A ∈ B(Rd)

Rk+1
γ (θ0,A) =

∫

Rd

Rkγ(θ0,dθ)Rγ(θ,A) .

For any probability measure λ on (Rd,B(Rd)), we define the probability measure λRγ for
all A ∈ B(Rd) by

λRkγ(A) =

∫

Rd

λ(dθ)Rkγ(θ,A) .

By definition, for all probability measure λ on B(Rd) and k ∈ N
∗, λRkγ is the distribution

of θ
(γ)
k started from θ0 drawn from λ. For any function φ : Rd → R+ and k ∈ N

∗, define
the measurable function Rkγφ : Rd → R for all θ0 ∈ R

d,

Rkγφ(θ0) =

∫

Rd

φ(θ)Rkγ(θ0,dθ) .

For any measure λ on (Rd,B(Rd)) and any measurable function h : Rd → R, λ(h) denotes
∫

Rd h(θ)dλ(θ) when it exists. Note that with such notations, for any k ∈ N
∗, probability

measure λ on B(Rd), measurable function h : Rd → R+, we have λ(Rkγh) = (λRkγ)(h). A

probability measure πγ on (Rd,B(Rd)) is said to be a invariant probability measure for

Rγ , γ > 0, if πγRγ = Rγ . A Markov chain (θ
(γ)
k )k∈N satisfying the SGD recursion (1) for

γ > 0 will be said at stationarity if it admits a invariant measure πγ and θ
(γ)
k is distributed

according to πγ . Note that in this case for all k ∈ N, the distribution of θ
(γ)
k is πγ .

To show that (θ
(γ)
k )k≥0 admits a unique stationary distribution πγ and quantify the

convergence of (ν0R
k
γ)k≥0 to πγ , we use the Wasserstein distance. A probability measure λ

on (Rd,B(Rd)) is said to have a finite second moment if
∫

Rd ‖ϑ‖2 λ(dϑ) < +∞. The set of
probability measure on (Rd,B(Rd)) having a finite second moment is denoted by P2(R

d).
For all probability measures ν and λ in P2(R

d), define the Wasserstein distance of order 2
between λ and ν by

W2(λ, ν) = inf
ξ∈Π(λ,ν)

(

∫

‖x− y‖2ξ(dx, dy)
)1/2

,

where Π(µ, ν) is the set of probability measure ξ on B(Rd×R
d) satisfying for all A ∈ B(Rd),

ξ(A× R
d) = ν(A), ξ(Rd × A) = λ(A).

Proposition 2. Assume A1-A2-A3-A4(2). For any step-size γ ∈ (0, 2/L), the Markov

chain (θ
(γ)
k )k≥0, defined by the recursion (1), admits a unique stationary distribution πγ ∈

P2(R
d). In addition

10



(a) for all θ ∈ R
d, k ∈ N

∗:

W 2
2 (R

k
γ(θ, ·), πγ) ≤ (1− 2µγ(1− γL/2))k

∫

Rd

‖θ − ϑ‖2 dπγ(ϑ) ;

(b) for any Lipshitz function φ : Rd → R, with Lipschitz constant Lφ, for all θ ∈ R
d,

k ∈ N
∗:

∣

∣

∣
Rkγφ(θ)− πγ(φ)

∣

∣

∣
≤ Lφ(1− 2µγ(1− γL/2))k/2

(
∫

‖θ − ϑ‖2dπγ(ϑ)
)1/2

.

Proof. Let γ ∈ (0, 2/L) and λ1, λ2 ∈ P2(R
d). By [57, Theorem 4.1], there exists a couple of

random variables θ
(1)
0 , θ

(2)
0 such thatW 2

2 (λ1, λ2) = E[‖θ(1)0 −θ(2)0 ‖2] independent of (εk)k∈N∗ .

Let (θ
(1)
k )k≥0,(θ

(2)
k )k≥0 be the SGD iterates associated with the step-size γ, starting from

θ
(1)
0 and θ

(2)
0 respectively and sharing the same noise, i.e. for all k ≥ 0,

{

θ
(1)
k+1 = θ

(1)
k − γ

[

f ′(θ
(1)
k ) + εk+1(θ

(1)
k )
]

θ
(2)
k+1 = θ

(2)
k − γ

[

f ′(θ
(2)
k ) + εk+1(θ

(2)
k )
]

.
(11)

Note that using that θ
(1)
0 , θ

(2)
0 are independent of ε1, we have for i, j ∈ {1, 2} using A3,

that
E[〈θ(i)0 , ε(θ

(j)
0 )〉] = 0 . (12)

Since for all k ≥ 0, the distribution of (θ
(1)
k , θ

(2)
k ) belongs to Π(λ1R

k
γ , λ2R

k
γ), by definition

of the Wasserstein distance we get

W 2
2 (λ1Rγ , λ2Rγ) ≤ E

[

‖θ(1)1 − θ
(2)
1 ‖2

]

≤ E

[

‖θ(1)0 − γf ′1(θ
(1)
0 )− (θ

(2)
0 − γf ′1(θ

(2)
0 )))‖2

]

i)

≤ E

[

∥

∥

∥
θ
(1)
0 − θ

(2)
0

∥

∥

∥

2
− 2γ

〈

f ′(θ
(1)
0 )− f ′(θ

(2)
0 ), θ

(1)
0 − θ

(2)
0

〉

]

+ γ2E

[

∥

∥

∥
f ′1(θ

(1)
0 )− f ′1(θ

(2)
0 )
∥

∥

∥

2
]

ii)

≤ E

[

∥

∥

∥
θ
(1)
0 − θ

(2)
0

∥

∥

∥

2
− 2γ(1− γL/2)

〈

f ′(θ
(1)
0 )− f ′(θ

(2)
0 ), θ

(1)
0 − θ

(2)
0

〉

]

iii)

≤ (1− 2µγ(1 − γL/2))E

[

∥

∥

∥
θ
(1)
0 − θ

(2)
0

∥

∥

∥

2
]

,

using (12) for i), A4(2) for ii), and finally A1 for iii).
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Thus by a straightforward induction, we get, setting ρ = (1− 2µγ(1− γL/2))

W 2
2 (λ1R

k
γ , λ2R

k
γ) ≤ E

[

‖θ(1)k − θ
(2)
k ‖2

]

≤ ρE
[

‖θ(1)k−1 − θ
(2)
k−1‖2

]

≤ ρkW 2
2 (λ1, λ2) , (13)

Since by A2-A3-A4(2), λ1Rγ ∈ P2(R
d), taking λ2 = λ1Rγ in (13), for any N ∈ N

∗, we have
∑N

k=1W
2
2 (λ1R

k
γ , λ2R

k
γ) ≤

∑N
k=1 ρ

kW 2
2 (λ1, λ1Rγ). Therefore, we get

∑+∞
k=1W

2
2 (λ1R

k
γ , λ1R

k+1
γ ) <

+∞. By [57, Theorem 6.16], the space P2(R
d) endowed with W2 is a Polish space. Then,

(λ1R
k
γ)k≥0 is a Cauchy sequence and converges to a limit πλ1γ ∈ P2(R

d):

lim
k→+∞

W2(λ1R
k
γ , π

λ1
γ ) = 0 . (14)

We show that the limit πλ1γ does not depend on λ1. Assume that there exists πλ2γ such that

limk→+∞W2(λ2R
k
γ , π

λ2
γ ) = 0. By the triangle inequality

W2(π
λ1
γ , π

λ2
γ ) ≤W2(π

λ1
γ , λ1R

k
γ) +W2(λ1R

k
γ , λ2R

k
γ) +W2(π

λ2
γ , λ2R

k
γ) .

Thus by (13) and (14), taking the limits as k → +∞, we get W2(π
λ1
γ , π

λ2
γ ) = 0 and

πλ1γ = πλ2γ . The limit is thus the same for all initial distributions and is denoted by πγ .
Moreover, πγ is invariant for Rγ . Indeed for all k ∈ N

∗,

W2(πγRγ , πγ) ≤W2(πγRγ , πγR
k
γ) +W2(πγR

k
γ , πγ) .

Using (13) and (14), we get taking k → +∞, W2(πγRγ , πγ) = 0 and πγRγ = πγ . The fact
that πγ is the unique stationary distribution is straightforward by contradiction and using
(13).

Taking λ1 = δθ, λ2 = πγ , using the invariance of πγ and (13), we get (a).
Finally, if we take λ1 = δθ and λ2 = πγ , using πγRγ = πγ , (13), and the Cauchy-Schwarz

inequality, we have for any k ∈ N
∗:

∣

∣

∣
Rkγφ(θ)− πγ(φ)

∣

∣

∣
=
∣

∣

∣
E

[

φ(θ
(1)
k,γ)− φ(θ

(2)
k,γ))

]∣

∣

∣
≤LφE1/2[

∥

∥

∥
θ
(1)
k,γ − θ

(2)
k,γ

∥

∥

∥

2
]

≤Lφ(1− 2µγ(1− γL/2))k/2
(
∫

‖θ − ϑ‖2dπγ(ϑ)
)1/2

,

which concludes the proof of (b).

A consequence of Proposition 2 is that the expectation of θ̄
(γ)
k defined by (2) converges to

∫

Rd ϑdπγ(ϑ) as k goes to infinity at a rate of order O(k−1), see Proposition 16 in Section 6.2.
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3.1 Expansion of moments of πγ when γ is in a neighborhood of 0

In this sub-section, we analyze the properties of the chain starting at θ0 distributed
according to πγ . As a result, we prove that the mean of the stationary distribution
θ̄γ =

∫

Rd ϑπγ (dϑ) is such that θ̄γ = θ∗ + γ∆ + O(γ2). Simple developments of Equa-
tion (1) at the equilibrium, result in expansions of the first two moments of the chain.
It extends [45, 31] which showed that (γ−1/2(πγ − δθ∗))γ>0 converges in distribution to a
normal law as γ → 0.

Quadratic case When f is a quadratic function, i.e. f ′ is affine, we have the following
result.

Proposition 3. Assume f = fΣ, fΣ : θ 7→
∥

∥Σ1/2(θ − θ∗)
∥

∥

2
/2, where Σ is a positive

definite matrix, and A2-A3-A4(4). Let γ ∈ (0, 2/L). Then, it holds θ̄γ = θ∗, Σ⊗ I + I ⊗
Σ− γΣ⊗ Σ is invertible and

∫

Rd

(θ − θ∗)⊗2πγ(dθ) = γ(Σ ⊗ I + I ⊗ Σ− γΣ⊗ Σ)−1

[
∫

Rd

C(θ)πγ(dθ)
]

,

where θ̄γ and C are given by (3) and (5) respectively, and πγ is the invariant probability
measure of Rγ given by Proposition 2.

The first part of the result, which highlights the crucial fact that for a quadratic function,
the mean under the limit distribution is the optimal point, is easy to prove. Indeed, since

πγ is invariant for (θ
(γ)
k )k≥0, if θ

(γ)
0 is distributed according to πγ , then θ

(γ)
1 is distributed

according to πγ as well. Thus as θ
(γ)
1 = θ

(γ)
0 − γf ′(θ

(γ)
0 ) + γε1(θ

(γ)
0 ) taking expectations on

both sides, we get
∫

Rd f
′(ϑ)dπγ(ϑ) = 0. For a quadratic function, whose gradient is linear:

∫

Rd f
′(ϑ)dπγ(ϑ) = f ′(θ̄γ) = 0 and thus θ̄γ = θ∗. This implies that the averaged iterate

converges to θ∗, see e.g. [5]. The proof for the second expression is given in Section 6.3.

General case While the quadratic case led to particularly simple expressions, in general,
we can only get a first order development of these expectations as γ → 0. Note that it
improved on [45], which shows a similar expansion but an error of order of O(γ3/2).

Theorem 4. Assume A1-A2-A3-A4(6 ∨ [2(kε + 1)])-A5 and let γ ∈ (0, 2/L). Then
f ′′(θ∗)⊗ I + I ⊗ f ′′(θ∗) is invertible and

θ̄γ − θ∗ = γf ′′(θ∗)−1f ′′′(θ∗)AC(θ∗) +O(γ2) (15)
∫

Rd

(θ − θ∗)⊗2πγ(dθ) = γAC(θ∗) +O(γ2) , (16)

where
A =

(

f ′′(θ∗)⊗ I + I ⊗ f ′′(θ∗)
)−1

, (17)
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θ̄γ and C are given by (3) and (5) respectively, and πγ is the invariant probability measure
of Rγ given by Proposition 2.

Proof. The proof is postponed to Section 6.4.

This shows that γ 7→ θ̄γ is a differentiable function at γ = 0. The “drift” θ̄γ − θ∗

can be understood as an additional error occurring because the function is non quadratic
(f ′′′(θ∗) 6= 0) and the step-sizes are not decaying to zero. The mean under the limit
distribution is at distance γ from θ∗. In comparison, the final iterate oscillates in a sphere
of radius proportional to

√
γ.

3.2 Expansion for a given γ > 0 when k tends to +∞
In this sub-section, we analyze the convergence of θ̄

(γ)
k to θ̄γ , when k → ∞, and the con-

vergence of E[‖θ̄(γ)k − θ̄γ‖2] to 0. Under suitable conditions [23], θ̄
(γ)
k satisfies a central limit

theorem: {
√
k(θ̄

(γ)
k − θ̄γ)}k∈N∗ converges in law to a d-dimensional Gaussian distribution

with zero-mean. However, this result is purely asymptotic and we propose a new tighter
development that describes how the initial conditions are forgotten. We show that the con-
vergence behaves similarly to the convergence in the quadratic case, where the expected
squared distance decomposes as a sum of a bias term, that scales as k−2, and a variance
term, that scales as k−1, plus linearly decaying residual terms. We also describe how the
asymptotic bias and variance can be easily expressed as moments of solutions associated
to several Poisson equations.

For any Lipschitz function ϕ : Rd → R
q, by Lemma 8 in Section 6.2, the function ψγ =

∑+∞
i=0 {Riγϕ−πγ(ϕ)} is well-defined, Lipschitz and satisfies πγ(ψγ) = 0, (Id−Rγ)ψγ = ϕ. ψγ

will be referred to as the Poisson solution associated with ϕ. Consider the three following
functions:

• ψγ the Poisson solution associated to ϕ : θ 7→ θ − θ∗,

• ̟γ the Poisson solution associated to θ 7→ ψγ(θ),

• χ1
γ the Poisson solution associated to θ 7→ (ψγ(θ))

⊗2,

• χ2
γ the Poisson solution associated to θ 7→ ((ψγ − ϕ)(θ))⊗2.

Theorem 5. Assume A1-A2-A3-A4(4) and let γ ∈ (0, 1/(2L)). Then setting ρ = (1 −
γµ)1/2, for any starting point θ0 ∈ R

d, k ∈ N
∗,

E

[

θ̄
(γ)
k − θ̄γ

]

= k−1(ψγ(θ0) +O(ρk)) ,

E

[

(

θ̄
(γ)
k − θ̄γ

)⊗2
]

= k−1 πγ
(

ψ⊗2
γ − (ψγ − ϕ)⊗2

)

− k−2
[

πγ

(

̟γϕ
⊤ + ϕ̟⊤

γ

)

+ χ2
γ(θ0)− χ1

γ(θ0)
]

+O(k−3) ,
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where θ̄
(γ)
k , θ̄γ are given by (2) and (3) respectively, and πγ is the invariant probability

measure of Rγ given by Proposition 2.

Equation (5) is a sum of three terms: (i) a variance term, that scales as 1/k, and does
not depend on the initial distribution (but only on the asymptotic distribution πγ), and
(ii) a bias term, which scales as 1/k2, and depends on the initial point θ0 ∈ R

d, (iii) a
non-positive residual term, which scales as 1/k2.

Proof. In order to give the intuition of the proof and to underline how the associated
Poisson solutions are introduced, we here sketch the proof of the first result. By definition
of ϕ : θ 7→ θ − θ∗ and since ψγ satisfies (Id−Rγ)ψγ = ϕ, we have

E

[

θ̄
(γ)
k+1

]

− θ∗ = (k + 1)−1
k
∑

i=0

(Riγϕ)(θ0) = πγ(ϕ) + (k + 1)−1ψγ(θ0) +Rk+1
γ ψγ(θ0),

where we have used that

∞
∑

i=0

Riγ(ϕ− πγ(ϕ))−Rk+1
γ

∞
∑

i=0

Riγ(ϕ− πγ(ϕ)) = ψγ −Rk+1
γ ψγ .

Finally, we have that Rkγψγ(θ0) converges to 0 at linear speed, using Proposition 2 and
πγ(ψγ) = 0.

The formal and complete proof of this result is postponed to Section 6.5.

This result gives an exact closed form for the asymptotic bias and variance, for a fixed
γ, as k → ∞. Unfortunately, in the general case, it is neither possible to compute the
Poisson solutions exactly, nor is it possible to prove a first order development of the limits
as γ → 0.

When fΣ is a quadratic function, it is possible, for any γ > 0, to compute ψγ and χ1,2
γ

explicitly; we get the following decomposition of the error, which exactly recovers the result
of [2] or [14].

Corollary 6. Assume that f is an objective function of a least-square regression problem,
i.e. with the notations of Example 1, f = fΣ, Σ = E[XX⊤], εk are defined by (6), and
step-size γ ≤ 1/r2, with r defined by (8). Assume A1-A2-A3-A4(4). For any starting
point θ0 ∈ R

d :

Eθ̄
(γ)
k − θ∗=(1/(kγ))Σ−1(θ0 − θ∗) +O(ρk)

E

[

(

θ̄
(γ)
k − θ∗

)⊗2
]

=(1/k)Σ−1

{
∫

Rd

C(θ)dπγ(θ)
}

Σ−1

+ (1/(k2γ2))Σ−1Ω
[

ϕ(θ0)
⊗2 − πγ(ϕ

⊗2)
]

Σ−1

− (1/(k2γ2))(Σ−2 ⊗ Id+ Id⊗Σ−2)πγ(ϕ
⊗2) +O(k−3) .
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With Ω = (Σ⊗ I + I ⊗Σ− γΣ⊗ Σ)(Σ⊗ I + I ⊗ Σ− γT)−1, and

T : Rd×d → R
d×d , A 7→ E

[

(X⊤AX)XX⊤
]

. (18)

Proof. The proof is postponed to the supplementary paper [16], Section S3.

The bound on the second order moment is composed of a variance term k−1Σ−1πγ(C)Σ−1,
a bias term which decays as k−2, and a non-positive residual term. Interestingly, the bias
is 0 if we start under the limit distribution.

3.3 Continuous interpretation of SGD and weak error expansion

Under the stated assumptions on f and (εk)k∈N∗ , we have analyzed the convergence of the
stochastic gradient recursion (1). We here describe how this recursion can be seen as a
noisy discretization of the following gradient flow equation, for t ∈ R+:

θ̇t = −f ′(θt) . (19)

Note that since f ′(θ∗) = 0 by definition of θ∗ and A1, then θ∗ is an equilibrium point of
(19), i.e. θt = θ∗ for all t ≥ 0 if θ0 = θ∗. Under A2, (19) admits a unique solution on R+

for any starting point θ ∈ R
d. Denote by (ϕt)t≥0 the flow of (19), defined for all θ ∈ R

d by
(ϕt(θ))t≥0 as the solution of (19) starting at θ.

Denote by (A,D(A)), the infinitesimal generator associated with the flow (ϕt)t≥0 de-
fined by

D(A) =

{

h : Rd → R : for all θ ∈ R
d, lim

t→0

h(ϕt(θ))− h(θ)

t
exists

}

Ah(θ) = lim
t→0

{h(ϕt(θ))− h(θ)}
t

for all h ∈ D(A) , θ ∈ R
d . (20)

Note that for any h ∈ C1(Rd), h ∈ D(A), Ah = −〈f ′, h′〉 .
UnderA1 andA2, for any locally Lipschitz function g : Rd → R (extension to a function

g : Rd → R
q can easily be done considering all assumptions and results coordinatewise),

denote by hg the solution of the continuous Poisson equation defined for all θ ∈ R
d by

hg(θ) =
∫∞
0 (g(ϕs(θ))− g(θ∗)) ds. Note that hg is well-defined by Lemma 21-b) in Sec-

tion 6.7.1, since g is assumed to be locally Lipschitz. By (20), we have for all g : Rd → R,
locally Lipschitz,

Ahg(θ) = g(θ∗)− g(θ) . (21)

Under regularity assumptions on g (see Theorem 23), hg is continuously differentiable and
therefore satisfies

〈

f ′, h′g
〉

= g − g(θ∗). The idea is then to make a Taylor expansion of

hg(θ
(γ)
k+1) around θ

(γ)
k to express k−1

∑k
i=1 g(θ

(γ)
i )− g(θ∗) as convergent terms involving the

derivatives of hg. For g : R
d → R and ℓ, p ∈ N, ℓ ≥ 1 consider the following assumptions.
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A 6 (ℓ, p). There exist ag, bg ∈ R+ such that g ∈ Cℓ(Rd) and for all θ ∈ R
d and i ∈

{1, · · · , ℓ},
∥

∥g(i)(θ)
∥

∥ ≤ ag {‖θ − θ∗‖p + bg}.

Theorem 7. Let g : R
d → R satisfying A6(5, p) for p ∈ N. Assume A1-A2-A3-A5.

Furthermore, suppose that there exists q ∈ N and C ≥ 0 such that for all θ ∈ R
d,

E

[

‖ε1(θ)‖p+kε+3
]

≤ C(1 + ‖θ − θ∗‖q) ,

and A4(2p̃) holds for p̃ = p+3+ q∨ kε. Then there exists a constant ς > 0 only depending
on p̃ such that for all γ ∈ (0, 1/(ςL)), k ∈ N

∗ and any starting point θ0 ∈ R
d it holds that:

E

[

k−1
k
∑

i=1

{

g(θ
(γ)
i )− g(θ∗)

}

]

= (1/(kγ))
{

hg(θ0)− E

[

hg(θ
(γ)
k+1)

]}

+(γ/2) tr
(

h′′g(θ
∗) C(θ∗)

)

− (γ/k)A1(θ0)− γ2A2(θ0, k) , (22)

where θ
(γ)
k is the Markov chain starting from θ0 and defined by the recursion (1) and C is

given by (5). In addition for some constant C ≥ 0 independent of γ and k, we have

A1(θ0) ≤ C
{

1 + ‖θ0 − θ∗‖p̃
}

, A2(θ0, k) ≤ C
{

1 + ‖θ0 − θ∗‖p̃ /k
}

.

Proof. The proof is postponed to Section 6.7.

First in the case where f ′ is linear, choosing for g the identity function, then hId =
∫ +∞
0 {ϕs − θ∗}ds = Σ−1, and we get that the first term in (22) vanishes which is expected
since in that case θ̄γ = θ∗. Second by Lemma 22-b), we recover the first expansion of
Theorem 4 for arbitrary objective functions f . Finally note that for all q ∈ N, under
appropriate conditions, Theorem 7 implies that there exist constants C1, C2(θ0) ≥ 0 such

that E
[

k−1
∑k

i=1 ‖θ
(γ)
i − θ∗‖2q

]

= C1γ + C2(θ0)/k +O(γ2).

3.4 Discussion

Classical proofs of convergence rely on another decomposition, originally proposed by [42]
and used in recent papers analyzing the averaged iterate [4] . We here sketch the arguments
of these decompositions, in order to highlight the main difference, namely the fact that the
residual term is not well controlled when γ goes to zero in the classical proof.

Classical decomposition The starting point of this decomposition is to consider a

Taylor expansion of f ′(θ
(γ)
k+1) around θ

∗. For any k ∈ N,

f ′(θ
(γ)
k ) = f ′′(θ∗)(θ

(γ)
k − θ∗) +O

(

∥

∥

∥
θ
(γ)
k − θ∗

∥

∥

∥

2
)

.
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As a consequence, using the definition of the SGD recursion (1),

θ
(γ)
k+1 − θ

(γ)
k = −γf ′(θ(γ)k )− γεk+1(θ

(γ)
k )

= −γf ′′(θ∗)(θ(γ)k − θ∗)− γεk+1(θ
(γ)
k ) + γO

(

∥

∥

∥
θ
(γ)
k − θ∗

∥

∥

∥

2
)

.

Thus

f ′′(θ∗)(θ
(γ)
k − θ∗) = γ−1(−θ(γ)k+1 + θ

(γ)
k )− εk+1(θ

(γ)
k ) +O

(

∥

∥

∥
θ
(γ)
k − θ∗

∥

∥

∥

2
)

.

Averaging over the first k iterates yields:

(k + 1)
(

θ̄
(γ)
k − θ∗

)

= γ−1f ′′(θ∗)−1
(

θ
(γ)
0 − θ

(γ)
k+1

)

−
k
∑

i=0

f ′′(θ∗)−1εi+1

(

θ
(γ)
i

)

+

k
∑

i=0

O

(

∥

∥

∥
θ
(γ)
i − θ∗

∥

∥

∥

2
)

. (23)

The term on the right-hand part of Equation (23) is composed of a bias term (depending on
the initial condition), a variance term, and a residual term. This residual term differentiates
the general setting from the quadratic one (in which it does not appear, as the first order
Taylor expansion of f ′ is exact). This decomposition has been used in [4] to prove upper
bound on the error, but does not allow for a tight decomposition in powers of γ when

γ → 0. Indeed, the residual θ
(γ)
i − θ∗ simply does not go to 0 when γ → 0: on the contrary,

the chain becomes ill-conditioned when γ = 0.

New decomposition Here, we use the fact that for a function g : Rd → R
q regular

enough, there exists hg : R
d → R

q satisfying, for any θ ∈ R
d:

h′g(θ)f
′(θ) = g(θ)− g(θ∗),

where h′g(θ) ∈ R
q×d, and f ′(θ) ∈ R

d. The starting point is then a first order Taylor

development of hg(θ
(γ)
k+1) around θ

(γ)
k . For any k ∈ N

∗, we have

hg(θ
(γ)
k+1) = hg(θ

(γ)
k ) + h′g(θ

(γ)
k )(θ

(γ)
k+1 − θ

(γ)
k ) +O

(

∥

∥

∥
θ
(γ)
k+1 − θ

(γ)
k

∥

∥

∥

2
)

= hg(θ
(γ)
k )− γh′g(θ

(γ)
k )f ′(θ

(γ)
k )− γh′g(θ

(γ)
k )εk+1(θ

(γ)
k ) +O

(

∥

∥

∥
θ
(γ)
k+1 − θ

(γ)
k

∥

∥

∥

2
)

= hg(θ
(γ)
k )− γ(g(θ

(γ)
k )− g(θ∗))− γh′g(θ

(γ)
k )εk+1(θ

(γ)
k ) +O

(

∥

∥

∥
θ
(γ)
k+1 − θ

(γ)
k

∥

∥

∥

2
)

.
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Thus reorganizing terms,

g(θ
(γ)
k )− g(θ∗) = γ−1

{

hg(θ
(γ)
k )− hg(θ

(γ)
k+1)

}

+ h′g(θ
(γ)
k )εk+1(θ

(γ)
k ) + γ−1O

(

∥

∥

∥
θ
(γ)
k+1 − θ

(γ)
k

∥

∥

∥

2
)

.

Finally, averaging over the first k iterations and taking g = Id give

(k + 1)
(

θ̄
(γ)
k − θ∗

)

=γ−1
(

hId(θ
(γ)
0 )− hId(θ

(γ)
k+1)

)

+

k
∑

i=0

h′Id(θ
(γ)
i )εi+1

(

θ
(γ)
i

)

+ γ−1
k
∑

i=0

O

(

∥

∥

∥
θ
(γ)
i+1 − θ

(γ)
i

∥

∥

∥

2
)

. (24)

This expansion is the root of the proof of Theorem 7, which formalizes the expansion
as powers of γ. The key difference between decomposition (23) and (24) is that in the
latter, when γ → 0, the expectation of the residual term tends to 0 and can naturally be
controlled.

4 Experiments

We performed experiments on simulated data, for logistic regression, with n = 107 obser-
vations, for d = 12 and 4. Results are presented in Figure 2. The data are a.s. bounded
by R ≥ 0, therefore R2 = L. We consider SGD with constant step-sizes 1/R2, 1/2R2

(and 1/4R2) with or without averaging, with R2 = L. Without averaging, the chain sat-

urates with an error proportional to γ (since ‖θ(γ)k − θ∗‖ = O(
√
γ) as k → +∞). Note

that the ratio between the convergence limits of the two sequences is roughly 2 in the un-
averaged case, and 4 in the averaged case, which confirms the predicted limits. We consider
Richardson Romberg iterates, which saturate at a much lower level, and performs much
better than decaying step-sizes (as 1/

√
n) on the first iterations, as it forgets the initial

conditions faster. Finally, we run the online-Newton [5], which performs very well but has
no convergence guarantee. On the Right plot, we also propose an estimator that uses 3
different step-sizes to perform a higher order interpolation. More precisely, for all k ∈ N

∗,

we compute θ̃3k =
8
3 θ̄

(γ)
k − 2θ̄

(2γ)
k + 1

3 θ̄
(4γ)
k . With such an estimator, the first 2 terms in the

expansion, scaling as γ and γ2, should vanish, which explains that it does not saturate.

5 Conclusion

In this paper, we have used and developed Markov chain tools to analyze the behavior of
constant step-size SGD, with a complete analysis of its convergence, outlining the effect of
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Figure 2: Synthetic data, logarithmic scales. Upper-left: logistic regression, d = 12, with
averaged SGD with step-size 1/R2, 1/2R2, decaying step-sizes (γk = 1/(2R2

√
k)) (averaged

(plain) and non-averaged (dashed)), Richardson Romberg extrapolated iterates, and online
Newton iterates. Upper-right: same in lower dimension (d = 4). Bottom: same but

with three different step-sizes and an estimator built using the Richardson estimator θ̃3k =
8
3 θ̄

(γ)
k − 2θ̄

(2γ)
k + 1

3 θ̄
(4γ)
k , with 3 different step-sizes 3γ, 2γ and γ = 1/4R2.

initial conditions, noise and step-sizes. For machine learning problems, this allows us to
extend known results from least-squares to all loss functions. This analysis leads naturally
to using Romberg-Richardson extrapolation, that provably improves the convergence be-
havior of the averaged SGD iterates. Our work opens up several avenues for future work:
(a) show that Richardson-Romberg trick can be applied to the decreasing step-sizes setting,
(b) study the extension of our results under self-concordance condition [3].

6 Postponed proofs

6.1 Discussion on assumptions on the noise

AssumptionA4, made in the text, can be weakened in order to apply to settings where input
observations are un-bounded (typically, Gaussian inputs would not satisfy AssumptionA4).
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Especially, in many cases, we only need Assumption A7 below. Let p ≥ 2.

A7 (p). (i) There exists τ̃p ≥ 0 such that {E1/p[‖ε1(θ∗)‖p]} ≤ τ̃p .

(ii) For all x, y ∈ R
d, there exists L ≥ 0 such that, for q = 2, . . . , p,

E
[
∥

∥f ′1(x)− f ′1(y)
∥

∥

q]

≤ Lq−1 ‖x− y‖q−2 〈x− y, f ′(x)− f ′(y)
〉

, (25)

where L is the same constant appearing in A2 and f ′1 is defined by (4).

On the other hand, we consider also the stronger assumption that the noise is indepen-
dent of θ (referred to as the “semi-stochastic” setting, see [17]), or more generally that the
noise has a uniformly bounded fourth order moment.

A8. There exists τ ≥ 0 such that supθ∈Rd{E1/4[‖ε1(θ)‖4]} ≤ τ .

Assumption A7(p), p ≥ 2, is the weakest, as it is satisfied for random design least mean
squares and logistic regression with bounded fourth moment of the inputs. Note that we
do not assume that gradient or gradient estimates are a.s. bounded, to avoid the need for
a constraint on the space where iterates live. It is straightforward to see that A7(p), p ≥ 2,
implies A4(p) with τp = τ̃p, and A8-A2 implies A4(4).

It is important to note that assuming A3 –especially that (εk)k∈N⋆ are i.i.d. random
fields– does not imply A8. On the contrary, making the semi stochastic assumption,
i.e. that the noise functions (εk(θk−1))k∈N⋆ are i.i.d. vectors (e.g. satisfied if εk is constant
as a function of θ), is a very strong assumption, and implies A8.

6.2 Preliminary results

We preface the proofs of the main results by some technical lemmas.

Lemma 8. Assume A1-A2-A3-A4(2). Let φ : Rd → R be a Lφ-Lipschitz function. For
any step-size γ ∈ (0, 2/L), the function ψγ : Rd → R defined for all θ ∈ R

d by

ψγ(θ) =

+∞
∑

i=0

Riγφ(θ) , (26)

is well-defined, Lipschitz and satisfies (Id−Rγ)ψγ = φ, πγ(ψγ) = 0. In addition, if ψ̃γ :
R
d → R is an other Lipchitz function satisfying (Id−Rγ)ψ̃γ = φ, πγ(ψ̃γ) = 0, then ψγ =

ψ̃γ .

Proof. Let γ ∈ (0, 2/L). By Proposition 2-(b), for any Lipschitz continuous function φ,
{θ 7→∑k

i=1(R
i
γφ(θ)−πγ(φ))}k≥0 converges absolutely on all compact sets of Rd. Therefore

ψγ given by (26) is well-defined. Let (θ, ϑ) ∈ R
d × R

d. Consider now the two processes
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(θ
(1)
k )≥0,(θ

(2)
k )k≥0 defined by (11) with λ1 = δθ and λ2 = δϑ. Then, for any k ∈ N

∗, using
(13):

∣

∣

∣
Rkγφ(θ)−Rkγφ(ϑ)

∣

∣

∣
≤ LφE

1/2

[

∥

∥

∥
θ
(1)
k,γ − θ

(2)
k,γ

∥

∥

∥

2
]

≤ Lφ(1− 2µγ(1− γL/2))k/2‖θ − ϑ‖ . (27)

Therefore by definition (26), ψγ is Lipschitz continuous. Finally, it is straightforward to
verify that ψγ satisfies the stated properties.

If ψ̃γ : Rd → R is an other Lipchitz function satisfying these properties, we have for all
θ ∈ R

d, (ψγ − ψ̃γ)(θ) = Rγ(ψγ − ψ̃γ)(θ). Therefore for all k ∈ N
∗, θ ∈ R

d, (ψγ − ψ̃γ)(θ) =
Rkγ(ψγ − ψ̃γ)(θ). But by Proposition 2-(b), limk→+∞Rkγ(ψγ − ψ̃γ)(θ) = πγ(ψγ − ψ̃γ) = 0,
which concludes the proof.

Lemma 9. Assume A1-A2-A3-A4(2). Then we have for any γ ∈ (0, 2/L).

∫

Rd

f ′(θ)πγ(dθ) = 0 .

Proof. Let (θ
(γ)
k )k∈N be a Markov chain satisfying (1), with θ

(γ)
0 distributed according to

πγ . Then the proof follows from taking the expectation in (1) for k = 0, using that the

distribution of θ
(γ)
1 is πγ , E[ε1(θ)] = 0 for all θ ∈ R

d and ε1 is independent of θ
(γ)
0 .

Lemma 10. Assume A1-A2-A3-A7(2). Then for any initial condition θ
(γ)
0 ∈ R

d, we have
for any γ > 0,

E

[

∥

∥

∥
θ
(γ)
k+1 − θ∗

∥

∥

∥

2
∣

∣

∣

∣

Fk
]

≤ (1− 2γµ(1− γL))
∥

∥

∥
θ
(γ)
k − θ∗

∥

∥

∥

2
+ 2γ2τ̃22 ,

where (θ
(γ)
k )k≥0 is given by (1). Moreover, if γ ∈ (0, 1/L), we have

∫

Rd

‖θ − θ∗‖2 πγ(dθ) ≤ γτ̃22 /(µ(1 − γL)) . (28)

Proof. The proof and result is very close to the ones from [40] but we extend it without
a.s. Lipschitzness (A4) but with A7. Using A3-A1 and f ′(θ∗) = 0, we have

E

[

∥

∥

∥
θ
(γ)
k+1 − θ∗

∥

∥

∥

2
∣

∣

∣

∣

Fk
]

≤
∥

∥

∥
θ
(γ)
k − θ∗

∥

∥

∥

2
+ γ2E

[

∥

∥

∥
f ′k+1(θ

(γ)
k )
∥

∥

∥

2
∣

∣

∣

∣

Fk
]

− 2γE
[〈

f ′k+1(θ
(γ)
k )− f ′k+1(θ

∗), θ
(γ)
k − θ∗

〉
∣

∣

∣
Fk
]

(29)

≤ (1− 2µγ)
∥

∥

∥
θ
(γ)
k − θ∗

∥

∥

∥

2
+ γ2E

[

∥

∥

∥
f ′k+1(θ

(γ)
k )
∥

∥

∥

2
∣

∣

∣

∣

Fk
]

. (30)
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In addition, under A3-A7(2) and using (4), we have:

E

[

∥

∥

∥
f ′k+1(θ

(γ)
k )
∥

∥

∥

2
∣

∣

∣

∣

Fk
]

≤ 2

(

E

[

∥

∥

∥
f ′k+1(θ

(γ)
k )− f ′k+1(θ

∗)
∥

∥

∥

2
∣

∣

∣

∣

Fk
]

+ E

[

∥

∥f ′k+1(θ
∗)
∥

∥

2
∣

∣

∣
Fk
]

)

≤ 2

(

E

[

∥

∥

∥
f ′k+1(θ

(γ)
k )− f ′k+1(θ

∗)
∥

∥

∥

2
∣

∣

∣

∣

Fk
]

+ τ2
)

≤ 2
(

LE
[〈

f ′k+1(θ
(γ)
k )− f ′k+1(θ

∗), θ
(γ)
k − θ∗

〉
∣

∣

∣
Fk
]

+ τ2
)

≤ 2
(

L
〈

f ′(θ
(γ)
k )− f ′(θ∗), θ

(γ)
k − θ∗

〉

+ τ2
)

.

Combining this result and (30) concludes the proof of the first inequality.

Regarding the second bound, let a fixed initial point θ
(γ)
0 ∈ R

d. By Jensen inequality
and the first result we get for any k ∈ N and M ≥ 0,

E

[

∥

∥

∥
θ
(γ)
k+1 − θ∗

∥

∥

∥

2
∧M

]

≤ (1− 2γµ(1− γL))k+1
∥

∥

∥
θ
(γ)
0 − θ∗

∥

∥

∥

2

+ 2γ2τ̃22

k
∑

i=0

(1− 2γµ(1 − γL))i .

Since by Proposition 2-(b), limk→+∞ E[‖θ(γ)k+1− θ∗‖2 ∧M ] =
∫

Rd{‖θ− θ∗‖2 ∧M}πγ(dθ), we
get for any M ≥ 0,

∫

Rd

{‖θ − θ∗‖2 ∧M}πγ(dθ) ≤ γτ̃22 /(µ(1 − γL)) .

Taking M → +∞ and applying the monotone convergence theorem concludes the proof.

Using Lemma 10, we can extend Lemma 8 to functions φ which are locally Lipschitz.

Lemma 11. Assume A1-A2-A3-A4(4). Let φ : Rd → R be a function satisfying there
exists Lφ ≥ 0 such that for any x, y ∈ R

d,

|φ(x)− φ(y)| ≤ Lφ ‖x− y‖ {1 + ‖x‖+ ‖y‖} . (31)

For any step-size γ ∈ (0, 1/L), it holds:

(a) there exists C ≥ 0 such that for all θ ∈ R
d, k ∈ N

∗:

∣

∣

∣
Rkγφ(θ)− πγ(φ)

∣

∣

∣
≤ CLφ(1− 2µγ(1− γL))k/2

{

1 + ‖θ − θ∗‖2
}

;
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(b) the function ψγ : Rd → R defined for all θ ∈ R
d by (26) is well-defined satisfies

(Id−Rγ)ψγ = φ, πγ(ψγ) = 0 and there exists Lψ ≥ 0 such that such that for any
x, y ∈ R

d,
|ψ(x)− ψ(y)| ≤ Lψ ‖x− y‖ {1 + ‖x‖+ ‖y‖} . (32)

Proof. In this proof, C ≥ 0 is a constant which can change from line to line.

(a) Let γ ∈ (0, 1/L). Consider the two processes (θ
(1)
k )≥0,(θ

(2)
k )k≥0 defined by (11) with

λ1 = δθ and λ2 = πγ . Using (31), the Cauchy-Schwarz inequality, πγRγ = πγ and (13) we
have for any k ∈ N

∗:

∣

∣

∣
Rkγφ(θ)− πγ(φ)

∣

∣

∣

2
≤
∣

∣

∣
E

[

φ(θ
(1)
k )− φ(θ

(2)
k )
]
∣

∣

∣

2

≤ L2
φE

[

∥

∥

∥
θ
(1)
k − θ

(2)
k

∥

∥

∥

2
]

E

[

1 +
∥

∥

∥
θ
(1)
k

∥

∥

∥

2
+
∥

∥

∥
θ
(2)
k

∥

∥

∥

2
]

≤ CL2
φ(1− 2µγ(1− γL/2))k

∫

‖θ − ϑ‖2dπγ(ϑ)

×
(

1 + (1− 2µγ(1− γL))k ‖θ − θ∗‖2
)

,

where we have Lemma 10 for the last inequality. Then the proof is concluded using for all
x, y ∈ R

d, ‖x+ y‖2 ≤ 2(‖x‖2 + ‖y‖2) and Lemma 10 again.

(b) Let γ ∈ (0, 1/L). By (a), {θ 7→ ∑k
i=1(R

i
γφ(θ) − πγ(φ))}k≥0 converges absolutely on

all compact sets of Rd. Therefore ψγ given by (26) is well-defined. Let (θ, ϑ) ∈ R
d × R

d.

Consider now the two processes (θ
(1)
k,γ)≥0,(θ

(2)
k,γ)k≥0 defined by (11) with λ1 = δθ and λ2 = δϑ.

Then (31), the Cauchy-Schwarz inequality and (13), for any k ∈ N
∗, we get:

∣

∣

∣
Rkγφ(θ)−Rkγφ(ϑ)

∣

∣

∣

2
≤
∣

∣

∣
E

[

φ(θ
(1)
k )− φ(θ

(2)
k )
]
∣

∣

∣

2

≤ CL2
φ(1− 2µγ(1 − γL))k/2‖θ − ϑ‖

{

1 + ‖θ‖2 + ‖ϑ‖2
}

.

By definition (26), ψγ satisfies (32). Finally, it is straightforward to verify that ψγ satisfies
the stated properties.

It is worth pointing out that under Assumption A8 (the “semi-stochastic” assumption),
a slightly different result holds. The following result underlines the difference between a
stochastic noise and a semi-stochastic noise, especially the fact that the maximal step-size
differs depending on this assumption made.
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Lemma 12. Assume A1-A2-A3-A8. Then for any initial condition θ
(γ)
0 ∈ R

d, we have
for any γ ∈ (0, 2/(m + L)],

E

[

∥

∥

∥
θ
(γ)
k+1 − θ∗

∥

∥

∥

2
∣

∣

∣

∣

Fk
]

≤ (1− 2γµL/(µ + L))
∥

∥

∥
θ
(γ)
k − θ∗

∥

∥

∥

2
+ γ2τ2 ,

where (θ
(γ)
k )k≥0 is given by (1).

Proof. First, note that since f satisfies A1 and A2, by [43, Chapter 2, (2.1.24)], for all
x, y ∈ R

d,

〈

f ′(x)− f ′(y), x− y
〉

≥ Lµ

L+ µ
‖x− y‖2 + 1

L+ µ
‖f ′(x)− f ′(y)‖2 . (33)

Besides, under A8, we have:

E

[

∥

∥

∥
f ′k+1(θ

(γ)
k )
∥

∥

∥

2
|Fk
]

=
∥

∥

∥
f ′(θ

(γ)
k )
∥

∥

∥

2
+ E

[

∥

∥

∥
f ′k+1(θ

(γ)
k )− f ′(θ

(γ)
k )
∥

∥

∥

2
]

≤
∥

∥

∥
f ′(θ

(γ)
k )
∥

∥

∥

2
+ τ2 .

So that finally, using (29), A3, (33), A2 and rearranging terms we get

E

[

∥

∥

∥
θ
(γ)
k+1 − θ∗

∥

∥

∥

2
∣

∣

∣

∣

Fk
]

≤ (1− 2γµL/(µ + L))
∥

∥

∥
θ
(γ)
k − θ∗

∥

∥

∥

2
+ γ2τ2

− 2
γ

L+ µ

∥

∥

∥
f ′(θ

(γ)
k )
∥

∥

∥

2
+ γ2

∥

∥

∥
f ′(θ

(γ)
k )
∥

∥

∥

2
.

Using that γ ≤ 2/(m+ L) concludes the proof.

We give uniform bound on the moments of the chain (θ
(γ)
k )k≥0 for γ > 0. For p ≥ 1,

recall that under A4(2p), the noise at optimal point has a moment of order 2p and we
denote

τ2p = E
1/2p

[

‖ε1(θ∗)‖2p
]

. (34)

We give a bound on the p-order moment of the chain, under the assumption that the noise
has a moment of order 2p.

For moment of order larger than 2, we have the following result.

Lemma 13. Assume A1-A2-A3-A4(2p), for p ≥ 1. There exist numerical constants
Cp,Dp ≥ 2 that only depend on p, such that, if γ ∈ (0, 1/(LCp)), for all k ∈ N

∗ and
θ0 ∈ R

d

E
1/p

[

∥

∥

∥
θ
(γ)
k − θ∗

∥

∥

∥

2p
]

≤ (1− 2γµ(1− CpγL/2))
k
E
1/p
[

‖θ0 − θ∗‖2p
]

+
Dpγτ

2
2p

µ
,
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where (θ
(γ)
k )k∈N is defined by (1) with initial condition θ

(γ)
0 = θ0. Moreover, the following

bound holds
∫

Rd

‖θ − θ∗‖2p πγ(dθ) ≤
(

Dpγτ
2
2p/µ

)p
. (35)

Remark 14. • Notably, Lemma 13 implies that
∫

Rd ‖θ − θ∗‖4 πγ(dθ) = O(γ2), and thus
∫

Rd ‖θ − θ∗‖3 πγ(dθ) = O(γ3/2). We also note that
∫

Rd ‖θ − θ∗‖2πγ(dθ) = O(γ), also
implies by Jensen’s inequality that ‖θ̄γ − θ∗‖2 = O(γ).

• Note that there is no contradiction between (35) and Theorem 7, as for any p ≥ 2, one
has for g(θ) = ‖θ − θ∗‖2 and hg the solution to the Poisson equation, that h′′g(θ

∗) = 0,
so that the first term in the development (of order γ) is indeed 0.

Proof. Let γ ∈ (0, (1/2L)). Set for any k ∈ N
∗, δk = ‖θ(γ)k − θ∗‖. The proof is by induction

on p ∈ N
∗. For conciseness, in the rest of the proof, we skip the explicit dependence in γ

in θ
(γ)
i : we only denote it θi. For p = 2, the result holds by Lemma 10. Assume that the

result holds for p− 1, p ∈ N
∗, p ≥ 2. By definition, we have

δ2pk+1 =
(

δ2k − 2γ〈f ′k+1(θk), θk − θ∗〉+ γ2‖f ′k+1(θk)‖2
)p

=
∑

i,j,l∈{0,...,p}3

i+j+l=p

p!

i!j!l!
δ2ik (2γ)j〈f ′k+1(θk), θk − θ∗〉j γ2l‖f ′k+1(θk)‖2l . (36)

We upper bounds each term for i, j, l ∈ {0, . . . , p}, as follows:

1. For i = p, j = l = 0, we have δ2pk .

2. For i = p − 1, j = 1, l = 0, we have p2γ〈f ′k+1(θk), θk − θ∗〉δ2(p−1)
k , for which it holds by

A3
E

[

p2γ〈f ′k+1(θk), θk − θ∗〉δ2(p−1)
k

∣

∣

∣
Fk
]

= p2γ〈f ′(θk), θk − θ∗〉δ2(p−1)
k . (37)

3. Else, either l ≥ 1 or j ≥ 2, thus 2l+j ≥ 2. We first upper bound, by the Cauchy–Schwarz
inequality:

E[〈f ′k+1(θk), θk − θ∗〉j |Fk] ≤ δjk
∥

∥f ′k+1(θk)
∥

∥

j
. (38)

Second, we have

E[‖f ′k+1(θk)‖2l+j |Fk] ≤ 22l+j−1

(

E[‖f ′k+1(θk)− f ′k+1(θ
∗)‖2l+j |Fk]

+ E[‖f ′k+1(θ
∗)‖2l+j |Fk]

)

≤ 22l+j−1

(

E[‖f ′k+1(θk)− f ′k+1(θ
∗)‖2l+j |Fk] + τ2l+j2p

)

, (39)
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using for any x, y ∈ R, (x+ y)2l+j ≤ 22l+j−1(x2l+j+ y2l+j), A4(2p), 2l+ j ≤ 2p and Hölder
inequality. In addition, using A4(2p), we get

E[‖f ′k+1(θk)− f ′k+1(θ
∗)‖2l+j |Fk] ≤ L2l+j−2δ2l+j−2

k E[‖f ′k+1(θk)− f ′k+1(θ
∗)‖2|Fk]

≤ L2l+j−1δ2l+j−2
k 〈f ′(θk)− f ′(θ∗), θk − θ∗〉 .

Combining this result, (38) and (39) implies using i+ j + l ≤ p,

E[δ2ik (2γ)j〈f ′k+1(θk), θk − θ∗〉j γ2l‖f ′k+1(θk)‖2l|Fk]

≤ δ2i+jk 22j+2l−1γ2l+j
(

E[‖f ′k+1(θk)− f ′k+1(θ
∗)‖2l+j |Fk] + τ2l+j2p

)

≤ γ2l+j22l+2j−1δ2i+2j+2l−2
k L2l+j−1〈f ′(θk)− f ′(θ∗), θk − θ∗〉

+ γ2l+j22l+2j−1δ2i+jk τ2l+j2p . (40)

Define then

Cp = max















2, (1/p)
∑

i,j,l∈{0,...,p}3

i+j+l=p
j+2l≥2

p!

i!j!l!
22l+2j−1















.

Note that using j + 2l ≥ 2, for γ such that γL < 1/Cp, it holds

1

p

∑

i,j,l∈{0,...,p}3

i+j+l=p
j+2l≥2

p!

i!j!l!
(γL)2l+j−122l+2j−1 ≤ γLCp < 1 . (41)

Therefore, we have combining this inequality, (37)-(40) in (36),

E[δ2pk+1|Fk] ≤ δ2pk − 2γp(1 − γLCp/2)δ
2(p−1)
k 〈f ′(θk)− f ′(θ∗), θk − θ∗〉

+
∑

i,j,l∈{0,...,p}3

i+j+l=p
j+2l≥2

p!

i!j!l!
γ2l+j22l+2j−1δ2i+jk τ2l+j2p .

Using A1, for j ∈ {0, . . . , p}, (γτ2pδk)j ≤ 2(γτ2p)
2j + 2(δk)

2j , we get

E[δ2pk+1] ≤ (1− 2γµp(1− γLCp/2))E[δ
2p
k ]

+
∑

i,j,l∈{0,...,p}3

i+j+l=p
j+2l≥2

p!

i!j!l!
4l+j(γ2τ22p)

l+j
E[δ2ik ] +

p!

i!j!l!
4l+j(γ2τ22p)

l
E[δ2i+2j

k ] .
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Finally, denoting ck = E
1/p[δ2pk ], using that by Hölder inequality E[δ2ik ] ≤ cik, for all i ∈

{0, . . . , p}, we have:

cpk+1 ≤ (1− 2γµp(1− γLCp/2))c
p
k +

∑

i,j,l∈{0,...,p}3

i+j+l=p
j+2l≥2

p!

i!j!l!
4l+j(γ2τ22p)

l+jcik

+
∑

i,j,l∈{0,...,p}3

i+j+l=p
j+2l≥2

p!

i!j!l!
4l+j(γ2τ22p)

lci+jk . (42)

Define

Dp = max
u∈{0,...,p}



















2p−u
(

p

u

)−1



































∑

i,j,l∈{0,...,p}3

i+j+l=p
j+2l≥2
l+j=u

p!

i!j!l!
4l+j +

∑

i,j,l∈{0,...,p}3

i+j+l=p
j+2l≥2
l=u

p!

i!j!l!
4l+j





















































Note that using (41), Cp ≥ 2 and µ ≤ L, (1 − 2γµ(1 − γLCp/2)) ≥ (1 − γLCp(1 −
γLCp/2)) ≥ 1/2. Using this inequality and 1−pt ≤ (1− t)p for t ≥ 0 we get by (42) setting
ρ = (1− 2γµ(1− γLCp/2)),

(

ρck +Dpγ
2τp
)p

=

p
∑

u=0

(

p

u

)

(ρck)
p−u(Dpγ

2τp)
u

≥ (1− 2γµp(1− γLCp/2))c
p
k +

p
∑

u=0

2u−pcp−uk

(

p

u

)

(ρck)
p−u(Dpγ

2τp)
u ≥ cpk+1 .

A straightforward induction implies the first statement. The proof of (35) is similar to the
one of (28) and is omitted.

Lemma 15. Let g : Rd → R satisfying A6(1, p) for p ∈ N. Then for all θ1, θ2 ∈ R
d,

|g(θ1)− g(θ2)| ≤ ag ‖θ1 − θ2‖ {bg + ‖θ1 − θ∗‖p + ‖θ2 − θ∗‖p} .
Proof. Let θ1, θ2 ∈ R

d. By the mean value theorem, there exists s ∈ [0, 1] such that if
ηs = sθ1 + (1− s)θ2 then

|g(θ1)− g(θ2)| = Dg(ηs) {θ1 − θ2} .

The proof is then concluded using A6(ℓ, p) and

‖ηs − θ∗‖ ≤ max (‖θ1 − θ∗‖ , ‖θ2 − θ∗‖) .
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Proposition 16. Let g : R
d → R satisfying A6(1, p) for p ∈ N. Assume A1-A2-

A3-A4(2p). Let Cp ≥ 2 be given by Lemma 13 and only depending on p. For all
γ ∈ (0, 1/(LCp)), for all initial point θ0 ∈ R

d, there exists Cg independent of θ0 such
that for all k ≥ 1:

∣

∣

∣

∣

∣

E

[

k−1
k
∑

i=1

{

g(θ
(γ)
i )
}

]

−
∫

Rd

g(θ)πγ(dθ)

∣

∣

∣

∣

∣

≤ Cg(1 + ‖θ0 − θ∗‖p)/k .

Proof. Let γ ∈ (0, 1/(LCp)). Consider the two processes (θ
(1)
k )≥0,(θ

(2)
k )k≥0 defined by (11)

with λ1 = δθ and λ2 = δϑ. By Jensen inequality, we have
∣

∣

∣

∣

∣

k
∑

i=1

(

E

[

g(θ
(1)
i )
]

−
∫

Rd

g(ϑ)πγ(dϑ)

)

∣

∣

∣

∣

∣

≤
k
∑

i=1

E

[∣

∣

∣
g(θ

(1)
i )− g(θ

(2)
i )
∣

∣

∣

]

. (43)

Using Lemma 15, the Cauchy Schwarz and Minkowski inequalities and (13) we get

E

[
∣

∣

∣
g(θ

(1)
i )− g(θ

(2)
i )
∣

∣

∣

]

≤ agE
1/2

[

∥

∥

∥
θ
(1)
i − θ

(2)
i

∥

∥

∥

2
]

E
1/2

[

(

bg +
∥

∥

∥
θ
(1)
i − θ∗

∥

∥

∥

p
+
∥

∥

∥
θ
(2)
i − θ∗

∥

∥

∥

p)2
]

≤ ag

(

ρi
∫

Rd

‖θ − ϑ‖dπγ(ϑ)
)1/2

×
(

bg + E
1/2

[

∥

∥

∥
θ
(1)
i − θ∗

∥

∥

∥

2p
]

+ E
1/2

[

∥

∥

∥
θ
(2)
i − θ∗

∥

∥

∥

2p
])

,

with ρ = (1 − 2µγ(1 − γL/2)). Moreover, Lemma 13 and Hölder inequality imply that
there exists Dp ≥ 2 such that for all γ ∈ (0, 1/(LCp)) and i ∈ N:

E
1/2

[

∥

∥

∥
θ
(1)
i − θ∗

∥

∥

∥

2p
]

≤ 2(p/2−1)+E
1/2

[

∥

∥

∥
θ
(1)
0 − θ∗

∥

∥

∥

2p
]

+ 2(p/2−1)+

(

Dpγτ
2
2p

µ

)p/2

.

Thus, using that for all i ∈ N, θ
(2)
i has for distribution πγ and Lemma 13 again, we obtain

for all i ∈ N,

E

[
∣

∣

∣
g(θ

(1)
i )− g(θ

(2)
i )
∣

∣

∣

]

≤ C̃gρ
i/2 ,

where

C̃g = ag

(
∫

Rd

‖θ − ϑ‖2 dπγ(ϑ)
)1/2

[

bg

+ 2(p/2−1)+
∥

∥

∥
θ
(1)
0 − θ∗

∥

∥

∥

p
+ (2(p/2−1)+ + 1)

(

Dpγτ
2
2p

µ

)p/2 ]

.
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Combining this result and (43) concludes the proof.

6.3 Proof of Proposition 3

Proof of Proposition 3. By Lemma 9, we have
∫

Rd f
′(θ)πγ(dθ) = 0. Since f ′ is linear, we

get f ′(θ̄γ) = 0, which implies by A1 that θ̄γ = θ∗.

Let γ ∈ (0, 2/L) and (θ
(γ)
k )k∈N given by (1) with θ

(γ)
0 distributed according to πγ

independent of (εk)k∈N∗ . Note that if f = fΣ, (1) implies for k = 1:

(θ
(γ)
1 − θ∗)⊗2 =

(

(Id−γΣ)
(

θ
(γ)
0 − θ∗

)

+ γε1(θ
(γ)
0 )
)⊗2

Taking the expectation, using A3, θ
(γ)
0 is independent of ε1 and πγRγ = πγ , we get

∫

Rd

(θ − θ∗)⊗2πγ(dθ) = (Id−γΣ)
[
∫

Rd

(θ − θ∗)⊗2πγ(dθ)

]

(Id−γΣ)

+ γ2
∫

Rd

C(θ)πγ(dθ) .

(Σ⊗ Id+ Id⊗Σ− γΣ⊗ Σ)

[
∫

Rd

(θ − θ∗)⊗2πγ(dθ)

]

= γ

∫

Rd

C(θ)πγ(dθ) . (44)

It remains to show that (Σ ⊗ Id+ Id⊗Σ − γΣ ⊗ Σ) is invertible. To show this result,
we just claim that it is a symmetric definite positive operator. Indeed, since γ < 2L−1,
Id−(γ/2)Σ is symmetric positive definite and is diagonalizable with the same orthogonal
vectors (fi)i∈{0,...,d} as Σ. If we denote by (λi)i∈{0,...,d}, then we get that (Σ⊗ Id+ Id⊗Σ−
γΣ⊗Σ) = Σ⊗(Id−γ/2Σ)+(Id−γ/2Σ)⊗Σ is also diagonalizable in the orthogonal basis of
R
d⊗R

d, (fi⊗ fj)i,j∈{0,...,d} and (λi(1− γλj)+λj(1− γλi))i,j∈{0,...,d} are its eigenvalues.

Note that in the case of the regression setting described in Example 1, we can specify
Proposition 3 as follows.

Proposition 17. Assume that f is an objective function of a least-square regression prob-
lem, i.e. with the notations of Example 1, f = fΣ, Σ = E[XX⊤] and εk are defined by (6).
Assume A1-A2-A3-A4(4) and let r defined by (8). We have for all γ ∈

(

0, 1/r2
)

,

(Σ⊗ Id+ Id⊗Σ− γT)

[
∫

Rd

(θ − θ∗)⊗2πγ(dθ)

]

= γE[ξ⊗2
1 ] ,

where T and ξ1 are defined by (18) and (7) respectively.

Proof. The proof follows the same line as the proof of Proposition 3 and is omitted.
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6.4 Proof of Theorem 4

We preface the proof by a couple of preliminaries lemmas.

Lemma 18. Assume A1-A2-A3-A4(6 ∨ 2kε)-A5 and let γ ∈ (0, 2/L). Then

θ̄γ − θ∗ = γf ′′(θ∗)−1f ′′′(θ∗)A

[
∫

Rd

{C(θ)}πγ(dθ)
]

+O(γ3/2) , (45)

where A is defined by (17), θ̄γ and C are given by (3) and (5) respectively.

Proof. Let γ ∈ (0, 2/L) and (θ
(γ)
k )k∈N given by (1) with θ

(γ)
0 distributed according to πγ

independent of (εk)k∈N∗ . For conciseness, in the rest of the proof, we skip the explicit

dependence in γ in θ
(γ)
i : we only denote it θi.

First by a third Taylor expansion with integral remainder of f ′ around θ∗, we have that
for all x ∈ R

d,

f ′(θ) = f ′′(θ∗)(θ − θ∗) + (1/2)f ′′′(θ∗)(θ − θ∗)⊗2 +R1(θ) , (46)

where R1 : R
d → R

d satisfies

sup
θ∈Rd

{‖R1(θ)‖ / ‖θ − θ∗‖3} < +∞ . (47)

It follows from Lemma 9, taking the integral with respect to πγ ,

0 =

∫

Rd

{

f ′′(θ∗)(θ − θ∗) + (1/2)f ′′′(θ∗)(θ − θ∗)⊗2 +R1(θ)
}

πγ(dθ) .

Using (47), Lemma 13 and Hölder inequality, we get

f ′′(θ∗)(θ̄γ − θ∗) + (1/2)f ′′′(θ∗)

[
∫

Rd

(θ − θ∗)⊗2πγ(dθ)

]

= O(γ3/2) . (48)

Moreover, we have by a second order Taylor expansion with integral remainder of f ′ around
θ∗,

θ1 − θ∗ = θ0 − θ∗ − γ
[

f ′′(θ∗)(θ0 − θ∗) + ε1(θ0) +R2(θ0)
]

,

where R2 : R
d → R

d satisfies

sup
θ∈Rd

{‖R2(θ)‖ / ‖θ − θ∗‖2} < +∞ . (49)

Taking the second order moment of this equation, and using A3, θ0 is independent of ε1,
(49), Lemma 13 and Hölder inequality, we get

∫

Rd

(θ − θ∗)⊗2πγ(dθ) = (Id−γf ′′(θ∗))
[
∫

Rd

(θ − θ∗)⊗2πγ(dθ)

]

(Id−γf ′′(θ∗))

+ γ2
∫

Rd

C(θ)πγ(dθ) +O(γ5/2).
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This leads to:
∫

Rd

(θ − θ∗)⊗2πγ(dθ) = γA

[
∫

Rd

C(θ)πγ(dθ)
]

+O(γ3/2) .

Combining this result and (48), we have that (45) holds if the operator (f ′′(θ∗)⊗Id+ Id⊗f ′′(θ∗)−
γf ′′(θ∗)⊗f ′′(θ∗)) is invertible. To show this result, we just claim that it is a symmetric def-
inite positive operator. Indeed, since γ < 2L−1, by A1, Id−(γ/2)f ′′(θ∗) is symmetric posi-
tive definite and is diagonalizable with the same orthogonal vectors (fi)i∈{0,...,d} as f

′′(θ∗). If
we denote by (λi)i∈{0,...,d}, then we get that (f ′′(θ∗)⊗Id+ Id⊗f ′′(θ∗)−γf ′′(θ∗)⊗f ′′(θ∗)) =
f ′′(θ∗) ⊗ (Id−γ/2f ′′(θ∗)) + (Id−γ/2f ′′(θ∗)) ⊗ f ′′(θ∗) is also diagonalizable in the orthog-
onal basis of Rd ⊗ R

d, (fi ⊗ fj)i,j∈{0,...,d} and (λi(1 − γλj) + λj(1 − γλi))i,j∈{0,...,d} are its
eigenvalues.

Lemma 19. Assume A1-A2-A3-A4(6 ∨ [2(kε + 1)])-A5. It holds as γ → 0,

∫

Rd

C(θ)πγ(dθ) = C(θ∗) +O(γ) ,

∫

Rd

C(θ)⊗ {θ − θ∗}πγ(dθ) = C(θ∗){θ̄γ − θ∗}+O(γ)

where C is given by (5).

Proof. By a second order Taylor expansion around θ∗ of C and using A5, we get for all
x ∈ R

d that
C(x) − C(θ∗) = C′(θ∗) {x− θ∗}+R1(x) ,

where R1 : R
d → R

d satisfies supx∈Rd ‖R1(x)‖ /(‖x− θ∗‖2 + ‖x+ θ∗‖kε+2) < +∞. Taking
the integral with respect to πγ and using Lemma 18-Lemma 13 concludes the proof.

Proof of Theorem 4. Let γ ∈ (0, 2/L) and (θ
(γ)
k )k∈N given by (1) with θ

(γ)
0 distributed

according to πγ independent of (εk)k∈N∗ . For conciseness, in the rest of the proof, we skip

the explicit dependence in γ in θ
(γ)
i : we only denote it θi.

The proof consists in showing that the residual term in (45) of Lemma 18 is of order
O(γ2) and not only O(γ3/2). Note that we have already prove that θ̄γ − θ∗ = O(γ). To
find the next term in the development, we develop further each of the terms. By a fourth
order Taylor expansion with integral remainder of f ′ around θ∗, and using A2, we have

θ1 − θ∗ =θ0 − θ∗ − γ
[

f ′′(θ∗)(θ0 − θ∗) + (1/2)f (3)(θ∗)(θ0 − θ∗)⊗2

+ (1/6)f (4)(θ∗)(θ0 − θ∗)⊗3 + ε1(θ0) +R3(θ)
]

, (50)
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where R3 : Rd → R
d satisfies supx∈Rd ‖R3(x)‖ / ‖x− θ∗‖4 < +∞. Therefore taking the

expectation and using A3-Lemma 13 we get

f ′′(θ∗)(θ̄γ − θ∗) = −(1/2)f (3)(θ∗)

∫

Rd

(θ − θ∗)⊗2πγ(dθ)

− (1/6)f (4)(θ∗)

∫

Rd

(θ − θ∗)⊗3πγ(dθ) +O(γ2) . (51)

Since f ′′(θ∗) is invertible by A1, To get the next term in the development, we show that

(a)
∫

Rd(θ − θ∗)⊗3πγ(dθ) = �γ2 + o(γ2).

(b)
∫

Rd(θ − θ∗)⊗2πγ(dθ) = �γ +△γ2 + o(γ2), for � given in (16), proving (16).

(a) Denote for i = 0, 1, ηi = θi − θ∗. By (46)-(47), Lemma 13 and A3-A4(12), we get

E[η⊗3
1 ] = E

[

{

(Id−γf ′′(θ∗))η0 − γε1(θ0)− γf ′′′(θ∗)η⊗2
0 +R1(θ0)

}⊗3
]

= E
[

{(Id−γf ′′(θ∗))η0}⊗3 + γ2{ε1(θ0)}⊗2 ⊗ {(Id−γf ′′(θ∗))η0}
+ γ{(Id−γf ′′(θ∗))η0}⊗2 ⊗ {f ′′′(θ∗)η⊗2

0 }
+γ{f ′′′(θ∗)η⊗2

0 } ⊗ {(Id−γf ′′(θ∗))η0}⊗2
]

+O(γ3)

= E
[

{(Id−γf ′′(θ∗))η0}⊗3 + γ2{ε1(θ0)}⊗2 ⊗ {(Id−γf ′′(θ∗))η0}
]

+O(γ3)

= E
[

{η0}⊗3
]

+ E
[

γB{η0}⊗3 + γ2{ε1(θ0)}⊗2 ⊗ {(Id−γf ′′(θ∗))η0}
]

+O(γ3) ,

where B ∈ L(Rd
3
,Rd

3
) is defined by

B = f ′′(θ∗)⊗ Id⊗ Id+ Id⊗f ′′(θ∗)⊗ Id+ Id⊗ Id⊗f ′′(θ∗) .

Using A1 and the same reasoning as to show that A in (17), is well defined, we get that
B is invertible. Then since η0 and η1 has the same distribution πγ , we get

∫

Rd

(θ − θ∗)⊗3πγ(dθ)

= γB−1

[
∫

Rd

{C(θ)} ⊗ {(Id−γf ′′(θ∗))(θ − θ∗)}πγ(dθ)
]

+O(γ2) .

By Lemma 19, we get

∫

Rd

(θ − θ∗)⊗3πγ(dθ) = γB−1
[

{C(θ∗)} ⊗ {(Id−γf ′′(θ∗))(θ̄γ − θ∗)}
]

+O(γ2) .

Combining this result and (45) implies (a).
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(b) First, we have using (50), A3 and Lemma 13 that:

E[(θ1 − θ∗)⊗2] = E
[

(θ0 − θ∗)⊗2 − γ(Id⊗f ′′(θ∗) + f ′′(θ∗)⊗ Id)(θ − θ∗)⊗2

+ (γ/2)(θ0 − θ∗)⊗ {f (3)(θ∗)(θ0 − θ∗)⊗2}

+(γ/2){f (3)(θ∗)(θ0 − θ∗)⊗2} ⊗ (θ0 − θ∗) + γ2ε1(θ0)
⊗2(θ0)

]

+O(γ3) .

Since θ0 and θ1 follow the same distribution πγ , it follows that

γ(Id⊗f ′′(θ∗) + f ′′(θ∗)⊗ Id)

[
∫

Rd

(θ − θ∗)⊗2πγ(dθ)

]

= O(γ3) +

∫

Rd

[

(γ/2)(θ − θ∗)⊗ {f (3)(θ∗)(θ − θ∗)⊗2}

+ (γ/2){f (3)(θ∗)(θ − θ∗)⊗2} ⊗ (θ − θ∗) +γ2ε1(θ0)
⊗2(θ0)

]

πγ(dθ) .

(52)

Then by linearity of f ′′′(θ∗) and using (a) we get (b).
Finally the proof of (15) follows from combining the results of (a)-(b) in (51).

6.5 Proof of Theorem 5

Theorem 5 follows from the following more general result taking ϕ : θ 7→ θ − θ∗.

Theorem 20. Let ϕ : Rd → R
q be a Lipschitz function. Assume A1-A2-A3-A4(4) and

let γ ∈ (0, 1/(2L)). Then setting ρ = (1− 2µγ(1− γL))1/2, for any starting point θ0 ∈ R
d,

k ∈ N∗

E

[

k−1
k−1
∑

i=0

ϕ(θ
(γ)
i )

]

= πγ(ϕ) + (1/k)ψγ (θ0) +O(k−2) ,

and if πγ(ϕ) = 0,

E





{

k−1
k−1
∑

i=0

ϕ(θ
(γ)
i )

}⊗2


 =
1

k
πγ
[

ψ⊗2
γ − (ψγ − ϕ)⊗2

]

− 1

k2

[

πγ(̟γϕ
⊤ + ϕ̟⊤

γ ) + χ2
γ(θ0)− χ1

γ(θ0)
]

+O(k−3) ,

where ψγ , ̟γ, χ
1
γ , χ

2
γ are solutions of the Poisson equation (26) associated with ϕ, ψγ ,

ψ⊗2
γ and (ψγ − ϕ)⊗2 respectively.

Proof. In the proof C will denote generic constants which can change from line to line. In

addition, we skip the dependence on γ for θ
(γ)
k , simply denoted θk. Let θ0 ∈ R

d. By
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Lemma 8, ψγ exists and is Lipshitz, and using Proposition 2-(b), πγ(ψγ) = 0, we have that

Rkγψγ(θ0) = O(ρk), with ρ := (1−2µγ(1−γL))1/2 . Therefore, setting Φk = k−1
∑k−1

i=0 ϕ(θi),

E[Φk] = k−1
k−1
∑

i=0

E [ϕ(θi)] = k−1
k−1
∑

i=0

Riγϕ(θ0)

= πγ(ϕ) + k−1
k−1
∑

i=0

(Riγϕ(θ0)− πγ(ϕ)))

= πγ(ϕ) + k−1ψγ(θ0)−Rkγψγ(θ0) = πγ(ϕ) + k−1ψγ(θ0) +O(ρk) ,

We now consider the Poisson solution associated with ϕϕ⊤, χ3
γ . By Lemma 11, such a

function exists and satisfies πγ(χ
3
γ) = 0, Rkγχ

3
γ(θ0) = O(ρk). Therefore, we obtain using in

addition the Markov property:

E[ΦkΦ
⊤
k ] =

1

k2

k−1
∑

i,j=0

E

[

ϕ(θi)ϕ(θj)
⊤
]

=
1

k2

k−1
∑

i=0

(

E

[

ϕ(θi)ϕ(θi)
⊤
]

+
k−1
∑

j=i+1

{

E

[

ϕ(θi)ϕ(θj)
⊤
]

+ E

[

ϕ(θj)ϕ(θi)
⊤
]}

)

= − 1

k2

k−1
∑

i=0

Riγ(ϕϕ
⊤)(θ0)

+
1

k2

k−1
∑

i=0

( k−1
∑

j=i+1

{

E

[

ϕ(θi)ϕ(θj)
⊤
]

+ E

[

ϕ(θj)ϕ(θi)
⊤
]}

)

= −1

k
πγ(ϕϕ

⊤)− 1

k2

∞
∑

i=0

{

Riγ(ϕϕ
⊤)(θ0)− πγ(ϕϕ

⊤)
}

+O(ρk)

+
1

k2

k−1
∑

i=0

( k−1
∑

j=i+1

{

E

[

ϕ(θi)ϕ(θj)
⊤
]

+ E

[

ϕ(θj)ϕ(θi)
⊤
]}

)

= −1

k
πγ(ϕϕ

⊤)− 1

k2
χ3
γ(θ0) +O(ρk)

+
1

k2

k−1
∑

i=0

( k−1−i
∑

j=0

{

E

[

ϕ(θi)(R
j
γϕ(θi))

⊤
]

+ E

[

Rjγϕ(θi)ϕ(θi)
⊤
]}

)

.

Thus using that for all N ∈ N and θ ∈ R
d,
∑N

j=0R
j
γϕ(θ) =

∑N
j=0{R

j
γψγ(θ)−Rj+1

γ ψγ(θ)} =
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ψγ(θ)−RN+1
γ ψγ(θ), we get

E[ΦkΦ
⊤
k ] = −1

k
πγ(ϕϕ

⊤)− 1

k2
χ3
γ(θ0)

+
1

k2

k−1
∑

i=0

{

Riγ

[

ϕψ⊤
γ − ϕ(Rk−iγ ψγ)

⊤
]

(θ0)
}

+
1

k2

k−1
∑

i=0

{

Riγ

[

ψγϕ
⊤ −Rk−iγ ψγϕ

⊤
]

(θ0)
}

+O(ρk) . (53)

Moreover, since ϕ is Lipschitz andRNγ ψγ is Cρ
N -Lipschitz and we have supx∈Rd{RNγ ψγ(x)/ ‖x‖} ≤

CρN by Lemma 8, we get for all x, y ∈ R
d and N ∈ N,

∥

∥

∥
ϕ(RNγ ψγ)

⊤(x)− ϕ(RNγ ψγ)
⊤(y)

∥

∥

∥
≤ CρN ‖x− y‖ (1 + ‖x‖+ ‖y‖) . (54)

Then, we obtain by Lemma 11

1

k

k−1
∑

i=0

Riγ [ϕ(R
k−i
γ ψγ)

⊤](θ0) =
1

k

k−1
∑

i=0

[Riγ − πγ ][ϕ(R
k−i
γ ψγ)

⊤](θ0)

1

k

k−1
∑

i=0

πγ [ϕ(R
k−1
γ ψγ)

⊤](θ0)

= (C/k)(1 + ‖θ0‖)
k−1
∑

i=0

ρk + πγ(ϕ̟
⊤
γ )/k +O(k−2) , (55)

using πγ(ψγ) = 0,
∑+∞

i=0 R
i
γψγ(θ) = ̟γ(θ), for all θ ∈ R

d, where ̟γ is the Poisson solution
associated with ψγ . Similarly, we have

1

k

k−1
∑

i=0

Riγ [R
k−i
γ ψγϕ

⊤](θ0) = πγ(̟γϕ
⊤)/k +O(k−2)

1

k

k−1
∑

i=0

{

Riγ [ϕψ
⊤
γ ](θ0)− πγ [ϕψ

⊤
γ ]
}

= χ4
γ(θ0) +O(k−2)

1

k

k−1
∑

i=0

{

Riγ [ψγϕ
⊤](θ0)− πγ [ψγϕ

⊤]
}

= χ5
γ(θ0) +O(k−2) ,

(56)

where χ4
γ and χ5

γ are the Poisson solution associated with ϕψ⊤
γ and ψγϕ

⊤ respectively.
Combining (55)-(56) in (53), we obtain

E[ΦkΦ
⊤
k ] =

1

k
[πγ(ϕψ

⊤
γ ) + πγ(ψγϕ

⊤)− πγ(ϕϕ
⊤)] +O(k−3)

− 1

k2
[πγ(ϕ̟

⊤
γ ) + πγ(̟γϕ

⊤) + χ3
γ(θ0)− χ4

γ(θ0)− χ5
γ(θ0)] . (57)
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First note that

− ϕϕ⊤ + ϕψ⊤
γ + ψγϕ

⊤ = −(ϕ− ψγ)(ϕ− ψγ)
⊤ + ψγψ

⊤
γ . (58)

In addition, by Lemma 11 and definition, we have for all θ0

χ3
γ(θ0)− χ4

γ(θ0)− χ5
γ(θ0)

=
+∞
∑

i=1

{

Riγ [ϕϕ
⊤ − ϕψ⊤

γ − ψγϕ
⊤](θ0)− πγ [ϕϕ

⊤ − ϕψ⊤
γ − ψγϕ

⊤]
}

=

+∞
∑

i=1

{

Riγ [(ϕ− ψγ)(ϕ− ψγ)
⊤ − ψγψ

⊤
γ ](θ0)− πγ [(ϕ− ψγ)(ϕ − ψγ)

⊤ − ψγψ
⊤
γ ]
}

= χ2(θ0)− χ1(θ0) .

Combining this result and (58) in (57) concludes the proof.

6.6 Proof of Corollary 6

In this section we apply Theorem 5 to the case of a quadratic function, more specifically to
the LMS algorithm described in Example 1, to prove Corollary 6. Recall that the sequence
of iterates can be written,

θ
(γ)
k − θ∗ = (Id−γΣ)

(

θ
(γ)
k−1 − θ∗

)

+ γεk(θ
(γ)
k−1)

εk(θ
(γ)
k−1) = (Σ−XkX

⊤
k )(θ

(γ)
k−1 − θ∗)− (X⊤

k θ
∗ − Yk)Xk = ̺k(θ

(γ)
k−1) + ξk .

First note that with the notations of the text, and with γ ≤ 1/r2, operator (Σ ⊗
Id+ Id⊗Σ − γT) is a positive operator on the set of symmetric matrices, and is thus
invertible.

We consider the linear function ϕ which is ϕ(θ) = θ − θ∗, thus Φk = θ̄
(γ)
k − θ∗. First,

by Proposition 3, πγ(ϕ) = 0. We have the following equalities:

ψγ(θ) = (γΣ)−1(θ − θ∗) (59)

̟γ(θ) = (γΣ)−2(θ − θ∗)

ψγ(θ)
⊗2 = (γΣ)−1ϕ(θ)⊗2(γΣ)−1

(ψγ − ϕ)(θ)⊗2 =
[

Id−(γΣ)−1
]

ϕ(θ)⊗2
[

Id−(γΣ)−1
]

,

ψγ(θ)
⊗2 − (ψγ − ϕ)(θ)⊗2 = −(Id⊗ Id−(γΣ)−1 ⊗ Id− Id⊗(γΣ)−1)(ϕ(θ)⊗2)

= γ−1(Σ−1 ⊗Σ−1)
[

Σ⊗ Id+ Id⊗Σ− γΣ⊗ Σ
]

(ϕ(θ)⊗2) . (60)
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Indeed, for (59) (other equations are basic linear algebra), starting from any θ0:

ψγ(θ0) =
∞
∑

i=0

E(θ
(γ)
i )− θ∗ =

∞
∑

i=0

(Id−γΣ)i(θ0 − θ∗) = (γΣ)−1(θ0 − θ∗) .

Moreover, the expectation of ϕ(θ)⊗2 under the stationary distribution is known accord-
ing to Proposition 3,

∫

Rd

ϕ(θ)⊗2πγ(dθ) = γ
[

Σ⊗ Id+ Id⊗Σ− γΣ⊗ Σ
]−1

πγ(C) (61)

= γ[Σ⊗ Id+ Id⊗Σ− γT ]−1C(θ∗) . (62)

Applying Theorem 5, we get a bound on E

(

(θ̄
(γ)
k − θ∗)(θ̄

(γ)
k − θ∗)⊤

)

, using the notation =̃

to denote equality up to linearly decaying term O(ρk):

E[ΦkΦ
⊤
k ]=̃

1

k

∫

Rd

[

ψγ(θ)
⊗2 − (ψγ − ϕ)(θ)⊗2

]

dπγ(θ) (63)

+
1

k2
[

χ1
γ(θ0)− χ2

γ(θ0)
]

− 1

k2

∫

Rd

[

ϕ(θ)̟γ(θ)
⊤ +̟γ(θ)ϕ(θ)

⊤
]

dπγ(θ) .

Term proportional to 1/k
Thus using Equations (60) and (61):

1

k

∫

Rd

[

ψγ(θ)
⊗2 − (ψγ − ϕ)(θ)⊗2

]

dπγ(θ) = k−1(Σ−1 ⊗ Σ−1)πγ(C) (64)

= k−1Σ−1πγ(C)Σ−1.

For the term proportional to 1/k2, we first need to compute the function χ3, solution to
the Poisson equation associated with θ 7→ ϕ(θ)⊗2.

Function χ3
γ

Following the proof of Proposition 17, we have:

Eθ

[

(θ
(γ)
k − θ∗)⊗2

]

= (Id−γΣ⊗ Id−γ Id⊗Σ+ γ2T )Eθ

[

(θ
(γ)
k−1 − θ∗)⊗2

]

+ E[ξ⊗2
k ].

Thus

χ3
γ(θ) :=

∞
∑

k=1

Eθ

[

(θ
(γ)
k − θ∗)⊗2

]

− πγ(ϕ(θ)
⊗2)

= (γΣ⊗ Id+γ Id⊗Σ− γ2T )−1
[

Eθ

[

(θ
(γ)
0 − θ∗)⊗2

]

− πγ(ϕ
⊗2))

]

ν0
(

χ3
γ

)

:= (γΣ⊗ Id+γ Id⊗Σ− γ2T )−1
[

(θ0 − θ∗)⊗2 − πγ(ϕ
⊗2))

]

.
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Formally, the simplification comes from the fact that we study an arithmetico-geometric
recursion of the form wk+1 = awk+b, a < 1, and study

∑∞
i=0wk−w∞ = (1−a)−1(w0−w∞).

(note that here we cannot apply the recursion with (Σ⊗ Id+ Id⊗Σ−γΣ⊗Σ) because then
“b” would depend on k.)

Term proportional to 1/k2

This term is the sum of the following three terms:

χ1
γ(θ0) = (γΣ)−1χ3

γ(θ0)(γΣ)
−1

χ2
γ(θ0) = (Id−(γΣ)−1)χ3

γ(θ0)(Id−(γΣ)−1)

πγ(ϕ̟
⊤
γ +̟γϕ

⊤) = γ−2(Σ−2 ⊗ Id+ Id⊗Σ−2)πγ(ϕ
⊗2) .

using ψγ = (γΣ)−1ϕ, and Rγψγ = ψγ − ϕ = −(Id−(γΣ)−1)ϕ. Finally,

χ1
γ(θ0) + χ2

γ(θ0) = γ−1(Σ−1 ⊗ Σ−1)(Σ⊗ Id+ Id⊗Σ− γΣ⊗Σ)
(

χ3
γ(θ0)

)

= γ−2(Σ−1 ⊗ Σ−1)Ω
[

(θ0 − θ∗)⊗2 − πγ(ϕ
⊗2)
]

. (65)

With Ω = (Σ⊗ Id+ Id⊗Σ− γΣ⊗ Σ)(Σ ⊗ Id+ Id⊗Σ− γT )−1.

Conclusion

Combining (63), (64) and (65), we conclude the proof of Corollary 6.

Eθ̄k − θ∗=̃
1

kγ
Σ−1(θ0 − θ∗)

E

[

(

θ̄
(γ)
k − θ∗

)⊗2
]

=̃
1

k
Σ−1πγ(C)Σ−1 +

1

k2γ2
Σ−1Ω

[

ϕ(θ0)
⊗2 − πγ(ϕ

⊗2)
]

Σ−1

− 1

k2γ2
(Σ−2 ⊗ Id+ Id⊗Σ−2)πγ(ϕ

⊗2) .

6.7 Proof of Theorem 7

Before giving the proof of Theorem 7, we need several results regarding Poisson solutions
associated with the gradient flow ODE (20).

6.7.1 Regularity of the gradient flow and estimates on Poisson solution

Let ℓ ∈ N
∗ and consider the following assumption.

A9 (ℓ). f ∈ Cℓ(Rd) and there existsM ≥ 0 such that for all i ∈ {2, . . . , ℓ}, supθ∈Rd

∥

∥f (i)(θ)
∥

∥ ≤
L̄.

Lemma 21. Assume A1 and A9(ℓ+ 1) for ℓ ∈ N
∗.
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a) For all t ≥ 0, ϕt ∈ Cℓ(Rd,Rd), where (ϕt)t∈R+ is the differential flow associated with

(19). In addition for all θ ∈ R, t 7→ ϕ
(ℓ)
t (θ) satisfies the following ordinary differential

equation,

dϕ
(ℓ)
s (θ)

ds

∣

∣

∣

s=t
= Dℓ

{

f ′ ◦ ϕt
}

(θ) , for all t ≥ 0 ,

with ϕ
′

0 = Id and ϕ
(ℓ)
0 = 0 for ℓ ≥ 2.

b) For all t ≥ 0 and θ ∈ R
d, ‖ϕt(θ)− θ∗‖2 ≤ e−2µt ‖θ − θ∗‖2 .

c) If ℓ ≥ 2, for all t ≥ 0,
ϕ′
t(θ

∗) = e−f
′′(θ∗)t .

d) If ℓ ≥ 3, for all t ≥ 0 and i, j, l ∈ {1, . . . , d},
〈

ϕt
′′(θ∗) {fi ⊗ fj} , fl

〉

=

{

e−λlt−e−(λi+λj)t

λl−λi−λj
f (3)(θ∗) {fi ⊗ fj ⊗ fl} if λl 6= λi + λj

−te−λltf (3)(θ∗) {fi ⊗ fj ⊗ fl} otherwise ,

where {f1, . . . , fd} and {λ1, . . . , λd} are the eigenvectors and the eigenvalues of f ′′(θ∗)
respectively satisfying for all i ∈ {1, . . . , d}, f ′′(θ∗)fi = λifi.

Proof. a) This is a fundamental result on the regularity of flows of autonomous differ-
ential equations, see e.g. [24, Theorem 4.1 Chapter V]

b) Let θ ∈ R
d. Differentiate ‖ϕt(θ)‖2 with respect to t and using A1, that f is at least

continuously differentiable and Grönwall’s inequality concludes the proof.

c) By a) and since θ∗ is an equilibrium point, for all x ∈ R
d, ξxt (θ

∗) = ϕ′
t(θ

∗) {x}
satisfies the following ordinary differential equation

ξ̇xs (θ
∗) = −f ′′(ϕs(θ∗))ξxs (θ∗)ds = −f ′′(θ∗)ξxs (θ∗)ds . (66)

with ξx0 (θ
∗) = x. The proof then follows from uniqueness of the solution of (66).

d) By a), for all x1, x2 ∈ R
d, ξx1,x2t (θ∗) = ϕt

′′(θ∗) {x1 ⊗ x2} satisfies the ordinary
stochastic differential equation:

dξx1,x2s

ds
(θ∗) = −f (3)(ϕs(θ∗))

{

ϕs
′(θ∗)x1 ⊗ ϕs

′(θ∗)x2 ⊗ ei
}

− f ′′(ϕs(θ
∗)) {ξx1,x2s ⊗ ei} .

By c) and since θ∗ is an equilibrium point we get that ξx1,x2t (θ∗) satisfies

dξx1,x2s

ds
(θ∗) = −f (3)(θ∗)

{

e−f
′′(θ∗)tx1 ⊗ e−f

′′(θ∗)tx2 ⊗ ei

}

− f ′′(θ∗) {ξx1,x2s ⊗ ei} .
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Therefore we get for all i, j, l ∈ {1, . . . , d},

d
〈

ξ
fi,fj
s , fl

〉

ds
= −f (3)(θ∗)

{

e−λitfi ⊗ e−λjtfj ⊗ fl

}

− λl

〈

ξ
fi,fj
s , fl

〉

.

This ordinary differential equation can be solved analytically which finishes the proof.

Under A1 and A9(ℓ), for any function g : Rd → R
q, locally Lipschitz, denote by hg the

solution of the continuous Poisson equation defined for all θ ∈ R
d by

hg(θ) =

∫ ∞

0
(g(ϕs(θ))− g(θ∗))dt . (67)

Note that hg is well-defined by Lemma 21-b) and since g is assumed to be locally-Lipschitz.
In addition by (20), hg satisfies

Ahg(θ) = g(θ)− g(θ∗) . (68)

Define hId : Rd → R
d for all x ∈ R

d by

hId(θ) =

∫ ∞

0
{ϕs(θ)− θ∗} dt . (69)

Note that hId is also well-defined by Lemma 21-b).

Lemma 22. Let g : Rd → R satisfying A6(ℓ, p) for ℓ, p ∈ N, ℓ ≥ 1. Assume A1 and
A9(ℓ+ 1).

a) Then for all θ ∈ R
d,

|hg| (θ) ≤ ag
{

(bg/µ) ‖θ − θ∗‖+ (pµ)−1 ‖θ − θ∗‖p
}

.

b) If ℓ ≥ 2, then ∇hId(θ∗) = (f ′′(θ∗))−1. If ℓ ≥ 3, then for all i, j ∈ {1, . . . , d},

∂2hId
∂θi∂θj

(θ∗) =
d
∑

l=1

[

− f (3)(θ∗)
{[

(

f ′′(θ∗)⊗ Id+ Id⊗f ′′(θ∗)
)−1 {ei ⊗ ej}

]

⊗ ei

}

× (f ′′(θ∗))−1el

]

.

Proof. a) For all θ ∈ R
d, we have using Lemma 15 and (67)

|hg(θ)| ≤ ag

∫ +∞

0
‖ϕs(θ)− θ∗‖ {bg + ‖ϕs(θ)− θ∗‖p}ds .

The proof then follows from Lemma 21-b).
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b) The proof is a direct consequence of Lemma 21-c)-d) and (67).

Theorem 23. Let g : R
d → R satisfying A6(ℓ, p) for ℓ, p ∈ N, ℓ ≥ 2. Assume A1-

A9(ℓ+ 1).

a) For all i ∈ {1, . . . , ℓ}, there exists Ci ≥ 0 such that for all θ ∈ R
d and t ≥ 0,

∥

∥

∥
ϕ
(i)
t (θ)

∥

∥

∥
≤ Cie

−µt .

b) Furthermore, hg ∈ Cℓ(Rd) and for all i ∈ {0, . . . , ℓ}, there exists Ci ≥ 0 such that for
all θ ∈ R

d,
∥

∥

∥
h(i)g (θ)

∥

∥

∥
≤ Ci {1 + ‖θ − θ∗‖p} .

Proof. a) The proof is by induction on ℓ. By Lemma 21-a), for all x ∈ R
d, and θ ∈ R

d,
ξxt (θ) = Dϕt(θ) {x} satisfies

dξxs (θ)

ds

∣

∣

∣

s=t
= −f ′′(ϕt(θ))ξxt (θ) . (70)

with ξx0 (θ) = x. Now differentiating s→ ‖ξxs (θ)‖2, using A1 and Grönwall’s inequality, we
get ‖ξxs (θ)‖2 ≤ e−2mt ‖x‖2 which implies the result for ℓ = 2.

Let now ℓ > 2. Using again Lemma 21-a), Faà di Bruno’s formula [29, Theorem 1] and
since (19) can be written on the form

dϕs(θ)

ds

∣

∣

∣

s=t
= −

d
∑

j=1

f ′(ϕt(θ)) {ej} ej ,

for all i ∈ {2, . . . , ℓ}, θ ∈ R
d and x1, · · · , xi ∈ R

d, the function ξx1,··· ,xit (θ) = ϕ
(i)
t (θ) {x1 ⊗ · · · ⊗ xi}

satisfies the ordinary differential equation:

dξx1,··· ,xis (θ)

ds

∣

∣

∣

s=t

= −
d
∑

j=1

∑

Ω∈P({1,...,i})

f (|Ω|+1)(ϕt(θ))







ej ⊗
i
⊗

l=1

⊗

j1,··· ,jl∈Ω

ξ
xj1 ,··· ,xjl
t (θ)







ej , (71)

where P({1, . . . , i}) is the set of partitions of {1, . . . , i}, which does not contain the empty
set and |Ω| is the cardinal of Ω ∈ P({1, . . . , i + 1}). We now show by induction on i that
for all i ∈ {1, . . . , ℓ}, there exists a universal constant Ci such that for all t ≥ 0 and θ ∈ R

d,

sup
x∈Rd

∥

∥

∥
ϕ
(i)
t (θ)

∥

∥

∥
≤ Cie

−µt . (72)
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For i = 1, the result follows from the case ℓ = 1. Assume that the result is true for
{1, . . . , i} for i ∈ {1, . . . , ℓ − 1}. We show the result for i + 1. By (71), we have for all
θ ∈ R

d and x1, · · · , xi ∈ R
d,

d
∥

∥ξ
x1,··· ,xi+1
s (θ)

∥

∥

2

ds

∣

∣

∣

s=t

= −
∑

Ω∈P({1,...,i+1})

f (|Ω|+1)(ϕt(θ))







ξ
x1,··· ,xi+1
t (θ)⊗

i+1
⊗

l=1

⊗

j1,...,jl∈Ω

ξ
xj1 ,··· ,xjl
t (θ)







.

Isolating the term corresponding to Ω = {{1, . . . , i + 1}} in the sum above and using
Young’s inequality, A1, Grönwall’s inequality and the induction hypothesis, we get that
there exists a universal constant Ci+1 such that for all t ≥ 0 and x ∈ R

d (72) holds for
i+ 1.

b) The proof is a consequence of a), (67), A6(ℓ, p) and Lebesgue’s dominated conver-
gence theorem.

6.7.2 Proof of Theorem 7

We preface the proof of the Theorem by two fundamental first estimates.

Theorem 24. Let g : Rd → R satisfying A6(3, p) for p ∈ N. Assume A1-A2-A3-A5.
Furthermore, suppose that there exists q ∈ N and C ≥ 0 such that for all θ ∈ R

d,

E

[

‖ε1(θ)‖p+3
]

≤ C(1 + ‖θ − θ∗‖q) ,

and A4(2p̃) holds for p̃ = p+3+q∨kε. Let Cp̃ be the numerical constant given by Lemma 13
associated with p̃.

(a) For all γ ∈ (0, 1/(LCp̃)), k ∈ N
∗, and starting point θ0 ∈ R

d,

E

[

k−1
k
∑

i=1

{

g(θ
(γ)
i )− g(θ∗)

}

]

=
hg(θ0)− E

[

hg(θ
(γ)
k+1)

]

kγ

+(γ/2)

∫

Rd

h′′g(θ̃)E

[

{

ε1(θ̃)
}⊗2

]

dπγ(θ̃)− (γ/k)Ã1(θ0, k)− γ2Ã2(θ0, k) ,

where θ
(γ)
k is the Markov chain starting from θ0, defined by the recursion (1), and

sup
i∈N∗

Ã1(θ0, i) ≤ C
{

1 + ‖θ0 − θ∗‖p̃
}

, (73)

Ã2(θ0, k) ≤ C
{

1 + ‖θ0 − θ∗‖p̃ /k
}

, (74)

for some constant C ≥ 0 independent of γ and k.
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(b) For all γ ∈ (0, 1/(LCp̃)),

∣

∣

∣

∣

∫

Rd

g(θ̃)πγ(dθ̃)− g(θ∗) + (γ/2)

∫

Rd

h′′g(θ̃)E

[

{

ε(θ̃)
}⊗2

]

dπγ(θ̃)

∣

∣

∣

∣

≤ Cγ2 .

Proof. (a) Let k ∈ N
∗, γ > 0 and θ ∈ R

d. Consider the sequence (θ
(γ)
k )k≥0 defined by the

stochastic gradient recursion (1) and starting at θ. Theorem 23-b) shows that hg ∈ C3(Rd).
Therefore using (1) and the Taylor expansion formula, we have for all i ∈ {1, . . . , k}

hg(θ
(γ)
i+1) = hg(θ

(γ)
i ) + γhg

′(θ
(γ)
i )

{

−f ′(θ(γ)i ) + εi+1(θ
(γ)
i )
}

+ (γ2/2)h′′g(θ
(γ)
i )

{

−f ′(θ(γ)i ) + εi+1(θ
(γ)
i )
}⊗2

+ (γ3/(3!))h(3)g (θ
(γ)
i + s

(γ)
i ∆θ

(γ)
i+1)

{

−f ′(θ(γ)i ) + εi+1(θ
(γ)
i )
}⊗3

,

where s
(γ)
i ∈ [0, 1] and ∆θ

(γ)
i+1 = θ

(γ)
i+1 − θ

(γ)
i . Therefore by (68), we get

k−1
k
∑

i=1

{

g(θ
(γ)
i )− g(θ∗)

}

=
hg(θ)− hg(θ

(γ)
k+1)

kγ
+ k−1

k
∑

i=1

hg
′(θ

(γ)
i−1)εi+1(θ

(γ)
i )

+(γ/(2k))
k
∑

i=1

h′′g(θ
(γ)
i )

{

−f ′(θ(γ)i ) + εi+1(θ
(γ)
i )
}⊗2

+(γ2/(3!k))

k
∑

i=1

h(3)g (θ
(γ)
i + s

(γ)
i ∆θ

(γ)
i+1)

{

−f ′(θ(γ)i ) + εi+1(θ
(γ)
i )
}⊗3

.

Taking the expectation and using A3, we have

E

[

k−1
k
∑

i=1

{

g(θ
(γ)
i )− g(θ∗)

}

]

=
E

[

hg(θ)− hg(θ
(γ)
k+1)

]

kγ

+(γ/2)

∫

Rd

h′′g(θ̃)E

[

{

ε1(θ̃)
}⊗2

]

dπγ(θ̃)− (γ/(2k))B̃1 + (γ2/(3!k))B̃2 ,

where

B̃1(θ0, k) = E

[

k
∑

i=1

(

h′′g(θ
∗) {ε1(θ∗)}⊗2 − h′′g(θ

(γ)
i )

{

−f ′(θ(γ)i ) + εi+1(θ
(γ)
i )
}⊗2

)

]

B̃2(θ0, k) = E

[

k
∑

i=1

h(3)g (θ
(γ)
i + s

(γ)
i ∆θ

(γ)
i+1)

{

−f ′(θ(γ)i ) + εi+1(θ
(γ)
i )
}⊗3

]

.
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Then it remains to show that (73) and (74) holds. By A2, Theorem 7-b) and A5, there
exists C ≥ 0 such that we have that for all θ ∈ R

d,

∥

∥H ′(θ)
∥

∥ ≤ C1(1 + ‖θ − θ∗‖kε+p+2) ,

where H : θ 7→ h′′g(θ)E[{−f ′(θ) + ε1(θ)}⊗2]. Therefore (73) follows from A3, Lemma 15
and Proposition 16. Finally by Theorem 23-b) and Jensen inequality, there exists C ≥ 0
such that for all i ∈ {1, . . . , k}, almost surely,

h(3)g (θ
(γ)
i + s

(γ)
i ∆θ

(γ)
i+1)

{

−f ′(θ(γ)i ) + εi+1(θ
(γ)
i )
}⊗3

≤ C
(

1 +
∥

∥

∥
θ
(γ)
i

∥

∥

∥

p2
+
∥

∥

∥
εi+1(θ

(γ)
i )
∥

∥

∥

p2)
(

∥

∥

∥
f ′(θ

(γ)
i )
∥

∥

∥

3
+
∥

∥

∥
εi+1(θ

(γ)
i )
∥

∥

∥

3
)

.

The proof of (74) then follows from A2, A3, (73) and Lemma 13.

(b) This result is a direct consequence of Proposition 16 and (a).

Proof of Theorem 7. Under the stated assumptions, the functions ψ : θ 7→ h′′g(θ)E[{ε(θ)}⊗2]
and g satisfy the conditions of Theorem 24. The proof then follows from combining Theo-
rem 24-(b) applied to ψ and Theorem 24 applied to g.
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[55] V. B. Tadić and A. Doucet. Asymptotic bias of stochastic gradient search. Ann. Appl.
Probab., 27(6):3255–3304, 2017.

[56] D. Talay and L. Tubaro. Expansion of the global error for numerical schemes solving
stochastic differential equations. Stochastic Anal. Appl., 8(4):483–509 (1991), 1990.

[57] C. Villani. Optimal transport : old and new. Grundlehren der mathematischen Wis-
senschaften. Springer, Berlin, 2009.

[58] M. Welling and Y. W Teh. Bayesian learning via Stochastic Gradient Langevin Dy-
namics. In ICML, pages 681–688, 2011.

[59] D. L. Zhu and P. Marcotte. Co-coercivity and its role in the convergence of iterative
schemes for solving variational inequalities. SIAM Journal on Optimization, 6(3):714–
726, 1996.

49


	Introduction
	Main results
	Setting
	Summary and discussion of main results
	Related work

	Detailed analysis
	Expansion of moments of  when  is in a neighborhood of  0
	Expansion for a given >0 when k tends to +
	Continuous interpretation of SGD and weak error expansion
	Discussion

	Experiments
	Conclusion
	Postponed proofs
	Discussion on assumptions on the noise
	Preliminary results
	Proof of lem:statioquadractic
	Proof of theo:statiogeneral
	Proof of th:tclnonasympt
	Proof of cor:quadconv
	Proof of THEO:BIAS1
	Regularity of the gradient flow and estimates on Poisson solution
	Proof of Theorem 7


	Acknowledgments

